rtc.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391
  1. /*
  2. * Real Time Clock interface for Linux
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker
  5. *
  6. * This driver allows use of the real time clock (built into
  7. * nearly all computers) from user space. It exports the /dev/rtc
  8. * interface supporting various ioctl() and also the
  9. * /proc/driver/rtc pseudo-file for status information.
  10. *
  11. * The ioctls can be used to set the interrupt behaviour and
  12. * generation rate from the RTC via IRQ 8. Then the /dev/rtc
  13. * interface can be used to make use of these timer interrupts,
  14. * be they interval or alarm based.
  15. *
  16. * The /dev/rtc interface will block on reads until an interrupt
  17. * has been received. If a RTC interrupt has already happened,
  18. * it will output an unsigned long and then block. The output value
  19. * contains the interrupt status in the low byte and the number of
  20. * interrupts since the last read in the remaining high bytes. The
  21. * /dev/rtc interface can also be used with the select(2) call.
  22. *
  23. * This program is free software; you can redistribute it and/or
  24. * modify it under the terms of the GNU General Public License
  25. * as published by the Free Software Foundation; either version
  26. * 2 of the License, or (at your option) any later version.
  27. *
  28. * Based on other minimal char device drivers, like Alan's
  29. * watchdog, Ted's random, etc. etc.
  30. *
  31. * 1.07 Paul Gortmaker.
  32. * 1.08 Miquel van Smoorenburg: disallow certain things on the
  33. * DEC Alpha as the CMOS clock is also used for other things.
  34. * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
  35. * 1.09a Pete Zaitcev: Sun SPARC
  36. * 1.09b Jeff Garzik: Modularize, init cleanup
  37. * 1.09c Jeff Garzik: SMP cleanup
  38. * 1.10 Paul Barton-Davis: add support for async I/O
  39. * 1.10a Andrea Arcangeli: Alpha updates
  40. * 1.10b Andrew Morton: SMP lock fix
  41. * 1.10c Cesar Barros: SMP locking fixes and cleanup
  42. * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
  43. * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
  44. * 1.11 Takashi Iwai: Kernel access functions
  45. * rtc_register/rtc_unregister/rtc_control
  46. * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
  47. * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
  48. * CONFIG_HPET_EMULATE_RTC
  49. * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
  50. * 1.12ac Alan Cox: Allow read access to the day of week register
  51. */
  52. #define RTC_VERSION "1.12ac"
  53. /*
  54. * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
  55. * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
  56. * design of the RTC, we don't want two different things trying to
  57. * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
  58. * this driver.)
  59. */
  60. #include <linux/interrupt.h>
  61. #include <linux/module.h>
  62. #include <linux/kernel.h>
  63. #include <linux/types.h>
  64. #include <linux/miscdevice.h>
  65. #include <linux/ioport.h>
  66. #include <linux/fcntl.h>
  67. #include <linux/mc146818rtc.h>
  68. #include <linux/init.h>
  69. #include <linux/poll.h>
  70. #include <linux/proc_fs.h>
  71. #include <linux/seq_file.h>
  72. #include <linux/spinlock.h>
  73. #include <linux/sysctl.h>
  74. #include <linux/wait.h>
  75. #include <linux/bcd.h>
  76. #include <linux/delay.h>
  77. #include <asm/current.h>
  78. #include <asm/uaccess.h>
  79. #include <asm/system.h>
  80. #if defined(__i386__)
  81. #include <asm/hpet.h>
  82. #endif
  83. #ifdef __sparc__
  84. #include <linux/pci.h>
  85. #include <asm/ebus.h>
  86. #ifdef __sparc_v9__
  87. #include <asm/isa.h>
  88. #endif
  89. static unsigned long rtc_port;
  90. static int rtc_irq = PCI_IRQ_NONE;
  91. #endif
  92. #ifdef CONFIG_HPET_RTC_IRQ
  93. #undef RTC_IRQ
  94. #endif
  95. #ifdef RTC_IRQ
  96. static int rtc_has_irq = 1;
  97. #endif
  98. #ifndef CONFIG_HPET_EMULATE_RTC
  99. #define is_hpet_enabled() 0
  100. #define hpet_set_alarm_time(hrs, min, sec) 0
  101. #define hpet_set_periodic_freq(arg) 0
  102. #define hpet_mask_rtc_irq_bit(arg) 0
  103. #define hpet_set_rtc_irq_bit(arg) 0
  104. #define hpet_rtc_timer_init() do { } while (0)
  105. #define hpet_rtc_dropped_irq() 0
  106. #ifdef RTC_IRQ
  107. static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
  108. {
  109. return 0;
  110. }
  111. #endif
  112. #else
  113. extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
  114. #endif
  115. /*
  116. * We sponge a minor off of the misc major. No need slurping
  117. * up another valuable major dev number for this. If you add
  118. * an ioctl, make sure you don't conflict with SPARC's RTC
  119. * ioctls.
  120. */
  121. static struct fasync_struct *rtc_async_queue;
  122. static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
  123. #ifdef RTC_IRQ
  124. static void rtc_dropped_irq(unsigned long data);
  125. static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
  126. #endif
  127. static ssize_t rtc_read(struct file *file, char __user *buf,
  128. size_t count, loff_t *ppos);
  129. static int rtc_ioctl(struct inode *inode, struct file *file,
  130. unsigned int cmd, unsigned long arg);
  131. #ifdef RTC_IRQ
  132. static unsigned int rtc_poll(struct file *file, poll_table *wait);
  133. #endif
  134. static void get_rtc_alm_time (struct rtc_time *alm_tm);
  135. #ifdef RTC_IRQ
  136. static void set_rtc_irq_bit_locked(unsigned char bit);
  137. static void mask_rtc_irq_bit_locked(unsigned char bit);
  138. static inline void set_rtc_irq_bit(unsigned char bit)
  139. {
  140. spin_lock_irq(&rtc_lock);
  141. set_rtc_irq_bit_locked(bit);
  142. spin_unlock_irq(&rtc_lock);
  143. }
  144. static void mask_rtc_irq_bit(unsigned char bit)
  145. {
  146. spin_lock_irq(&rtc_lock);
  147. mask_rtc_irq_bit_locked(bit);
  148. spin_unlock_irq(&rtc_lock);
  149. }
  150. #endif
  151. #ifdef CONFIG_PROC_FS
  152. static int rtc_proc_open(struct inode *inode, struct file *file);
  153. #endif
  154. /*
  155. * Bits in rtc_status. (6 bits of room for future expansion)
  156. */
  157. #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
  158. #define RTC_TIMER_ON 0x02 /* missed irq timer active */
  159. /*
  160. * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
  161. * protected by the big kernel lock. However, ioctl can still disable the timer
  162. * in rtc_status and then with del_timer after the interrupt has read
  163. * rtc_status but before mod_timer is called, which would then reenable the
  164. * timer (but you would need to have an awful timing before you'd trip on it)
  165. */
  166. static unsigned long rtc_status = 0; /* bitmapped status byte. */
  167. static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */
  168. static unsigned long rtc_irq_data = 0; /* our output to the world */
  169. static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
  170. #ifdef RTC_IRQ
  171. /*
  172. * rtc_task_lock nests inside rtc_lock.
  173. */
  174. static DEFINE_SPINLOCK(rtc_task_lock);
  175. static rtc_task_t *rtc_callback = NULL;
  176. #endif
  177. /*
  178. * If this driver ever becomes modularised, it will be really nice
  179. * to make the epoch retain its value across module reload...
  180. */
  181. static unsigned long epoch = 1900; /* year corresponding to 0x00 */
  182. static const unsigned char days_in_mo[] =
  183. {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
  184. /*
  185. * Returns true if a clock update is in progress
  186. */
  187. static inline unsigned char rtc_is_updating(void)
  188. {
  189. unsigned long flags;
  190. unsigned char uip;
  191. spin_lock_irqsave(&rtc_lock, flags);
  192. uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
  193. spin_unlock_irqrestore(&rtc_lock, flags);
  194. return uip;
  195. }
  196. #ifdef RTC_IRQ
  197. /*
  198. * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
  199. * but there is possibility of conflicting with the set_rtc_mmss()
  200. * call (the rtc irq and the timer irq can easily run at the same
  201. * time in two different CPUs). So we need to serialize
  202. * accesses to the chip with the rtc_lock spinlock that each
  203. * architecture should implement in the timer code.
  204. * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
  205. */
  206. irqreturn_t rtc_interrupt(int irq, void *dev_id)
  207. {
  208. /*
  209. * Can be an alarm interrupt, update complete interrupt,
  210. * or a periodic interrupt. We store the status in the
  211. * low byte and the number of interrupts received since
  212. * the last read in the remainder of rtc_irq_data.
  213. */
  214. spin_lock (&rtc_lock);
  215. rtc_irq_data += 0x100;
  216. rtc_irq_data &= ~0xff;
  217. if (is_hpet_enabled()) {
  218. /*
  219. * In this case it is HPET RTC interrupt handler
  220. * calling us, with the interrupt information
  221. * passed as arg1, instead of irq.
  222. */
  223. rtc_irq_data |= (unsigned long)irq & 0xF0;
  224. } else {
  225. rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
  226. }
  227. if (rtc_status & RTC_TIMER_ON)
  228. mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
  229. spin_unlock (&rtc_lock);
  230. /* Now do the rest of the actions */
  231. spin_lock(&rtc_task_lock);
  232. if (rtc_callback)
  233. rtc_callback->func(rtc_callback->private_data);
  234. spin_unlock(&rtc_task_lock);
  235. wake_up_interruptible(&rtc_wait);
  236. kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
  237. return IRQ_HANDLED;
  238. }
  239. #endif
  240. /*
  241. * sysctl-tuning infrastructure.
  242. */
  243. static ctl_table rtc_table[] = {
  244. {
  245. .ctl_name = CTL_UNNUMBERED,
  246. .procname = "max-user-freq",
  247. .data = &rtc_max_user_freq,
  248. .maxlen = sizeof(int),
  249. .mode = 0644,
  250. .proc_handler = &proc_dointvec,
  251. },
  252. { .ctl_name = 0 }
  253. };
  254. static ctl_table rtc_root[] = {
  255. {
  256. .ctl_name = CTL_UNNUMBERED,
  257. .procname = "rtc",
  258. .mode = 0555,
  259. .child = rtc_table,
  260. },
  261. { .ctl_name = 0 }
  262. };
  263. static ctl_table dev_root[] = {
  264. {
  265. .ctl_name = CTL_DEV,
  266. .procname = "dev",
  267. .mode = 0555,
  268. .child = rtc_root,
  269. },
  270. { .ctl_name = 0 }
  271. };
  272. static struct ctl_table_header *sysctl_header;
  273. static int __init init_sysctl(void)
  274. {
  275. sysctl_header = register_sysctl_table(dev_root);
  276. return 0;
  277. }
  278. static void __exit cleanup_sysctl(void)
  279. {
  280. unregister_sysctl_table(sysctl_header);
  281. }
  282. /*
  283. * Now all the various file operations that we export.
  284. */
  285. static ssize_t rtc_read(struct file *file, char __user *buf,
  286. size_t count, loff_t *ppos)
  287. {
  288. #ifndef RTC_IRQ
  289. return -EIO;
  290. #else
  291. DECLARE_WAITQUEUE(wait, current);
  292. unsigned long data;
  293. ssize_t retval;
  294. if (rtc_has_irq == 0)
  295. return -EIO;
  296. /*
  297. * Historically this function used to assume that sizeof(unsigned long)
  298. * is the same in userspace and kernelspace. This lead to problems
  299. * for configurations with multiple ABIs such a the MIPS o32 and 64
  300. * ABIs supported on the same kernel. So now we support read of both
  301. * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
  302. * userspace ABI.
  303. */
  304. if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
  305. return -EINVAL;
  306. add_wait_queue(&rtc_wait, &wait);
  307. do {
  308. /* First make it right. Then make it fast. Putting this whole
  309. * block within the parentheses of a while would be too
  310. * confusing. And no, xchg() is not the answer. */
  311. __set_current_state(TASK_INTERRUPTIBLE);
  312. spin_lock_irq (&rtc_lock);
  313. data = rtc_irq_data;
  314. rtc_irq_data = 0;
  315. spin_unlock_irq (&rtc_lock);
  316. if (data != 0)
  317. break;
  318. if (file->f_flags & O_NONBLOCK) {
  319. retval = -EAGAIN;
  320. goto out;
  321. }
  322. if (signal_pending(current)) {
  323. retval = -ERESTARTSYS;
  324. goto out;
  325. }
  326. schedule();
  327. } while (1);
  328. if (count == sizeof(unsigned int))
  329. retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
  330. else
  331. retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
  332. if (!retval)
  333. retval = count;
  334. out:
  335. __set_current_state(TASK_RUNNING);
  336. remove_wait_queue(&rtc_wait, &wait);
  337. return retval;
  338. #endif
  339. }
  340. static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
  341. {
  342. struct rtc_time wtime;
  343. #ifdef RTC_IRQ
  344. if (rtc_has_irq == 0) {
  345. switch (cmd) {
  346. case RTC_AIE_OFF:
  347. case RTC_AIE_ON:
  348. case RTC_PIE_OFF:
  349. case RTC_PIE_ON:
  350. case RTC_UIE_OFF:
  351. case RTC_UIE_ON:
  352. case RTC_IRQP_READ:
  353. case RTC_IRQP_SET:
  354. return -EINVAL;
  355. };
  356. }
  357. #endif
  358. switch (cmd) {
  359. #ifdef RTC_IRQ
  360. case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
  361. {
  362. mask_rtc_irq_bit(RTC_AIE);
  363. return 0;
  364. }
  365. case RTC_AIE_ON: /* Allow alarm interrupts. */
  366. {
  367. set_rtc_irq_bit(RTC_AIE);
  368. return 0;
  369. }
  370. case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
  371. {
  372. unsigned long flags; /* can be called from isr via rtc_control() */
  373. spin_lock_irqsave (&rtc_lock, flags);
  374. mask_rtc_irq_bit_locked(RTC_PIE);
  375. if (rtc_status & RTC_TIMER_ON) {
  376. rtc_status &= ~RTC_TIMER_ON;
  377. del_timer(&rtc_irq_timer);
  378. }
  379. spin_unlock_irqrestore (&rtc_lock, flags);
  380. return 0;
  381. }
  382. case RTC_PIE_ON: /* Allow periodic ints */
  383. {
  384. unsigned long flags; /* can be called from isr via rtc_control() */
  385. /*
  386. * We don't really want Joe User enabling more
  387. * than 64Hz of interrupts on a multi-user machine.
  388. */
  389. if (!kernel && (rtc_freq > rtc_max_user_freq) &&
  390. (!capable(CAP_SYS_RESOURCE)))
  391. return -EACCES;
  392. spin_lock_irqsave (&rtc_lock, flags);
  393. if (!(rtc_status & RTC_TIMER_ON)) {
  394. mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
  395. 2*HZ/100);
  396. rtc_status |= RTC_TIMER_ON;
  397. }
  398. set_rtc_irq_bit_locked(RTC_PIE);
  399. spin_unlock_irqrestore (&rtc_lock, flags);
  400. return 0;
  401. }
  402. case RTC_UIE_OFF: /* Mask ints from RTC updates. */
  403. {
  404. mask_rtc_irq_bit(RTC_UIE);
  405. return 0;
  406. }
  407. case RTC_UIE_ON: /* Allow ints for RTC updates. */
  408. {
  409. set_rtc_irq_bit(RTC_UIE);
  410. return 0;
  411. }
  412. #endif
  413. case RTC_ALM_READ: /* Read the present alarm time */
  414. {
  415. /*
  416. * This returns a struct rtc_time. Reading >= 0xc0
  417. * means "don't care" or "match all". Only the tm_hour,
  418. * tm_min, and tm_sec values are filled in.
  419. */
  420. memset(&wtime, 0, sizeof(struct rtc_time));
  421. get_rtc_alm_time(&wtime);
  422. break;
  423. }
  424. case RTC_ALM_SET: /* Store a time into the alarm */
  425. {
  426. /*
  427. * This expects a struct rtc_time. Writing 0xff means
  428. * "don't care" or "match all". Only the tm_hour,
  429. * tm_min and tm_sec are used.
  430. */
  431. unsigned char hrs, min, sec;
  432. struct rtc_time alm_tm;
  433. if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
  434. sizeof(struct rtc_time)))
  435. return -EFAULT;
  436. hrs = alm_tm.tm_hour;
  437. min = alm_tm.tm_min;
  438. sec = alm_tm.tm_sec;
  439. spin_lock_irq(&rtc_lock);
  440. if (hpet_set_alarm_time(hrs, min, sec)) {
  441. /*
  442. * Fallthru and set alarm time in CMOS too,
  443. * so that we will get proper value in RTC_ALM_READ
  444. */
  445. }
  446. if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
  447. RTC_ALWAYS_BCD)
  448. {
  449. if (sec < 60) BIN_TO_BCD(sec);
  450. else sec = 0xff;
  451. if (min < 60) BIN_TO_BCD(min);
  452. else min = 0xff;
  453. if (hrs < 24) BIN_TO_BCD(hrs);
  454. else hrs = 0xff;
  455. }
  456. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  457. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  458. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  459. spin_unlock_irq(&rtc_lock);
  460. return 0;
  461. }
  462. case RTC_RD_TIME: /* Read the time/date from RTC */
  463. {
  464. memset(&wtime, 0, sizeof(struct rtc_time));
  465. rtc_get_rtc_time(&wtime);
  466. break;
  467. }
  468. case RTC_SET_TIME: /* Set the RTC */
  469. {
  470. struct rtc_time rtc_tm;
  471. unsigned char mon, day, hrs, min, sec, leap_yr;
  472. unsigned char save_control, save_freq_select;
  473. unsigned int yrs;
  474. #ifdef CONFIG_MACH_DECSTATION
  475. unsigned int real_yrs;
  476. #endif
  477. if (!capable(CAP_SYS_TIME))
  478. return -EACCES;
  479. if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
  480. sizeof(struct rtc_time)))
  481. return -EFAULT;
  482. yrs = rtc_tm.tm_year + 1900;
  483. mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
  484. day = rtc_tm.tm_mday;
  485. hrs = rtc_tm.tm_hour;
  486. min = rtc_tm.tm_min;
  487. sec = rtc_tm.tm_sec;
  488. if (yrs < 1970)
  489. return -EINVAL;
  490. leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
  491. if ((mon > 12) || (day == 0))
  492. return -EINVAL;
  493. if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
  494. return -EINVAL;
  495. if ((hrs >= 24) || (min >= 60) || (sec >= 60))
  496. return -EINVAL;
  497. if ((yrs -= epoch) > 255) /* They are unsigned */
  498. return -EINVAL;
  499. spin_lock_irq(&rtc_lock);
  500. #ifdef CONFIG_MACH_DECSTATION
  501. real_yrs = yrs;
  502. yrs = 72;
  503. /*
  504. * We want to keep the year set to 73 until March
  505. * for non-leap years, so that Feb, 29th is handled
  506. * correctly.
  507. */
  508. if (!leap_yr && mon < 3) {
  509. real_yrs--;
  510. yrs = 73;
  511. }
  512. #endif
  513. /* These limits and adjustments are independent of
  514. * whether the chip is in binary mode or not.
  515. */
  516. if (yrs > 169) {
  517. spin_unlock_irq(&rtc_lock);
  518. return -EINVAL;
  519. }
  520. if (yrs >= 100)
  521. yrs -= 100;
  522. if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
  523. || RTC_ALWAYS_BCD) {
  524. BIN_TO_BCD(sec);
  525. BIN_TO_BCD(min);
  526. BIN_TO_BCD(hrs);
  527. BIN_TO_BCD(day);
  528. BIN_TO_BCD(mon);
  529. BIN_TO_BCD(yrs);
  530. }
  531. save_control = CMOS_READ(RTC_CONTROL);
  532. CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
  533. save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
  534. CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
  535. #ifdef CONFIG_MACH_DECSTATION
  536. CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
  537. #endif
  538. CMOS_WRITE(yrs, RTC_YEAR);
  539. CMOS_WRITE(mon, RTC_MONTH);
  540. CMOS_WRITE(day, RTC_DAY_OF_MONTH);
  541. CMOS_WRITE(hrs, RTC_HOURS);
  542. CMOS_WRITE(min, RTC_MINUTES);
  543. CMOS_WRITE(sec, RTC_SECONDS);
  544. CMOS_WRITE(save_control, RTC_CONTROL);
  545. CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
  546. spin_unlock_irq(&rtc_lock);
  547. return 0;
  548. }
  549. #ifdef RTC_IRQ
  550. case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
  551. {
  552. return put_user(rtc_freq, (unsigned long __user *)arg);
  553. }
  554. case RTC_IRQP_SET: /* Set periodic IRQ rate. */
  555. {
  556. int tmp = 0;
  557. unsigned char val;
  558. unsigned long flags; /* can be called from isr via rtc_control() */
  559. /*
  560. * The max we can do is 8192Hz.
  561. */
  562. if ((arg < 2) || (arg > 8192))
  563. return -EINVAL;
  564. /*
  565. * We don't really want Joe User generating more
  566. * than 64Hz of interrupts on a multi-user machine.
  567. */
  568. if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
  569. return -EACCES;
  570. while (arg > (1<<tmp))
  571. tmp++;
  572. /*
  573. * Check that the input was really a power of 2.
  574. */
  575. if (arg != (1<<tmp))
  576. return -EINVAL;
  577. spin_lock_irqsave(&rtc_lock, flags);
  578. if (hpet_set_periodic_freq(arg)) {
  579. spin_unlock_irqrestore(&rtc_lock, flags);
  580. return 0;
  581. }
  582. rtc_freq = arg;
  583. val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
  584. val |= (16 - tmp);
  585. CMOS_WRITE(val, RTC_FREQ_SELECT);
  586. spin_unlock_irqrestore(&rtc_lock, flags);
  587. return 0;
  588. }
  589. #endif
  590. case RTC_EPOCH_READ: /* Read the epoch. */
  591. {
  592. return put_user (epoch, (unsigned long __user *)arg);
  593. }
  594. case RTC_EPOCH_SET: /* Set the epoch. */
  595. {
  596. /*
  597. * There were no RTC clocks before 1900.
  598. */
  599. if (arg < 1900)
  600. return -EINVAL;
  601. if (!capable(CAP_SYS_TIME))
  602. return -EACCES;
  603. epoch = arg;
  604. return 0;
  605. }
  606. default:
  607. return -ENOTTY;
  608. }
  609. return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
  610. }
  611. static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
  612. unsigned long arg)
  613. {
  614. return rtc_do_ioctl(cmd, arg, 0);
  615. }
  616. /*
  617. * We enforce only one user at a time here with the open/close.
  618. * Also clear the previous interrupt data on an open, and clean
  619. * up things on a close.
  620. */
  621. /* We use rtc_lock to protect against concurrent opens. So the BKL is not
  622. * needed here. Or anywhere else in this driver. */
  623. static int rtc_open(struct inode *inode, struct file *file)
  624. {
  625. spin_lock_irq (&rtc_lock);
  626. if(rtc_status & RTC_IS_OPEN)
  627. goto out_busy;
  628. rtc_status |= RTC_IS_OPEN;
  629. rtc_irq_data = 0;
  630. spin_unlock_irq (&rtc_lock);
  631. return 0;
  632. out_busy:
  633. spin_unlock_irq (&rtc_lock);
  634. return -EBUSY;
  635. }
  636. static int rtc_fasync (int fd, struct file *filp, int on)
  637. {
  638. return fasync_helper (fd, filp, on, &rtc_async_queue);
  639. }
  640. static int rtc_release(struct inode *inode, struct file *file)
  641. {
  642. #ifdef RTC_IRQ
  643. unsigned char tmp;
  644. if (rtc_has_irq == 0)
  645. goto no_irq;
  646. /*
  647. * Turn off all interrupts once the device is no longer
  648. * in use, and clear the data.
  649. */
  650. spin_lock_irq(&rtc_lock);
  651. if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
  652. tmp = CMOS_READ(RTC_CONTROL);
  653. tmp &= ~RTC_PIE;
  654. tmp &= ~RTC_AIE;
  655. tmp &= ~RTC_UIE;
  656. CMOS_WRITE(tmp, RTC_CONTROL);
  657. CMOS_READ(RTC_INTR_FLAGS);
  658. }
  659. if (rtc_status & RTC_TIMER_ON) {
  660. rtc_status &= ~RTC_TIMER_ON;
  661. del_timer(&rtc_irq_timer);
  662. }
  663. spin_unlock_irq(&rtc_lock);
  664. if (file->f_flags & FASYNC) {
  665. rtc_fasync (-1, file, 0);
  666. }
  667. no_irq:
  668. #endif
  669. spin_lock_irq (&rtc_lock);
  670. rtc_irq_data = 0;
  671. rtc_status &= ~RTC_IS_OPEN;
  672. spin_unlock_irq (&rtc_lock);
  673. return 0;
  674. }
  675. #ifdef RTC_IRQ
  676. /* Called without the kernel lock - fine */
  677. static unsigned int rtc_poll(struct file *file, poll_table *wait)
  678. {
  679. unsigned long l;
  680. if (rtc_has_irq == 0)
  681. return 0;
  682. poll_wait(file, &rtc_wait, wait);
  683. spin_lock_irq (&rtc_lock);
  684. l = rtc_irq_data;
  685. spin_unlock_irq (&rtc_lock);
  686. if (l != 0)
  687. return POLLIN | POLLRDNORM;
  688. return 0;
  689. }
  690. #endif
  691. /*
  692. * exported stuffs
  693. */
  694. EXPORT_SYMBOL(rtc_register);
  695. EXPORT_SYMBOL(rtc_unregister);
  696. EXPORT_SYMBOL(rtc_control);
  697. int rtc_register(rtc_task_t *task)
  698. {
  699. #ifndef RTC_IRQ
  700. return -EIO;
  701. #else
  702. if (task == NULL || task->func == NULL)
  703. return -EINVAL;
  704. spin_lock_irq(&rtc_lock);
  705. if (rtc_status & RTC_IS_OPEN) {
  706. spin_unlock_irq(&rtc_lock);
  707. return -EBUSY;
  708. }
  709. spin_lock(&rtc_task_lock);
  710. if (rtc_callback) {
  711. spin_unlock(&rtc_task_lock);
  712. spin_unlock_irq(&rtc_lock);
  713. return -EBUSY;
  714. }
  715. rtc_status |= RTC_IS_OPEN;
  716. rtc_callback = task;
  717. spin_unlock(&rtc_task_lock);
  718. spin_unlock_irq(&rtc_lock);
  719. return 0;
  720. #endif
  721. }
  722. int rtc_unregister(rtc_task_t *task)
  723. {
  724. #ifndef RTC_IRQ
  725. return -EIO;
  726. #else
  727. unsigned char tmp;
  728. spin_lock_irq(&rtc_lock);
  729. spin_lock(&rtc_task_lock);
  730. if (rtc_callback != task) {
  731. spin_unlock(&rtc_task_lock);
  732. spin_unlock_irq(&rtc_lock);
  733. return -ENXIO;
  734. }
  735. rtc_callback = NULL;
  736. /* disable controls */
  737. if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
  738. tmp = CMOS_READ(RTC_CONTROL);
  739. tmp &= ~RTC_PIE;
  740. tmp &= ~RTC_AIE;
  741. tmp &= ~RTC_UIE;
  742. CMOS_WRITE(tmp, RTC_CONTROL);
  743. CMOS_READ(RTC_INTR_FLAGS);
  744. }
  745. if (rtc_status & RTC_TIMER_ON) {
  746. rtc_status &= ~RTC_TIMER_ON;
  747. del_timer(&rtc_irq_timer);
  748. }
  749. rtc_status &= ~RTC_IS_OPEN;
  750. spin_unlock(&rtc_task_lock);
  751. spin_unlock_irq(&rtc_lock);
  752. return 0;
  753. #endif
  754. }
  755. int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
  756. {
  757. #ifndef RTC_IRQ
  758. return -EIO;
  759. #else
  760. unsigned long flags;
  761. if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
  762. return -EINVAL;
  763. spin_lock_irqsave(&rtc_task_lock, flags);
  764. if (rtc_callback != task) {
  765. spin_unlock_irqrestore(&rtc_task_lock, flags);
  766. return -ENXIO;
  767. }
  768. spin_unlock_irqrestore(&rtc_task_lock, flags);
  769. return rtc_do_ioctl(cmd, arg, 1);
  770. #endif
  771. }
  772. /*
  773. * The various file operations we support.
  774. */
  775. static const struct file_operations rtc_fops = {
  776. .owner = THIS_MODULE,
  777. .llseek = no_llseek,
  778. .read = rtc_read,
  779. #ifdef RTC_IRQ
  780. .poll = rtc_poll,
  781. #endif
  782. .ioctl = rtc_ioctl,
  783. .open = rtc_open,
  784. .release = rtc_release,
  785. .fasync = rtc_fasync,
  786. };
  787. static struct miscdevice rtc_dev = {
  788. .minor = RTC_MINOR,
  789. .name = "rtc",
  790. .fops = &rtc_fops,
  791. };
  792. #ifdef CONFIG_PROC_FS
  793. static const struct file_operations rtc_proc_fops = {
  794. .owner = THIS_MODULE,
  795. .open = rtc_proc_open,
  796. .read = seq_read,
  797. .llseek = seq_lseek,
  798. .release = single_release,
  799. };
  800. #endif
  801. static int __init rtc_init(void)
  802. {
  803. #ifdef CONFIG_PROC_FS
  804. struct proc_dir_entry *ent;
  805. #endif
  806. #if defined(__alpha__) || defined(__mips__)
  807. unsigned int year, ctrl;
  808. char *guess = NULL;
  809. #endif
  810. #ifdef __sparc__
  811. struct linux_ebus *ebus;
  812. struct linux_ebus_device *edev;
  813. #ifdef __sparc_v9__
  814. struct sparc_isa_bridge *isa_br;
  815. struct sparc_isa_device *isa_dev;
  816. #endif
  817. #else
  818. void *r;
  819. #ifdef RTC_IRQ
  820. irq_handler_t rtc_int_handler_ptr;
  821. #endif
  822. #endif
  823. #ifdef __sparc__
  824. for_each_ebus(ebus) {
  825. for_each_ebusdev(edev, ebus) {
  826. if(strcmp(edev->prom_node->name, "rtc") == 0) {
  827. rtc_port = edev->resource[0].start;
  828. rtc_irq = edev->irqs[0];
  829. goto found;
  830. }
  831. }
  832. }
  833. #ifdef __sparc_v9__
  834. for_each_isa(isa_br) {
  835. for_each_isadev(isa_dev, isa_br) {
  836. if (strcmp(isa_dev->prom_node->name, "rtc") == 0) {
  837. rtc_port = isa_dev->resource.start;
  838. rtc_irq = isa_dev->irq;
  839. goto found;
  840. }
  841. }
  842. }
  843. #endif
  844. rtc_has_irq = 0;
  845. printk(KERN_ERR "rtc_init: no PC rtc found\n");
  846. return -EIO;
  847. found:
  848. if (rtc_irq == PCI_IRQ_NONE) {
  849. rtc_has_irq = 0;
  850. goto no_irq;
  851. }
  852. /*
  853. * XXX Interrupt pin #7 in Espresso is shared between RTC and
  854. * PCI Slot 2 INTA# (and some INTx# in Slot 1).
  855. */
  856. if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
  857. rtc_has_irq = 0;
  858. printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
  859. return -EIO;
  860. }
  861. no_irq:
  862. #else
  863. if (RTC_IOMAPPED)
  864. r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
  865. else
  866. r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
  867. if (!r) {
  868. #ifdef RTC_IRQ
  869. rtc_has_irq = 0;
  870. #endif
  871. printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
  872. (long)(RTC_PORT(0)));
  873. return -EIO;
  874. }
  875. #ifdef RTC_IRQ
  876. if (is_hpet_enabled()) {
  877. rtc_int_handler_ptr = hpet_rtc_interrupt;
  878. } else {
  879. rtc_int_handler_ptr = rtc_interrupt;
  880. }
  881. if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
  882. /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
  883. rtc_has_irq = 0;
  884. printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
  885. if (RTC_IOMAPPED)
  886. release_region(RTC_PORT(0), RTC_IO_EXTENT);
  887. else
  888. release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
  889. return -EIO;
  890. }
  891. hpet_rtc_timer_init();
  892. #endif
  893. #endif /* __sparc__ vs. others */
  894. if (misc_register(&rtc_dev)) {
  895. #ifdef RTC_IRQ
  896. free_irq(RTC_IRQ, NULL);
  897. rtc_has_irq = 0;
  898. #endif
  899. release_region(RTC_PORT(0), RTC_IO_EXTENT);
  900. return -ENODEV;
  901. }
  902. #ifdef CONFIG_PROC_FS
  903. ent = create_proc_entry("driver/rtc", 0, NULL);
  904. if (ent)
  905. ent->proc_fops = &rtc_proc_fops;
  906. else
  907. printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
  908. #endif
  909. #if defined(__alpha__) || defined(__mips__)
  910. rtc_freq = HZ;
  911. /* Each operating system on an Alpha uses its own epoch.
  912. Let's try to guess which one we are using now. */
  913. if (rtc_is_updating() != 0)
  914. msleep(20);
  915. spin_lock_irq(&rtc_lock);
  916. year = CMOS_READ(RTC_YEAR);
  917. ctrl = CMOS_READ(RTC_CONTROL);
  918. spin_unlock_irq(&rtc_lock);
  919. if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
  920. BCD_TO_BIN(year); /* This should never happen... */
  921. if (year < 20) {
  922. epoch = 2000;
  923. guess = "SRM (post-2000)";
  924. } else if (year >= 20 && year < 48) {
  925. epoch = 1980;
  926. guess = "ARC console";
  927. } else if (year >= 48 && year < 72) {
  928. epoch = 1952;
  929. guess = "Digital UNIX";
  930. #if defined(__mips__)
  931. } else if (year >= 72 && year < 74) {
  932. epoch = 2000;
  933. guess = "Digital DECstation";
  934. #else
  935. } else if (year >= 70) {
  936. epoch = 1900;
  937. guess = "Standard PC (1900)";
  938. #endif
  939. }
  940. if (guess)
  941. printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
  942. #endif
  943. #ifdef RTC_IRQ
  944. if (rtc_has_irq == 0)
  945. goto no_irq2;
  946. spin_lock_irq(&rtc_lock);
  947. rtc_freq = 1024;
  948. if (!hpet_set_periodic_freq(rtc_freq)) {
  949. /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
  950. CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
  951. }
  952. spin_unlock_irq(&rtc_lock);
  953. no_irq2:
  954. #endif
  955. (void) init_sysctl();
  956. printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
  957. return 0;
  958. }
  959. static void __exit rtc_exit (void)
  960. {
  961. cleanup_sysctl();
  962. remove_proc_entry ("driver/rtc", NULL);
  963. misc_deregister(&rtc_dev);
  964. #ifdef __sparc__
  965. if (rtc_has_irq)
  966. free_irq (rtc_irq, &rtc_port);
  967. #else
  968. if (RTC_IOMAPPED)
  969. release_region(RTC_PORT(0), RTC_IO_EXTENT);
  970. else
  971. release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
  972. #ifdef RTC_IRQ
  973. if (rtc_has_irq)
  974. free_irq (RTC_IRQ, NULL);
  975. #endif
  976. #endif /* __sparc__ */
  977. }
  978. module_init(rtc_init);
  979. module_exit(rtc_exit);
  980. #ifdef RTC_IRQ
  981. /*
  982. * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
  983. * (usually during an IDE disk interrupt, with IRQ unmasking off)
  984. * Since the interrupt handler doesn't get called, the IRQ status
  985. * byte doesn't get read, and the RTC stops generating interrupts.
  986. * A timer is set, and will call this function if/when that happens.
  987. * To get it out of this stalled state, we just read the status.
  988. * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
  989. * (You *really* shouldn't be trying to use a non-realtime system
  990. * for something that requires a steady > 1KHz signal anyways.)
  991. */
  992. static void rtc_dropped_irq(unsigned long data)
  993. {
  994. unsigned long freq;
  995. spin_lock_irq (&rtc_lock);
  996. if (hpet_rtc_dropped_irq()) {
  997. spin_unlock_irq(&rtc_lock);
  998. return;
  999. }
  1000. /* Just in case someone disabled the timer from behind our back... */
  1001. if (rtc_status & RTC_TIMER_ON)
  1002. mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
  1003. rtc_irq_data += ((rtc_freq/HZ)<<8);
  1004. rtc_irq_data &= ~0xff;
  1005. rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
  1006. freq = rtc_freq;
  1007. spin_unlock_irq(&rtc_lock);
  1008. printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
  1009. /* Now we have new data */
  1010. wake_up_interruptible(&rtc_wait);
  1011. kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
  1012. }
  1013. #endif
  1014. #ifdef CONFIG_PROC_FS
  1015. /*
  1016. * Info exported via "/proc/driver/rtc".
  1017. */
  1018. static int rtc_proc_show(struct seq_file *seq, void *v)
  1019. {
  1020. #define YN(bit) ((ctrl & bit) ? "yes" : "no")
  1021. #define NY(bit) ((ctrl & bit) ? "no" : "yes")
  1022. struct rtc_time tm;
  1023. unsigned char batt, ctrl;
  1024. unsigned long freq;
  1025. spin_lock_irq(&rtc_lock);
  1026. batt = CMOS_READ(RTC_VALID) & RTC_VRT;
  1027. ctrl = CMOS_READ(RTC_CONTROL);
  1028. freq = rtc_freq;
  1029. spin_unlock_irq(&rtc_lock);
  1030. rtc_get_rtc_time(&tm);
  1031. /*
  1032. * There is no way to tell if the luser has the RTC set for local
  1033. * time or for Universal Standard Time (GMT). Probably local though.
  1034. */
  1035. seq_printf(seq,
  1036. "rtc_time\t: %02d:%02d:%02d\n"
  1037. "rtc_date\t: %04d-%02d-%02d\n"
  1038. "rtc_epoch\t: %04lu\n",
  1039. tm.tm_hour, tm.tm_min, tm.tm_sec,
  1040. tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
  1041. get_rtc_alm_time(&tm);
  1042. /*
  1043. * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
  1044. * match any value for that particular field. Values that are
  1045. * greater than a valid time, but less than 0xc0 shouldn't appear.
  1046. */
  1047. seq_puts(seq, "alarm\t\t: ");
  1048. if (tm.tm_hour <= 24)
  1049. seq_printf(seq, "%02d:", tm.tm_hour);
  1050. else
  1051. seq_puts(seq, "**:");
  1052. if (tm.tm_min <= 59)
  1053. seq_printf(seq, "%02d:", tm.tm_min);
  1054. else
  1055. seq_puts(seq, "**:");
  1056. if (tm.tm_sec <= 59)
  1057. seq_printf(seq, "%02d\n", tm.tm_sec);
  1058. else
  1059. seq_puts(seq, "**\n");
  1060. seq_printf(seq,
  1061. "DST_enable\t: %s\n"
  1062. "BCD\t\t: %s\n"
  1063. "24hr\t\t: %s\n"
  1064. "square_wave\t: %s\n"
  1065. "alarm_IRQ\t: %s\n"
  1066. "update_IRQ\t: %s\n"
  1067. "periodic_IRQ\t: %s\n"
  1068. "periodic_freq\t: %ld\n"
  1069. "batt_status\t: %s\n",
  1070. YN(RTC_DST_EN),
  1071. NY(RTC_DM_BINARY),
  1072. YN(RTC_24H),
  1073. YN(RTC_SQWE),
  1074. YN(RTC_AIE),
  1075. YN(RTC_UIE),
  1076. YN(RTC_PIE),
  1077. freq,
  1078. batt ? "okay" : "dead");
  1079. return 0;
  1080. #undef YN
  1081. #undef NY
  1082. }
  1083. static int rtc_proc_open(struct inode *inode, struct file *file)
  1084. {
  1085. return single_open(file, rtc_proc_show, NULL);
  1086. }
  1087. #endif
  1088. void rtc_get_rtc_time(struct rtc_time *rtc_tm)
  1089. {
  1090. unsigned long uip_watchdog = jiffies, flags;
  1091. unsigned char ctrl;
  1092. #ifdef CONFIG_MACH_DECSTATION
  1093. unsigned int real_year;
  1094. #endif
  1095. /*
  1096. * read RTC once any update in progress is done. The update
  1097. * can take just over 2ms. We wait 20ms. There is no need to
  1098. * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
  1099. * If you need to know *exactly* when a second has started, enable
  1100. * periodic update complete interrupts, (via ioctl) and then
  1101. * immediately read /dev/rtc which will block until you get the IRQ.
  1102. * Once the read clears, read the RTC time (again via ioctl). Easy.
  1103. */
  1104. while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100)
  1105. cpu_relax();
  1106. /*
  1107. * Only the values that we read from the RTC are set. We leave
  1108. * tm_wday, tm_yday and tm_isdst untouched. Note that while the
  1109. * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
  1110. * only updated by the RTC when initially set to a non-zero value.
  1111. */
  1112. spin_lock_irqsave(&rtc_lock, flags);
  1113. rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
  1114. rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
  1115. rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
  1116. rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
  1117. rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
  1118. rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
  1119. /* Only set from 2.6.16 onwards */
  1120. rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
  1121. #ifdef CONFIG_MACH_DECSTATION
  1122. real_year = CMOS_READ(RTC_DEC_YEAR);
  1123. #endif
  1124. ctrl = CMOS_READ(RTC_CONTROL);
  1125. spin_unlock_irqrestore(&rtc_lock, flags);
  1126. if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
  1127. {
  1128. BCD_TO_BIN(rtc_tm->tm_sec);
  1129. BCD_TO_BIN(rtc_tm->tm_min);
  1130. BCD_TO_BIN(rtc_tm->tm_hour);
  1131. BCD_TO_BIN(rtc_tm->tm_mday);
  1132. BCD_TO_BIN(rtc_tm->tm_mon);
  1133. BCD_TO_BIN(rtc_tm->tm_year);
  1134. BCD_TO_BIN(rtc_tm->tm_wday);
  1135. }
  1136. #ifdef CONFIG_MACH_DECSTATION
  1137. rtc_tm->tm_year += real_year - 72;
  1138. #endif
  1139. /*
  1140. * Account for differences between how the RTC uses the values
  1141. * and how they are defined in a struct rtc_time;
  1142. */
  1143. if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
  1144. rtc_tm->tm_year += 100;
  1145. rtc_tm->tm_mon--;
  1146. }
  1147. static void get_rtc_alm_time(struct rtc_time *alm_tm)
  1148. {
  1149. unsigned char ctrl;
  1150. /*
  1151. * Only the values that we read from the RTC are set. That
  1152. * means only tm_hour, tm_min, and tm_sec.
  1153. */
  1154. spin_lock_irq(&rtc_lock);
  1155. alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  1156. alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  1157. alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  1158. ctrl = CMOS_READ(RTC_CONTROL);
  1159. spin_unlock_irq(&rtc_lock);
  1160. if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
  1161. {
  1162. BCD_TO_BIN(alm_tm->tm_sec);
  1163. BCD_TO_BIN(alm_tm->tm_min);
  1164. BCD_TO_BIN(alm_tm->tm_hour);
  1165. }
  1166. }
  1167. #ifdef RTC_IRQ
  1168. /*
  1169. * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
  1170. * Rumour has it that if you frob the interrupt enable/disable
  1171. * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
  1172. * ensure you actually start getting interrupts. Probably for
  1173. * compatibility with older/broken chipset RTC implementations.
  1174. * We also clear out any old irq data after an ioctl() that
  1175. * meddles with the interrupt enable/disable bits.
  1176. */
  1177. static void mask_rtc_irq_bit_locked(unsigned char bit)
  1178. {
  1179. unsigned char val;
  1180. if (hpet_mask_rtc_irq_bit(bit))
  1181. return;
  1182. val = CMOS_READ(RTC_CONTROL);
  1183. val &= ~bit;
  1184. CMOS_WRITE(val, RTC_CONTROL);
  1185. CMOS_READ(RTC_INTR_FLAGS);
  1186. rtc_irq_data = 0;
  1187. }
  1188. static void set_rtc_irq_bit_locked(unsigned char bit)
  1189. {
  1190. unsigned char val;
  1191. if (hpet_set_rtc_irq_bit(bit))
  1192. return;
  1193. val = CMOS_READ(RTC_CONTROL);
  1194. val |= bit;
  1195. CMOS_WRITE(val, RTC_CONTROL);
  1196. CMOS_READ(RTC_INTR_FLAGS);
  1197. rtc_irq_data = 0;
  1198. }
  1199. #endif
  1200. MODULE_AUTHOR("Paul Gortmaker");
  1201. MODULE_LICENSE("GPL");
  1202. MODULE_ALIAS_MISCDEV(RTC_MINOR);