umem.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243
  1. /*
  2. * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
  3. *
  4. * (C) 2001 San Mehat <nettwerk@valinux.com>
  5. * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
  6. * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
  7. *
  8. * This driver for the Micro Memory PCI Memory Module with Battery Backup
  9. * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
  10. *
  11. * This driver is released to the public under the terms of the
  12. * GNU GENERAL PUBLIC LICENSE version 2
  13. * See the file COPYING for details.
  14. *
  15. * This driver provides a standard block device interface for Micro Memory(tm)
  16. * PCI based RAM boards.
  17. * 10/05/01: Phap Nguyen - Rebuilt the driver
  18. * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19. * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
  20. * - use stand disk partitioning (so fdisk works).
  21. * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
  22. * - incorporate into main kernel
  23. * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
  24. * - use spin_lock_bh instead of _irq
  25. * - Never block on make_request. queue
  26. * bh's instead.
  27. * - unregister umem from devfs at mod unload
  28. * - Change version to 2.3
  29. * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30. * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
  31. * 15May2002:NeilBrown - convert to bio for 2.5
  32. * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
  33. * - a sequence of writes that cover the card, and
  34. * - set initialised bit then.
  35. */
  36. //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
  37. #include <linux/fs.h>
  38. #include <linux/bio.h>
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/mman.h>
  42. #include <linux/ioctl.h>
  43. #include <linux/module.h>
  44. #include <linux/init.h>
  45. #include <linux/interrupt.h>
  46. #include <linux/timer.h>
  47. #include <linux/pci.h>
  48. #include <linux/slab.h>
  49. #include <linux/dma-mapping.h>
  50. #include <linux/fcntl.h> /* O_ACCMODE */
  51. #include <linux/hdreg.h> /* HDIO_GETGEO */
  52. #include <linux/umem.h>
  53. #include <asm/uaccess.h>
  54. #include <asm/io.h>
  55. #define MM_MAXCARDS 4
  56. #define MM_RAHEAD 2 /* two sectors */
  57. #define MM_BLKSIZE 1024 /* 1k blocks */
  58. #define MM_HARDSECT 512 /* 512-byte hardware sectors */
  59. #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
  60. /*
  61. * Version Information
  62. */
  63. #define DRIVER_VERSION "v2.3"
  64. #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
  65. #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
  66. static int debug;
  67. /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  68. #define HW_TRACE(x)
  69. #define DEBUG_LED_ON_TRANSFER 0x01
  70. #define DEBUG_BATTERY_POLLING 0x02
  71. module_param(debug, int, 0644);
  72. MODULE_PARM_DESC(debug, "Debug bitmask");
  73. static int pci_read_cmd = 0x0C; /* Read Multiple */
  74. module_param(pci_read_cmd, int, 0);
  75. MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  76. static int pci_write_cmd = 0x0F; /* Write and Invalidate */
  77. module_param(pci_write_cmd, int, 0);
  78. MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  79. static int pci_cmds;
  80. static int major_nr;
  81. #include <linux/blkdev.h>
  82. #include <linux/blkpg.h>
  83. struct cardinfo {
  84. int card_number;
  85. struct pci_dev *dev;
  86. int irq;
  87. unsigned long csr_base;
  88. unsigned char __iomem *csr_remap;
  89. unsigned long csr_len;
  90. #ifdef CONFIG_MM_MAP_MEMORY
  91. unsigned long mem_base;
  92. unsigned char __iomem *mem_remap;
  93. unsigned long mem_len;
  94. #endif
  95. unsigned int win_size; /* PCI window size */
  96. unsigned int mm_size; /* size in kbytes */
  97. unsigned int init_size; /* initial segment, in sectors,
  98. * that we know to
  99. * have been written
  100. */
  101. struct bio *bio, *currentbio, **biotail;
  102. request_queue_t *queue;
  103. struct mm_page {
  104. dma_addr_t page_dma;
  105. struct mm_dma_desc *desc;
  106. int cnt, headcnt;
  107. struct bio *bio, **biotail;
  108. } mm_pages[2];
  109. #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
  110. int Active, Ready;
  111. struct tasklet_struct tasklet;
  112. unsigned int dma_status;
  113. struct {
  114. int good;
  115. int warned;
  116. unsigned long last_change;
  117. } battery[2];
  118. spinlock_t lock;
  119. int check_batteries;
  120. int flags;
  121. };
  122. static struct cardinfo cards[MM_MAXCARDS];
  123. static struct block_device_operations mm_fops;
  124. static struct timer_list battery_timer;
  125. static int num_cards = 0;
  126. static struct gendisk *mm_gendisk[MM_MAXCARDS];
  127. static void check_batteries(struct cardinfo *card);
  128. /*
  129. -----------------------------------------------------------------------------------
  130. -- get_userbit
  131. -----------------------------------------------------------------------------------
  132. */
  133. static int get_userbit(struct cardinfo *card, int bit)
  134. {
  135. unsigned char led;
  136. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  137. return led & bit;
  138. }
  139. /*
  140. -----------------------------------------------------------------------------------
  141. -- set_userbit
  142. -----------------------------------------------------------------------------------
  143. */
  144. static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
  145. {
  146. unsigned char led;
  147. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  148. if (state)
  149. led |= bit;
  150. else
  151. led &= ~bit;
  152. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  153. return 0;
  154. }
  155. /*
  156. -----------------------------------------------------------------------------------
  157. -- set_led
  158. -----------------------------------------------------------------------------------
  159. */
  160. /*
  161. * NOTE: For the power LED, use the LED_POWER_* macros since they differ
  162. */
  163. static void set_led(struct cardinfo *card, int shift, unsigned char state)
  164. {
  165. unsigned char led;
  166. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  167. if (state == LED_FLIP)
  168. led ^= (1<<shift);
  169. else {
  170. led &= ~(0x03 << shift);
  171. led |= (state << shift);
  172. }
  173. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  174. }
  175. #ifdef MM_DIAG
  176. /*
  177. -----------------------------------------------------------------------------------
  178. -- dump_regs
  179. -----------------------------------------------------------------------------------
  180. */
  181. static void dump_regs(struct cardinfo *card)
  182. {
  183. unsigned char *p;
  184. int i, i1;
  185. p = card->csr_remap;
  186. for (i = 0; i < 8; i++) {
  187. printk(KERN_DEBUG "%p ", p);
  188. for (i1 = 0; i1 < 16; i1++)
  189. printk("%02x ", *p++);
  190. printk("\n");
  191. }
  192. }
  193. #endif
  194. /*
  195. -----------------------------------------------------------------------------------
  196. -- dump_dmastat
  197. -----------------------------------------------------------------------------------
  198. */
  199. static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
  200. {
  201. printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
  202. if (dmastat & DMASCR_ANY_ERR)
  203. printk("ANY_ERR ");
  204. if (dmastat & DMASCR_MBE_ERR)
  205. printk("MBE_ERR ");
  206. if (dmastat & DMASCR_PARITY_ERR_REP)
  207. printk("PARITY_ERR_REP ");
  208. if (dmastat & DMASCR_PARITY_ERR_DET)
  209. printk("PARITY_ERR_DET ");
  210. if (dmastat & DMASCR_SYSTEM_ERR_SIG)
  211. printk("SYSTEM_ERR_SIG ");
  212. if (dmastat & DMASCR_TARGET_ABT)
  213. printk("TARGET_ABT ");
  214. if (dmastat & DMASCR_MASTER_ABT)
  215. printk("MASTER_ABT ");
  216. if (dmastat & DMASCR_CHAIN_COMPLETE)
  217. printk("CHAIN_COMPLETE ");
  218. if (dmastat & DMASCR_DMA_COMPLETE)
  219. printk("DMA_COMPLETE ");
  220. printk("\n");
  221. }
  222. /*
  223. * Theory of request handling
  224. *
  225. * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
  226. * We have two pages of mm_dma_desc, holding about 64 descriptors
  227. * each. These are allocated at init time.
  228. * One page is "Ready" and is either full, or can have request added.
  229. * The other page might be "Active", which DMA is happening on it.
  230. *
  231. * Whenever IO on the active page completes, the Ready page is activated
  232. * and the ex-Active page is clean out and made Ready.
  233. * Otherwise the Ready page is only activated when it becomes full, or
  234. * when mm_unplug_device is called via the unplug_io_fn.
  235. *
  236. * If a request arrives while both pages a full, it is queued, and b_rdev is
  237. * overloaded to record whether it was a read or a write.
  238. *
  239. * The interrupt handler only polls the device to clear the interrupt.
  240. * The processing of the result is done in a tasklet.
  241. */
  242. static void mm_start_io(struct cardinfo *card)
  243. {
  244. /* we have the lock, we know there is
  245. * no IO active, and we know that card->Active
  246. * is set
  247. */
  248. struct mm_dma_desc *desc;
  249. struct mm_page *page;
  250. int offset;
  251. /* make the last descriptor end the chain */
  252. page = &card->mm_pages[card->Active];
  253. pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
  254. desc = &page->desc[page->cnt-1];
  255. desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
  256. desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
  257. desc->sem_control_bits = desc->control_bits;
  258. if (debug & DEBUG_LED_ON_TRANSFER)
  259. set_led(card, LED_REMOVE, LED_ON);
  260. desc = &page->desc[page->headcnt];
  261. writel(0, card->csr_remap + DMA_PCI_ADDR);
  262. writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
  263. writel(0, card->csr_remap + DMA_LOCAL_ADDR);
  264. writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
  265. writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
  266. writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
  267. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
  268. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
  269. offset = ((char*)desc) - ((char*)page->desc);
  270. writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
  271. card->csr_remap + DMA_DESCRIPTOR_ADDR);
  272. /* Force the value to u64 before shifting otherwise >> 32 is undefined C
  273. * and on some ports will do nothing ! */
  274. writel(cpu_to_le32(((u64)page->page_dma)>>32),
  275. card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
  276. /* Go, go, go */
  277. writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
  278. card->csr_remap + DMA_STATUS_CTRL);
  279. }
  280. static int add_bio(struct cardinfo *card);
  281. static void activate(struct cardinfo *card)
  282. {
  283. /* if No page is Active, and Ready is
  284. * not empty, then switch Ready page
  285. * to active and start IO.
  286. * Then add any bh's that are available to Ready
  287. */
  288. do {
  289. while (add_bio(card))
  290. ;
  291. if (card->Active == -1 &&
  292. card->mm_pages[card->Ready].cnt > 0) {
  293. card->Active = card->Ready;
  294. card->Ready = 1-card->Ready;
  295. mm_start_io(card);
  296. }
  297. } while (card->Active == -1 && add_bio(card));
  298. }
  299. static inline void reset_page(struct mm_page *page)
  300. {
  301. page->cnt = 0;
  302. page->headcnt = 0;
  303. page->bio = NULL;
  304. page->biotail = & page->bio;
  305. }
  306. static void mm_unplug_device(request_queue_t *q)
  307. {
  308. struct cardinfo *card = q->queuedata;
  309. unsigned long flags;
  310. spin_lock_irqsave(&card->lock, flags);
  311. if (blk_remove_plug(q))
  312. activate(card);
  313. spin_unlock_irqrestore(&card->lock, flags);
  314. }
  315. /*
  316. * If there is room on Ready page, take
  317. * one bh off list and add it.
  318. * return 1 if there was room, else 0.
  319. */
  320. static int add_bio(struct cardinfo *card)
  321. {
  322. struct mm_page *p;
  323. struct mm_dma_desc *desc;
  324. dma_addr_t dma_handle;
  325. int offset;
  326. struct bio *bio;
  327. int rw;
  328. int len;
  329. bio = card->currentbio;
  330. if (!bio && card->bio) {
  331. card->currentbio = card->bio;
  332. card->bio = card->bio->bi_next;
  333. if (card->bio == NULL)
  334. card->biotail = &card->bio;
  335. card->currentbio->bi_next = NULL;
  336. return 1;
  337. }
  338. if (!bio)
  339. return 0;
  340. rw = bio_rw(bio);
  341. if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
  342. return 0;
  343. len = bio_iovec(bio)->bv_len;
  344. dma_handle = pci_map_page(card->dev,
  345. bio_page(bio),
  346. bio_offset(bio),
  347. len,
  348. (rw==READ) ?
  349. PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
  350. p = &card->mm_pages[card->Ready];
  351. desc = &p->desc[p->cnt];
  352. p->cnt++;
  353. if ((p->biotail) != &bio->bi_next) {
  354. *(p->biotail) = bio;
  355. p->biotail = &(bio->bi_next);
  356. bio->bi_next = NULL;
  357. }
  358. desc->data_dma_handle = dma_handle;
  359. desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
  360. desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
  361. desc->transfer_size = cpu_to_le32(len);
  362. offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
  363. desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
  364. desc->zero1 = desc->zero2 = 0;
  365. offset = ( ((char*)(desc+1)) - ((char*)p->desc));
  366. desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
  367. desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
  368. DMASCR_PARITY_INT_EN|
  369. DMASCR_CHAIN_EN |
  370. DMASCR_SEM_EN |
  371. pci_cmds);
  372. if (rw == WRITE)
  373. desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
  374. desc->sem_control_bits = desc->control_bits;
  375. bio->bi_sector += (len>>9);
  376. bio->bi_size -= len;
  377. bio->bi_idx++;
  378. if (bio->bi_idx >= bio->bi_vcnt)
  379. card->currentbio = NULL;
  380. return 1;
  381. }
  382. static void process_page(unsigned long data)
  383. {
  384. /* check if any of the requests in the page are DMA_COMPLETE,
  385. * and deal with them appropriately.
  386. * If we find a descriptor without DMA_COMPLETE in the semaphore, then
  387. * dma must have hit an error on that descriptor, so use dma_status instead
  388. * and assume that all following descriptors must be re-tried.
  389. */
  390. struct mm_page *page;
  391. struct bio *return_bio=NULL;
  392. struct cardinfo *card = (struct cardinfo *)data;
  393. unsigned int dma_status = card->dma_status;
  394. spin_lock_bh(&card->lock);
  395. if (card->Active < 0)
  396. goto out_unlock;
  397. page = &card->mm_pages[card->Active];
  398. while (page->headcnt < page->cnt) {
  399. struct bio *bio = page->bio;
  400. struct mm_dma_desc *desc = &page->desc[page->headcnt];
  401. int control = le32_to_cpu(desc->sem_control_bits);
  402. int last=0;
  403. int idx;
  404. if (!(control & DMASCR_DMA_COMPLETE)) {
  405. control = dma_status;
  406. last=1;
  407. }
  408. page->headcnt++;
  409. idx = bio->bi_phys_segments;
  410. bio->bi_phys_segments++;
  411. if (bio->bi_phys_segments >= bio->bi_vcnt)
  412. page->bio = bio->bi_next;
  413. pci_unmap_page(card->dev, desc->data_dma_handle,
  414. bio_iovec_idx(bio,idx)->bv_len,
  415. (control& DMASCR_TRANSFER_READ) ?
  416. PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
  417. if (control & DMASCR_HARD_ERROR) {
  418. /* error */
  419. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  420. printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
  421. card->card_number,
  422. le32_to_cpu(desc->local_addr)>>9,
  423. le32_to_cpu(desc->transfer_size));
  424. dump_dmastat(card, control);
  425. } else if (test_bit(BIO_RW, &bio->bi_rw) &&
  426. le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
  427. card->init_size += le32_to_cpu(desc->transfer_size)>>9;
  428. if (card->init_size>>1 >= card->mm_size) {
  429. printk(KERN_INFO "MM%d: memory now initialised\n",
  430. card->card_number);
  431. set_userbit(card, MEMORY_INITIALIZED, 1);
  432. }
  433. }
  434. if (bio != page->bio) {
  435. bio->bi_next = return_bio;
  436. return_bio = bio;
  437. }
  438. if (last) break;
  439. }
  440. if (debug & DEBUG_LED_ON_TRANSFER)
  441. set_led(card, LED_REMOVE, LED_OFF);
  442. if (card->check_batteries) {
  443. card->check_batteries = 0;
  444. check_batteries(card);
  445. }
  446. if (page->headcnt >= page->cnt) {
  447. reset_page(page);
  448. card->Active = -1;
  449. activate(card);
  450. } else {
  451. /* haven't finished with this one yet */
  452. pr_debug("do some more\n");
  453. mm_start_io(card);
  454. }
  455. out_unlock:
  456. spin_unlock_bh(&card->lock);
  457. while(return_bio) {
  458. struct bio *bio = return_bio;
  459. return_bio = bio->bi_next;
  460. bio->bi_next = NULL;
  461. bio_endio(bio, bio->bi_size, 0);
  462. }
  463. }
  464. /*
  465. -----------------------------------------------------------------------------------
  466. -- mm_make_request
  467. -----------------------------------------------------------------------------------
  468. */
  469. static int mm_make_request(request_queue_t *q, struct bio *bio)
  470. {
  471. struct cardinfo *card = q->queuedata;
  472. pr_debug("mm_make_request %llu %u\n",
  473. (unsigned long long)bio->bi_sector, bio->bi_size);
  474. bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
  475. spin_lock_irq(&card->lock);
  476. *card->biotail = bio;
  477. bio->bi_next = NULL;
  478. card->biotail = &bio->bi_next;
  479. blk_plug_device(q);
  480. spin_unlock_irq(&card->lock);
  481. return 0;
  482. }
  483. /*
  484. -----------------------------------------------------------------------------------
  485. -- mm_interrupt
  486. -----------------------------------------------------------------------------------
  487. */
  488. static irqreturn_t mm_interrupt(int irq, void *__card)
  489. {
  490. struct cardinfo *card = (struct cardinfo *) __card;
  491. unsigned int dma_status;
  492. unsigned short cfg_status;
  493. HW_TRACE(0x30);
  494. dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
  495. if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
  496. /* interrupt wasn't for me ... */
  497. return IRQ_NONE;
  498. }
  499. /* clear COMPLETION interrupts */
  500. if (card->flags & UM_FLAG_NO_BYTE_STATUS)
  501. writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
  502. card->csr_remap+ DMA_STATUS_CTRL);
  503. else
  504. writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
  505. card->csr_remap+ DMA_STATUS_CTRL + 2);
  506. /* log errors and clear interrupt status */
  507. if (dma_status & DMASCR_ANY_ERR) {
  508. unsigned int data_log1, data_log2;
  509. unsigned int addr_log1, addr_log2;
  510. unsigned char stat, count, syndrome, check;
  511. stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
  512. data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
  513. data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
  514. addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
  515. addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
  516. count = readb(card->csr_remap + ERROR_COUNT);
  517. syndrome = readb(card->csr_remap + ERROR_SYNDROME);
  518. check = readb(card->csr_remap + ERROR_CHECK);
  519. dump_dmastat(card, dma_status);
  520. if (stat & 0x01)
  521. printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
  522. card->card_number, count);
  523. if (stat & 0x02)
  524. printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
  525. card->card_number);
  526. printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
  527. card->card_number, addr_log2, addr_log1, data_log2, data_log1);
  528. printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
  529. card->card_number, check, syndrome);
  530. writeb(0, card->csr_remap + ERROR_COUNT);
  531. }
  532. if (dma_status & DMASCR_PARITY_ERR_REP) {
  533. printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
  534. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  535. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  536. }
  537. if (dma_status & DMASCR_PARITY_ERR_DET) {
  538. printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
  539. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  540. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  541. }
  542. if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
  543. printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
  544. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  545. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  546. }
  547. if (dma_status & DMASCR_TARGET_ABT) {
  548. printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
  549. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  550. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  551. }
  552. if (dma_status & DMASCR_MASTER_ABT) {
  553. printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
  554. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  555. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  556. }
  557. /* and process the DMA descriptors */
  558. card->dma_status = dma_status;
  559. tasklet_schedule(&card->tasklet);
  560. HW_TRACE(0x36);
  561. return IRQ_HANDLED;
  562. }
  563. /*
  564. -----------------------------------------------------------------------------------
  565. -- set_fault_to_battery_status
  566. -----------------------------------------------------------------------------------
  567. */
  568. /*
  569. * If both batteries are good, no LED
  570. * If either battery has been warned, solid LED
  571. * If both batteries are bad, flash the LED quickly
  572. * If either battery is bad, flash the LED semi quickly
  573. */
  574. static void set_fault_to_battery_status(struct cardinfo *card)
  575. {
  576. if (card->battery[0].good && card->battery[1].good)
  577. set_led(card, LED_FAULT, LED_OFF);
  578. else if (card->battery[0].warned || card->battery[1].warned)
  579. set_led(card, LED_FAULT, LED_ON);
  580. else if (!card->battery[0].good && !card->battery[1].good)
  581. set_led(card, LED_FAULT, LED_FLASH_7_0);
  582. else
  583. set_led(card, LED_FAULT, LED_FLASH_3_5);
  584. }
  585. static void init_battery_timer(void);
  586. /*
  587. -----------------------------------------------------------------------------------
  588. -- check_battery
  589. -----------------------------------------------------------------------------------
  590. */
  591. static int check_battery(struct cardinfo *card, int battery, int status)
  592. {
  593. if (status != card->battery[battery].good) {
  594. card->battery[battery].good = !card->battery[battery].good;
  595. card->battery[battery].last_change = jiffies;
  596. if (card->battery[battery].good) {
  597. printk(KERN_ERR "MM%d: Battery %d now good\n",
  598. card->card_number, battery + 1);
  599. card->battery[battery].warned = 0;
  600. } else
  601. printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
  602. card->card_number, battery + 1);
  603. return 1;
  604. } else if (!card->battery[battery].good &&
  605. !card->battery[battery].warned &&
  606. time_after_eq(jiffies, card->battery[battery].last_change +
  607. (HZ * 60 * 60 * 5))) {
  608. printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
  609. card->card_number, battery + 1);
  610. card->battery[battery].warned = 1;
  611. return 1;
  612. }
  613. return 0;
  614. }
  615. /*
  616. -----------------------------------------------------------------------------------
  617. -- check_batteries
  618. -----------------------------------------------------------------------------------
  619. */
  620. static void check_batteries(struct cardinfo *card)
  621. {
  622. /* NOTE: this must *never* be called while the card
  623. * is doing (bus-to-card) DMA, or you will need the
  624. * reset switch
  625. */
  626. unsigned char status;
  627. int ret1, ret2;
  628. status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  629. if (debug & DEBUG_BATTERY_POLLING)
  630. printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
  631. card->card_number,
  632. (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
  633. (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
  634. ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
  635. ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
  636. if (ret1 || ret2)
  637. set_fault_to_battery_status(card);
  638. }
  639. static void check_all_batteries(unsigned long ptr)
  640. {
  641. int i;
  642. for (i = 0; i < num_cards; i++)
  643. if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
  644. struct cardinfo *card = &cards[i];
  645. spin_lock_bh(&card->lock);
  646. if (card->Active >= 0)
  647. card->check_batteries = 1;
  648. else
  649. check_batteries(card);
  650. spin_unlock_bh(&card->lock);
  651. }
  652. init_battery_timer();
  653. }
  654. /*
  655. -----------------------------------------------------------------------------------
  656. -- init_battery_timer
  657. -----------------------------------------------------------------------------------
  658. */
  659. static void init_battery_timer(void)
  660. {
  661. init_timer(&battery_timer);
  662. battery_timer.function = check_all_batteries;
  663. battery_timer.expires = jiffies + (HZ * 60);
  664. add_timer(&battery_timer);
  665. }
  666. /*
  667. -----------------------------------------------------------------------------------
  668. -- del_battery_timer
  669. -----------------------------------------------------------------------------------
  670. */
  671. static void del_battery_timer(void)
  672. {
  673. del_timer(&battery_timer);
  674. }
  675. /*
  676. -----------------------------------------------------------------------------------
  677. -- mm_revalidate
  678. -----------------------------------------------------------------------------------
  679. */
  680. /*
  681. * Note no locks taken out here. In a worst case scenario, we could drop
  682. * a chunk of system memory. But that should never happen, since validation
  683. * happens at open or mount time, when locks are held.
  684. *
  685. * That's crap, since doing that while some partitions are opened
  686. * or mounted will give you really nasty results.
  687. */
  688. static int mm_revalidate(struct gendisk *disk)
  689. {
  690. struct cardinfo *card = disk->private_data;
  691. set_capacity(disk, card->mm_size << 1);
  692. return 0;
  693. }
  694. static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  695. {
  696. struct cardinfo *card = bdev->bd_disk->private_data;
  697. int size = card->mm_size * (1024 / MM_HARDSECT);
  698. /*
  699. * get geometry: we have to fake one... trim the size to a
  700. * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
  701. * whatever cylinders.
  702. */
  703. geo->heads = 64;
  704. geo->sectors = 32;
  705. geo->cylinders = size / (geo->heads * geo->sectors);
  706. return 0;
  707. }
  708. /*
  709. -----------------------------------------------------------------------------------
  710. -- mm_check_change
  711. -----------------------------------------------------------------------------------
  712. Future support for removable devices
  713. */
  714. static int mm_check_change(struct gendisk *disk)
  715. {
  716. /* struct cardinfo *dev = disk->private_data; */
  717. return 0;
  718. }
  719. /*
  720. -----------------------------------------------------------------------------------
  721. -- mm_fops
  722. -----------------------------------------------------------------------------------
  723. */
  724. static struct block_device_operations mm_fops = {
  725. .owner = THIS_MODULE,
  726. .getgeo = mm_getgeo,
  727. .revalidate_disk= mm_revalidate,
  728. .media_changed = mm_check_change,
  729. };
  730. /*
  731. -----------------------------------------------------------------------------------
  732. -- mm_pci_probe
  733. -----------------------------------------------------------------------------------
  734. */
  735. static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
  736. {
  737. int ret = -ENODEV;
  738. struct cardinfo *card = &cards[num_cards];
  739. unsigned char mem_present;
  740. unsigned char batt_status;
  741. unsigned int saved_bar, data;
  742. int magic_number;
  743. if (pci_enable_device(dev) < 0)
  744. return -ENODEV;
  745. pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
  746. pci_set_master(dev);
  747. card->dev = dev;
  748. card->card_number = num_cards;
  749. card->csr_base = pci_resource_start(dev, 0);
  750. card->csr_len = pci_resource_len(dev, 0);
  751. #ifdef CONFIG_MM_MAP_MEMORY
  752. card->mem_base = pci_resource_start(dev, 1);
  753. card->mem_len = pci_resource_len(dev, 1);
  754. #endif
  755. printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
  756. card->card_number, dev->bus->number, dev->devfn);
  757. if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
  758. pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
  759. printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
  760. return -ENOMEM;
  761. }
  762. if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
  763. printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
  764. ret = -ENOMEM;
  765. goto failed_req_csr;
  766. }
  767. card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
  768. if (!card->csr_remap) {
  769. printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
  770. ret = -ENOMEM;
  771. goto failed_remap_csr;
  772. }
  773. printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
  774. card->csr_base, card->csr_remap, card->csr_len);
  775. #ifdef CONFIG_MM_MAP_MEMORY
  776. if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
  777. printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
  778. ret = -ENOMEM;
  779. goto failed_req_mem;
  780. }
  781. if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
  782. printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
  783. ret = -ENOMEM;
  784. goto failed_remap_mem;
  785. }
  786. printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
  787. card->mem_base, card->mem_remap, card->mem_len);
  788. #else
  789. printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
  790. card->card_number);
  791. #endif
  792. switch(card->dev->device) {
  793. case 0x5415:
  794. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
  795. magic_number = 0x59;
  796. break;
  797. case 0x5425:
  798. card->flags |= UM_FLAG_NO_BYTE_STATUS;
  799. magic_number = 0x5C;
  800. break;
  801. case 0x6155:
  802. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
  803. magic_number = 0x99;
  804. break;
  805. default:
  806. magic_number = 0x100;
  807. break;
  808. }
  809. if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
  810. printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
  811. ret = -ENOMEM;
  812. goto failed_magic;
  813. }
  814. card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
  815. PAGE_SIZE*2,
  816. &card->mm_pages[0].page_dma);
  817. card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
  818. PAGE_SIZE*2,
  819. &card->mm_pages[1].page_dma);
  820. if (card->mm_pages[0].desc == NULL ||
  821. card->mm_pages[1].desc == NULL) {
  822. printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
  823. goto failed_alloc;
  824. }
  825. reset_page(&card->mm_pages[0]);
  826. reset_page(&card->mm_pages[1]);
  827. card->Ready = 0; /* page 0 is ready */
  828. card->Active = -1; /* no page is active */
  829. card->bio = NULL;
  830. card->biotail = &card->bio;
  831. card->queue = blk_alloc_queue(GFP_KERNEL);
  832. if (!card->queue)
  833. goto failed_alloc;
  834. blk_queue_make_request(card->queue, mm_make_request);
  835. card->queue->queuedata = card;
  836. card->queue->unplug_fn = mm_unplug_device;
  837. tasklet_init(&card->tasklet, process_page, (unsigned long)card);
  838. card->check_batteries = 0;
  839. mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
  840. switch (mem_present) {
  841. case MEM_128_MB:
  842. card->mm_size = 1024 * 128;
  843. break;
  844. case MEM_256_MB:
  845. card->mm_size = 1024 * 256;
  846. break;
  847. case MEM_512_MB:
  848. card->mm_size = 1024 * 512;
  849. break;
  850. case MEM_1_GB:
  851. card->mm_size = 1024 * 1024;
  852. break;
  853. case MEM_2_GB:
  854. card->mm_size = 1024 * 2048;
  855. break;
  856. default:
  857. card->mm_size = 0;
  858. break;
  859. }
  860. /* Clear the LED's we control */
  861. set_led(card, LED_REMOVE, LED_OFF);
  862. set_led(card, LED_FAULT, LED_OFF);
  863. batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  864. card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
  865. card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
  866. card->battery[0].last_change = card->battery[1].last_change = jiffies;
  867. if (card->flags & UM_FLAG_NO_BATT)
  868. printk(KERN_INFO "MM%d: Size %d KB\n",
  869. card->card_number, card->mm_size);
  870. else {
  871. printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
  872. card->card_number, card->mm_size,
  873. (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
  874. card->battery[0].good ? "OK" : "FAILURE",
  875. (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
  876. card->battery[1].good ? "OK" : "FAILURE");
  877. set_fault_to_battery_status(card);
  878. }
  879. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
  880. data = 0xffffffff;
  881. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
  882. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
  883. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
  884. data &= 0xfffffff0;
  885. data = ~data;
  886. data += 1;
  887. card->win_size = data;
  888. if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
  889. printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
  890. ret = -ENODEV;
  891. goto failed_req_irq;
  892. }
  893. card->irq = dev->irq;
  894. printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
  895. card->win_size, card->irq);
  896. spin_lock_init(&card->lock);
  897. pci_set_drvdata(dev, card);
  898. if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
  899. pci_write_cmd = 0x07; /* then Memory Write command */
  900. if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
  901. unsigned short cfg_command;
  902. pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
  903. cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
  904. pci_write_config_word(dev, PCI_COMMAND, cfg_command);
  905. }
  906. pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
  907. num_cards++;
  908. if (!get_userbit(card, MEMORY_INITIALIZED)) {
  909. printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
  910. card->init_size = 0;
  911. } else {
  912. printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
  913. card->init_size = card->mm_size;
  914. }
  915. /* Enable ECC */
  916. writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
  917. return 0;
  918. failed_req_irq:
  919. failed_alloc:
  920. if (card->mm_pages[0].desc)
  921. pci_free_consistent(card->dev, PAGE_SIZE*2,
  922. card->mm_pages[0].desc,
  923. card->mm_pages[0].page_dma);
  924. if (card->mm_pages[1].desc)
  925. pci_free_consistent(card->dev, PAGE_SIZE*2,
  926. card->mm_pages[1].desc,
  927. card->mm_pages[1].page_dma);
  928. failed_magic:
  929. #ifdef CONFIG_MM_MAP_MEMORY
  930. iounmap(card->mem_remap);
  931. failed_remap_mem:
  932. release_mem_region(card->mem_base, card->mem_len);
  933. failed_req_mem:
  934. #endif
  935. iounmap(card->csr_remap);
  936. failed_remap_csr:
  937. release_mem_region(card->csr_base, card->csr_len);
  938. failed_req_csr:
  939. return ret;
  940. }
  941. /*
  942. -----------------------------------------------------------------------------------
  943. -- mm_pci_remove
  944. -----------------------------------------------------------------------------------
  945. */
  946. static void mm_pci_remove(struct pci_dev *dev)
  947. {
  948. struct cardinfo *card = pci_get_drvdata(dev);
  949. tasklet_kill(&card->tasklet);
  950. iounmap(card->csr_remap);
  951. release_mem_region(card->csr_base, card->csr_len);
  952. #ifdef CONFIG_MM_MAP_MEMORY
  953. iounmap(card->mem_remap);
  954. release_mem_region(card->mem_base, card->mem_len);
  955. #endif
  956. free_irq(card->irq, card);
  957. if (card->mm_pages[0].desc)
  958. pci_free_consistent(card->dev, PAGE_SIZE*2,
  959. card->mm_pages[0].desc,
  960. card->mm_pages[0].page_dma);
  961. if (card->mm_pages[1].desc)
  962. pci_free_consistent(card->dev, PAGE_SIZE*2,
  963. card->mm_pages[1].desc,
  964. card->mm_pages[1].page_dma);
  965. blk_cleanup_queue(card->queue);
  966. }
  967. static const struct pci_device_id mm_pci_ids[] = { {
  968. .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
  969. .device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
  970. }, {
  971. .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
  972. .device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
  973. }, {
  974. .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
  975. .device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
  976. }, {
  977. .vendor = 0x8086,
  978. .device = 0xB555,
  979. .subvendor= 0x1332,
  980. .subdevice= 0x5460,
  981. .class = 0x050000,
  982. .class_mask= 0,
  983. }, { /* end: all zeroes */ }
  984. };
  985. MODULE_DEVICE_TABLE(pci, mm_pci_ids);
  986. static struct pci_driver mm_pci_driver = {
  987. .name = "umem",
  988. .id_table = mm_pci_ids,
  989. .probe = mm_pci_probe,
  990. .remove = mm_pci_remove,
  991. };
  992. /*
  993. -----------------------------------------------------------------------------------
  994. -- mm_init
  995. -----------------------------------------------------------------------------------
  996. */
  997. static int __init mm_init(void)
  998. {
  999. int retval, i;
  1000. int err;
  1001. printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
  1002. retval = pci_register_driver(&mm_pci_driver);
  1003. if (retval)
  1004. return -ENOMEM;
  1005. err = major_nr = register_blkdev(0, "umem");
  1006. if (err < 0) {
  1007. pci_unregister_driver(&mm_pci_driver);
  1008. return -EIO;
  1009. }
  1010. for (i = 0; i < num_cards; i++) {
  1011. mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
  1012. if (!mm_gendisk[i])
  1013. goto out;
  1014. }
  1015. for (i = 0; i < num_cards; i++) {
  1016. struct gendisk *disk = mm_gendisk[i];
  1017. sprintf(disk->disk_name, "umem%c", 'a'+i);
  1018. spin_lock_init(&cards[i].lock);
  1019. disk->major = major_nr;
  1020. disk->first_minor = i << MM_SHIFT;
  1021. disk->fops = &mm_fops;
  1022. disk->private_data = &cards[i];
  1023. disk->queue = cards[i].queue;
  1024. set_capacity(disk, cards[i].mm_size << 1);
  1025. add_disk(disk);
  1026. }
  1027. init_battery_timer();
  1028. printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
  1029. /* printk("mm_init: Done. 10-19-01 9:00\n"); */
  1030. return 0;
  1031. out:
  1032. pci_unregister_driver(&mm_pci_driver);
  1033. unregister_blkdev(major_nr, "umem");
  1034. while (i--)
  1035. put_disk(mm_gendisk[i]);
  1036. return -ENOMEM;
  1037. }
  1038. /*
  1039. -----------------------------------------------------------------------------------
  1040. -- mm_cleanup
  1041. -----------------------------------------------------------------------------------
  1042. */
  1043. static void __exit mm_cleanup(void)
  1044. {
  1045. int i;
  1046. del_battery_timer();
  1047. for (i=0; i < num_cards ; i++) {
  1048. del_gendisk(mm_gendisk[i]);
  1049. put_disk(mm_gendisk[i]);
  1050. }
  1051. pci_unregister_driver(&mm_pci_driver);
  1052. unregister_blkdev(major_nr, "umem");
  1053. }
  1054. module_init(mm_init);
  1055. module_exit(mm_cleanup);
  1056. MODULE_AUTHOR(DRIVER_AUTHOR);
  1057. MODULE_DESCRIPTION(DRIVER_DESC);
  1058. MODULE_LICENSE("GPL");