loop.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504
  1. /*
  2. * linux/drivers/block/loop.c
  3. *
  4. * Written by Theodore Ts'o, 3/29/93
  5. *
  6. * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
  7. * permitted under the GNU General Public License.
  8. *
  9. * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10. * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11. *
  12. * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13. * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14. *
  15. * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16. *
  17. * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18. *
  19. * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20. *
  21. * Loadable modules and other fixes by AK, 1998
  22. *
  23. * Make real block number available to downstream transfer functions, enables
  24. * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25. * Reed H. Petty, rhp@draper.net
  26. *
  27. * Maximum number of loop devices now dynamic via max_loop module parameter.
  28. * Russell Kroll <rkroll@exploits.org> 19990701
  29. *
  30. * Maximum number of loop devices when compiled-in now selectable by passing
  31. * max_loop=<1-255> to the kernel on boot.
  32. * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33. *
  34. * Completely rewrite request handling to be make_request_fn style and
  35. * non blocking, pushing work to a helper thread. Lots of fixes from
  36. * Al Viro too.
  37. * Jens Axboe <axboe@suse.de>, Nov 2000
  38. *
  39. * Support up to 256 loop devices
  40. * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41. *
  42. * Support for falling back on the write file operation when the address space
  43. * operations prepare_write and/or commit_write are not available on the
  44. * backing filesystem.
  45. * Anton Altaparmakov, 16 Feb 2005
  46. *
  47. * Still To Fix:
  48. * - Advisory locking is ignored here.
  49. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  50. *
  51. */
  52. #include <linux/module.h>
  53. #include <linux/moduleparam.h>
  54. #include <linux/sched.h>
  55. #include <linux/fs.h>
  56. #include <linux/file.h>
  57. #include <linux/stat.h>
  58. #include <linux/errno.h>
  59. #include <linux/major.h>
  60. #include <linux/wait.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/blkpg.h>
  63. #include <linux/init.h>
  64. #include <linux/smp_lock.h>
  65. #include <linux/swap.h>
  66. #include <linux/slab.h>
  67. #include <linux/loop.h>
  68. #include <linux/compat.h>
  69. #include <linux/suspend.h>
  70. #include <linux/writeback.h>
  71. #include <linux/buffer_head.h> /* for invalidate_bdev() */
  72. #include <linux/completion.h>
  73. #include <linux/highmem.h>
  74. #include <linux/gfp.h>
  75. #include <linux/kthread.h>
  76. #include <asm/uaccess.h>
  77. static LIST_HEAD(loop_devices);
  78. static DEFINE_MUTEX(loop_devices_mutex);
  79. /*
  80. * Transfer functions
  81. */
  82. static int transfer_none(struct loop_device *lo, int cmd,
  83. struct page *raw_page, unsigned raw_off,
  84. struct page *loop_page, unsigned loop_off,
  85. int size, sector_t real_block)
  86. {
  87. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  88. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  89. if (cmd == READ)
  90. memcpy(loop_buf, raw_buf, size);
  91. else
  92. memcpy(raw_buf, loop_buf, size);
  93. kunmap_atomic(raw_buf, KM_USER0);
  94. kunmap_atomic(loop_buf, KM_USER1);
  95. cond_resched();
  96. return 0;
  97. }
  98. static int transfer_xor(struct loop_device *lo, int cmd,
  99. struct page *raw_page, unsigned raw_off,
  100. struct page *loop_page, unsigned loop_off,
  101. int size, sector_t real_block)
  102. {
  103. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  104. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  105. char *in, *out, *key;
  106. int i, keysize;
  107. if (cmd == READ) {
  108. in = raw_buf;
  109. out = loop_buf;
  110. } else {
  111. in = loop_buf;
  112. out = raw_buf;
  113. }
  114. key = lo->lo_encrypt_key;
  115. keysize = lo->lo_encrypt_key_size;
  116. for (i = 0; i < size; i++)
  117. *out++ = *in++ ^ key[(i & 511) % keysize];
  118. kunmap_atomic(raw_buf, KM_USER0);
  119. kunmap_atomic(loop_buf, KM_USER1);
  120. cond_resched();
  121. return 0;
  122. }
  123. static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
  124. {
  125. if (unlikely(info->lo_encrypt_key_size <= 0))
  126. return -EINVAL;
  127. return 0;
  128. }
  129. static struct loop_func_table none_funcs = {
  130. .number = LO_CRYPT_NONE,
  131. .transfer = transfer_none,
  132. };
  133. static struct loop_func_table xor_funcs = {
  134. .number = LO_CRYPT_XOR,
  135. .transfer = transfer_xor,
  136. .init = xor_init
  137. };
  138. /* xfer_funcs[0] is special - its release function is never called */
  139. static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
  140. &none_funcs,
  141. &xor_funcs
  142. };
  143. static loff_t get_loop_size(struct loop_device *lo, struct file *file)
  144. {
  145. loff_t size, offset, loopsize;
  146. /* Compute loopsize in bytes */
  147. size = i_size_read(file->f_mapping->host);
  148. offset = lo->lo_offset;
  149. loopsize = size - offset;
  150. if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
  151. loopsize = lo->lo_sizelimit;
  152. /*
  153. * Unfortunately, if we want to do I/O on the device,
  154. * the number of 512-byte sectors has to fit into a sector_t.
  155. */
  156. return loopsize >> 9;
  157. }
  158. static int
  159. figure_loop_size(struct loop_device *lo)
  160. {
  161. loff_t size = get_loop_size(lo, lo->lo_backing_file);
  162. sector_t x = (sector_t)size;
  163. if (unlikely((loff_t)x != size))
  164. return -EFBIG;
  165. set_capacity(lo->lo_disk, x);
  166. return 0;
  167. }
  168. static inline int
  169. lo_do_transfer(struct loop_device *lo, int cmd,
  170. struct page *rpage, unsigned roffs,
  171. struct page *lpage, unsigned loffs,
  172. int size, sector_t rblock)
  173. {
  174. if (unlikely(!lo->transfer))
  175. return 0;
  176. return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
  177. }
  178. /**
  179. * do_lo_send_aops - helper for writing data to a loop device
  180. *
  181. * This is the fast version for backing filesystems which implement the address
  182. * space operations prepare_write and commit_write.
  183. */
  184. static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
  185. int bsize, loff_t pos, struct page *page)
  186. {
  187. struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
  188. struct address_space *mapping = file->f_mapping;
  189. const struct address_space_operations *aops = mapping->a_ops;
  190. pgoff_t index;
  191. unsigned offset, bv_offs;
  192. int len, ret;
  193. mutex_lock(&mapping->host->i_mutex);
  194. index = pos >> PAGE_CACHE_SHIFT;
  195. offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
  196. bv_offs = bvec->bv_offset;
  197. len = bvec->bv_len;
  198. while (len > 0) {
  199. sector_t IV;
  200. unsigned size;
  201. int transfer_result;
  202. IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  203. size = PAGE_CACHE_SIZE - offset;
  204. if (size > len)
  205. size = len;
  206. page = grab_cache_page(mapping, index);
  207. if (unlikely(!page))
  208. goto fail;
  209. ret = aops->prepare_write(file, page, offset,
  210. offset + size);
  211. if (unlikely(ret)) {
  212. if (ret == AOP_TRUNCATED_PAGE) {
  213. page_cache_release(page);
  214. continue;
  215. }
  216. goto unlock;
  217. }
  218. transfer_result = lo_do_transfer(lo, WRITE, page, offset,
  219. bvec->bv_page, bv_offs, size, IV);
  220. if (unlikely(transfer_result)) {
  221. /*
  222. * The transfer failed, but we still write the data to
  223. * keep prepare/commit calls balanced.
  224. */
  225. printk(KERN_ERR "loop: transfer error block %llu\n",
  226. (unsigned long long)index);
  227. zero_user_page(page, offset, size, KM_USER0);
  228. }
  229. flush_dcache_page(page);
  230. ret = aops->commit_write(file, page, offset,
  231. offset + size);
  232. if (unlikely(ret)) {
  233. if (ret == AOP_TRUNCATED_PAGE) {
  234. page_cache_release(page);
  235. continue;
  236. }
  237. goto unlock;
  238. }
  239. if (unlikely(transfer_result))
  240. goto unlock;
  241. bv_offs += size;
  242. len -= size;
  243. offset = 0;
  244. index++;
  245. pos += size;
  246. unlock_page(page);
  247. page_cache_release(page);
  248. }
  249. ret = 0;
  250. out:
  251. mutex_unlock(&mapping->host->i_mutex);
  252. return ret;
  253. unlock:
  254. unlock_page(page);
  255. page_cache_release(page);
  256. fail:
  257. ret = -1;
  258. goto out;
  259. }
  260. /**
  261. * __do_lo_send_write - helper for writing data to a loop device
  262. *
  263. * This helper just factors out common code between do_lo_send_direct_write()
  264. * and do_lo_send_write().
  265. */
  266. static int __do_lo_send_write(struct file *file,
  267. u8 *buf, const int len, loff_t pos)
  268. {
  269. ssize_t bw;
  270. mm_segment_t old_fs = get_fs();
  271. set_fs(get_ds());
  272. bw = file->f_op->write(file, buf, len, &pos);
  273. set_fs(old_fs);
  274. if (likely(bw == len))
  275. return 0;
  276. printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
  277. (unsigned long long)pos, len);
  278. if (bw >= 0)
  279. bw = -EIO;
  280. return bw;
  281. }
  282. /**
  283. * do_lo_send_direct_write - helper for writing data to a loop device
  284. *
  285. * This is the fast, non-transforming version for backing filesystems which do
  286. * not implement the address space operations prepare_write and commit_write.
  287. * It uses the write file operation which should be present on all writeable
  288. * filesystems.
  289. */
  290. static int do_lo_send_direct_write(struct loop_device *lo,
  291. struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
  292. {
  293. ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
  294. kmap(bvec->bv_page) + bvec->bv_offset,
  295. bvec->bv_len, pos);
  296. kunmap(bvec->bv_page);
  297. cond_resched();
  298. return bw;
  299. }
  300. /**
  301. * do_lo_send_write - helper for writing data to a loop device
  302. *
  303. * This is the slow, transforming version for filesystems which do not
  304. * implement the address space operations prepare_write and commit_write. It
  305. * uses the write file operation which should be present on all writeable
  306. * filesystems.
  307. *
  308. * Using fops->write is slower than using aops->{prepare,commit}_write in the
  309. * transforming case because we need to double buffer the data as we cannot do
  310. * the transformations in place as we do not have direct access to the
  311. * destination pages of the backing file.
  312. */
  313. static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
  314. int bsize, loff_t pos, struct page *page)
  315. {
  316. int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
  317. bvec->bv_offset, bvec->bv_len, pos >> 9);
  318. if (likely(!ret))
  319. return __do_lo_send_write(lo->lo_backing_file,
  320. page_address(page), bvec->bv_len,
  321. pos);
  322. printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
  323. "length %i.\n", (unsigned long long)pos, bvec->bv_len);
  324. if (ret > 0)
  325. ret = -EIO;
  326. return ret;
  327. }
  328. static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
  329. loff_t pos)
  330. {
  331. int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
  332. struct page *page);
  333. struct bio_vec *bvec;
  334. struct page *page = NULL;
  335. int i, ret = 0;
  336. do_lo_send = do_lo_send_aops;
  337. if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
  338. do_lo_send = do_lo_send_direct_write;
  339. if (lo->transfer != transfer_none) {
  340. page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
  341. if (unlikely(!page))
  342. goto fail;
  343. kmap(page);
  344. do_lo_send = do_lo_send_write;
  345. }
  346. }
  347. bio_for_each_segment(bvec, bio, i) {
  348. ret = do_lo_send(lo, bvec, bsize, pos, page);
  349. if (ret < 0)
  350. break;
  351. pos += bvec->bv_len;
  352. }
  353. if (page) {
  354. kunmap(page);
  355. __free_page(page);
  356. }
  357. out:
  358. return ret;
  359. fail:
  360. printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
  361. ret = -ENOMEM;
  362. goto out;
  363. }
  364. struct lo_read_data {
  365. struct loop_device *lo;
  366. struct page *page;
  367. unsigned offset;
  368. int bsize;
  369. };
  370. static int
  371. lo_read_actor(read_descriptor_t *desc, struct page *page,
  372. unsigned long offset, unsigned long size)
  373. {
  374. unsigned long count = desc->count;
  375. struct lo_read_data *p = desc->arg.data;
  376. struct loop_device *lo = p->lo;
  377. sector_t IV;
  378. IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  379. if (size > count)
  380. size = count;
  381. if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
  382. size = 0;
  383. printk(KERN_ERR "loop: transfer error block %ld\n",
  384. page->index);
  385. desc->error = -EINVAL;
  386. }
  387. flush_dcache_page(p->page);
  388. desc->count = count - size;
  389. desc->written += size;
  390. p->offset += size;
  391. return size;
  392. }
  393. static int
  394. do_lo_receive(struct loop_device *lo,
  395. struct bio_vec *bvec, int bsize, loff_t pos)
  396. {
  397. struct lo_read_data cookie;
  398. struct file *file;
  399. int retval;
  400. cookie.lo = lo;
  401. cookie.page = bvec->bv_page;
  402. cookie.offset = bvec->bv_offset;
  403. cookie.bsize = bsize;
  404. file = lo->lo_backing_file;
  405. retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
  406. lo_read_actor, &cookie);
  407. return (retval < 0)? retval: 0;
  408. }
  409. static int
  410. lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
  411. {
  412. struct bio_vec *bvec;
  413. int i, ret = 0;
  414. bio_for_each_segment(bvec, bio, i) {
  415. ret = do_lo_receive(lo, bvec, bsize, pos);
  416. if (ret < 0)
  417. break;
  418. pos += bvec->bv_len;
  419. }
  420. return ret;
  421. }
  422. static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
  423. {
  424. loff_t pos;
  425. int ret;
  426. pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
  427. if (bio_rw(bio) == WRITE)
  428. ret = lo_send(lo, bio, lo->lo_blocksize, pos);
  429. else
  430. ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
  431. return ret;
  432. }
  433. /*
  434. * Add bio to back of pending list
  435. */
  436. static void loop_add_bio(struct loop_device *lo, struct bio *bio)
  437. {
  438. if (lo->lo_biotail) {
  439. lo->lo_biotail->bi_next = bio;
  440. lo->lo_biotail = bio;
  441. } else
  442. lo->lo_bio = lo->lo_biotail = bio;
  443. }
  444. /*
  445. * Grab first pending buffer
  446. */
  447. static struct bio *loop_get_bio(struct loop_device *lo)
  448. {
  449. struct bio *bio;
  450. if ((bio = lo->lo_bio)) {
  451. if (bio == lo->lo_biotail)
  452. lo->lo_biotail = NULL;
  453. lo->lo_bio = bio->bi_next;
  454. bio->bi_next = NULL;
  455. }
  456. return bio;
  457. }
  458. static int loop_make_request(request_queue_t *q, struct bio *old_bio)
  459. {
  460. struct loop_device *lo = q->queuedata;
  461. int rw = bio_rw(old_bio);
  462. if (rw == READA)
  463. rw = READ;
  464. BUG_ON(!lo || (rw != READ && rw != WRITE));
  465. spin_lock_irq(&lo->lo_lock);
  466. if (lo->lo_state != Lo_bound)
  467. goto out;
  468. if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
  469. goto out;
  470. loop_add_bio(lo, old_bio);
  471. wake_up(&lo->lo_event);
  472. spin_unlock_irq(&lo->lo_lock);
  473. return 0;
  474. out:
  475. spin_unlock_irq(&lo->lo_lock);
  476. bio_io_error(old_bio, old_bio->bi_size);
  477. return 0;
  478. }
  479. /*
  480. * kick off io on the underlying address space
  481. */
  482. static void loop_unplug(request_queue_t *q)
  483. {
  484. struct loop_device *lo = q->queuedata;
  485. clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
  486. blk_run_address_space(lo->lo_backing_file->f_mapping);
  487. }
  488. struct switch_request {
  489. struct file *file;
  490. struct completion wait;
  491. };
  492. static void do_loop_switch(struct loop_device *, struct switch_request *);
  493. static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
  494. {
  495. if (unlikely(!bio->bi_bdev)) {
  496. do_loop_switch(lo, bio->bi_private);
  497. bio_put(bio);
  498. } else {
  499. int ret = do_bio_filebacked(lo, bio);
  500. bio_endio(bio, bio->bi_size, ret);
  501. }
  502. }
  503. /*
  504. * worker thread that handles reads/writes to file backed loop devices,
  505. * to avoid blocking in our make_request_fn. it also does loop decrypting
  506. * on reads for block backed loop, as that is too heavy to do from
  507. * b_end_io context where irqs may be disabled.
  508. *
  509. * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
  510. * calling kthread_stop(). Therefore once kthread_should_stop() is
  511. * true, make_request will not place any more requests. Therefore
  512. * once kthread_should_stop() is true and lo_bio is NULL, we are
  513. * done with the loop.
  514. */
  515. static int loop_thread(void *data)
  516. {
  517. struct loop_device *lo = data;
  518. struct bio *bio;
  519. /*
  520. * loop can be used in an encrypted device,
  521. * hence, it mustn't be stopped at all
  522. * because it could be indirectly used during suspension
  523. */
  524. current->flags |= PF_NOFREEZE;
  525. set_user_nice(current, -20);
  526. while (!kthread_should_stop() || lo->lo_bio) {
  527. wait_event_interruptible(lo->lo_event,
  528. lo->lo_bio || kthread_should_stop());
  529. if (!lo->lo_bio)
  530. continue;
  531. spin_lock_irq(&lo->lo_lock);
  532. bio = loop_get_bio(lo);
  533. spin_unlock_irq(&lo->lo_lock);
  534. BUG_ON(!bio);
  535. loop_handle_bio(lo, bio);
  536. }
  537. return 0;
  538. }
  539. /*
  540. * loop_switch performs the hard work of switching a backing store.
  541. * First it needs to flush existing IO, it does this by sending a magic
  542. * BIO down the pipe. The completion of this BIO does the actual switch.
  543. */
  544. static int loop_switch(struct loop_device *lo, struct file *file)
  545. {
  546. struct switch_request w;
  547. struct bio *bio = bio_alloc(GFP_KERNEL, 1);
  548. if (!bio)
  549. return -ENOMEM;
  550. init_completion(&w.wait);
  551. w.file = file;
  552. bio->bi_private = &w;
  553. bio->bi_bdev = NULL;
  554. loop_make_request(lo->lo_queue, bio);
  555. wait_for_completion(&w.wait);
  556. return 0;
  557. }
  558. /*
  559. * Do the actual switch; called from the BIO completion routine
  560. */
  561. static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
  562. {
  563. struct file *file = p->file;
  564. struct file *old_file = lo->lo_backing_file;
  565. struct address_space *mapping = file->f_mapping;
  566. mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
  567. lo->lo_backing_file = file;
  568. lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
  569. mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
  570. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  571. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  572. complete(&p->wait);
  573. }
  574. /*
  575. * loop_change_fd switched the backing store of a loopback device to
  576. * a new file. This is useful for operating system installers to free up
  577. * the original file and in High Availability environments to switch to
  578. * an alternative location for the content in case of server meltdown.
  579. * This can only work if the loop device is used read-only, and if the
  580. * new backing store is the same size and type as the old backing store.
  581. */
  582. static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
  583. struct block_device *bdev, unsigned int arg)
  584. {
  585. struct file *file, *old_file;
  586. struct inode *inode;
  587. int error;
  588. error = -ENXIO;
  589. if (lo->lo_state != Lo_bound)
  590. goto out;
  591. /* the loop device has to be read-only */
  592. error = -EINVAL;
  593. if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
  594. goto out;
  595. error = -EBADF;
  596. file = fget(arg);
  597. if (!file)
  598. goto out;
  599. inode = file->f_mapping->host;
  600. old_file = lo->lo_backing_file;
  601. error = -EINVAL;
  602. if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
  603. goto out_putf;
  604. /* new backing store needs to support loop (eg sendfile) */
  605. if (!inode->i_fop->sendfile)
  606. goto out_putf;
  607. /* size of the new backing store needs to be the same */
  608. if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
  609. goto out_putf;
  610. /* and ... switch */
  611. error = loop_switch(lo, file);
  612. if (error)
  613. goto out_putf;
  614. fput(old_file);
  615. return 0;
  616. out_putf:
  617. fput(file);
  618. out:
  619. return error;
  620. }
  621. static inline int is_loop_device(struct file *file)
  622. {
  623. struct inode *i = file->f_mapping->host;
  624. return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
  625. }
  626. static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
  627. struct block_device *bdev, unsigned int arg)
  628. {
  629. struct file *file, *f;
  630. struct inode *inode;
  631. struct address_space *mapping;
  632. unsigned lo_blocksize;
  633. int lo_flags = 0;
  634. int error;
  635. loff_t size;
  636. /* This is safe, since we have a reference from open(). */
  637. __module_get(THIS_MODULE);
  638. error = -EBADF;
  639. file = fget(arg);
  640. if (!file)
  641. goto out;
  642. error = -EBUSY;
  643. if (lo->lo_state != Lo_unbound)
  644. goto out_putf;
  645. /* Avoid recursion */
  646. f = file;
  647. while (is_loop_device(f)) {
  648. struct loop_device *l;
  649. if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
  650. goto out_putf;
  651. l = f->f_mapping->host->i_bdev->bd_disk->private_data;
  652. if (l->lo_state == Lo_unbound) {
  653. error = -EINVAL;
  654. goto out_putf;
  655. }
  656. f = l->lo_backing_file;
  657. }
  658. mapping = file->f_mapping;
  659. inode = mapping->host;
  660. if (!(file->f_mode & FMODE_WRITE))
  661. lo_flags |= LO_FLAGS_READ_ONLY;
  662. error = -EINVAL;
  663. if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  664. const struct address_space_operations *aops = mapping->a_ops;
  665. /*
  666. * If we can't read - sorry. If we only can't write - well,
  667. * it's going to be read-only.
  668. */
  669. if (!file->f_op->sendfile)
  670. goto out_putf;
  671. if (aops->prepare_write && aops->commit_write)
  672. lo_flags |= LO_FLAGS_USE_AOPS;
  673. if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
  674. lo_flags |= LO_FLAGS_READ_ONLY;
  675. lo_blocksize = S_ISBLK(inode->i_mode) ?
  676. inode->i_bdev->bd_block_size : PAGE_SIZE;
  677. error = 0;
  678. } else {
  679. goto out_putf;
  680. }
  681. size = get_loop_size(lo, file);
  682. if ((loff_t)(sector_t)size != size) {
  683. error = -EFBIG;
  684. goto out_putf;
  685. }
  686. if (!(lo_file->f_mode & FMODE_WRITE))
  687. lo_flags |= LO_FLAGS_READ_ONLY;
  688. set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
  689. lo->lo_blocksize = lo_blocksize;
  690. lo->lo_device = bdev;
  691. lo->lo_flags = lo_flags;
  692. lo->lo_backing_file = file;
  693. lo->transfer = transfer_none;
  694. lo->ioctl = NULL;
  695. lo->lo_sizelimit = 0;
  696. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  697. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  698. lo->lo_bio = lo->lo_biotail = NULL;
  699. /*
  700. * set queue make_request_fn, and add limits based on lower level
  701. * device
  702. */
  703. blk_queue_make_request(lo->lo_queue, loop_make_request);
  704. lo->lo_queue->queuedata = lo;
  705. lo->lo_queue->unplug_fn = loop_unplug;
  706. set_capacity(lo->lo_disk, size);
  707. bd_set_size(bdev, size << 9);
  708. set_blocksize(bdev, lo_blocksize);
  709. lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
  710. lo->lo_number);
  711. if (IS_ERR(lo->lo_thread)) {
  712. error = PTR_ERR(lo->lo_thread);
  713. goto out_clr;
  714. }
  715. lo->lo_state = Lo_bound;
  716. wake_up_process(lo->lo_thread);
  717. return 0;
  718. out_clr:
  719. lo->lo_thread = NULL;
  720. lo->lo_device = NULL;
  721. lo->lo_backing_file = NULL;
  722. lo->lo_flags = 0;
  723. set_capacity(lo->lo_disk, 0);
  724. invalidate_bdev(bdev);
  725. bd_set_size(bdev, 0);
  726. mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
  727. lo->lo_state = Lo_unbound;
  728. out_putf:
  729. fput(file);
  730. out:
  731. /* This is safe: open() is still holding a reference. */
  732. module_put(THIS_MODULE);
  733. return error;
  734. }
  735. static int
  736. loop_release_xfer(struct loop_device *lo)
  737. {
  738. int err = 0;
  739. struct loop_func_table *xfer = lo->lo_encryption;
  740. if (xfer) {
  741. if (xfer->release)
  742. err = xfer->release(lo);
  743. lo->transfer = NULL;
  744. lo->lo_encryption = NULL;
  745. module_put(xfer->owner);
  746. }
  747. return err;
  748. }
  749. static int
  750. loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
  751. const struct loop_info64 *i)
  752. {
  753. int err = 0;
  754. if (xfer) {
  755. struct module *owner = xfer->owner;
  756. if (!try_module_get(owner))
  757. return -EINVAL;
  758. if (xfer->init)
  759. err = xfer->init(lo, i);
  760. if (err)
  761. module_put(owner);
  762. else
  763. lo->lo_encryption = xfer;
  764. }
  765. return err;
  766. }
  767. static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
  768. {
  769. struct file *filp = lo->lo_backing_file;
  770. gfp_t gfp = lo->old_gfp_mask;
  771. if (lo->lo_state != Lo_bound)
  772. return -ENXIO;
  773. if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
  774. return -EBUSY;
  775. if (filp == NULL)
  776. return -EINVAL;
  777. spin_lock_irq(&lo->lo_lock);
  778. lo->lo_state = Lo_rundown;
  779. spin_unlock_irq(&lo->lo_lock);
  780. kthread_stop(lo->lo_thread);
  781. lo->lo_backing_file = NULL;
  782. loop_release_xfer(lo);
  783. lo->transfer = NULL;
  784. lo->ioctl = NULL;
  785. lo->lo_device = NULL;
  786. lo->lo_encryption = NULL;
  787. lo->lo_offset = 0;
  788. lo->lo_sizelimit = 0;
  789. lo->lo_encrypt_key_size = 0;
  790. lo->lo_flags = 0;
  791. lo->lo_thread = NULL;
  792. memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
  793. memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
  794. memset(lo->lo_file_name, 0, LO_NAME_SIZE);
  795. invalidate_bdev(bdev);
  796. set_capacity(lo->lo_disk, 0);
  797. bd_set_size(bdev, 0);
  798. mapping_set_gfp_mask(filp->f_mapping, gfp);
  799. lo->lo_state = Lo_unbound;
  800. fput(filp);
  801. /* This is safe: open() is still holding a reference. */
  802. module_put(THIS_MODULE);
  803. return 0;
  804. }
  805. static int
  806. loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
  807. {
  808. int err;
  809. struct loop_func_table *xfer;
  810. if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
  811. !capable(CAP_SYS_ADMIN))
  812. return -EPERM;
  813. if (lo->lo_state != Lo_bound)
  814. return -ENXIO;
  815. if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
  816. return -EINVAL;
  817. err = loop_release_xfer(lo);
  818. if (err)
  819. return err;
  820. if (info->lo_encrypt_type) {
  821. unsigned int type = info->lo_encrypt_type;
  822. if (type >= MAX_LO_CRYPT)
  823. return -EINVAL;
  824. xfer = xfer_funcs[type];
  825. if (xfer == NULL)
  826. return -EINVAL;
  827. } else
  828. xfer = NULL;
  829. err = loop_init_xfer(lo, xfer, info);
  830. if (err)
  831. return err;
  832. if (lo->lo_offset != info->lo_offset ||
  833. lo->lo_sizelimit != info->lo_sizelimit) {
  834. lo->lo_offset = info->lo_offset;
  835. lo->lo_sizelimit = info->lo_sizelimit;
  836. if (figure_loop_size(lo))
  837. return -EFBIG;
  838. }
  839. memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
  840. memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
  841. lo->lo_file_name[LO_NAME_SIZE-1] = 0;
  842. lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
  843. if (!xfer)
  844. xfer = &none_funcs;
  845. lo->transfer = xfer->transfer;
  846. lo->ioctl = xfer->ioctl;
  847. lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
  848. lo->lo_init[0] = info->lo_init[0];
  849. lo->lo_init[1] = info->lo_init[1];
  850. if (info->lo_encrypt_key_size) {
  851. memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
  852. info->lo_encrypt_key_size);
  853. lo->lo_key_owner = current->uid;
  854. }
  855. return 0;
  856. }
  857. static int
  858. loop_get_status(struct loop_device *lo, struct loop_info64 *info)
  859. {
  860. struct file *file = lo->lo_backing_file;
  861. struct kstat stat;
  862. int error;
  863. if (lo->lo_state != Lo_bound)
  864. return -ENXIO;
  865. error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
  866. if (error)
  867. return error;
  868. memset(info, 0, sizeof(*info));
  869. info->lo_number = lo->lo_number;
  870. info->lo_device = huge_encode_dev(stat.dev);
  871. info->lo_inode = stat.ino;
  872. info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
  873. info->lo_offset = lo->lo_offset;
  874. info->lo_sizelimit = lo->lo_sizelimit;
  875. info->lo_flags = lo->lo_flags;
  876. memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
  877. memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
  878. info->lo_encrypt_type =
  879. lo->lo_encryption ? lo->lo_encryption->number : 0;
  880. if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
  881. info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
  882. memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
  883. lo->lo_encrypt_key_size);
  884. }
  885. return 0;
  886. }
  887. static void
  888. loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
  889. {
  890. memset(info64, 0, sizeof(*info64));
  891. info64->lo_number = info->lo_number;
  892. info64->lo_device = info->lo_device;
  893. info64->lo_inode = info->lo_inode;
  894. info64->lo_rdevice = info->lo_rdevice;
  895. info64->lo_offset = info->lo_offset;
  896. info64->lo_sizelimit = 0;
  897. info64->lo_encrypt_type = info->lo_encrypt_type;
  898. info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
  899. info64->lo_flags = info->lo_flags;
  900. info64->lo_init[0] = info->lo_init[0];
  901. info64->lo_init[1] = info->lo_init[1];
  902. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  903. memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
  904. else
  905. memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
  906. memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
  907. }
  908. static int
  909. loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
  910. {
  911. memset(info, 0, sizeof(*info));
  912. info->lo_number = info64->lo_number;
  913. info->lo_device = info64->lo_device;
  914. info->lo_inode = info64->lo_inode;
  915. info->lo_rdevice = info64->lo_rdevice;
  916. info->lo_offset = info64->lo_offset;
  917. info->lo_encrypt_type = info64->lo_encrypt_type;
  918. info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
  919. info->lo_flags = info64->lo_flags;
  920. info->lo_init[0] = info64->lo_init[0];
  921. info->lo_init[1] = info64->lo_init[1];
  922. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  923. memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  924. else
  925. memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
  926. memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  927. /* error in case values were truncated */
  928. if (info->lo_device != info64->lo_device ||
  929. info->lo_rdevice != info64->lo_rdevice ||
  930. info->lo_inode != info64->lo_inode ||
  931. info->lo_offset != info64->lo_offset)
  932. return -EOVERFLOW;
  933. return 0;
  934. }
  935. static int
  936. loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
  937. {
  938. struct loop_info info;
  939. struct loop_info64 info64;
  940. if (copy_from_user(&info, arg, sizeof (struct loop_info)))
  941. return -EFAULT;
  942. loop_info64_from_old(&info, &info64);
  943. return loop_set_status(lo, &info64);
  944. }
  945. static int
  946. loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
  947. {
  948. struct loop_info64 info64;
  949. if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
  950. return -EFAULT;
  951. return loop_set_status(lo, &info64);
  952. }
  953. static int
  954. loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
  955. struct loop_info info;
  956. struct loop_info64 info64;
  957. int err = 0;
  958. if (!arg)
  959. err = -EINVAL;
  960. if (!err)
  961. err = loop_get_status(lo, &info64);
  962. if (!err)
  963. err = loop_info64_to_old(&info64, &info);
  964. if (!err && copy_to_user(arg, &info, sizeof(info)))
  965. err = -EFAULT;
  966. return err;
  967. }
  968. static int
  969. loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
  970. struct loop_info64 info64;
  971. int err = 0;
  972. if (!arg)
  973. err = -EINVAL;
  974. if (!err)
  975. err = loop_get_status(lo, &info64);
  976. if (!err && copy_to_user(arg, &info64, sizeof(info64)))
  977. err = -EFAULT;
  978. return err;
  979. }
  980. static int lo_ioctl(struct inode * inode, struct file * file,
  981. unsigned int cmd, unsigned long arg)
  982. {
  983. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  984. int err;
  985. mutex_lock(&lo->lo_ctl_mutex);
  986. switch (cmd) {
  987. case LOOP_SET_FD:
  988. err = loop_set_fd(lo, file, inode->i_bdev, arg);
  989. break;
  990. case LOOP_CHANGE_FD:
  991. err = loop_change_fd(lo, file, inode->i_bdev, arg);
  992. break;
  993. case LOOP_CLR_FD:
  994. err = loop_clr_fd(lo, inode->i_bdev);
  995. break;
  996. case LOOP_SET_STATUS:
  997. err = loop_set_status_old(lo, (struct loop_info __user *) arg);
  998. break;
  999. case LOOP_GET_STATUS:
  1000. err = loop_get_status_old(lo, (struct loop_info __user *) arg);
  1001. break;
  1002. case LOOP_SET_STATUS64:
  1003. err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
  1004. break;
  1005. case LOOP_GET_STATUS64:
  1006. err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
  1007. break;
  1008. default:
  1009. err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
  1010. }
  1011. mutex_unlock(&lo->lo_ctl_mutex);
  1012. return err;
  1013. }
  1014. #ifdef CONFIG_COMPAT
  1015. struct compat_loop_info {
  1016. compat_int_t lo_number; /* ioctl r/o */
  1017. compat_dev_t lo_device; /* ioctl r/o */
  1018. compat_ulong_t lo_inode; /* ioctl r/o */
  1019. compat_dev_t lo_rdevice; /* ioctl r/o */
  1020. compat_int_t lo_offset;
  1021. compat_int_t lo_encrypt_type;
  1022. compat_int_t lo_encrypt_key_size; /* ioctl w/o */
  1023. compat_int_t lo_flags; /* ioctl r/o */
  1024. char lo_name[LO_NAME_SIZE];
  1025. unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
  1026. compat_ulong_t lo_init[2];
  1027. char reserved[4];
  1028. };
  1029. /*
  1030. * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
  1031. * - noinlined to reduce stack space usage in main part of driver
  1032. */
  1033. static noinline int
  1034. loop_info64_from_compat(const struct compat_loop_info __user *arg,
  1035. struct loop_info64 *info64)
  1036. {
  1037. struct compat_loop_info info;
  1038. if (copy_from_user(&info, arg, sizeof(info)))
  1039. return -EFAULT;
  1040. memset(info64, 0, sizeof(*info64));
  1041. info64->lo_number = info.lo_number;
  1042. info64->lo_device = info.lo_device;
  1043. info64->lo_inode = info.lo_inode;
  1044. info64->lo_rdevice = info.lo_rdevice;
  1045. info64->lo_offset = info.lo_offset;
  1046. info64->lo_sizelimit = 0;
  1047. info64->lo_encrypt_type = info.lo_encrypt_type;
  1048. info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
  1049. info64->lo_flags = info.lo_flags;
  1050. info64->lo_init[0] = info.lo_init[0];
  1051. info64->lo_init[1] = info.lo_init[1];
  1052. if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  1053. memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
  1054. else
  1055. memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
  1056. memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
  1057. return 0;
  1058. }
  1059. /*
  1060. * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
  1061. * - noinlined to reduce stack space usage in main part of driver
  1062. */
  1063. static noinline int
  1064. loop_info64_to_compat(const struct loop_info64 *info64,
  1065. struct compat_loop_info __user *arg)
  1066. {
  1067. struct compat_loop_info info;
  1068. memset(&info, 0, sizeof(info));
  1069. info.lo_number = info64->lo_number;
  1070. info.lo_device = info64->lo_device;
  1071. info.lo_inode = info64->lo_inode;
  1072. info.lo_rdevice = info64->lo_rdevice;
  1073. info.lo_offset = info64->lo_offset;
  1074. info.lo_encrypt_type = info64->lo_encrypt_type;
  1075. info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
  1076. info.lo_flags = info64->lo_flags;
  1077. info.lo_init[0] = info64->lo_init[0];
  1078. info.lo_init[1] = info64->lo_init[1];
  1079. if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  1080. memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  1081. else
  1082. memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
  1083. memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  1084. /* error in case values were truncated */
  1085. if (info.lo_device != info64->lo_device ||
  1086. info.lo_rdevice != info64->lo_rdevice ||
  1087. info.lo_inode != info64->lo_inode ||
  1088. info.lo_offset != info64->lo_offset ||
  1089. info.lo_init[0] != info64->lo_init[0] ||
  1090. info.lo_init[1] != info64->lo_init[1])
  1091. return -EOVERFLOW;
  1092. if (copy_to_user(arg, &info, sizeof(info)))
  1093. return -EFAULT;
  1094. return 0;
  1095. }
  1096. static int
  1097. loop_set_status_compat(struct loop_device *lo,
  1098. const struct compat_loop_info __user *arg)
  1099. {
  1100. struct loop_info64 info64;
  1101. int ret;
  1102. ret = loop_info64_from_compat(arg, &info64);
  1103. if (ret < 0)
  1104. return ret;
  1105. return loop_set_status(lo, &info64);
  1106. }
  1107. static int
  1108. loop_get_status_compat(struct loop_device *lo,
  1109. struct compat_loop_info __user *arg)
  1110. {
  1111. struct loop_info64 info64;
  1112. int err = 0;
  1113. if (!arg)
  1114. err = -EINVAL;
  1115. if (!err)
  1116. err = loop_get_status(lo, &info64);
  1117. if (!err)
  1118. err = loop_info64_to_compat(&info64, arg);
  1119. return err;
  1120. }
  1121. static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1122. {
  1123. struct inode *inode = file->f_path.dentry->d_inode;
  1124. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1125. int err;
  1126. lock_kernel();
  1127. switch(cmd) {
  1128. case LOOP_SET_STATUS:
  1129. mutex_lock(&lo->lo_ctl_mutex);
  1130. err = loop_set_status_compat(
  1131. lo, (const struct compat_loop_info __user *) arg);
  1132. mutex_unlock(&lo->lo_ctl_mutex);
  1133. break;
  1134. case LOOP_GET_STATUS:
  1135. mutex_lock(&lo->lo_ctl_mutex);
  1136. err = loop_get_status_compat(
  1137. lo, (struct compat_loop_info __user *) arg);
  1138. mutex_unlock(&lo->lo_ctl_mutex);
  1139. break;
  1140. case LOOP_CLR_FD:
  1141. case LOOP_GET_STATUS64:
  1142. case LOOP_SET_STATUS64:
  1143. arg = (unsigned long) compat_ptr(arg);
  1144. case LOOP_SET_FD:
  1145. case LOOP_CHANGE_FD:
  1146. err = lo_ioctl(inode, file, cmd, arg);
  1147. break;
  1148. default:
  1149. err = -ENOIOCTLCMD;
  1150. break;
  1151. }
  1152. unlock_kernel();
  1153. return err;
  1154. }
  1155. #endif
  1156. static int lo_open(struct inode *inode, struct file *file)
  1157. {
  1158. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1159. mutex_lock(&lo->lo_ctl_mutex);
  1160. lo->lo_refcnt++;
  1161. mutex_unlock(&lo->lo_ctl_mutex);
  1162. return 0;
  1163. }
  1164. static int lo_release(struct inode *inode, struct file *file)
  1165. {
  1166. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1167. mutex_lock(&lo->lo_ctl_mutex);
  1168. --lo->lo_refcnt;
  1169. mutex_unlock(&lo->lo_ctl_mutex);
  1170. return 0;
  1171. }
  1172. static struct block_device_operations lo_fops = {
  1173. .owner = THIS_MODULE,
  1174. .open = lo_open,
  1175. .release = lo_release,
  1176. .ioctl = lo_ioctl,
  1177. #ifdef CONFIG_COMPAT
  1178. .compat_ioctl = lo_compat_ioctl,
  1179. #endif
  1180. };
  1181. /*
  1182. * And now the modules code and kernel interface.
  1183. */
  1184. static int max_loop;
  1185. module_param(max_loop, int, 0);
  1186. MODULE_PARM_DESC(max_loop, "obsolete, loop device is created on-demand");
  1187. MODULE_LICENSE("GPL");
  1188. MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
  1189. int loop_register_transfer(struct loop_func_table *funcs)
  1190. {
  1191. unsigned int n = funcs->number;
  1192. if (n >= MAX_LO_CRYPT || xfer_funcs[n])
  1193. return -EINVAL;
  1194. xfer_funcs[n] = funcs;
  1195. return 0;
  1196. }
  1197. int loop_unregister_transfer(int number)
  1198. {
  1199. unsigned int n = number;
  1200. struct loop_device *lo;
  1201. struct loop_func_table *xfer;
  1202. if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
  1203. return -EINVAL;
  1204. xfer_funcs[n] = NULL;
  1205. list_for_each_entry(lo, &loop_devices, lo_list) {
  1206. mutex_lock(&lo->lo_ctl_mutex);
  1207. if (lo->lo_encryption == xfer)
  1208. loop_release_xfer(lo);
  1209. mutex_unlock(&lo->lo_ctl_mutex);
  1210. }
  1211. return 0;
  1212. }
  1213. EXPORT_SYMBOL(loop_register_transfer);
  1214. EXPORT_SYMBOL(loop_unregister_transfer);
  1215. static struct loop_device *loop_init_one(int i)
  1216. {
  1217. struct loop_device *lo;
  1218. struct gendisk *disk;
  1219. list_for_each_entry(lo, &loop_devices, lo_list) {
  1220. if (lo->lo_number == i)
  1221. return lo;
  1222. }
  1223. lo = kzalloc(sizeof(*lo), GFP_KERNEL);
  1224. if (!lo)
  1225. goto out;
  1226. lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
  1227. if (!lo->lo_queue)
  1228. goto out_free_dev;
  1229. disk = lo->lo_disk = alloc_disk(1);
  1230. if (!disk)
  1231. goto out_free_queue;
  1232. mutex_init(&lo->lo_ctl_mutex);
  1233. lo->lo_number = i;
  1234. lo->lo_thread = NULL;
  1235. init_waitqueue_head(&lo->lo_event);
  1236. spin_lock_init(&lo->lo_lock);
  1237. disk->major = LOOP_MAJOR;
  1238. disk->first_minor = i;
  1239. disk->fops = &lo_fops;
  1240. disk->private_data = lo;
  1241. disk->queue = lo->lo_queue;
  1242. sprintf(disk->disk_name, "loop%d", i);
  1243. add_disk(disk);
  1244. list_add_tail(&lo->lo_list, &loop_devices);
  1245. return lo;
  1246. out_free_queue:
  1247. blk_cleanup_queue(lo->lo_queue);
  1248. out_free_dev:
  1249. kfree(lo);
  1250. out:
  1251. return NULL;
  1252. }
  1253. static void loop_del_one(struct loop_device *lo)
  1254. {
  1255. del_gendisk(lo->lo_disk);
  1256. blk_cleanup_queue(lo->lo_queue);
  1257. put_disk(lo->lo_disk);
  1258. list_del(&lo->lo_list);
  1259. kfree(lo);
  1260. }
  1261. static struct kobject *loop_probe(dev_t dev, int *part, void *data)
  1262. {
  1263. struct loop_device *lo;
  1264. struct kobject *kobj;
  1265. mutex_lock(&loop_devices_mutex);
  1266. lo = loop_init_one(dev & MINORMASK);
  1267. kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
  1268. mutex_unlock(&loop_devices_mutex);
  1269. *part = 0;
  1270. return kobj;
  1271. }
  1272. static int __init loop_init(void)
  1273. {
  1274. if (register_blkdev(LOOP_MAJOR, "loop"))
  1275. return -EIO;
  1276. blk_register_region(MKDEV(LOOP_MAJOR, 0), 1UL << MINORBITS,
  1277. THIS_MODULE, loop_probe, NULL, NULL);
  1278. if (max_loop) {
  1279. printk(KERN_INFO "loop: the max_loop option is obsolete "
  1280. "and will be removed in March 2008\n");
  1281. }
  1282. printk(KERN_INFO "loop: module loaded\n");
  1283. return 0;
  1284. }
  1285. static void __exit loop_exit(void)
  1286. {
  1287. struct loop_device *lo, *next;
  1288. list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
  1289. loop_del_one(lo);
  1290. blk_unregister_region(MKDEV(LOOP_MAJOR, 0), 1UL << MINORBITS);
  1291. if (unregister_blkdev(LOOP_MAJOR, "loop"))
  1292. printk(KERN_WARNING "loop: cannot unregister blkdev\n");
  1293. }
  1294. module_init(loop_init);
  1295. module_exit(loop_exit);
  1296. #ifndef MODULE
  1297. static int __init max_loop_setup(char *str)
  1298. {
  1299. max_loop = simple_strtol(str, NULL, 0);
  1300. return 1;
  1301. }
  1302. __setup("max_loop=", max_loop_setup);
  1303. #endif