setup.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100
  1. /*
  2. * linux/arch/x86-64/kernel/setup.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Nov 2001 Dave Jones <davej@suse.de>
  7. * Forked from i386 setup code.
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of initialization
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/slab.h>
  20. #include <linux/user.h>
  21. #include <linux/a.out.h>
  22. #include <linux/screen_info.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/init.h>
  26. #include <linux/initrd.h>
  27. #include <linux/highmem.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/module.h>
  30. #include <asm/processor.h>
  31. #include <linux/console.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/crash_dump.h>
  34. #include <linux/root_dev.h>
  35. #include <linux/pci.h>
  36. #include <linux/acpi.h>
  37. #include <linux/kallsyms.h>
  38. #include <linux/edd.h>
  39. #include <linux/mmzone.h>
  40. #include <linux/kexec.h>
  41. #include <linux/cpufreq.h>
  42. #include <linux/dmi.h>
  43. #include <linux/dma-mapping.h>
  44. #include <linux/ctype.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/system.h>
  48. #include <asm/io.h>
  49. #include <asm/smp.h>
  50. #include <asm/msr.h>
  51. #include <asm/desc.h>
  52. #include <video/edid.h>
  53. #include <asm/e820.h>
  54. #include <asm/dma.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/bootsetup.h>
  58. #include <asm/proto.h>
  59. #include <asm/setup.h>
  60. #include <asm/mach_apic.h>
  61. #include <asm/numa.h>
  62. #include <asm/sections.h>
  63. #include <asm/dmi.h>
  64. /*
  65. * Machine setup..
  66. */
  67. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  68. EXPORT_SYMBOL(boot_cpu_data);
  69. unsigned long mmu_cr4_features;
  70. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  71. int bootloader_type;
  72. unsigned long saved_video_mode;
  73. int force_mwait __cpuinitdata;
  74. /*
  75. * Early DMI memory
  76. */
  77. int dmi_alloc_index;
  78. char dmi_alloc_data[DMI_MAX_DATA];
  79. /*
  80. * Setup options
  81. */
  82. struct screen_info screen_info;
  83. EXPORT_SYMBOL(screen_info);
  84. struct sys_desc_table_struct {
  85. unsigned short length;
  86. unsigned char table[0];
  87. };
  88. struct edid_info edid_info;
  89. EXPORT_SYMBOL_GPL(edid_info);
  90. extern int root_mountflags;
  91. char __initdata command_line[COMMAND_LINE_SIZE];
  92. struct resource standard_io_resources[] = {
  93. { .name = "dma1", .start = 0x00, .end = 0x1f,
  94. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  95. { .name = "pic1", .start = 0x20, .end = 0x21,
  96. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  97. { .name = "timer0", .start = 0x40, .end = 0x43,
  98. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  99. { .name = "timer1", .start = 0x50, .end = 0x53,
  100. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  101. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  105. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  106. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  107. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  108. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  109. { .name = "fpu", .start = 0xf0, .end = 0xff,
  110. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  111. };
  112. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  113. struct resource data_resource = {
  114. .name = "Kernel data",
  115. .start = 0,
  116. .end = 0,
  117. .flags = IORESOURCE_RAM,
  118. };
  119. struct resource code_resource = {
  120. .name = "Kernel code",
  121. .start = 0,
  122. .end = 0,
  123. .flags = IORESOURCE_RAM,
  124. };
  125. #ifdef CONFIG_PROC_VMCORE
  126. /* elfcorehdr= specifies the location of elf core header
  127. * stored by the crashed kernel. This option will be passed
  128. * by kexec loader to the capture kernel.
  129. */
  130. static int __init setup_elfcorehdr(char *arg)
  131. {
  132. char *end;
  133. if (!arg)
  134. return -EINVAL;
  135. elfcorehdr_addr = memparse(arg, &end);
  136. return end > arg ? 0 : -EINVAL;
  137. }
  138. early_param("elfcorehdr", setup_elfcorehdr);
  139. #endif
  140. #ifndef CONFIG_NUMA
  141. static void __init
  142. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  143. {
  144. unsigned long bootmap_size, bootmap;
  145. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  146. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  147. if (bootmap == -1L)
  148. panic("Cannot find bootmem map of size %ld\n",bootmap_size);
  149. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  150. e820_register_active_regions(0, start_pfn, end_pfn);
  151. free_bootmem_with_active_regions(0, end_pfn);
  152. reserve_bootmem(bootmap, bootmap_size);
  153. }
  154. #endif
  155. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  156. struct edd edd;
  157. #ifdef CONFIG_EDD_MODULE
  158. EXPORT_SYMBOL(edd);
  159. #endif
  160. /**
  161. * copy_edd() - Copy the BIOS EDD information
  162. * from boot_params into a safe place.
  163. *
  164. */
  165. static inline void copy_edd(void)
  166. {
  167. memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
  168. memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
  169. edd.mbr_signature_nr = EDD_MBR_SIG_NR;
  170. edd.edd_info_nr = EDD_NR;
  171. }
  172. #else
  173. static inline void copy_edd(void)
  174. {
  175. }
  176. #endif
  177. #define EBDA_ADDR_POINTER 0x40E
  178. unsigned __initdata ebda_addr;
  179. unsigned __initdata ebda_size;
  180. static void discover_ebda(void)
  181. {
  182. /*
  183. * there is a real-mode segmented pointer pointing to the
  184. * 4K EBDA area at 0x40E
  185. */
  186. ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
  187. ebda_addr <<= 4;
  188. ebda_size = *(unsigned short *)__va(ebda_addr);
  189. /* Round EBDA up to pages */
  190. if (ebda_size == 0)
  191. ebda_size = 1;
  192. ebda_size <<= 10;
  193. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  194. if (ebda_size > 64*1024)
  195. ebda_size = 64*1024;
  196. }
  197. void __init setup_arch(char **cmdline_p)
  198. {
  199. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  200. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  201. screen_info = SCREEN_INFO;
  202. edid_info = EDID_INFO;
  203. saved_video_mode = SAVED_VIDEO_MODE;
  204. bootloader_type = LOADER_TYPE;
  205. #ifdef CONFIG_BLK_DEV_RAM
  206. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  207. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  208. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  209. #endif
  210. setup_memory_region();
  211. copy_edd();
  212. if (!MOUNT_ROOT_RDONLY)
  213. root_mountflags &= ~MS_RDONLY;
  214. init_mm.start_code = (unsigned long) &_text;
  215. init_mm.end_code = (unsigned long) &_etext;
  216. init_mm.end_data = (unsigned long) &_edata;
  217. init_mm.brk = (unsigned long) &_end;
  218. code_resource.start = virt_to_phys(&_text);
  219. code_resource.end = virt_to_phys(&_etext)-1;
  220. data_resource.start = virt_to_phys(&_etext);
  221. data_resource.end = virt_to_phys(&_edata)-1;
  222. early_identify_cpu(&boot_cpu_data);
  223. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  224. *cmdline_p = command_line;
  225. parse_early_param();
  226. finish_e820_parsing();
  227. e820_register_active_regions(0, 0, -1UL);
  228. /*
  229. * partially used pages are not usable - thus
  230. * we are rounding upwards:
  231. */
  232. end_pfn = e820_end_of_ram();
  233. num_physpages = end_pfn;
  234. check_efer();
  235. discover_ebda();
  236. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  237. dmi_scan_machine();
  238. #ifdef CONFIG_ACPI
  239. /*
  240. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  241. * Call this early for SRAT node setup.
  242. */
  243. acpi_boot_table_init();
  244. #endif
  245. /* How many end-of-memory variables you have, grandma! */
  246. max_low_pfn = end_pfn;
  247. max_pfn = end_pfn;
  248. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  249. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  250. remove_all_active_ranges();
  251. #ifdef CONFIG_ACPI_NUMA
  252. /*
  253. * Parse SRAT to discover nodes.
  254. */
  255. acpi_numa_init();
  256. #endif
  257. #ifdef CONFIG_NUMA
  258. numa_initmem_init(0, end_pfn);
  259. #else
  260. contig_initmem_init(0, end_pfn);
  261. #endif
  262. /* Reserve direct mapping */
  263. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  264. (table_end - table_start) << PAGE_SHIFT);
  265. /* reserve kernel */
  266. reserve_bootmem_generic(__pa_symbol(&_text),
  267. __pa_symbol(&_end) - __pa_symbol(&_text));
  268. /*
  269. * reserve physical page 0 - it's a special BIOS page on many boxes,
  270. * enabling clean reboots, SMP operation, laptop functions.
  271. */
  272. reserve_bootmem_generic(0, PAGE_SIZE);
  273. /* reserve ebda region */
  274. if (ebda_addr)
  275. reserve_bootmem_generic(ebda_addr, ebda_size);
  276. #ifdef CONFIG_NUMA
  277. /* reserve nodemap region */
  278. if (nodemap_addr)
  279. reserve_bootmem_generic(nodemap_addr, nodemap_size);
  280. #endif
  281. #ifdef CONFIG_SMP
  282. /* Reserve SMP trampoline */
  283. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
  284. #endif
  285. #ifdef CONFIG_ACPI_SLEEP
  286. /*
  287. * Reserve low memory region for sleep support.
  288. */
  289. acpi_reserve_bootmem();
  290. #endif
  291. /*
  292. * Find and reserve possible boot-time SMP configuration:
  293. */
  294. find_smp_config();
  295. #ifdef CONFIG_BLK_DEV_INITRD
  296. if (LOADER_TYPE && INITRD_START) {
  297. if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
  298. reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
  299. initrd_start = INITRD_START + PAGE_OFFSET;
  300. initrd_end = initrd_start+INITRD_SIZE;
  301. }
  302. else {
  303. printk(KERN_ERR "initrd extends beyond end of memory "
  304. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  305. (unsigned long)(INITRD_START + INITRD_SIZE),
  306. (unsigned long)(end_pfn << PAGE_SHIFT));
  307. initrd_start = 0;
  308. }
  309. }
  310. #endif
  311. #ifdef CONFIG_KEXEC
  312. if (crashk_res.start != crashk_res.end) {
  313. reserve_bootmem_generic(crashk_res.start,
  314. crashk_res.end - crashk_res.start + 1);
  315. }
  316. #endif
  317. paging_init();
  318. #ifdef CONFIG_PCI
  319. early_quirks();
  320. #endif
  321. /*
  322. * set this early, so we dont allocate cpu0
  323. * if MADT list doesnt list BSP first
  324. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  325. */
  326. cpu_set(0, cpu_present_map);
  327. #ifdef CONFIG_ACPI
  328. /*
  329. * Read APIC and some other early information from ACPI tables.
  330. */
  331. acpi_boot_init();
  332. #endif
  333. init_cpu_to_node();
  334. /*
  335. * get boot-time SMP configuration:
  336. */
  337. if (smp_found_config)
  338. get_smp_config();
  339. init_apic_mappings();
  340. /*
  341. * We trust e820 completely. No explicit ROM probing in memory.
  342. */
  343. e820_reserve_resources();
  344. e820_mark_nosave_regions();
  345. {
  346. unsigned i;
  347. /* request I/O space for devices used on all i[345]86 PCs */
  348. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  349. request_resource(&ioport_resource, &standard_io_resources[i]);
  350. }
  351. e820_setup_gap();
  352. #ifdef CONFIG_VT
  353. #if defined(CONFIG_VGA_CONSOLE)
  354. conswitchp = &vga_con;
  355. #elif defined(CONFIG_DUMMY_CONSOLE)
  356. conswitchp = &dummy_con;
  357. #endif
  358. #endif
  359. }
  360. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  361. {
  362. unsigned int *v;
  363. if (c->extended_cpuid_level < 0x80000004)
  364. return 0;
  365. v = (unsigned int *) c->x86_model_id;
  366. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  367. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  368. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  369. c->x86_model_id[48] = 0;
  370. return 1;
  371. }
  372. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  373. {
  374. unsigned int n, dummy, eax, ebx, ecx, edx;
  375. n = c->extended_cpuid_level;
  376. if (n >= 0x80000005) {
  377. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  378. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  379. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  380. c->x86_cache_size=(ecx>>24)+(edx>>24);
  381. /* On K8 L1 TLB is inclusive, so don't count it */
  382. c->x86_tlbsize = 0;
  383. }
  384. if (n >= 0x80000006) {
  385. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  386. ecx = cpuid_ecx(0x80000006);
  387. c->x86_cache_size = ecx >> 16;
  388. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  389. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  390. c->x86_cache_size, ecx & 0xFF);
  391. }
  392. if (n >= 0x80000007)
  393. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  394. if (n >= 0x80000008) {
  395. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  396. c->x86_virt_bits = (eax >> 8) & 0xff;
  397. c->x86_phys_bits = eax & 0xff;
  398. }
  399. }
  400. #ifdef CONFIG_NUMA
  401. static int nearby_node(int apicid)
  402. {
  403. int i;
  404. for (i = apicid - 1; i >= 0; i--) {
  405. int node = apicid_to_node[i];
  406. if (node != NUMA_NO_NODE && node_online(node))
  407. return node;
  408. }
  409. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  410. int node = apicid_to_node[i];
  411. if (node != NUMA_NO_NODE && node_online(node))
  412. return node;
  413. }
  414. return first_node(node_online_map); /* Shouldn't happen */
  415. }
  416. #endif
  417. /*
  418. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  419. * Assumes number of cores is a power of two.
  420. */
  421. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  422. {
  423. #ifdef CONFIG_SMP
  424. unsigned bits;
  425. #ifdef CONFIG_NUMA
  426. int cpu = smp_processor_id();
  427. int node = 0;
  428. unsigned apicid = hard_smp_processor_id();
  429. #endif
  430. unsigned ecx = cpuid_ecx(0x80000008);
  431. c->x86_max_cores = (ecx & 0xff) + 1;
  432. /* CPU telling us the core id bits shift? */
  433. bits = (ecx >> 12) & 0xF;
  434. /* Otherwise recompute */
  435. if (bits == 0) {
  436. while ((1 << bits) < c->x86_max_cores)
  437. bits++;
  438. }
  439. /* Low order bits define the core id (index of core in socket) */
  440. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  441. /* Convert the APIC ID into the socket ID */
  442. c->phys_proc_id = phys_pkg_id(bits);
  443. #ifdef CONFIG_NUMA
  444. node = c->phys_proc_id;
  445. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  446. node = apicid_to_node[apicid];
  447. if (!node_online(node)) {
  448. /* Two possibilities here:
  449. - The CPU is missing memory and no node was created.
  450. In that case try picking one from a nearby CPU
  451. - The APIC IDs differ from the HyperTransport node IDs
  452. which the K8 northbridge parsing fills in.
  453. Assume they are all increased by a constant offset,
  454. but in the same order as the HT nodeids.
  455. If that doesn't result in a usable node fall back to the
  456. path for the previous case. */
  457. int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
  458. if (ht_nodeid >= 0 &&
  459. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  460. node = apicid_to_node[ht_nodeid];
  461. /* Pick a nearby node */
  462. if (!node_online(node))
  463. node = nearby_node(apicid);
  464. }
  465. numa_set_node(cpu, node);
  466. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  467. #endif
  468. #endif
  469. }
  470. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  471. {
  472. unsigned level;
  473. #ifdef CONFIG_SMP
  474. unsigned long value;
  475. /*
  476. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  477. * bit 6 of msr C001_0015
  478. *
  479. * Errata 63 for SH-B3 steppings
  480. * Errata 122 for all steppings (F+ have it disabled by default)
  481. */
  482. if (c->x86 == 15) {
  483. rdmsrl(MSR_K8_HWCR, value);
  484. value |= 1 << 6;
  485. wrmsrl(MSR_K8_HWCR, value);
  486. }
  487. #endif
  488. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  489. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  490. clear_bit(0*32+31, &c->x86_capability);
  491. /* On C+ stepping K8 rep microcode works well for copy/memset */
  492. level = cpuid_eax(1);
  493. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
  494. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  495. /* Enable workaround for FXSAVE leak */
  496. if (c->x86 >= 6)
  497. set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
  498. level = get_model_name(c);
  499. if (!level) {
  500. switch (c->x86) {
  501. case 15:
  502. /* Should distinguish Models here, but this is only
  503. a fallback anyways. */
  504. strcpy(c->x86_model_id, "Hammer");
  505. break;
  506. }
  507. }
  508. display_cacheinfo(c);
  509. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  510. if (c->x86_power & (1<<8))
  511. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  512. /* Multi core CPU? */
  513. if (c->extended_cpuid_level >= 0x80000008)
  514. amd_detect_cmp(c);
  515. /* Fix cpuid4 emulation for more */
  516. num_cache_leaves = 3;
  517. /* RDTSC can be speculated around */
  518. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  519. /* Family 10 doesn't support C states in MWAIT so don't use it */
  520. if (c->x86 == 0x10 && !force_mwait)
  521. clear_bit(X86_FEATURE_MWAIT, &c->x86_capability);
  522. }
  523. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  524. {
  525. #ifdef CONFIG_SMP
  526. u32 eax, ebx, ecx, edx;
  527. int index_msb, core_bits;
  528. cpuid(1, &eax, &ebx, &ecx, &edx);
  529. if (!cpu_has(c, X86_FEATURE_HT))
  530. return;
  531. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  532. goto out;
  533. smp_num_siblings = (ebx & 0xff0000) >> 16;
  534. if (smp_num_siblings == 1) {
  535. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  536. } else if (smp_num_siblings > 1 ) {
  537. if (smp_num_siblings > NR_CPUS) {
  538. printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
  539. smp_num_siblings = 1;
  540. return;
  541. }
  542. index_msb = get_count_order(smp_num_siblings);
  543. c->phys_proc_id = phys_pkg_id(index_msb);
  544. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  545. index_msb = get_count_order(smp_num_siblings) ;
  546. core_bits = get_count_order(c->x86_max_cores);
  547. c->cpu_core_id = phys_pkg_id(index_msb) &
  548. ((1 << core_bits) - 1);
  549. }
  550. out:
  551. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  552. printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
  553. printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
  554. }
  555. #endif
  556. }
  557. /*
  558. * find out the number of processor cores on the die
  559. */
  560. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  561. {
  562. unsigned int eax, t;
  563. if (c->cpuid_level < 4)
  564. return 1;
  565. cpuid_count(4, 0, &eax, &t, &t, &t);
  566. if (eax & 0x1f)
  567. return ((eax >> 26) + 1);
  568. else
  569. return 1;
  570. }
  571. static void srat_detect_node(void)
  572. {
  573. #ifdef CONFIG_NUMA
  574. unsigned node;
  575. int cpu = smp_processor_id();
  576. int apicid = hard_smp_processor_id();
  577. /* Don't do the funky fallback heuristics the AMD version employs
  578. for now. */
  579. node = apicid_to_node[apicid];
  580. if (node == NUMA_NO_NODE)
  581. node = first_node(node_online_map);
  582. numa_set_node(cpu, node);
  583. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  584. #endif
  585. }
  586. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  587. {
  588. /* Cache sizes */
  589. unsigned n;
  590. init_intel_cacheinfo(c);
  591. if (c->cpuid_level > 9 ) {
  592. unsigned eax = cpuid_eax(10);
  593. /* Check for version and the number of counters */
  594. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  595. set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
  596. }
  597. if (cpu_has_ds) {
  598. unsigned int l1, l2;
  599. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  600. if (!(l1 & (1<<11)))
  601. set_bit(X86_FEATURE_BTS, c->x86_capability);
  602. if (!(l1 & (1<<12)))
  603. set_bit(X86_FEATURE_PEBS, c->x86_capability);
  604. }
  605. n = c->extended_cpuid_level;
  606. if (n >= 0x80000008) {
  607. unsigned eax = cpuid_eax(0x80000008);
  608. c->x86_virt_bits = (eax >> 8) & 0xff;
  609. c->x86_phys_bits = eax & 0xff;
  610. /* CPUID workaround for Intel 0F34 CPU */
  611. if (c->x86_vendor == X86_VENDOR_INTEL &&
  612. c->x86 == 0xF && c->x86_model == 0x3 &&
  613. c->x86_mask == 0x4)
  614. c->x86_phys_bits = 36;
  615. }
  616. if (c->x86 == 15)
  617. c->x86_cache_alignment = c->x86_clflush_size * 2;
  618. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  619. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  620. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  621. if (c->x86 == 6)
  622. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  623. if (c->x86 == 15)
  624. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  625. else
  626. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  627. c->x86_max_cores = intel_num_cpu_cores(c);
  628. srat_detect_node();
  629. }
  630. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  631. {
  632. char *v = c->x86_vendor_id;
  633. if (!strcmp(v, "AuthenticAMD"))
  634. c->x86_vendor = X86_VENDOR_AMD;
  635. else if (!strcmp(v, "GenuineIntel"))
  636. c->x86_vendor = X86_VENDOR_INTEL;
  637. else
  638. c->x86_vendor = X86_VENDOR_UNKNOWN;
  639. }
  640. struct cpu_model_info {
  641. int vendor;
  642. int family;
  643. char *model_names[16];
  644. };
  645. /* Do some early cpuid on the boot CPU to get some parameter that are
  646. needed before check_bugs. Everything advanced is in identify_cpu
  647. below. */
  648. void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  649. {
  650. u32 tfms;
  651. c->loops_per_jiffy = loops_per_jiffy;
  652. c->x86_cache_size = -1;
  653. c->x86_vendor = X86_VENDOR_UNKNOWN;
  654. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  655. c->x86_vendor_id[0] = '\0'; /* Unset */
  656. c->x86_model_id[0] = '\0'; /* Unset */
  657. c->x86_clflush_size = 64;
  658. c->x86_cache_alignment = c->x86_clflush_size;
  659. c->x86_max_cores = 1;
  660. c->extended_cpuid_level = 0;
  661. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  662. /* Get vendor name */
  663. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  664. (unsigned int *)&c->x86_vendor_id[0],
  665. (unsigned int *)&c->x86_vendor_id[8],
  666. (unsigned int *)&c->x86_vendor_id[4]);
  667. get_cpu_vendor(c);
  668. /* Initialize the standard set of capabilities */
  669. /* Note that the vendor-specific code below might override */
  670. /* Intel-defined flags: level 0x00000001 */
  671. if (c->cpuid_level >= 0x00000001) {
  672. __u32 misc;
  673. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  674. &c->x86_capability[0]);
  675. c->x86 = (tfms >> 8) & 0xf;
  676. c->x86_model = (tfms >> 4) & 0xf;
  677. c->x86_mask = tfms & 0xf;
  678. if (c->x86 == 0xf)
  679. c->x86 += (tfms >> 20) & 0xff;
  680. if (c->x86 >= 0x6)
  681. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  682. if (c->x86_capability[0] & (1<<19))
  683. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  684. } else {
  685. /* Have CPUID level 0 only - unheard of */
  686. c->x86 = 4;
  687. }
  688. #ifdef CONFIG_SMP
  689. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  690. #endif
  691. }
  692. /*
  693. * This does the hard work of actually picking apart the CPU stuff...
  694. */
  695. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  696. {
  697. int i;
  698. u32 xlvl;
  699. early_identify_cpu(c);
  700. /* AMD-defined flags: level 0x80000001 */
  701. xlvl = cpuid_eax(0x80000000);
  702. c->extended_cpuid_level = xlvl;
  703. if ((xlvl & 0xffff0000) == 0x80000000) {
  704. if (xlvl >= 0x80000001) {
  705. c->x86_capability[1] = cpuid_edx(0x80000001);
  706. c->x86_capability[6] = cpuid_ecx(0x80000001);
  707. }
  708. if (xlvl >= 0x80000004)
  709. get_model_name(c); /* Default name */
  710. }
  711. /* Transmeta-defined flags: level 0x80860001 */
  712. xlvl = cpuid_eax(0x80860000);
  713. if ((xlvl & 0xffff0000) == 0x80860000) {
  714. /* Don't set x86_cpuid_level here for now to not confuse. */
  715. if (xlvl >= 0x80860001)
  716. c->x86_capability[2] = cpuid_edx(0x80860001);
  717. }
  718. c->apicid = phys_pkg_id(0);
  719. /*
  720. * Vendor-specific initialization. In this section we
  721. * canonicalize the feature flags, meaning if there are
  722. * features a certain CPU supports which CPUID doesn't
  723. * tell us, CPUID claiming incorrect flags, or other bugs,
  724. * we handle them here.
  725. *
  726. * At the end of this section, c->x86_capability better
  727. * indicate the features this CPU genuinely supports!
  728. */
  729. switch (c->x86_vendor) {
  730. case X86_VENDOR_AMD:
  731. init_amd(c);
  732. break;
  733. case X86_VENDOR_INTEL:
  734. init_intel(c);
  735. break;
  736. case X86_VENDOR_UNKNOWN:
  737. default:
  738. display_cacheinfo(c);
  739. break;
  740. }
  741. select_idle_routine(c);
  742. detect_ht(c);
  743. /*
  744. * On SMP, boot_cpu_data holds the common feature set between
  745. * all CPUs; so make sure that we indicate which features are
  746. * common between the CPUs. The first time this routine gets
  747. * executed, c == &boot_cpu_data.
  748. */
  749. if (c != &boot_cpu_data) {
  750. /* AND the already accumulated flags with these */
  751. for (i = 0 ; i < NCAPINTS ; i++)
  752. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  753. }
  754. #ifdef CONFIG_X86_MCE
  755. mcheck_init(c);
  756. #endif
  757. if (c != &boot_cpu_data)
  758. mtrr_ap_init();
  759. #ifdef CONFIG_NUMA
  760. numa_add_cpu(smp_processor_id());
  761. #endif
  762. }
  763. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  764. {
  765. if (c->x86_model_id[0])
  766. printk("%s", c->x86_model_id);
  767. if (c->x86_mask || c->cpuid_level >= 0)
  768. printk(" stepping %02x\n", c->x86_mask);
  769. else
  770. printk("\n");
  771. }
  772. /*
  773. * Get CPU information for use by the procfs.
  774. */
  775. static int show_cpuinfo(struct seq_file *m, void *v)
  776. {
  777. struct cpuinfo_x86 *c = v;
  778. /*
  779. * These flag bits must match the definitions in <asm/cpufeature.h>.
  780. * NULL means this bit is undefined or reserved; either way it doesn't
  781. * have meaning as far as Linux is concerned. Note that it's important
  782. * to realize there is a difference between this table and CPUID -- if
  783. * applications want to get the raw CPUID data, they should access
  784. * /dev/cpu/<cpu_nr>/cpuid instead.
  785. */
  786. static char *x86_cap_flags[] = {
  787. /* Intel-defined */
  788. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  789. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  790. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  791. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
  792. /* AMD-defined */
  793. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  794. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  795. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  796. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  797. "3dnowext", "3dnow",
  798. /* Transmeta-defined */
  799. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  800. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  801. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  802. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  803. /* Other (Linux-defined) */
  804. "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
  805. "constant_tsc", NULL, NULL,
  806. "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  807. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  808. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  809. /* Intel-defined (#2) */
  810. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  811. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  812. NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
  813. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  814. /* VIA/Cyrix/Centaur-defined */
  815. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  816. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  817. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  818. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  819. /* AMD-defined (#2) */
  820. "lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy",
  821. "altmovcr8", "abm", "sse4a",
  822. "misalignsse", "3dnowprefetch",
  823. "osvw", "ibs", NULL, NULL, NULL, NULL,
  824. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  825. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  826. };
  827. static char *x86_power_flags[] = {
  828. "ts", /* temperature sensor */
  829. "fid", /* frequency id control */
  830. "vid", /* voltage id control */
  831. "ttp", /* thermal trip */
  832. "tm",
  833. "stc",
  834. "100mhzsteps",
  835. "hwpstate",
  836. "", /* tsc invariant mapped to constant_tsc */
  837. /* nothing */
  838. };
  839. #ifdef CONFIG_SMP
  840. if (!cpu_online(c-cpu_data))
  841. return 0;
  842. #endif
  843. seq_printf(m,"processor\t: %u\n"
  844. "vendor_id\t: %s\n"
  845. "cpu family\t: %d\n"
  846. "model\t\t: %d\n"
  847. "model name\t: %s\n",
  848. (unsigned)(c-cpu_data),
  849. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  850. c->x86,
  851. (int)c->x86_model,
  852. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  853. if (c->x86_mask || c->cpuid_level >= 0)
  854. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  855. else
  856. seq_printf(m, "stepping\t: unknown\n");
  857. if (cpu_has(c,X86_FEATURE_TSC)) {
  858. unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
  859. if (!freq)
  860. freq = cpu_khz;
  861. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  862. freq / 1000, (freq % 1000));
  863. }
  864. /* Cache size */
  865. if (c->x86_cache_size >= 0)
  866. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  867. #ifdef CONFIG_SMP
  868. if (smp_num_siblings * c->x86_max_cores > 1) {
  869. int cpu = c - cpu_data;
  870. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  871. seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
  872. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  873. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  874. }
  875. #endif
  876. seq_printf(m,
  877. "fpu\t\t: yes\n"
  878. "fpu_exception\t: yes\n"
  879. "cpuid level\t: %d\n"
  880. "wp\t\t: yes\n"
  881. "flags\t\t:",
  882. c->cpuid_level);
  883. {
  884. int i;
  885. for ( i = 0 ; i < 32*NCAPINTS ; i++ )
  886. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  887. seq_printf(m, " %s", x86_cap_flags[i]);
  888. }
  889. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  890. c->loops_per_jiffy/(500000/HZ),
  891. (c->loops_per_jiffy/(5000/HZ)) % 100);
  892. if (c->x86_tlbsize > 0)
  893. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  894. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  895. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  896. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  897. c->x86_phys_bits, c->x86_virt_bits);
  898. seq_printf(m, "power management:");
  899. {
  900. unsigned i;
  901. for (i = 0; i < 32; i++)
  902. if (c->x86_power & (1 << i)) {
  903. if (i < ARRAY_SIZE(x86_power_flags) &&
  904. x86_power_flags[i])
  905. seq_printf(m, "%s%s",
  906. x86_power_flags[i][0]?" ":"",
  907. x86_power_flags[i]);
  908. else
  909. seq_printf(m, " [%d]", i);
  910. }
  911. }
  912. seq_printf(m, "\n\n");
  913. return 0;
  914. }
  915. static void *c_start(struct seq_file *m, loff_t *pos)
  916. {
  917. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  918. }
  919. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  920. {
  921. ++*pos;
  922. return c_start(m, pos);
  923. }
  924. static void c_stop(struct seq_file *m, void *v)
  925. {
  926. }
  927. struct seq_operations cpuinfo_op = {
  928. .start =c_start,
  929. .next = c_next,
  930. .stop = c_stop,
  931. .show = show_cpuinfo,
  932. };