process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. /*
  2. * arch/sh/kernel/process.c
  3. *
  4. * This file handles the architecture-dependent parts of process handling..
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. *
  8. * SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  9. * Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
  10. * Copyright (C) 2002 - 2007 Paul Mundt
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/elfcore.h>
  15. #include <linux/pm.h>
  16. #include <linux/kallsyms.h>
  17. #include <linux/kexec.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/tick.h>
  20. #include <asm/uaccess.h>
  21. #include <asm/mmu_context.h>
  22. #include <asm/pgalloc.h>
  23. #include <asm/system.h>
  24. #include <asm/ubc.h>
  25. static int hlt_counter;
  26. int ubc_usercnt = 0;
  27. #define HARD_IDLE_TIMEOUT (HZ / 3)
  28. void (*pm_idle)(void);
  29. void (*pm_power_off)(void);
  30. EXPORT_SYMBOL(pm_power_off);
  31. void disable_hlt(void)
  32. {
  33. hlt_counter++;
  34. }
  35. EXPORT_SYMBOL(disable_hlt);
  36. void enable_hlt(void)
  37. {
  38. hlt_counter--;
  39. }
  40. EXPORT_SYMBOL(enable_hlt);
  41. void default_idle(void)
  42. {
  43. if (!hlt_counter)
  44. cpu_sleep();
  45. else
  46. cpu_relax();
  47. }
  48. void cpu_idle(void)
  49. {
  50. /* endless idle loop with no priority at all */
  51. while (1) {
  52. void (*idle)(void) = pm_idle;
  53. if (!idle)
  54. idle = default_idle;
  55. tick_nohz_stop_sched_tick();
  56. while (!need_resched())
  57. idle();
  58. tick_nohz_restart_sched_tick();
  59. preempt_enable_no_resched();
  60. schedule();
  61. preempt_disable();
  62. check_pgt_cache();
  63. }
  64. }
  65. void machine_restart(char * __unused)
  66. {
  67. /* SR.BL=1 and invoke address error to let CPU reset (manual reset) */
  68. asm volatile("ldc %0, sr\n\t"
  69. "mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001));
  70. }
  71. void machine_halt(void)
  72. {
  73. local_irq_disable();
  74. while (1)
  75. cpu_sleep();
  76. }
  77. void machine_power_off(void)
  78. {
  79. if (pm_power_off)
  80. pm_power_off();
  81. }
  82. void show_regs(struct pt_regs * regs)
  83. {
  84. printk("\n");
  85. printk("Pid : %d, Comm: %20s\n", current->pid, current->comm);
  86. print_symbol("PC is at %s\n", instruction_pointer(regs));
  87. printk("PC : %08lx SP : %08lx SR : %08lx ",
  88. regs->pc, regs->regs[15], regs->sr);
  89. #ifdef CONFIG_MMU
  90. printk("TEA : %08x ", ctrl_inl(MMU_TEA));
  91. #else
  92. printk(" ");
  93. #endif
  94. printk("%s\n", print_tainted());
  95. printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
  96. regs->regs[0],regs->regs[1],
  97. regs->regs[2],regs->regs[3]);
  98. printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
  99. regs->regs[4],regs->regs[5],
  100. regs->regs[6],regs->regs[7]);
  101. printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n",
  102. regs->regs[8],regs->regs[9],
  103. regs->regs[10],regs->regs[11]);
  104. printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
  105. regs->regs[12],regs->regs[13],
  106. regs->regs[14]);
  107. printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n",
  108. regs->mach, regs->macl, regs->gbr, regs->pr);
  109. show_trace(NULL, (unsigned long *)regs->regs[15], regs);
  110. }
  111. /*
  112. * Create a kernel thread
  113. */
  114. /*
  115. * This is the mechanism for creating a new kernel thread.
  116. *
  117. */
  118. extern void kernel_thread_helper(void);
  119. __asm__(".align 5\n"
  120. "kernel_thread_helper:\n\t"
  121. "jsr @r5\n\t"
  122. " nop\n\t"
  123. "mov.l 1f, r1\n\t"
  124. "jsr @r1\n\t"
  125. " mov r0, r4\n\t"
  126. ".align 2\n\t"
  127. "1:.long do_exit");
  128. /* Don't use this in BL=1(cli). Or else, CPU resets! */
  129. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  130. {
  131. struct pt_regs regs;
  132. memset(&regs, 0, sizeof(regs));
  133. regs.regs[4] = (unsigned long)arg;
  134. regs.regs[5] = (unsigned long)fn;
  135. regs.pc = (unsigned long)kernel_thread_helper;
  136. regs.sr = (1 << 30);
  137. /* Ok, create the new process.. */
  138. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  139. &regs, 0, NULL, NULL);
  140. }
  141. /*
  142. * Free current thread data structures etc..
  143. */
  144. void exit_thread(void)
  145. {
  146. if (current->thread.ubc_pc) {
  147. current->thread.ubc_pc = 0;
  148. ubc_usercnt -= 1;
  149. }
  150. }
  151. void flush_thread(void)
  152. {
  153. #if defined(CONFIG_SH_FPU)
  154. struct task_struct *tsk = current;
  155. /* Forget lazy FPU state */
  156. clear_fpu(tsk, task_pt_regs(tsk));
  157. clear_used_math();
  158. #endif
  159. }
  160. void release_thread(struct task_struct *dead_task)
  161. {
  162. /* do nothing */
  163. }
  164. /* Fill in the fpu structure for a core dump.. */
  165. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  166. {
  167. int fpvalid = 0;
  168. #if defined(CONFIG_SH_FPU)
  169. struct task_struct *tsk = current;
  170. fpvalid = !!tsk_used_math(tsk);
  171. if (fpvalid) {
  172. unlazy_fpu(tsk, regs);
  173. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  174. }
  175. #endif
  176. return fpvalid;
  177. }
  178. /*
  179. * Capture the user space registers if the task is not running (in user space)
  180. */
  181. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  182. {
  183. struct pt_regs ptregs;
  184. ptregs = *task_pt_regs(tsk);
  185. elf_core_copy_regs(regs, &ptregs);
  186. return 1;
  187. }
  188. int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpu)
  189. {
  190. int fpvalid = 0;
  191. #if defined(CONFIG_SH_FPU)
  192. fpvalid = !!tsk_used_math(tsk);
  193. if (fpvalid) {
  194. unlazy_fpu(tsk, task_pt_regs(tsk));
  195. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  196. }
  197. #endif
  198. return fpvalid;
  199. }
  200. asmlinkage void ret_from_fork(void);
  201. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  202. unsigned long unused,
  203. struct task_struct *p, struct pt_regs *regs)
  204. {
  205. struct thread_info *ti = task_thread_info(p);
  206. struct pt_regs *childregs;
  207. #if defined(CONFIG_SH_FPU)
  208. struct task_struct *tsk = current;
  209. unlazy_fpu(tsk, regs);
  210. p->thread.fpu = tsk->thread.fpu;
  211. copy_to_stopped_child_used_math(p);
  212. #endif
  213. childregs = task_pt_regs(p);
  214. *childregs = *regs;
  215. if (user_mode(regs)) {
  216. childregs->regs[15] = usp;
  217. ti->addr_limit = USER_DS;
  218. } else {
  219. childregs->regs[15] = (unsigned long)childregs;
  220. ti->addr_limit = KERNEL_DS;
  221. }
  222. if (clone_flags & CLONE_SETTLS)
  223. childregs->gbr = childregs->regs[0];
  224. childregs->regs[0] = 0; /* Set return value for child */
  225. p->thread.sp = (unsigned long) childregs;
  226. p->thread.pc = (unsigned long) ret_from_fork;
  227. p->thread.ubc_pc = 0;
  228. return 0;
  229. }
  230. /* Tracing by user break controller. */
  231. static void ubc_set_tracing(int asid, unsigned long pc)
  232. {
  233. #if defined(CONFIG_CPU_SH4A)
  234. unsigned long val;
  235. val = (UBC_CBR_ID_INST | UBC_CBR_RW_READ | UBC_CBR_CE);
  236. val |= (UBC_CBR_AIE | UBC_CBR_AIV_SET(asid));
  237. ctrl_outl(val, UBC_CBR0);
  238. ctrl_outl(pc, UBC_CAR0);
  239. ctrl_outl(0x0, UBC_CAMR0);
  240. ctrl_outl(0x0, UBC_CBCR);
  241. val = (UBC_CRR_RES | UBC_CRR_PCB | UBC_CRR_BIE);
  242. ctrl_outl(val, UBC_CRR0);
  243. /* Read UBC register that we wrote last, for checking update */
  244. val = ctrl_inl(UBC_CRR0);
  245. #else /* CONFIG_CPU_SH4A */
  246. ctrl_outl(pc, UBC_BARA);
  247. #ifdef CONFIG_MMU
  248. /* We don't have any ASID settings for the SH-2! */
  249. if (current_cpu_data.type != CPU_SH7604)
  250. ctrl_outb(asid, UBC_BASRA);
  251. #endif
  252. ctrl_outl(0, UBC_BAMRA);
  253. if (current_cpu_data.type == CPU_SH7729 ||
  254. current_cpu_data.type == CPU_SH7710 ||
  255. current_cpu_data.type == CPU_SH7712) {
  256. ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA);
  257. ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR);
  258. } else {
  259. ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA);
  260. ctrl_outw(BRCR_PCBA, UBC_BRCR);
  261. }
  262. #endif /* CONFIG_CPU_SH4A */
  263. }
  264. /*
  265. * switch_to(x,y) should switch tasks from x to y.
  266. *
  267. */
  268. struct task_struct *__switch_to(struct task_struct *prev,
  269. struct task_struct *next)
  270. {
  271. #if defined(CONFIG_SH_FPU)
  272. unlazy_fpu(prev, task_pt_regs(prev));
  273. #endif
  274. #ifdef CONFIG_PREEMPT
  275. {
  276. unsigned long flags;
  277. struct pt_regs *regs;
  278. local_irq_save(flags);
  279. regs = task_pt_regs(prev);
  280. if (user_mode(regs) && regs->regs[15] >= 0xc0000000) {
  281. int offset = (int)regs->regs[15];
  282. /* Reset stack pointer: clear critical region mark */
  283. regs->regs[15] = regs->regs[1];
  284. if (regs->pc < regs->regs[0])
  285. /* Go to rewind point */
  286. regs->pc = regs->regs[0] + offset;
  287. }
  288. local_irq_restore(flags);
  289. }
  290. #endif
  291. #ifdef CONFIG_MMU
  292. /*
  293. * Restore the kernel mode register
  294. * k7 (r7_bank1)
  295. */
  296. asm volatile("ldc %0, r7_bank"
  297. : /* no output */
  298. : "r" (task_thread_info(next)));
  299. #endif
  300. /* If no tasks are using the UBC, we're done */
  301. if (ubc_usercnt == 0)
  302. /* If no tasks are using the UBC, we're done */;
  303. else if (next->thread.ubc_pc && next->mm) {
  304. int asid = 0;
  305. #ifdef CONFIG_MMU
  306. asid |= cpu_asid(smp_processor_id(), next->mm);
  307. #endif
  308. ubc_set_tracing(asid, next->thread.ubc_pc);
  309. } else {
  310. #if defined(CONFIG_CPU_SH4A)
  311. ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
  312. ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
  313. #else
  314. ctrl_outw(0, UBC_BBRA);
  315. ctrl_outw(0, UBC_BBRB);
  316. #endif
  317. }
  318. return prev;
  319. }
  320. asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
  321. unsigned long r6, unsigned long r7,
  322. struct pt_regs __regs)
  323. {
  324. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  325. #ifdef CONFIG_MMU
  326. return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
  327. #else
  328. /* fork almost works, enough to trick you into looking elsewhere :-( */
  329. return -EINVAL;
  330. #endif
  331. }
  332. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  333. unsigned long parent_tidptr,
  334. unsigned long child_tidptr,
  335. struct pt_regs __regs)
  336. {
  337. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  338. if (!newsp)
  339. newsp = regs->regs[15];
  340. return do_fork(clone_flags, newsp, regs, 0,
  341. (int __user *)parent_tidptr,
  342. (int __user *)child_tidptr);
  343. }
  344. /*
  345. * This is trivial, and on the face of it looks like it
  346. * could equally well be done in user mode.
  347. *
  348. * Not so, for quite unobvious reasons - register pressure.
  349. * In user mode vfork() cannot have a stack frame, and if
  350. * done by calling the "clone()" system call directly, you
  351. * do not have enough call-clobbered registers to hold all
  352. * the information you need.
  353. */
  354. asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
  355. unsigned long r6, unsigned long r7,
  356. struct pt_regs __regs)
  357. {
  358. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  359. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
  360. 0, NULL, NULL);
  361. }
  362. /*
  363. * sys_execve() executes a new program.
  364. */
  365. asmlinkage int sys_execve(char *ufilename, char **uargv,
  366. char **uenvp, unsigned long r7,
  367. struct pt_regs __regs)
  368. {
  369. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  370. int error;
  371. char *filename;
  372. filename = getname((char __user *)ufilename);
  373. error = PTR_ERR(filename);
  374. if (IS_ERR(filename))
  375. goto out;
  376. error = do_execve(filename,
  377. (char __user * __user *)uargv,
  378. (char __user * __user *)uenvp,
  379. regs);
  380. if (error == 0) {
  381. task_lock(current);
  382. current->ptrace &= ~PT_DTRACE;
  383. task_unlock(current);
  384. }
  385. putname(filename);
  386. out:
  387. return error;
  388. }
  389. unsigned long get_wchan(struct task_struct *p)
  390. {
  391. unsigned long schedule_frame;
  392. unsigned long pc;
  393. if (!p || p == current || p->state == TASK_RUNNING)
  394. return 0;
  395. /*
  396. * The same comment as on the Alpha applies here, too ...
  397. */
  398. pc = thread_saved_pc(p);
  399. if (in_sched_functions(pc)) {
  400. schedule_frame = (unsigned long)p->thread.sp;
  401. return ((unsigned long *)schedule_frame)[21];
  402. }
  403. return pc;
  404. }
  405. asmlinkage void break_point_trap(void)
  406. {
  407. /* Clear tracing. */
  408. #if defined(CONFIG_CPU_SH4A)
  409. ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
  410. ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
  411. #else
  412. ctrl_outw(0, UBC_BBRA);
  413. ctrl_outw(0, UBC_BBRB);
  414. #endif
  415. current->thread.ubc_pc = 0;
  416. ubc_usercnt -= 1;
  417. force_sig(SIGTRAP, current);
  418. }
  419. /*
  420. * Generic trap handler.
  421. */
  422. asmlinkage void debug_trap_handler(unsigned long r4, unsigned long r5,
  423. unsigned long r6, unsigned long r7,
  424. struct pt_regs __regs)
  425. {
  426. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  427. /* Rewind */
  428. regs->pc -= instruction_size(ctrl_inw(regs->pc - 4));
  429. if (notify_die(DIE_TRAP, "debug trap", regs, 0, regs->tra & 0xff,
  430. SIGTRAP) == NOTIFY_STOP)
  431. return;
  432. force_sig(SIGTRAP, current);
  433. }
  434. /*
  435. * Special handler for BUG() traps.
  436. */
  437. asmlinkage void bug_trap_handler(unsigned long r4, unsigned long r5,
  438. unsigned long r6, unsigned long r7,
  439. struct pt_regs __regs)
  440. {
  441. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  442. /* Rewind */
  443. regs->pc -= instruction_size(ctrl_inw(regs->pc - 4));
  444. if (notify_die(DIE_TRAP, "bug trap", regs, 0, TRAPA_BUG_OPCODE & 0xff,
  445. SIGTRAP) == NOTIFY_STOP)
  446. return;
  447. #ifdef CONFIG_BUG
  448. if (__kernel_text_address(instruction_pointer(regs))) {
  449. u16 insn = *(u16 *)instruction_pointer(regs);
  450. if (insn == TRAPA_BUG_OPCODE)
  451. handle_BUG(regs);
  452. }
  453. #endif
  454. force_sig(SIGTRAP, current);
  455. }