process.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. /*
  2. * arch/s390/kernel/process.c
  3. *
  4. * S390 version
  5. * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6. * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
  7. * Hartmut Penner (hp@de.ibm.com),
  8. * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
  9. *
  10. * Derived from "arch/i386/kernel/process.c"
  11. * Copyright (C) 1995, Linus Torvalds
  12. */
  13. /*
  14. * This file handles the architecture-dependent parts of process handling..
  15. */
  16. #include <linux/compiler.h>
  17. #include <linux/cpu.h>
  18. #include <linux/errno.h>
  19. #include <linux/sched.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/smp.h>
  23. #include <linux/stddef.h>
  24. #include <linux/unistd.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/slab.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/user.h>
  29. #include <linux/a.out.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/delay.h>
  32. #include <linux/reboot.h>
  33. #include <linux/init.h>
  34. #include <linux/module.h>
  35. #include <linux/notifier.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/system.h>
  39. #include <asm/io.h>
  40. #include <asm/processor.h>
  41. #include <asm/irq.h>
  42. #include <asm/timer.h>
  43. asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
  44. /*
  45. * Return saved PC of a blocked thread. used in kernel/sched.
  46. * resume in entry.S does not create a new stack frame, it
  47. * just stores the registers %r6-%r15 to the frame given by
  48. * schedule. We want to return the address of the caller of
  49. * schedule, so we have to walk the backchain one time to
  50. * find the frame schedule() store its return address.
  51. */
  52. unsigned long thread_saved_pc(struct task_struct *tsk)
  53. {
  54. struct stack_frame *sf, *low, *high;
  55. if (!tsk || !task_stack_page(tsk))
  56. return 0;
  57. low = task_stack_page(tsk);
  58. high = (struct stack_frame *) task_pt_regs(tsk);
  59. sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
  60. if (sf <= low || sf > high)
  61. return 0;
  62. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  63. if (sf <= low || sf > high)
  64. return 0;
  65. return sf->gprs[8];
  66. }
  67. /*
  68. * Need to know about CPUs going idle?
  69. */
  70. static ATOMIC_NOTIFIER_HEAD(idle_chain);
  71. int register_idle_notifier(struct notifier_block *nb)
  72. {
  73. return atomic_notifier_chain_register(&idle_chain, nb);
  74. }
  75. EXPORT_SYMBOL(register_idle_notifier);
  76. int unregister_idle_notifier(struct notifier_block *nb)
  77. {
  78. return atomic_notifier_chain_unregister(&idle_chain, nb);
  79. }
  80. EXPORT_SYMBOL(unregister_idle_notifier);
  81. void do_monitor_call(struct pt_regs *regs, long interruption_code)
  82. {
  83. /* disable monitor call class 0 */
  84. __ctl_clear_bit(8, 15);
  85. atomic_notifier_call_chain(&idle_chain, CPU_NOT_IDLE,
  86. (void *)(long) smp_processor_id());
  87. }
  88. extern void s390_handle_mcck(void);
  89. /*
  90. * The idle loop on a S390...
  91. */
  92. static void default_idle(void)
  93. {
  94. int cpu, rc;
  95. /* CPU is going idle. */
  96. cpu = smp_processor_id();
  97. local_irq_disable();
  98. if (need_resched()) {
  99. local_irq_enable();
  100. return;
  101. }
  102. rc = atomic_notifier_call_chain(&idle_chain,
  103. CPU_IDLE, (void *)(long) cpu);
  104. if (rc != NOTIFY_OK && rc != NOTIFY_DONE)
  105. BUG();
  106. if (rc != NOTIFY_OK) {
  107. local_irq_enable();
  108. return;
  109. }
  110. /* enable monitor call class 0 */
  111. __ctl_set_bit(8, 15);
  112. #ifdef CONFIG_HOTPLUG_CPU
  113. if (cpu_is_offline(cpu)) {
  114. preempt_enable_no_resched();
  115. cpu_die();
  116. }
  117. #endif
  118. local_mcck_disable();
  119. if (test_thread_flag(TIF_MCCK_PENDING)) {
  120. local_mcck_enable();
  121. local_irq_enable();
  122. s390_handle_mcck();
  123. return;
  124. }
  125. trace_hardirqs_on();
  126. /* Wait for external, I/O or machine check interrupt. */
  127. __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
  128. PSW_MASK_IO | PSW_MASK_EXT);
  129. }
  130. void cpu_idle(void)
  131. {
  132. for (;;) {
  133. while (!need_resched())
  134. default_idle();
  135. preempt_enable_no_resched();
  136. schedule();
  137. preempt_disable();
  138. }
  139. }
  140. void show_regs(struct pt_regs *regs)
  141. {
  142. struct task_struct *tsk = current;
  143. printk("CPU: %d %s\n", task_thread_info(tsk)->cpu, print_tainted());
  144. printk("Process %s (pid: %d, task: %p, ksp: %p)\n",
  145. current->comm, current->pid, (void *) tsk,
  146. (void *) tsk->thread.ksp);
  147. show_registers(regs);
  148. /* Show stack backtrace if pt_regs is from kernel mode */
  149. if (!(regs->psw.mask & PSW_MASK_PSTATE))
  150. show_trace(NULL, (unsigned long *) regs->gprs[15]);
  151. }
  152. extern void kernel_thread_starter(void);
  153. asm(
  154. ".align 4\n"
  155. "kernel_thread_starter:\n"
  156. " la 2,0(10)\n"
  157. " basr 14,9\n"
  158. " la 2,0\n"
  159. " br 11\n");
  160. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  161. {
  162. struct pt_regs regs;
  163. memset(&regs, 0, sizeof(regs));
  164. regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
  165. regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
  166. regs.gprs[9] = (unsigned long) fn;
  167. regs.gprs[10] = (unsigned long) arg;
  168. regs.gprs[11] = (unsigned long) do_exit;
  169. regs.orig_gpr2 = -1;
  170. /* Ok, create the new process.. */
  171. return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
  172. 0, &regs, 0, NULL, NULL);
  173. }
  174. /*
  175. * Free current thread data structures etc..
  176. */
  177. void exit_thread(void)
  178. {
  179. }
  180. void flush_thread(void)
  181. {
  182. clear_used_math();
  183. clear_tsk_thread_flag(current, TIF_USEDFPU);
  184. }
  185. void release_thread(struct task_struct *dead_task)
  186. {
  187. }
  188. int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp,
  189. unsigned long unused,
  190. struct task_struct * p, struct pt_regs * regs)
  191. {
  192. struct fake_frame
  193. {
  194. struct stack_frame sf;
  195. struct pt_regs childregs;
  196. } *frame;
  197. frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
  198. p->thread.ksp = (unsigned long) frame;
  199. /* Store access registers to kernel stack of new process. */
  200. frame->childregs = *regs;
  201. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  202. frame->childregs.gprs[15] = new_stackp;
  203. frame->sf.back_chain = 0;
  204. /* new return point is ret_from_fork */
  205. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  206. /* fake return stack for resume(), don't go back to schedule */
  207. frame->sf.gprs[9] = (unsigned long) frame;
  208. /* Save access registers to new thread structure. */
  209. save_access_regs(&p->thread.acrs[0]);
  210. #ifndef CONFIG_64BIT
  211. /*
  212. * save fprs to current->thread.fp_regs to merge them with
  213. * the emulated registers and then copy the result to the child.
  214. */
  215. save_fp_regs(&current->thread.fp_regs);
  216. memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
  217. sizeof(s390_fp_regs));
  218. p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _SEGMENT_TABLE;
  219. /* Set a new TLS ? */
  220. if (clone_flags & CLONE_SETTLS)
  221. p->thread.acrs[0] = regs->gprs[6];
  222. #else /* CONFIG_64BIT */
  223. /* Save the fpu registers to new thread structure. */
  224. save_fp_regs(&p->thread.fp_regs);
  225. p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _REGION_TABLE;
  226. /* Set a new TLS ? */
  227. if (clone_flags & CLONE_SETTLS) {
  228. if (test_thread_flag(TIF_31BIT)) {
  229. p->thread.acrs[0] = (unsigned int) regs->gprs[6];
  230. } else {
  231. p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
  232. p->thread.acrs[1] = (unsigned int) regs->gprs[6];
  233. }
  234. }
  235. #endif /* CONFIG_64BIT */
  236. /* start new process with ar4 pointing to the correct address space */
  237. p->thread.mm_segment = get_fs();
  238. /* Don't copy debug registers */
  239. memset(&p->thread.per_info,0,sizeof(p->thread.per_info));
  240. return 0;
  241. }
  242. asmlinkage long sys_fork(void)
  243. {
  244. struct pt_regs *regs = task_pt_regs(current);
  245. return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
  246. }
  247. asmlinkage long sys_clone(void)
  248. {
  249. struct pt_regs *regs = task_pt_regs(current);
  250. unsigned long clone_flags;
  251. unsigned long newsp;
  252. int __user *parent_tidptr, *child_tidptr;
  253. clone_flags = regs->gprs[3];
  254. newsp = regs->orig_gpr2;
  255. parent_tidptr = (int __user *) regs->gprs[4];
  256. child_tidptr = (int __user *) regs->gprs[5];
  257. if (!newsp)
  258. newsp = regs->gprs[15];
  259. return do_fork(clone_flags, newsp, regs, 0,
  260. parent_tidptr, child_tidptr);
  261. }
  262. /*
  263. * This is trivial, and on the face of it looks like it
  264. * could equally well be done in user mode.
  265. *
  266. * Not so, for quite unobvious reasons - register pressure.
  267. * In user mode vfork() cannot have a stack frame, and if
  268. * done by calling the "clone()" system call directly, you
  269. * do not have enough call-clobbered registers to hold all
  270. * the information you need.
  271. */
  272. asmlinkage long sys_vfork(void)
  273. {
  274. struct pt_regs *regs = task_pt_regs(current);
  275. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
  276. regs->gprs[15], regs, 0, NULL, NULL);
  277. }
  278. asmlinkage void execve_tail(void)
  279. {
  280. task_lock(current);
  281. current->ptrace &= ~PT_DTRACE;
  282. task_unlock(current);
  283. current->thread.fp_regs.fpc = 0;
  284. if (MACHINE_HAS_IEEE)
  285. asm volatile("sfpc %0,%0" : : "d" (0));
  286. }
  287. /*
  288. * sys_execve() executes a new program.
  289. */
  290. asmlinkage long sys_execve(void)
  291. {
  292. struct pt_regs *regs = task_pt_regs(current);
  293. char *filename;
  294. unsigned long result;
  295. int rc;
  296. filename = getname((char __user *) regs->orig_gpr2);
  297. if (IS_ERR(filename)) {
  298. result = PTR_ERR(filename);
  299. goto out;
  300. }
  301. rc = do_execve(filename, (char __user * __user *) regs->gprs[3],
  302. (char __user * __user *) regs->gprs[4], regs);
  303. if (rc) {
  304. result = rc;
  305. goto out_putname;
  306. }
  307. execve_tail();
  308. result = regs->gprs[2];
  309. out_putname:
  310. putname(filename);
  311. out:
  312. return result;
  313. }
  314. /*
  315. * fill in the FPU structure for a core dump.
  316. */
  317. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  318. {
  319. #ifndef CONFIG_64BIT
  320. /*
  321. * save fprs to current->thread.fp_regs to merge them with
  322. * the emulated registers and then copy the result to the dump.
  323. */
  324. save_fp_regs(&current->thread.fp_regs);
  325. memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
  326. #else /* CONFIG_64BIT */
  327. save_fp_regs(fpregs);
  328. #endif /* CONFIG_64BIT */
  329. return 1;
  330. }
  331. unsigned long get_wchan(struct task_struct *p)
  332. {
  333. struct stack_frame *sf, *low, *high;
  334. unsigned long return_address;
  335. int count;
  336. if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
  337. return 0;
  338. low = task_stack_page(p);
  339. high = (struct stack_frame *) task_pt_regs(p);
  340. sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
  341. if (sf <= low || sf > high)
  342. return 0;
  343. for (count = 0; count < 16; count++) {
  344. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  345. if (sf <= low || sf > high)
  346. return 0;
  347. return_address = sf->gprs[8] & PSW_ADDR_INSN;
  348. if (!in_sched_functions(return_address))
  349. return return_address;
  350. }
  351. return 0;
  352. }