switch.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217
  1. /*
  2. * spu_switch.c
  3. *
  4. * (C) Copyright IBM Corp. 2005
  5. *
  6. * Author: Mark Nutter <mnutter@us.ibm.com>
  7. *
  8. * Host-side part of SPU context switch sequence outlined in
  9. * Synergistic Processor Element, Book IV.
  10. *
  11. * A fully premptive switch of an SPE is very expensive in terms
  12. * of time and system resources. SPE Book IV indicates that SPE
  13. * allocation should follow a "serially reusable device" model,
  14. * in which the SPE is assigned a task until it completes. When
  15. * this is not possible, this sequence may be used to premptively
  16. * save, and then later (optionally) restore the context of a
  17. * program executing on an SPE.
  18. *
  19. *
  20. * This program is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License as published by
  22. * the Free Software Foundation; either version 2, or (at your option)
  23. * any later version.
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/errno.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/mm.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/smp.h>
  41. #include <linux/stddef.h>
  42. #include <linux/unistd.h>
  43. #include <asm/io.h>
  44. #include <asm/spu.h>
  45. #include <asm/spu_priv1.h>
  46. #include <asm/spu_csa.h>
  47. #include <asm/mmu_context.h>
  48. #include "spu_save_dump.h"
  49. #include "spu_restore_dump.h"
  50. #if 0
  51. #define POLL_WHILE_TRUE(_c) { \
  52. do { \
  53. } while (_c); \
  54. }
  55. #else
  56. #define RELAX_SPIN_COUNT 1000
  57. #define POLL_WHILE_TRUE(_c) { \
  58. do { \
  59. int _i; \
  60. for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
  61. cpu_relax(); \
  62. } \
  63. if (unlikely(_c)) yield(); \
  64. else break; \
  65. } while (_c); \
  66. }
  67. #endif /* debug */
  68. #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
  69. static inline void acquire_spu_lock(struct spu *spu)
  70. {
  71. /* Save, Step 1:
  72. * Restore, Step 1:
  73. * Acquire SPU-specific mutual exclusion lock.
  74. * TBD.
  75. */
  76. }
  77. static inline void release_spu_lock(struct spu *spu)
  78. {
  79. /* Restore, Step 76:
  80. * Release SPU-specific mutual exclusion lock.
  81. * TBD.
  82. */
  83. }
  84. static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
  85. {
  86. struct spu_problem __iomem *prob = spu->problem;
  87. u32 isolate_state;
  88. /* Save, Step 2:
  89. * Save, Step 6:
  90. * If SPU_Status[E,L,IS] any field is '1', this
  91. * SPU is in isolate state and cannot be context
  92. * saved at this time.
  93. */
  94. isolate_state = SPU_STATUS_ISOLATED_STATE |
  95. SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
  96. return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
  97. }
  98. static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
  99. {
  100. /* Save, Step 3:
  101. * Restore, Step 2:
  102. * Save INT_Mask_class0 in CSA.
  103. * Write INT_MASK_class0 with value of 0.
  104. * Save INT_Mask_class1 in CSA.
  105. * Write INT_MASK_class1 with value of 0.
  106. * Save INT_Mask_class2 in CSA.
  107. * Write INT_MASK_class2 with value of 0.
  108. */
  109. spin_lock_irq(&spu->register_lock);
  110. if (csa) {
  111. csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
  112. csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
  113. csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
  114. }
  115. spu_int_mask_set(spu, 0, 0ul);
  116. spu_int_mask_set(spu, 1, 0ul);
  117. spu_int_mask_set(spu, 2, 0ul);
  118. eieio();
  119. spin_unlock_irq(&spu->register_lock);
  120. }
  121. static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
  122. {
  123. /* Save, Step 4:
  124. * Restore, Step 25.
  125. * Set a software watchdog timer, which specifies the
  126. * maximum allowable time for a context save sequence.
  127. *
  128. * For present, this implementation will not set a global
  129. * watchdog timer, as virtualization & variable system load
  130. * may cause unpredictable execution times.
  131. */
  132. }
  133. static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
  134. {
  135. /* Save, Step 5:
  136. * Restore, Step 3:
  137. * Inhibit user-space access (if provided) to this
  138. * SPU by unmapping the virtual pages assigned to
  139. * the SPU memory-mapped I/O (MMIO) for problem
  140. * state. TBD.
  141. */
  142. }
  143. static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
  144. {
  145. /* Save, Step 7:
  146. * Restore, Step 5:
  147. * Set a software context switch pending flag.
  148. */
  149. set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
  150. mb();
  151. }
  152. static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
  153. {
  154. struct spu_priv2 __iomem *priv2 = spu->priv2;
  155. /* Save, Step 8:
  156. * Suspend DMA and save MFC_CNTL.
  157. */
  158. switch (in_be64(&priv2->mfc_control_RW) &
  159. MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
  160. case MFC_CNTL_SUSPEND_IN_PROGRESS:
  161. POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
  162. MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
  163. MFC_CNTL_SUSPEND_COMPLETE);
  164. /* fall through */
  165. case MFC_CNTL_SUSPEND_COMPLETE:
  166. if (csa) {
  167. csa->priv2.mfc_control_RW =
  168. in_be64(&priv2->mfc_control_RW) |
  169. MFC_CNTL_SUSPEND_DMA_QUEUE;
  170. }
  171. break;
  172. case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
  173. out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
  174. POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
  175. MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
  176. MFC_CNTL_SUSPEND_COMPLETE);
  177. if (csa) {
  178. csa->priv2.mfc_control_RW =
  179. in_be64(&priv2->mfc_control_RW) &
  180. ~MFC_CNTL_SUSPEND_DMA_QUEUE;
  181. }
  182. break;
  183. }
  184. }
  185. static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
  186. {
  187. struct spu_problem __iomem *prob = spu->problem;
  188. /* Save, Step 9:
  189. * Save SPU_Runcntl in the CSA. This value contains
  190. * the "Application Desired State".
  191. */
  192. csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
  193. }
  194. static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
  195. {
  196. /* Save, Step 10:
  197. * Save MFC_SR1 in the CSA.
  198. */
  199. csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
  200. }
  201. static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
  202. {
  203. struct spu_problem __iomem *prob = spu->problem;
  204. /* Save, Step 11:
  205. * Read SPU_Status[R], and save to CSA.
  206. */
  207. if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
  208. csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
  209. } else {
  210. u32 stopped;
  211. out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
  212. eieio();
  213. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
  214. SPU_STATUS_RUNNING);
  215. stopped =
  216. SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
  217. SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
  218. if ((in_be32(&prob->spu_status_R) & stopped) == 0)
  219. csa->prob.spu_status_R = SPU_STATUS_RUNNING;
  220. else
  221. csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
  222. }
  223. }
  224. static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
  225. {
  226. struct spu_priv2 __iomem *priv2 = spu->priv2;
  227. /* Save, Step 12:
  228. * Read MFC_CNTL[Ds]. Update saved copy of
  229. * CSA.MFC_CNTL[Ds].
  230. */
  231. if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
  232. csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
  233. csa->suspend_time = get_cycles();
  234. out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
  235. eieio();
  236. csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
  237. eieio();
  238. } else {
  239. csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
  240. }
  241. }
  242. static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
  243. {
  244. struct spu_priv2 __iomem *priv2 = spu->priv2;
  245. /* Save, Step 13:
  246. * Write MFC_CNTL[Dh] set to a '1' to halt
  247. * the decrementer.
  248. */
  249. out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
  250. eieio();
  251. }
  252. static inline void save_timebase(struct spu_state *csa, struct spu *spu)
  253. {
  254. /* Save, Step 14:
  255. * Read PPE Timebase High and Timebase low registers
  256. * and save in CSA. TBD.
  257. */
  258. csa->suspend_time = get_cycles();
  259. }
  260. static inline void remove_other_spu_access(struct spu_state *csa,
  261. struct spu *spu)
  262. {
  263. /* Save, Step 15:
  264. * Remove other SPU access to this SPU by unmapping
  265. * this SPU's pages from their address space. TBD.
  266. */
  267. }
  268. static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
  269. {
  270. struct spu_problem __iomem *prob = spu->problem;
  271. /* Save, Step 16:
  272. * Restore, Step 11.
  273. * Write SPU_MSSync register. Poll SPU_MSSync[P]
  274. * for a value of 0.
  275. */
  276. out_be64(&prob->spc_mssync_RW, 1UL);
  277. POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
  278. }
  279. static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
  280. {
  281. /* Save, Step 17:
  282. * Restore, Step 12.
  283. * Restore, Step 48.
  284. * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
  285. * Then issue a PPE sync instruction.
  286. */
  287. spu_tlb_invalidate(spu);
  288. mb();
  289. }
  290. static inline void handle_pending_interrupts(struct spu_state *csa,
  291. struct spu *spu)
  292. {
  293. /* Save, Step 18:
  294. * Handle any pending interrupts from this SPU
  295. * here. This is OS or hypervisor specific. One
  296. * option is to re-enable interrupts to handle any
  297. * pending interrupts, with the interrupt handlers
  298. * recognizing the software Context Switch Pending
  299. * flag, to ensure the SPU execution or MFC command
  300. * queue is not restarted. TBD.
  301. */
  302. }
  303. static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
  304. {
  305. struct spu_priv2 __iomem *priv2 = spu->priv2;
  306. int i;
  307. /* Save, Step 19:
  308. * If MFC_Cntl[Se]=0 then save
  309. * MFC command queues.
  310. */
  311. if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
  312. for (i = 0; i < 8; i++) {
  313. csa->priv2.puq[i].mfc_cq_data0_RW =
  314. in_be64(&priv2->puq[i].mfc_cq_data0_RW);
  315. csa->priv2.puq[i].mfc_cq_data1_RW =
  316. in_be64(&priv2->puq[i].mfc_cq_data1_RW);
  317. csa->priv2.puq[i].mfc_cq_data2_RW =
  318. in_be64(&priv2->puq[i].mfc_cq_data2_RW);
  319. csa->priv2.puq[i].mfc_cq_data3_RW =
  320. in_be64(&priv2->puq[i].mfc_cq_data3_RW);
  321. }
  322. for (i = 0; i < 16; i++) {
  323. csa->priv2.spuq[i].mfc_cq_data0_RW =
  324. in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
  325. csa->priv2.spuq[i].mfc_cq_data1_RW =
  326. in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
  327. csa->priv2.spuq[i].mfc_cq_data2_RW =
  328. in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
  329. csa->priv2.spuq[i].mfc_cq_data3_RW =
  330. in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
  331. }
  332. }
  333. }
  334. static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
  335. {
  336. struct spu_problem __iomem *prob = spu->problem;
  337. /* Save, Step 20:
  338. * Save the PPU_QueryMask register
  339. * in the CSA.
  340. */
  341. csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
  342. }
  343. static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
  344. {
  345. struct spu_problem __iomem *prob = spu->problem;
  346. /* Save, Step 21:
  347. * Save the PPU_QueryType register
  348. * in the CSA.
  349. */
  350. csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
  351. }
  352. static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
  353. {
  354. struct spu_priv2 __iomem *priv2 = spu->priv2;
  355. /* Save, Step 22:
  356. * Save the MFC_CSR_TSQ register
  357. * in the LSCSA.
  358. */
  359. csa->priv2.spu_tag_status_query_RW =
  360. in_be64(&priv2->spu_tag_status_query_RW);
  361. }
  362. static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
  363. {
  364. struct spu_priv2 __iomem *priv2 = spu->priv2;
  365. /* Save, Step 23:
  366. * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
  367. * registers in the CSA.
  368. */
  369. csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
  370. csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
  371. }
  372. static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
  373. {
  374. struct spu_priv2 __iomem *priv2 = spu->priv2;
  375. /* Save, Step 24:
  376. * Save the MFC_CSR_ATO register in
  377. * the CSA.
  378. */
  379. csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
  380. }
  381. static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
  382. {
  383. /* Save, Step 25:
  384. * Save the MFC_TCLASS_ID register in
  385. * the CSA.
  386. */
  387. csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
  388. }
  389. static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
  390. {
  391. /* Save, Step 26:
  392. * Restore, Step 23.
  393. * Write the MFC_TCLASS_ID register with
  394. * the value 0x10000000.
  395. */
  396. spu_mfc_tclass_id_set(spu, 0x10000000);
  397. eieio();
  398. }
  399. static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
  400. {
  401. struct spu_priv2 __iomem *priv2 = spu->priv2;
  402. /* Save, Step 27:
  403. * Restore, Step 14.
  404. * Write MFC_CNTL[Pc]=1 (purge queue).
  405. */
  406. out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
  407. eieio();
  408. }
  409. static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
  410. {
  411. struct spu_priv2 __iomem *priv2 = spu->priv2;
  412. /* Save, Step 28:
  413. * Poll MFC_CNTL[Ps] until value '11' is read
  414. * (purge complete).
  415. */
  416. POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
  417. MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
  418. MFC_CNTL_PURGE_DMA_COMPLETE);
  419. }
  420. static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
  421. {
  422. /* Save, Step 30:
  423. * Restore, Step 18:
  424. * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
  425. * MFC_SR1[TL,R,Pr,T] set correctly for the
  426. * OS specific environment.
  427. *
  428. * Implementation note: The SPU-side code
  429. * for save/restore is privileged, so the
  430. * MFC_SR1[Pr] bit is not set.
  431. *
  432. */
  433. spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
  434. MFC_STATE1_RELOCATE_MASK |
  435. MFC_STATE1_BUS_TLBIE_MASK));
  436. }
  437. static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
  438. {
  439. struct spu_problem __iomem *prob = spu->problem;
  440. /* Save, Step 31:
  441. * Save SPU_NPC in the CSA.
  442. */
  443. csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
  444. }
  445. static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
  446. {
  447. struct spu_priv2 __iomem *priv2 = spu->priv2;
  448. /* Save, Step 32:
  449. * Save SPU_PrivCntl in the CSA.
  450. */
  451. csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
  452. }
  453. static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
  454. {
  455. struct spu_priv2 __iomem *priv2 = spu->priv2;
  456. /* Save, Step 33:
  457. * Restore, Step 16:
  458. * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
  459. */
  460. out_be64(&priv2->spu_privcntl_RW, 0UL);
  461. eieio();
  462. }
  463. static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
  464. {
  465. struct spu_priv2 __iomem *priv2 = spu->priv2;
  466. /* Save, Step 34:
  467. * Save SPU_LSLR in the CSA.
  468. */
  469. csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
  470. }
  471. static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
  472. {
  473. struct spu_priv2 __iomem *priv2 = spu->priv2;
  474. /* Save, Step 35:
  475. * Restore, Step 17.
  476. * Reset SPU_LSLR.
  477. */
  478. out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
  479. eieio();
  480. }
  481. static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
  482. {
  483. struct spu_priv2 __iomem *priv2 = spu->priv2;
  484. /* Save, Step 36:
  485. * Save SPU_Cfg in the CSA.
  486. */
  487. csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
  488. }
  489. static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
  490. {
  491. /* Save, Step 37:
  492. * Save PM_Trace_Tag_Wait_Mask in the CSA.
  493. * Not performed by this implementation.
  494. */
  495. }
  496. static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
  497. {
  498. /* Save, Step 38:
  499. * Save RA_GROUP_ID register and the
  500. * RA_ENABLE reigster in the CSA.
  501. */
  502. csa->priv1.resource_allocation_groupID_RW =
  503. spu_resource_allocation_groupID_get(spu);
  504. csa->priv1.resource_allocation_enable_RW =
  505. spu_resource_allocation_enable_get(spu);
  506. }
  507. static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
  508. {
  509. struct spu_problem __iomem *prob = spu->problem;
  510. /* Save, Step 39:
  511. * Save MB_Stat register in the CSA.
  512. */
  513. csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
  514. }
  515. static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
  516. {
  517. struct spu_problem __iomem *prob = spu->problem;
  518. /* Save, Step 40:
  519. * Save the PPU_MB register in the CSA.
  520. */
  521. csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
  522. }
  523. static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
  524. {
  525. struct spu_priv2 __iomem *priv2 = spu->priv2;
  526. /* Save, Step 41:
  527. * Save the PPUINT_MB register in the CSA.
  528. */
  529. csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
  530. }
  531. static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
  532. {
  533. struct spu_priv2 __iomem *priv2 = spu->priv2;
  534. u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
  535. int i;
  536. /* Save, Step 42:
  537. */
  538. /* Save CH 1, without channel count */
  539. out_be64(&priv2->spu_chnlcntptr_RW, 1);
  540. csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
  541. /* Save the following CH: [0,3,4,24,25,27] */
  542. for (i = 0; i < 7; i++) {
  543. idx = ch_indices[i];
  544. out_be64(&priv2->spu_chnlcntptr_RW, idx);
  545. eieio();
  546. csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
  547. csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
  548. out_be64(&priv2->spu_chnldata_RW, 0UL);
  549. out_be64(&priv2->spu_chnlcnt_RW, 0UL);
  550. eieio();
  551. }
  552. }
  553. static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
  554. {
  555. struct spu_priv2 __iomem *priv2 = spu->priv2;
  556. int i;
  557. /* Save, Step 43:
  558. * Save SPU Read Mailbox Channel.
  559. */
  560. out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
  561. eieio();
  562. csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
  563. for (i = 0; i < 4; i++) {
  564. csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
  565. }
  566. out_be64(&priv2->spu_chnlcnt_RW, 0UL);
  567. eieio();
  568. }
  569. static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
  570. {
  571. struct spu_priv2 __iomem *priv2 = spu->priv2;
  572. /* Save, Step 44:
  573. * Save MFC_CMD Channel.
  574. */
  575. out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
  576. eieio();
  577. csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
  578. eieio();
  579. }
  580. static inline void reset_ch(struct spu_state *csa, struct spu *spu)
  581. {
  582. struct spu_priv2 __iomem *priv2 = spu->priv2;
  583. u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
  584. u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
  585. u64 idx;
  586. int i;
  587. /* Save, Step 45:
  588. * Reset the following CH: [21, 23, 28, 30]
  589. */
  590. for (i = 0; i < 4; i++) {
  591. idx = ch_indices[i];
  592. out_be64(&priv2->spu_chnlcntptr_RW, idx);
  593. eieio();
  594. out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
  595. eieio();
  596. }
  597. }
  598. static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
  599. {
  600. struct spu_priv2 __iomem *priv2 = spu->priv2;
  601. /* Save, Step 46:
  602. * Restore, Step 25.
  603. * Write MFC_CNTL[Sc]=0 (resume queue processing).
  604. */
  605. out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
  606. }
  607. static inline void get_kernel_slb(u64 ea, u64 slb[2])
  608. {
  609. u64 llp;
  610. if (REGION_ID(ea) == KERNEL_REGION_ID)
  611. llp = mmu_psize_defs[mmu_linear_psize].sllp;
  612. else
  613. llp = mmu_psize_defs[mmu_virtual_psize].sllp;
  614. slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
  615. SLB_VSID_KERNEL | llp;
  616. slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
  617. }
  618. static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
  619. {
  620. struct spu_priv2 __iomem *priv2 = spu->priv2;
  621. out_be64(&priv2->slb_index_W, slbe);
  622. eieio();
  623. out_be64(&priv2->slb_vsid_RW, slb[0]);
  624. out_be64(&priv2->slb_esid_RW, slb[1]);
  625. eieio();
  626. }
  627. static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
  628. {
  629. u64 code_slb[2];
  630. u64 lscsa_slb[2];
  631. /* Save, Step 47:
  632. * Restore, Step 30.
  633. * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
  634. * register, then initialize SLB_VSID and SLB_ESID
  635. * to provide access to SPU context save code and
  636. * LSCSA.
  637. *
  638. * This implementation places both the context
  639. * switch code and LSCSA in kernel address space.
  640. *
  641. * Further this implementation assumes that the
  642. * MFC_SR1[R]=1 (in other words, assume that
  643. * translation is desired by OS environment).
  644. */
  645. spu_invalidate_slbs(spu);
  646. get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
  647. get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
  648. load_mfc_slb(spu, code_slb, 0);
  649. if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
  650. load_mfc_slb(spu, lscsa_slb, 1);
  651. }
  652. static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
  653. {
  654. /* Save, Step 48:
  655. * Restore, Step 23.
  656. * Change the software context switch pending flag
  657. * to context switch active.
  658. */
  659. set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
  660. clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
  661. mb();
  662. }
  663. static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
  664. {
  665. unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
  666. CLASS1_ENABLE_STORAGE_FAULT_INTR;
  667. /* Save, Step 49:
  668. * Restore, Step 22:
  669. * Reset and then enable interrupts, as
  670. * needed by OS.
  671. *
  672. * This implementation enables only class1
  673. * (translation) interrupts.
  674. */
  675. spin_lock_irq(&spu->register_lock);
  676. spu_int_stat_clear(spu, 0, ~0ul);
  677. spu_int_stat_clear(spu, 1, ~0ul);
  678. spu_int_stat_clear(spu, 2, ~0ul);
  679. spu_int_mask_set(spu, 0, 0ul);
  680. spu_int_mask_set(spu, 1, class1_mask);
  681. spu_int_mask_set(spu, 2, 0ul);
  682. spin_unlock_irq(&spu->register_lock);
  683. }
  684. static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
  685. unsigned int ls_offset, unsigned int size,
  686. unsigned int tag, unsigned int rclass,
  687. unsigned int cmd)
  688. {
  689. struct spu_problem __iomem *prob = spu->problem;
  690. union mfc_tag_size_class_cmd command;
  691. unsigned int transfer_size;
  692. volatile unsigned int status = 0x0;
  693. while (size > 0) {
  694. transfer_size =
  695. (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
  696. command.u.mfc_size = transfer_size;
  697. command.u.mfc_tag = tag;
  698. command.u.mfc_rclassid = rclass;
  699. command.u.mfc_cmd = cmd;
  700. do {
  701. out_be32(&prob->mfc_lsa_W, ls_offset);
  702. out_be64(&prob->mfc_ea_W, ea);
  703. out_be64(&prob->mfc_union_W.all64, command.all64);
  704. status =
  705. in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
  706. if (unlikely(status & 0x2)) {
  707. cpu_relax();
  708. }
  709. } while (status & 0x3);
  710. size -= transfer_size;
  711. ea += transfer_size;
  712. ls_offset += transfer_size;
  713. }
  714. return 0;
  715. }
  716. static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
  717. {
  718. unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
  719. unsigned int ls_offset = 0x0;
  720. unsigned int size = 16384;
  721. unsigned int tag = 0;
  722. unsigned int rclass = 0;
  723. unsigned int cmd = MFC_PUT_CMD;
  724. /* Save, Step 50:
  725. * Issue a DMA command to copy the first 16K bytes
  726. * of local storage to the CSA.
  727. */
  728. send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
  729. }
  730. static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
  731. {
  732. struct spu_problem __iomem *prob = spu->problem;
  733. /* Save, Step 51:
  734. * Restore, Step 31.
  735. * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
  736. * point address of context save code in local
  737. * storage.
  738. *
  739. * This implementation uses SPU-side save/restore
  740. * programs with entry points at LSA of 0.
  741. */
  742. out_be32(&prob->spu_npc_RW, 0);
  743. eieio();
  744. }
  745. static inline void set_signot1(struct spu_state *csa, struct spu *spu)
  746. {
  747. struct spu_problem __iomem *prob = spu->problem;
  748. union {
  749. u64 ull;
  750. u32 ui[2];
  751. } addr64;
  752. /* Save, Step 52:
  753. * Restore, Step 32:
  754. * Write SPU_Sig_Notify_1 register with upper 32-bits
  755. * of the CSA.LSCSA effective address.
  756. */
  757. addr64.ull = (u64) csa->lscsa;
  758. out_be32(&prob->signal_notify1, addr64.ui[0]);
  759. eieio();
  760. }
  761. static inline void set_signot2(struct spu_state *csa, struct spu *spu)
  762. {
  763. struct spu_problem __iomem *prob = spu->problem;
  764. union {
  765. u64 ull;
  766. u32 ui[2];
  767. } addr64;
  768. /* Save, Step 53:
  769. * Restore, Step 33:
  770. * Write SPU_Sig_Notify_2 register with lower 32-bits
  771. * of the CSA.LSCSA effective address.
  772. */
  773. addr64.ull = (u64) csa->lscsa;
  774. out_be32(&prob->signal_notify2, addr64.ui[1]);
  775. eieio();
  776. }
  777. static inline void send_save_code(struct spu_state *csa, struct spu *spu)
  778. {
  779. unsigned long addr = (unsigned long)&spu_save_code[0];
  780. unsigned int ls_offset = 0x0;
  781. unsigned int size = sizeof(spu_save_code);
  782. unsigned int tag = 0;
  783. unsigned int rclass = 0;
  784. unsigned int cmd = MFC_GETFS_CMD;
  785. /* Save, Step 54:
  786. * Issue a DMA command to copy context save code
  787. * to local storage and start SPU.
  788. */
  789. send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
  790. }
  791. static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
  792. {
  793. struct spu_problem __iomem *prob = spu->problem;
  794. /* Save, Step 55:
  795. * Restore, Step 38.
  796. * Write PPU_QueryMask=1 (enable Tag Group 0)
  797. * and issue eieio instruction.
  798. */
  799. out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
  800. eieio();
  801. }
  802. static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
  803. {
  804. struct spu_problem __iomem *prob = spu->problem;
  805. u32 mask = MFC_TAGID_TO_TAGMASK(0);
  806. unsigned long flags;
  807. /* Save, Step 56:
  808. * Restore, Step 39.
  809. * Restore, Step 39.
  810. * Restore, Step 46.
  811. * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
  812. * or write PPU_QueryType[TS]=01 and wait for Tag Group
  813. * Complete Interrupt. Write INT_Stat_Class0 or
  814. * INT_Stat_Class2 with value of 'handled'.
  815. */
  816. POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
  817. local_irq_save(flags);
  818. spu_int_stat_clear(spu, 0, ~(0ul));
  819. spu_int_stat_clear(spu, 2, ~(0ul));
  820. local_irq_restore(flags);
  821. }
  822. static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
  823. {
  824. struct spu_problem __iomem *prob = spu->problem;
  825. unsigned long flags;
  826. /* Save, Step 57:
  827. * Restore, Step 40.
  828. * Poll until SPU_Status[R]=0 or wait for SPU Class 0
  829. * or SPU Class 2 interrupt. Write INT_Stat_class0
  830. * or INT_Stat_class2 with value of handled.
  831. */
  832. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
  833. local_irq_save(flags);
  834. spu_int_stat_clear(spu, 0, ~(0ul));
  835. spu_int_stat_clear(spu, 2, ~(0ul));
  836. local_irq_restore(flags);
  837. }
  838. static inline int check_save_status(struct spu_state *csa, struct spu *spu)
  839. {
  840. struct spu_problem __iomem *prob = spu->problem;
  841. u32 complete;
  842. /* Save, Step 54:
  843. * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
  844. * context save succeeded, otherwise context save
  845. * failed.
  846. */
  847. complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
  848. SPU_STATUS_STOPPED_BY_STOP);
  849. return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
  850. }
  851. static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
  852. {
  853. /* Restore, Step 4:
  854. * If required, notify the "using application" that
  855. * the SPU task has been terminated. TBD.
  856. */
  857. }
  858. static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
  859. {
  860. struct spu_priv2 __iomem *priv2 = spu->priv2;
  861. /* Restore, Step 7:
  862. * Restore, Step 47.
  863. * Write MFC_Cntl[Dh,Sc]='1','1' to suspend
  864. * the queue and halt the decrementer.
  865. */
  866. out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
  867. MFC_CNTL_DECREMENTER_HALTED);
  868. eieio();
  869. }
  870. static inline void wait_suspend_mfc_complete(struct spu_state *csa,
  871. struct spu *spu)
  872. {
  873. struct spu_priv2 __iomem *priv2 = spu->priv2;
  874. /* Restore, Step 8:
  875. * Restore, Step 47.
  876. * Poll MFC_CNTL[Ss] until 11 is returned.
  877. */
  878. POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
  879. MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
  880. MFC_CNTL_SUSPEND_COMPLETE);
  881. }
  882. static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
  883. {
  884. struct spu_problem __iomem *prob = spu->problem;
  885. /* Restore, Step 9:
  886. * If SPU_Status[R]=1, stop SPU execution
  887. * and wait for stop to complete.
  888. *
  889. * Returns 1 if SPU_Status[R]=1 on entry.
  890. * 0 otherwise
  891. */
  892. if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
  893. if (in_be32(&prob->spu_status_R) &
  894. SPU_STATUS_ISOLATED_EXIT_STATUS) {
  895. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
  896. SPU_STATUS_RUNNING);
  897. }
  898. if ((in_be32(&prob->spu_status_R) &
  899. SPU_STATUS_ISOLATED_LOAD_STATUS)
  900. || (in_be32(&prob->spu_status_R) &
  901. SPU_STATUS_ISOLATED_STATE)) {
  902. out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
  903. eieio();
  904. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
  905. SPU_STATUS_RUNNING);
  906. out_be32(&prob->spu_runcntl_RW, 0x2);
  907. eieio();
  908. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
  909. SPU_STATUS_RUNNING);
  910. }
  911. if (in_be32(&prob->spu_status_R) &
  912. SPU_STATUS_WAITING_FOR_CHANNEL) {
  913. out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
  914. eieio();
  915. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
  916. SPU_STATUS_RUNNING);
  917. }
  918. return 1;
  919. }
  920. return 0;
  921. }
  922. static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
  923. {
  924. struct spu_problem __iomem *prob = spu->problem;
  925. /* Restore, Step 10:
  926. * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
  927. * release SPU from isolate state.
  928. */
  929. if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
  930. if (in_be32(&prob->spu_status_R) &
  931. SPU_STATUS_ISOLATED_EXIT_STATUS) {
  932. spu_mfc_sr1_set(spu,
  933. MFC_STATE1_MASTER_RUN_CONTROL_MASK);
  934. eieio();
  935. out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
  936. eieio();
  937. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
  938. SPU_STATUS_RUNNING);
  939. }
  940. if ((in_be32(&prob->spu_status_R) &
  941. SPU_STATUS_ISOLATED_LOAD_STATUS)
  942. || (in_be32(&prob->spu_status_R) &
  943. SPU_STATUS_ISOLATED_STATE)) {
  944. spu_mfc_sr1_set(spu,
  945. MFC_STATE1_MASTER_RUN_CONTROL_MASK);
  946. eieio();
  947. out_be32(&prob->spu_runcntl_RW, 0x2);
  948. eieio();
  949. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
  950. SPU_STATUS_RUNNING);
  951. }
  952. }
  953. }
  954. static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
  955. {
  956. struct spu_priv2 __iomem *priv2 = spu->priv2;
  957. u64 ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
  958. u64 idx;
  959. int i;
  960. /* Restore, Step 20:
  961. */
  962. /* Reset CH 1 */
  963. out_be64(&priv2->spu_chnlcntptr_RW, 1);
  964. out_be64(&priv2->spu_chnldata_RW, 0UL);
  965. /* Reset the following CH: [0,3,4,24,25,27] */
  966. for (i = 0; i < 7; i++) {
  967. idx = ch_indices[i];
  968. out_be64(&priv2->spu_chnlcntptr_RW, idx);
  969. eieio();
  970. out_be64(&priv2->spu_chnldata_RW, 0UL);
  971. out_be64(&priv2->spu_chnlcnt_RW, 0UL);
  972. eieio();
  973. }
  974. }
  975. static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
  976. {
  977. struct spu_priv2 __iomem *priv2 = spu->priv2;
  978. u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
  979. u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
  980. u64 idx;
  981. int i;
  982. /* Restore, Step 21:
  983. * Reset the following CH: [21, 23, 28, 29, 30]
  984. */
  985. for (i = 0; i < 5; i++) {
  986. idx = ch_indices[i];
  987. out_be64(&priv2->spu_chnlcntptr_RW, idx);
  988. eieio();
  989. out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
  990. eieio();
  991. }
  992. }
  993. static inline void setup_spu_status_part1(struct spu_state *csa,
  994. struct spu *spu)
  995. {
  996. u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
  997. u32 status_I = SPU_STATUS_INVALID_INSTR;
  998. u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
  999. u32 status_S = SPU_STATUS_SINGLE_STEP;
  1000. u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
  1001. u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
  1002. u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
  1003. u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
  1004. u32 status_code;
  1005. /* Restore, Step 27:
  1006. * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
  1007. * instruction sequence to the end of the SPU based restore
  1008. * code (after the "context restored" stop and signal) to
  1009. * restore the correct SPU status.
  1010. *
  1011. * NOTE: Rather than modifying the SPU executable, we
  1012. * instead add a new 'stopped_status' field to the
  1013. * LSCSA. The SPU-side restore reads this field and
  1014. * takes the appropriate action when exiting.
  1015. */
  1016. status_code =
  1017. (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
  1018. if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
  1019. /* SPU_Status[P,I]=1 - Illegal Instruction followed
  1020. * by Stop and Signal instruction, followed by 'br -4'.
  1021. *
  1022. */
  1023. csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
  1024. csa->lscsa->stopped_status.slot[1] = status_code;
  1025. } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
  1026. /* SPU_Status[P,H]=1 - Halt Conditional, followed
  1027. * by Stop and Signal instruction, followed by
  1028. * 'br -4'.
  1029. */
  1030. csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
  1031. csa->lscsa->stopped_status.slot[1] = status_code;
  1032. } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
  1033. /* SPU_Status[S,P]=1 - Stop and Signal instruction
  1034. * followed by 'br -4'.
  1035. */
  1036. csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
  1037. csa->lscsa->stopped_status.slot[1] = status_code;
  1038. } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
  1039. /* SPU_Status[S,I]=1 - Illegal instruction followed
  1040. * by 'br -4'.
  1041. */
  1042. csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
  1043. csa->lscsa->stopped_status.slot[1] = status_code;
  1044. } else if ((csa->prob.spu_status_R & status_P) == status_P) {
  1045. /* SPU_Status[P]=1 - Stop and Signal instruction
  1046. * followed by 'br -4'.
  1047. */
  1048. csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
  1049. csa->lscsa->stopped_status.slot[1] = status_code;
  1050. } else if ((csa->prob.spu_status_R & status_H) == status_H) {
  1051. /* SPU_Status[H]=1 - Halt Conditional, followed
  1052. * by 'br -4'.
  1053. */
  1054. csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
  1055. } else if ((csa->prob.spu_status_R & status_S) == status_S) {
  1056. /* SPU_Status[S]=1 - Two nop instructions.
  1057. */
  1058. csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
  1059. } else if ((csa->prob.spu_status_R & status_I) == status_I) {
  1060. /* SPU_Status[I]=1 - Illegal instruction followed
  1061. * by 'br -4'.
  1062. */
  1063. csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
  1064. }
  1065. }
  1066. static inline void setup_spu_status_part2(struct spu_state *csa,
  1067. struct spu *spu)
  1068. {
  1069. u32 mask;
  1070. /* Restore, Step 28:
  1071. * If the CSA.SPU_Status[I,S,H,P,R]=0 then
  1072. * add a 'br *' instruction to the end of
  1073. * the SPU based restore code.
  1074. *
  1075. * NOTE: Rather than modifying the SPU executable, we
  1076. * instead add a new 'stopped_status' field to the
  1077. * LSCSA. The SPU-side restore reads this field and
  1078. * takes the appropriate action when exiting.
  1079. */
  1080. mask = SPU_STATUS_INVALID_INSTR |
  1081. SPU_STATUS_SINGLE_STEP |
  1082. SPU_STATUS_STOPPED_BY_HALT |
  1083. SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
  1084. if (!(csa->prob.spu_status_R & mask)) {
  1085. csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
  1086. }
  1087. }
  1088. static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
  1089. {
  1090. /* Restore, Step 29:
  1091. * Restore RA_GROUP_ID register and the
  1092. * RA_ENABLE reigster from the CSA.
  1093. */
  1094. spu_resource_allocation_groupID_set(spu,
  1095. csa->priv1.resource_allocation_groupID_RW);
  1096. spu_resource_allocation_enable_set(spu,
  1097. csa->priv1.resource_allocation_enable_RW);
  1098. }
  1099. static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
  1100. {
  1101. unsigned long addr = (unsigned long)&spu_restore_code[0];
  1102. unsigned int ls_offset = 0x0;
  1103. unsigned int size = sizeof(spu_restore_code);
  1104. unsigned int tag = 0;
  1105. unsigned int rclass = 0;
  1106. unsigned int cmd = MFC_GETFS_CMD;
  1107. /* Restore, Step 37:
  1108. * Issue MFC DMA command to copy context
  1109. * restore code to local storage.
  1110. */
  1111. send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
  1112. }
  1113. static inline void setup_decr(struct spu_state *csa, struct spu *spu)
  1114. {
  1115. /* Restore, Step 34:
  1116. * If CSA.MFC_CNTL[Ds]=1 (decrementer was
  1117. * running) then adjust decrementer, set
  1118. * decrementer running status in LSCSA,
  1119. * and set decrementer "wrapped" status
  1120. * in LSCSA.
  1121. */
  1122. if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
  1123. cycles_t resume_time = get_cycles();
  1124. cycles_t delta_time = resume_time - csa->suspend_time;
  1125. csa->lscsa->decr.slot[0] -= delta_time;
  1126. }
  1127. }
  1128. static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
  1129. {
  1130. /* Restore, Step 35:
  1131. * Copy the CSA.PU_MB data into the LSCSA.
  1132. */
  1133. csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
  1134. }
  1135. static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
  1136. {
  1137. /* Restore, Step 36:
  1138. * Copy the CSA.PUINT_MB data into the LSCSA.
  1139. */
  1140. csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
  1141. }
  1142. static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
  1143. {
  1144. struct spu_problem __iomem *prob = spu->problem;
  1145. u32 complete;
  1146. /* Restore, Step 40:
  1147. * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
  1148. * context restore succeeded, otherwise context restore
  1149. * failed.
  1150. */
  1151. complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
  1152. SPU_STATUS_STOPPED_BY_STOP);
  1153. return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
  1154. }
  1155. static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
  1156. {
  1157. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1158. /* Restore, Step 41:
  1159. * Restore SPU_PrivCntl from the CSA.
  1160. */
  1161. out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
  1162. eieio();
  1163. }
  1164. static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
  1165. {
  1166. struct spu_problem __iomem *prob = spu->problem;
  1167. u32 mask;
  1168. /* Restore, Step 42:
  1169. * If any CSA.SPU_Status[I,S,H,P]=1, then
  1170. * restore the error or single step state.
  1171. */
  1172. mask = SPU_STATUS_INVALID_INSTR |
  1173. SPU_STATUS_SINGLE_STEP |
  1174. SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
  1175. if (csa->prob.spu_status_R & mask) {
  1176. out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
  1177. eieio();
  1178. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
  1179. SPU_STATUS_RUNNING);
  1180. }
  1181. }
  1182. static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
  1183. {
  1184. struct spu_problem __iomem *prob = spu->problem;
  1185. u32 mask;
  1186. /* Restore, Step 43:
  1187. * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
  1188. * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
  1189. * then write '00' to SPU_RunCntl[R0R1] and wait
  1190. * for SPU_Status[R]=0.
  1191. */
  1192. mask = SPU_STATUS_INVALID_INSTR |
  1193. SPU_STATUS_SINGLE_STEP |
  1194. SPU_STATUS_STOPPED_BY_HALT |
  1195. SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
  1196. if (!(csa->prob.spu_status_R & mask)) {
  1197. out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
  1198. eieio();
  1199. POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
  1200. SPU_STATUS_RUNNING);
  1201. out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
  1202. eieio();
  1203. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
  1204. SPU_STATUS_RUNNING);
  1205. }
  1206. }
  1207. static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
  1208. {
  1209. unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
  1210. unsigned int ls_offset = 0x0;
  1211. unsigned int size = 16384;
  1212. unsigned int tag = 0;
  1213. unsigned int rclass = 0;
  1214. unsigned int cmd = MFC_GET_CMD;
  1215. /* Restore, Step 44:
  1216. * Issue a DMA command to restore the first
  1217. * 16kb of local storage from CSA.
  1218. */
  1219. send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
  1220. }
  1221. static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
  1222. {
  1223. /* Restore, Step 49:
  1224. * Write INT_MASK_class0 with value of 0.
  1225. * Write INT_MASK_class1 with value of 0.
  1226. * Write INT_MASK_class2 with value of 0.
  1227. * Write INT_STAT_class0 with value of -1.
  1228. * Write INT_STAT_class1 with value of -1.
  1229. * Write INT_STAT_class2 with value of -1.
  1230. */
  1231. spin_lock_irq(&spu->register_lock);
  1232. spu_int_mask_set(spu, 0, 0ul);
  1233. spu_int_mask_set(spu, 1, 0ul);
  1234. spu_int_mask_set(spu, 2, 0ul);
  1235. spu_int_stat_clear(spu, 0, ~0ul);
  1236. spu_int_stat_clear(spu, 1, ~0ul);
  1237. spu_int_stat_clear(spu, 2, ~0ul);
  1238. spin_unlock_irq(&spu->register_lock);
  1239. }
  1240. static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
  1241. {
  1242. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1243. int i;
  1244. /* Restore, Step 50:
  1245. * If MFC_Cntl[Se]!=0 then restore
  1246. * MFC command queues.
  1247. */
  1248. if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
  1249. for (i = 0; i < 8; i++) {
  1250. out_be64(&priv2->puq[i].mfc_cq_data0_RW,
  1251. csa->priv2.puq[i].mfc_cq_data0_RW);
  1252. out_be64(&priv2->puq[i].mfc_cq_data1_RW,
  1253. csa->priv2.puq[i].mfc_cq_data1_RW);
  1254. out_be64(&priv2->puq[i].mfc_cq_data2_RW,
  1255. csa->priv2.puq[i].mfc_cq_data2_RW);
  1256. out_be64(&priv2->puq[i].mfc_cq_data3_RW,
  1257. csa->priv2.puq[i].mfc_cq_data3_RW);
  1258. }
  1259. for (i = 0; i < 16; i++) {
  1260. out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
  1261. csa->priv2.spuq[i].mfc_cq_data0_RW);
  1262. out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
  1263. csa->priv2.spuq[i].mfc_cq_data1_RW);
  1264. out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
  1265. csa->priv2.spuq[i].mfc_cq_data2_RW);
  1266. out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
  1267. csa->priv2.spuq[i].mfc_cq_data3_RW);
  1268. }
  1269. }
  1270. eieio();
  1271. }
  1272. static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
  1273. {
  1274. struct spu_problem __iomem *prob = spu->problem;
  1275. /* Restore, Step 51:
  1276. * Restore the PPU_QueryMask register from CSA.
  1277. */
  1278. out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
  1279. eieio();
  1280. }
  1281. static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
  1282. {
  1283. struct spu_problem __iomem *prob = spu->problem;
  1284. /* Restore, Step 52:
  1285. * Restore the PPU_QueryType register from CSA.
  1286. */
  1287. out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
  1288. eieio();
  1289. }
  1290. static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
  1291. {
  1292. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1293. /* Restore, Step 53:
  1294. * Restore the MFC_CSR_TSQ register from CSA.
  1295. */
  1296. out_be64(&priv2->spu_tag_status_query_RW,
  1297. csa->priv2.spu_tag_status_query_RW);
  1298. eieio();
  1299. }
  1300. static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
  1301. {
  1302. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1303. /* Restore, Step 54:
  1304. * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
  1305. * registers from CSA.
  1306. */
  1307. out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
  1308. out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
  1309. eieio();
  1310. }
  1311. static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
  1312. {
  1313. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1314. /* Restore, Step 55:
  1315. * Restore the MFC_CSR_ATO register from CSA.
  1316. */
  1317. out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
  1318. }
  1319. static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
  1320. {
  1321. /* Restore, Step 56:
  1322. * Restore the MFC_TCLASS_ID register from CSA.
  1323. */
  1324. spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
  1325. eieio();
  1326. }
  1327. static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
  1328. {
  1329. u64 ch0_cnt, ch0_data;
  1330. u64 ch1_data;
  1331. /* Restore, Step 57:
  1332. * Set the Lock Line Reservation Lost Event by:
  1333. * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
  1334. * 2. If CSA.SPU_Channel_0_Count=0 and
  1335. * CSA.SPU_Wr_Event_Mask[Lr]=1 and
  1336. * CSA.SPU_Event_Status[Lr]=0 then set
  1337. * CSA.SPU_Event_Status_Count=1.
  1338. */
  1339. ch0_cnt = csa->spu_chnlcnt_RW[0];
  1340. ch0_data = csa->spu_chnldata_RW[0];
  1341. ch1_data = csa->spu_chnldata_RW[1];
  1342. csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
  1343. if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
  1344. (ch1_data & MFC_LLR_LOST_EVENT)) {
  1345. csa->spu_chnlcnt_RW[0] = 1;
  1346. }
  1347. }
  1348. static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
  1349. {
  1350. /* Restore, Step 58:
  1351. * If the status of the CSA software decrementer
  1352. * "wrapped" flag is set, OR in a '1' to
  1353. * CSA.SPU_Event_Status[Tm].
  1354. */
  1355. if (csa->lscsa->decr_status.slot[0] == 1) {
  1356. csa->spu_chnldata_RW[0] |= 0x20;
  1357. }
  1358. if ((csa->lscsa->decr_status.slot[0] == 1) &&
  1359. (csa->spu_chnlcnt_RW[0] == 0 &&
  1360. ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
  1361. ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
  1362. csa->spu_chnlcnt_RW[0] = 1;
  1363. }
  1364. }
  1365. static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
  1366. {
  1367. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1368. u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
  1369. int i;
  1370. /* Restore, Step 59:
  1371. */
  1372. /* Restore CH 1 without count */
  1373. out_be64(&priv2->spu_chnlcntptr_RW, 1);
  1374. out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[1]);
  1375. /* Restore the following CH: [0,3,4,24,25,27] */
  1376. for (i = 0; i < 7; i++) {
  1377. idx = ch_indices[i];
  1378. out_be64(&priv2->spu_chnlcntptr_RW, idx);
  1379. eieio();
  1380. out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
  1381. out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
  1382. eieio();
  1383. }
  1384. }
  1385. static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
  1386. {
  1387. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1388. u64 ch_indices[3] = { 9UL, 21UL, 23UL };
  1389. u64 ch_counts[3] = { 1UL, 16UL, 1UL };
  1390. u64 idx;
  1391. int i;
  1392. /* Restore, Step 60:
  1393. * Restore the following CH: [9,21,23].
  1394. */
  1395. ch_counts[0] = 1UL;
  1396. ch_counts[1] = csa->spu_chnlcnt_RW[21];
  1397. ch_counts[2] = 1UL;
  1398. for (i = 0; i < 3; i++) {
  1399. idx = ch_indices[i];
  1400. out_be64(&priv2->spu_chnlcntptr_RW, idx);
  1401. eieio();
  1402. out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
  1403. eieio();
  1404. }
  1405. }
  1406. static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
  1407. {
  1408. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1409. /* Restore, Step 61:
  1410. * Restore the SPU_LSLR register from CSA.
  1411. */
  1412. out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
  1413. eieio();
  1414. }
  1415. static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
  1416. {
  1417. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1418. /* Restore, Step 62:
  1419. * Restore the SPU_Cfg register from CSA.
  1420. */
  1421. out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
  1422. eieio();
  1423. }
  1424. static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
  1425. {
  1426. /* Restore, Step 63:
  1427. * Restore PM_Trace_Tag_Wait_Mask from CSA.
  1428. * Not performed by this implementation.
  1429. */
  1430. }
  1431. static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
  1432. {
  1433. struct spu_problem __iomem *prob = spu->problem;
  1434. /* Restore, Step 64:
  1435. * Restore SPU_NPC from CSA.
  1436. */
  1437. out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
  1438. eieio();
  1439. }
  1440. static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
  1441. {
  1442. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1443. int i;
  1444. /* Restore, Step 65:
  1445. * Restore MFC_RdSPU_MB from CSA.
  1446. */
  1447. out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
  1448. eieio();
  1449. out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
  1450. for (i = 0; i < 4; i++) {
  1451. out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
  1452. }
  1453. eieio();
  1454. }
  1455. static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
  1456. {
  1457. struct spu_problem __iomem *prob = spu->problem;
  1458. u32 dummy = 0;
  1459. /* Restore, Step 66:
  1460. * If CSA.MB_Stat[P]=0 (mailbox empty) then
  1461. * read from the PPU_MB register.
  1462. */
  1463. if ((csa->prob.mb_stat_R & 0xFF) == 0) {
  1464. dummy = in_be32(&prob->pu_mb_R);
  1465. eieio();
  1466. }
  1467. }
  1468. static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
  1469. {
  1470. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1471. u64 dummy = 0UL;
  1472. /* Restore, Step 66:
  1473. * If CSA.MB_Stat[I]=0 (mailbox empty) then
  1474. * read from the PPUINT_MB register.
  1475. */
  1476. if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
  1477. dummy = in_be64(&priv2->puint_mb_R);
  1478. eieio();
  1479. spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
  1480. eieio();
  1481. }
  1482. }
  1483. static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
  1484. {
  1485. /* Restore, Step 69:
  1486. * Restore the MFC_SR1 register from CSA.
  1487. */
  1488. spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
  1489. eieio();
  1490. }
  1491. static inline void restore_other_spu_access(struct spu_state *csa,
  1492. struct spu *spu)
  1493. {
  1494. /* Restore, Step 70:
  1495. * Restore other SPU mappings to this SPU. TBD.
  1496. */
  1497. }
  1498. static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
  1499. {
  1500. struct spu_problem __iomem *prob = spu->problem;
  1501. /* Restore, Step 71:
  1502. * If CSA.SPU_Status[R]=1 then write
  1503. * SPU_RunCntl[R0R1]='01'.
  1504. */
  1505. if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
  1506. out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
  1507. eieio();
  1508. }
  1509. }
  1510. static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
  1511. {
  1512. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1513. /* Restore, Step 72:
  1514. * Restore the MFC_CNTL register for the CSA.
  1515. */
  1516. out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
  1517. eieio();
  1518. /*
  1519. * FIXME: this is to restart a DMA that we were processing
  1520. * before the save. better remember the fault information
  1521. * in the csa instead.
  1522. */
  1523. if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
  1524. out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
  1525. eieio();
  1526. }
  1527. }
  1528. static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
  1529. {
  1530. /* Restore, Step 73:
  1531. * Enable user-space access (if provided) to this
  1532. * SPU by mapping the virtual pages assigned to
  1533. * the SPU memory-mapped I/O (MMIO) for problem
  1534. * state. TBD.
  1535. */
  1536. }
  1537. static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
  1538. {
  1539. /* Restore, Step 74:
  1540. * Reset the "context switch active" flag.
  1541. */
  1542. clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
  1543. mb();
  1544. }
  1545. static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
  1546. {
  1547. /* Restore, Step 75:
  1548. * Re-enable SPU interrupts.
  1549. */
  1550. spin_lock_irq(&spu->register_lock);
  1551. spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
  1552. spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
  1553. spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
  1554. spin_unlock_irq(&spu->register_lock);
  1555. }
  1556. static int quiece_spu(struct spu_state *prev, struct spu *spu)
  1557. {
  1558. /*
  1559. * Combined steps 2-18 of SPU context save sequence, which
  1560. * quiesce the SPU state (disable SPU execution, MFC command
  1561. * queues, decrementer, SPU interrupts, etc.).
  1562. *
  1563. * Returns 0 on success.
  1564. * 2 if failed step 2.
  1565. * 6 if failed step 6.
  1566. */
  1567. if (check_spu_isolate(prev, spu)) { /* Step 2. */
  1568. return 2;
  1569. }
  1570. disable_interrupts(prev, spu); /* Step 3. */
  1571. set_watchdog_timer(prev, spu); /* Step 4. */
  1572. inhibit_user_access(prev, spu); /* Step 5. */
  1573. if (check_spu_isolate(prev, spu)) { /* Step 6. */
  1574. return 6;
  1575. }
  1576. set_switch_pending(prev, spu); /* Step 7. */
  1577. save_mfc_cntl(prev, spu); /* Step 8. */
  1578. save_spu_runcntl(prev, spu); /* Step 9. */
  1579. save_mfc_sr1(prev, spu); /* Step 10. */
  1580. save_spu_status(prev, spu); /* Step 11. */
  1581. save_mfc_decr(prev, spu); /* Step 12. */
  1582. halt_mfc_decr(prev, spu); /* Step 13. */
  1583. save_timebase(prev, spu); /* Step 14. */
  1584. remove_other_spu_access(prev, spu); /* Step 15. */
  1585. do_mfc_mssync(prev, spu); /* Step 16. */
  1586. issue_mfc_tlbie(prev, spu); /* Step 17. */
  1587. handle_pending_interrupts(prev, spu); /* Step 18. */
  1588. return 0;
  1589. }
  1590. static void save_csa(struct spu_state *prev, struct spu *spu)
  1591. {
  1592. /*
  1593. * Combine steps 19-44 of SPU context save sequence, which
  1594. * save regions of the privileged & problem state areas.
  1595. */
  1596. save_mfc_queues(prev, spu); /* Step 19. */
  1597. save_ppu_querymask(prev, spu); /* Step 20. */
  1598. save_ppu_querytype(prev, spu); /* Step 21. */
  1599. save_mfc_csr_tsq(prev, spu); /* Step 22. */
  1600. save_mfc_csr_cmd(prev, spu); /* Step 23. */
  1601. save_mfc_csr_ato(prev, spu); /* Step 24. */
  1602. save_mfc_tclass_id(prev, spu); /* Step 25. */
  1603. set_mfc_tclass_id(prev, spu); /* Step 26. */
  1604. purge_mfc_queue(prev, spu); /* Step 27. */
  1605. wait_purge_complete(prev, spu); /* Step 28. */
  1606. setup_mfc_sr1(prev, spu); /* Step 30. */
  1607. save_spu_npc(prev, spu); /* Step 31. */
  1608. save_spu_privcntl(prev, spu); /* Step 32. */
  1609. reset_spu_privcntl(prev, spu); /* Step 33. */
  1610. save_spu_lslr(prev, spu); /* Step 34. */
  1611. reset_spu_lslr(prev, spu); /* Step 35. */
  1612. save_spu_cfg(prev, spu); /* Step 36. */
  1613. save_pm_trace(prev, spu); /* Step 37. */
  1614. save_mfc_rag(prev, spu); /* Step 38. */
  1615. save_ppu_mb_stat(prev, spu); /* Step 39. */
  1616. save_ppu_mb(prev, spu); /* Step 40. */
  1617. save_ppuint_mb(prev, spu); /* Step 41. */
  1618. save_ch_part1(prev, spu); /* Step 42. */
  1619. save_spu_mb(prev, spu); /* Step 43. */
  1620. save_mfc_cmd(prev, spu); /* Step 44. */
  1621. reset_ch(prev, spu); /* Step 45. */
  1622. }
  1623. static void save_lscsa(struct spu_state *prev, struct spu *spu)
  1624. {
  1625. /*
  1626. * Perform steps 46-57 of SPU context save sequence,
  1627. * which save regions of the local store and register
  1628. * file.
  1629. */
  1630. resume_mfc_queue(prev, spu); /* Step 46. */
  1631. setup_mfc_slbs(prev, spu); /* Step 47. */
  1632. set_switch_active(prev, spu); /* Step 48. */
  1633. enable_interrupts(prev, spu); /* Step 49. */
  1634. save_ls_16kb(prev, spu); /* Step 50. */
  1635. set_spu_npc(prev, spu); /* Step 51. */
  1636. set_signot1(prev, spu); /* Step 52. */
  1637. set_signot2(prev, spu); /* Step 53. */
  1638. send_save_code(prev, spu); /* Step 54. */
  1639. set_ppu_querymask(prev, spu); /* Step 55. */
  1640. wait_tag_complete(prev, spu); /* Step 56. */
  1641. wait_spu_stopped(prev, spu); /* Step 57. */
  1642. }
  1643. static void force_spu_isolate_exit(struct spu *spu)
  1644. {
  1645. struct spu_problem __iomem *prob = spu->problem;
  1646. struct spu_priv2 __iomem *priv2 = spu->priv2;
  1647. /* Stop SPE execution and wait for completion. */
  1648. out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
  1649. iobarrier_rw();
  1650. POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
  1651. /* Restart SPE master runcntl. */
  1652. spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
  1653. iobarrier_w();
  1654. /* Initiate isolate exit request and wait for completion. */
  1655. out_be64(&priv2->spu_privcntl_RW, 4LL);
  1656. iobarrier_w();
  1657. out_be32(&prob->spu_runcntl_RW, 2);
  1658. iobarrier_rw();
  1659. POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
  1660. & SPU_STATUS_STOPPED_BY_STOP));
  1661. /* Reset load request to normal. */
  1662. out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
  1663. iobarrier_w();
  1664. }
  1665. /**
  1666. * stop_spu_isolate
  1667. * Check SPU run-control state and force isolated
  1668. * exit function as necessary.
  1669. */
  1670. static void stop_spu_isolate(struct spu *spu)
  1671. {
  1672. struct spu_problem __iomem *prob = spu->problem;
  1673. if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
  1674. /* The SPU is in isolated state; the only way
  1675. * to get it out is to perform an isolated
  1676. * exit (clean) operation.
  1677. */
  1678. force_spu_isolate_exit(spu);
  1679. }
  1680. }
  1681. static void harvest(struct spu_state *prev, struct spu *spu)
  1682. {
  1683. /*
  1684. * Perform steps 2-25 of SPU context restore sequence,
  1685. * which resets an SPU either after a failed save, or
  1686. * when using SPU for first time.
  1687. */
  1688. disable_interrupts(prev, spu); /* Step 2. */
  1689. inhibit_user_access(prev, spu); /* Step 3. */
  1690. terminate_spu_app(prev, spu); /* Step 4. */
  1691. set_switch_pending(prev, spu); /* Step 5. */
  1692. stop_spu_isolate(spu); /* NEW. */
  1693. remove_other_spu_access(prev, spu); /* Step 6. */
  1694. suspend_mfc(prev, spu); /* Step 7. */
  1695. wait_suspend_mfc_complete(prev, spu); /* Step 8. */
  1696. if (!suspend_spe(prev, spu)) /* Step 9. */
  1697. clear_spu_status(prev, spu); /* Step 10. */
  1698. do_mfc_mssync(prev, spu); /* Step 11. */
  1699. issue_mfc_tlbie(prev, spu); /* Step 12. */
  1700. handle_pending_interrupts(prev, spu); /* Step 13. */
  1701. purge_mfc_queue(prev, spu); /* Step 14. */
  1702. wait_purge_complete(prev, spu); /* Step 15. */
  1703. reset_spu_privcntl(prev, spu); /* Step 16. */
  1704. reset_spu_lslr(prev, spu); /* Step 17. */
  1705. setup_mfc_sr1(prev, spu); /* Step 18. */
  1706. spu_invalidate_slbs(spu); /* Step 19. */
  1707. reset_ch_part1(prev, spu); /* Step 20. */
  1708. reset_ch_part2(prev, spu); /* Step 21. */
  1709. enable_interrupts(prev, spu); /* Step 22. */
  1710. set_switch_active(prev, spu); /* Step 23. */
  1711. set_mfc_tclass_id(prev, spu); /* Step 24. */
  1712. resume_mfc_queue(prev, spu); /* Step 25. */
  1713. }
  1714. static void restore_lscsa(struct spu_state *next, struct spu *spu)
  1715. {
  1716. /*
  1717. * Perform steps 26-40 of SPU context restore sequence,
  1718. * which restores regions of the local store and register
  1719. * file.
  1720. */
  1721. set_watchdog_timer(next, spu); /* Step 26. */
  1722. setup_spu_status_part1(next, spu); /* Step 27. */
  1723. setup_spu_status_part2(next, spu); /* Step 28. */
  1724. restore_mfc_rag(next, spu); /* Step 29. */
  1725. setup_mfc_slbs(next, spu); /* Step 30. */
  1726. set_spu_npc(next, spu); /* Step 31. */
  1727. set_signot1(next, spu); /* Step 32. */
  1728. set_signot2(next, spu); /* Step 33. */
  1729. setup_decr(next, spu); /* Step 34. */
  1730. setup_ppu_mb(next, spu); /* Step 35. */
  1731. setup_ppuint_mb(next, spu); /* Step 36. */
  1732. send_restore_code(next, spu); /* Step 37. */
  1733. set_ppu_querymask(next, spu); /* Step 38. */
  1734. wait_tag_complete(next, spu); /* Step 39. */
  1735. wait_spu_stopped(next, spu); /* Step 40. */
  1736. }
  1737. static void restore_csa(struct spu_state *next, struct spu *spu)
  1738. {
  1739. /*
  1740. * Combine steps 41-76 of SPU context restore sequence, which
  1741. * restore regions of the privileged & problem state areas.
  1742. */
  1743. restore_spu_privcntl(next, spu); /* Step 41. */
  1744. restore_status_part1(next, spu); /* Step 42. */
  1745. restore_status_part2(next, spu); /* Step 43. */
  1746. restore_ls_16kb(next, spu); /* Step 44. */
  1747. wait_tag_complete(next, spu); /* Step 45. */
  1748. suspend_mfc(next, spu); /* Step 46. */
  1749. wait_suspend_mfc_complete(next, spu); /* Step 47. */
  1750. issue_mfc_tlbie(next, spu); /* Step 48. */
  1751. clear_interrupts(next, spu); /* Step 49. */
  1752. restore_mfc_queues(next, spu); /* Step 50. */
  1753. restore_ppu_querymask(next, spu); /* Step 51. */
  1754. restore_ppu_querytype(next, spu); /* Step 52. */
  1755. restore_mfc_csr_tsq(next, spu); /* Step 53. */
  1756. restore_mfc_csr_cmd(next, spu); /* Step 54. */
  1757. restore_mfc_csr_ato(next, spu); /* Step 55. */
  1758. restore_mfc_tclass_id(next, spu); /* Step 56. */
  1759. set_llr_event(next, spu); /* Step 57. */
  1760. restore_decr_wrapped(next, spu); /* Step 58. */
  1761. restore_ch_part1(next, spu); /* Step 59. */
  1762. restore_ch_part2(next, spu); /* Step 60. */
  1763. restore_spu_lslr(next, spu); /* Step 61. */
  1764. restore_spu_cfg(next, spu); /* Step 62. */
  1765. restore_pm_trace(next, spu); /* Step 63. */
  1766. restore_spu_npc(next, spu); /* Step 64. */
  1767. restore_spu_mb(next, spu); /* Step 65. */
  1768. check_ppu_mb_stat(next, spu); /* Step 66. */
  1769. check_ppuint_mb_stat(next, spu); /* Step 67. */
  1770. spu_invalidate_slbs(spu); /* Modified Step 68. */
  1771. restore_mfc_sr1(next, spu); /* Step 69. */
  1772. restore_other_spu_access(next, spu); /* Step 70. */
  1773. restore_spu_runcntl(next, spu); /* Step 71. */
  1774. restore_mfc_cntl(next, spu); /* Step 72. */
  1775. enable_user_access(next, spu); /* Step 73. */
  1776. reset_switch_active(next, spu); /* Step 74. */
  1777. reenable_interrupts(next, spu); /* Step 75. */
  1778. }
  1779. static int __do_spu_save(struct spu_state *prev, struct spu *spu)
  1780. {
  1781. int rc;
  1782. /*
  1783. * SPU context save can be broken into three phases:
  1784. *
  1785. * (a) quiesce [steps 2-16].
  1786. * (b) save of CSA, performed by PPE [steps 17-42]
  1787. * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
  1788. *
  1789. * Returns 0 on success.
  1790. * 2,6 if failed to quiece SPU
  1791. * 53 if SPU-side of save failed.
  1792. */
  1793. rc = quiece_spu(prev, spu); /* Steps 2-16. */
  1794. switch (rc) {
  1795. default:
  1796. case 2:
  1797. case 6:
  1798. harvest(prev, spu);
  1799. return rc;
  1800. break;
  1801. case 0:
  1802. break;
  1803. }
  1804. save_csa(prev, spu); /* Steps 17-43. */
  1805. save_lscsa(prev, spu); /* Steps 44-53. */
  1806. return check_save_status(prev, spu); /* Step 54. */
  1807. }
  1808. static int __do_spu_restore(struct spu_state *next, struct spu *spu)
  1809. {
  1810. int rc;
  1811. /*
  1812. * SPU context restore can be broken into three phases:
  1813. *
  1814. * (a) harvest (or reset) SPU [steps 2-24].
  1815. * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
  1816. * (c) restore CSA [steps 41-76], performed by PPE.
  1817. *
  1818. * The 'harvest' step is not performed here, but rather
  1819. * as needed below.
  1820. */
  1821. restore_lscsa(next, spu); /* Steps 24-39. */
  1822. rc = check_restore_status(next, spu); /* Step 40. */
  1823. switch (rc) {
  1824. default:
  1825. /* Failed. Return now. */
  1826. return rc;
  1827. break;
  1828. case 0:
  1829. /* Fall through to next step. */
  1830. break;
  1831. }
  1832. restore_csa(next, spu);
  1833. return 0;
  1834. }
  1835. /**
  1836. * spu_save - SPU context save, with locking.
  1837. * @prev: pointer to SPU context save area, to be saved.
  1838. * @spu: pointer to SPU iomem structure.
  1839. *
  1840. * Acquire locks, perform the save operation then return.
  1841. */
  1842. int spu_save(struct spu_state *prev, struct spu *spu)
  1843. {
  1844. int rc;
  1845. acquire_spu_lock(spu); /* Step 1. */
  1846. prev->dar = spu->dar;
  1847. prev->dsisr = spu->dsisr;
  1848. spu->dar = 0;
  1849. spu->dsisr = 0;
  1850. rc = __do_spu_save(prev, spu); /* Steps 2-53. */
  1851. release_spu_lock(spu);
  1852. if (rc != 0 && rc != 2 && rc != 6) {
  1853. panic("%s failed on SPU[%d], rc=%d.\n",
  1854. __func__, spu->number, rc);
  1855. }
  1856. return 0;
  1857. }
  1858. EXPORT_SYMBOL_GPL(spu_save);
  1859. /**
  1860. * spu_restore - SPU context restore, with harvest and locking.
  1861. * @new: pointer to SPU context save area, to be restored.
  1862. * @spu: pointer to SPU iomem structure.
  1863. *
  1864. * Perform harvest + restore, as we may not be coming
  1865. * from a previous successful save operation, and the
  1866. * hardware state is unknown.
  1867. */
  1868. int spu_restore(struct spu_state *new, struct spu *spu)
  1869. {
  1870. int rc;
  1871. acquire_spu_lock(spu);
  1872. harvest(NULL, spu);
  1873. spu->slb_replace = 0;
  1874. new->dar = 0;
  1875. new->dsisr = 0;
  1876. spu->class_0_pending = 0;
  1877. rc = __do_spu_restore(new, spu);
  1878. release_spu_lock(spu);
  1879. if (rc) {
  1880. panic("%s failed on SPU[%d] rc=%d.\n",
  1881. __func__, spu->number, rc);
  1882. }
  1883. return rc;
  1884. }
  1885. EXPORT_SYMBOL_GPL(spu_restore);
  1886. /**
  1887. * spu_harvest - SPU harvest (reset) operation
  1888. * @spu: pointer to SPU iomem structure.
  1889. *
  1890. * Perform SPU harvest (reset) operation.
  1891. */
  1892. void spu_harvest(struct spu *spu)
  1893. {
  1894. acquire_spu_lock(spu);
  1895. harvest(NULL, spu);
  1896. release_spu_lock(spu);
  1897. }
  1898. static void init_prob(struct spu_state *csa)
  1899. {
  1900. csa->spu_chnlcnt_RW[9] = 1;
  1901. csa->spu_chnlcnt_RW[21] = 16;
  1902. csa->spu_chnlcnt_RW[23] = 1;
  1903. csa->spu_chnlcnt_RW[28] = 1;
  1904. csa->spu_chnlcnt_RW[30] = 1;
  1905. csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
  1906. csa->prob.mb_stat_R = 0x000400;
  1907. }
  1908. static void init_priv1(struct spu_state *csa)
  1909. {
  1910. /* Enable decode, relocate, tlbie response, master runcntl. */
  1911. csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
  1912. MFC_STATE1_MASTER_RUN_CONTROL_MASK |
  1913. MFC_STATE1_PROBLEM_STATE_MASK |
  1914. MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
  1915. /* Enable OS-specific set of interrupts. */
  1916. csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
  1917. CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
  1918. CLASS0_ENABLE_SPU_ERROR_INTR;
  1919. csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
  1920. CLASS1_ENABLE_STORAGE_FAULT_INTR;
  1921. csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
  1922. CLASS2_ENABLE_SPU_HALT_INTR |
  1923. CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
  1924. }
  1925. static void init_priv2(struct spu_state *csa)
  1926. {
  1927. csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
  1928. csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
  1929. MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
  1930. MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
  1931. }
  1932. /**
  1933. * spu_alloc_csa - allocate and initialize an SPU context save area.
  1934. *
  1935. * Allocate and initialize the contents of an SPU context save area.
  1936. * This includes enabling address translation, interrupt masks, etc.,
  1937. * as appropriate for the given OS environment.
  1938. *
  1939. * Note that storage for the 'lscsa' is allocated separately,
  1940. * as it is by far the largest of the context save regions,
  1941. * and may need to be pinned or otherwise specially aligned.
  1942. */
  1943. int spu_init_csa(struct spu_state *csa)
  1944. {
  1945. int rc;
  1946. if (!csa)
  1947. return -EINVAL;
  1948. memset(csa, 0, sizeof(struct spu_state));
  1949. rc = spu_alloc_lscsa(csa);
  1950. if (rc)
  1951. return rc;
  1952. spin_lock_init(&csa->register_lock);
  1953. init_prob(csa);
  1954. init_priv1(csa);
  1955. init_priv2(csa);
  1956. return 0;
  1957. }
  1958. EXPORT_SYMBOL_GPL(spu_init_csa);
  1959. void spu_fini_csa(struct spu_state *csa)
  1960. {
  1961. spu_free_lscsa(csa);
  1962. }
  1963. EXPORT_SYMBOL_GPL(spu_fini_csa);