prpmc2800.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577
  1. /*
  2. * Motorola ECC prpmc280/f101 & prpmc2800/f101e platform code.
  3. *
  4. * Author: Mark A. Greer <mgreer@mvista.com>
  5. *
  6. * 2007 (c) MontaVista, Software, Inc. This file is licensed under
  7. * the terms of the GNU General Public License version 2. This program
  8. * is licensed "as is" without any warranty of any kind, whether express
  9. * or implied.
  10. */
  11. #include <stdarg.h>
  12. #include <stddef.h>
  13. #include "types.h"
  14. #include "elf.h"
  15. #include "page.h"
  16. #include "string.h"
  17. #include "stdio.h"
  18. #include "io.h"
  19. #include "ops.h"
  20. #include "gunzip_util.h"
  21. #include "mv64x60.h"
  22. extern char _end[];
  23. extern char _vmlinux_start[], _vmlinux_end[];
  24. extern char _dtb_start[], _dtb_end[];
  25. extern void udelay(long delay);
  26. #define KB 1024U
  27. #define MB (KB*KB)
  28. #define GB (KB*MB)
  29. #define MHz (1000U*1000U)
  30. #define GHz (1000U*MHz)
  31. #define BOARD_MODEL "PrPMC2800"
  32. #define BOARD_MODEL_MAX 32 /* max strlen(BOARD_MODEL) + 1 */
  33. #define EEPROM2_ADDR 0xa4
  34. #define EEPROM3_ADDR 0xa8
  35. BSS_STACK(16*KB);
  36. static u8 *bridge_base;
  37. typedef enum {
  38. BOARD_MODEL_PRPMC280,
  39. BOARD_MODEL_PRPMC2800,
  40. } prpmc2800_board_model;
  41. typedef enum {
  42. BRIDGE_TYPE_MV64360,
  43. BRIDGE_TYPE_MV64362,
  44. } prpmc2800_bridge_type;
  45. struct prpmc2800_board_info {
  46. prpmc2800_board_model model;
  47. char variant;
  48. prpmc2800_bridge_type bridge_type;
  49. u8 subsys0;
  50. u8 subsys1;
  51. u8 vpd4;
  52. u8 vpd4_mask;
  53. u32 core_speed;
  54. u32 mem_size;
  55. u32 boot_flash;
  56. u32 user_flash;
  57. };
  58. static struct prpmc2800_board_info prpmc2800_board_info[] = {
  59. {
  60. .model = BOARD_MODEL_PRPMC280,
  61. .variant = 'a',
  62. .bridge_type = BRIDGE_TYPE_MV64360,
  63. .subsys0 = 0xff,
  64. .subsys1 = 0xff,
  65. .vpd4 = 0x00,
  66. .vpd4_mask = 0x0f,
  67. .core_speed = 1*GHz,
  68. .mem_size = 512*MB,
  69. .boot_flash = 1*MB,
  70. .user_flash = 64*MB,
  71. },
  72. {
  73. .model = BOARD_MODEL_PRPMC280,
  74. .variant = 'b',
  75. .bridge_type = BRIDGE_TYPE_MV64362,
  76. .subsys0 = 0xff,
  77. .subsys1 = 0xff,
  78. .vpd4 = 0x01,
  79. .vpd4_mask = 0x0f,
  80. .core_speed = 1*GHz,
  81. .mem_size = 512*MB,
  82. .boot_flash = 0,
  83. .user_flash = 0,
  84. },
  85. {
  86. .model = BOARD_MODEL_PRPMC280,
  87. .variant = 'c',
  88. .bridge_type = BRIDGE_TYPE_MV64360,
  89. .subsys0 = 0xff,
  90. .subsys1 = 0xff,
  91. .vpd4 = 0x02,
  92. .vpd4_mask = 0x0f,
  93. .core_speed = 733*MHz,
  94. .mem_size = 512*MB,
  95. .boot_flash = 1*MB,
  96. .user_flash = 64*MB,
  97. },
  98. {
  99. .model = BOARD_MODEL_PRPMC280,
  100. .variant = 'd',
  101. .bridge_type = BRIDGE_TYPE_MV64360,
  102. .subsys0 = 0xff,
  103. .subsys1 = 0xff,
  104. .vpd4 = 0x03,
  105. .vpd4_mask = 0x0f,
  106. .core_speed = 1*GHz,
  107. .mem_size = 1*GB,
  108. .boot_flash = 1*MB,
  109. .user_flash = 64*MB,
  110. },
  111. {
  112. .model = BOARD_MODEL_PRPMC280,
  113. .variant = 'e',
  114. .bridge_type = BRIDGE_TYPE_MV64360,
  115. .subsys0 = 0xff,
  116. .subsys1 = 0xff,
  117. .vpd4 = 0x04,
  118. .vpd4_mask = 0x0f,
  119. .core_speed = 1*GHz,
  120. .mem_size = 512*MB,
  121. .boot_flash = 1*MB,
  122. .user_flash = 64*MB,
  123. },
  124. {
  125. .model = BOARD_MODEL_PRPMC280,
  126. .variant = 'f',
  127. .bridge_type = BRIDGE_TYPE_MV64362,
  128. .subsys0 = 0xff,
  129. .subsys1 = 0xff,
  130. .vpd4 = 0x05,
  131. .vpd4_mask = 0x0f,
  132. .core_speed = 733*MHz,
  133. .mem_size = 128*MB,
  134. .boot_flash = 1*MB,
  135. .user_flash = 0,
  136. },
  137. {
  138. .model = BOARD_MODEL_PRPMC280,
  139. .variant = 'g',
  140. .bridge_type = BRIDGE_TYPE_MV64360,
  141. .subsys0 = 0xff,
  142. .subsys1 = 0xff,
  143. .vpd4 = 0x06,
  144. .vpd4_mask = 0x0f,
  145. .core_speed = 1*GHz,
  146. .mem_size = 256*MB,
  147. .boot_flash = 1*MB,
  148. .user_flash = 0,
  149. },
  150. {
  151. .model = BOARD_MODEL_PRPMC280,
  152. .variant = 'h',
  153. .bridge_type = BRIDGE_TYPE_MV64360,
  154. .subsys0 = 0xff,
  155. .subsys1 = 0xff,
  156. .vpd4 = 0x07,
  157. .vpd4_mask = 0x0f,
  158. .core_speed = 1*GHz,
  159. .mem_size = 1*GB,
  160. .boot_flash = 1*MB,
  161. .user_flash = 64*MB,
  162. },
  163. {
  164. .model = BOARD_MODEL_PRPMC2800,
  165. .variant = 'a',
  166. .bridge_type = BRIDGE_TYPE_MV64360,
  167. .subsys0 = 0xb2,
  168. .subsys1 = 0x8c,
  169. .vpd4 = 0x00,
  170. .vpd4_mask = 0x00,
  171. .core_speed = 1*GHz,
  172. .mem_size = 512*MB,
  173. .boot_flash = 2*MB,
  174. .user_flash = 64*MB,
  175. },
  176. {
  177. .model = BOARD_MODEL_PRPMC2800,
  178. .variant = 'b',
  179. .bridge_type = BRIDGE_TYPE_MV64362,
  180. .subsys0 = 0xb2,
  181. .subsys1 = 0x8d,
  182. .vpd4 = 0x00,
  183. .vpd4_mask = 0x00,
  184. .core_speed = 1*GHz,
  185. .mem_size = 512*MB,
  186. .boot_flash = 0,
  187. .user_flash = 0,
  188. },
  189. {
  190. .model = BOARD_MODEL_PRPMC2800,
  191. .variant = 'c',
  192. .bridge_type = BRIDGE_TYPE_MV64360,
  193. .subsys0 = 0xb2,
  194. .subsys1 = 0x8e,
  195. .vpd4 = 0x00,
  196. .vpd4_mask = 0x00,
  197. .core_speed = 733*MHz,
  198. .mem_size = 512*MB,
  199. .boot_flash = 2*MB,
  200. .user_flash = 64*MB,
  201. },
  202. {
  203. .model = BOARD_MODEL_PRPMC2800,
  204. .variant = 'd',
  205. .bridge_type = BRIDGE_TYPE_MV64360,
  206. .subsys0 = 0xb2,
  207. .subsys1 = 0x8f,
  208. .vpd4 = 0x00,
  209. .vpd4_mask = 0x00,
  210. .core_speed = 1*GHz,
  211. .mem_size = 1*GB,
  212. .boot_flash = 2*MB,
  213. .user_flash = 64*MB,
  214. },
  215. {
  216. .model = BOARD_MODEL_PRPMC2800,
  217. .variant = 'e',
  218. .bridge_type = BRIDGE_TYPE_MV64360,
  219. .subsys0 = 0xa2,
  220. .subsys1 = 0x8a,
  221. .vpd4 = 0x00,
  222. .vpd4_mask = 0x00,
  223. .core_speed = 1*GHz,
  224. .mem_size = 512*MB,
  225. .boot_flash = 2*MB,
  226. .user_flash = 64*MB,
  227. },
  228. {
  229. .model = BOARD_MODEL_PRPMC2800,
  230. .variant = 'f',
  231. .bridge_type = BRIDGE_TYPE_MV64362,
  232. .subsys0 = 0xa2,
  233. .subsys1 = 0x8b,
  234. .vpd4 = 0x00,
  235. .vpd4_mask = 0x00,
  236. .core_speed = 733*MHz,
  237. .mem_size = 128*MB,
  238. .boot_flash = 2*MB,
  239. .user_flash = 0,
  240. },
  241. {
  242. .model = BOARD_MODEL_PRPMC2800,
  243. .variant = 'g',
  244. .bridge_type = BRIDGE_TYPE_MV64360,
  245. .subsys0 = 0xa2,
  246. .subsys1 = 0x8c,
  247. .vpd4 = 0x00,
  248. .vpd4_mask = 0x00,
  249. .core_speed = 1*GHz,
  250. .mem_size = 2*GB,
  251. .boot_flash = 2*MB,
  252. .user_flash = 64*MB,
  253. },
  254. {
  255. .model = BOARD_MODEL_PRPMC2800,
  256. .variant = 'h',
  257. .bridge_type = BRIDGE_TYPE_MV64360,
  258. .subsys0 = 0xa2,
  259. .subsys1 = 0x8d,
  260. .vpd4 = 0x00,
  261. .vpd4_mask = 0x00,
  262. .core_speed = 733*MHz,
  263. .mem_size = 1*GB,
  264. .boot_flash = 2*MB,
  265. .user_flash = 64*MB,
  266. },
  267. };
  268. static struct prpmc2800_board_info *prpmc2800_get_board_info(u8 *vpd)
  269. {
  270. struct prpmc2800_board_info *bip;
  271. int i;
  272. for (i=0,bip=prpmc2800_board_info; i<ARRAY_SIZE(prpmc2800_board_info);
  273. i++,bip++)
  274. if ((vpd[0] == bip->subsys0) && (vpd[1] == bip->subsys1)
  275. && ((vpd[4] & bip->vpd4_mask) == bip->vpd4))
  276. return bip;
  277. return NULL;
  278. }
  279. /* Get VPD from i2c eeprom 2, then match it to a board info entry */
  280. static struct prpmc2800_board_info *prpmc2800_get_bip(void)
  281. {
  282. struct prpmc2800_board_info *bip;
  283. u8 vpd[5];
  284. int rc;
  285. if (mv64x60_i2c_open())
  286. fatal("Error: Can't open i2c device\n\r");
  287. /* Get VPD from i2c eeprom-2 */
  288. memset(vpd, 0, sizeof(vpd));
  289. rc = mv64x60_i2c_read(EEPROM2_ADDR, vpd, 0x1fde, 2, sizeof(vpd));
  290. if (rc < 0)
  291. fatal("Error: Couldn't read eeprom2\n\r");
  292. mv64x60_i2c_close();
  293. /* Get board type & related info */
  294. bip = prpmc2800_get_board_info(vpd);
  295. if (bip == NULL) {
  296. printf("Error: Unsupported board or corrupted VPD:\n\r");
  297. printf(" 0x%x 0x%x 0x%x 0x%x 0x%x\n\r",
  298. vpd[0], vpd[1], vpd[2], vpd[3], vpd[4]);
  299. printf("Using device tree defaults...\n\r");
  300. }
  301. return bip;
  302. }
  303. static void prpmc2800_bridge_setup(u32 mem_size)
  304. {
  305. u32 i, v[12], enables, acc_bits;
  306. u32 pci_base_hi, pci_base_lo, size, buf[2];
  307. unsigned long cpu_base;
  308. int rc;
  309. void *devp;
  310. u8 *bridge_pbase, is_coherent;
  311. struct mv64x60_cpu2pci_win *tbl;
  312. bridge_pbase = mv64x60_get_bridge_pbase();
  313. is_coherent = mv64x60_is_coherent();
  314. if (is_coherent)
  315. acc_bits = MV64x60_PCI_ACC_CNTL_SNOOP_WB
  316. | MV64x60_PCI_ACC_CNTL_SWAP_NONE
  317. | MV64x60_PCI_ACC_CNTL_MBURST_32_BYTES
  318. | MV64x60_PCI_ACC_CNTL_RDSIZE_32_BYTES;
  319. else
  320. acc_bits = MV64x60_PCI_ACC_CNTL_SNOOP_NONE
  321. | MV64x60_PCI_ACC_CNTL_SWAP_NONE
  322. | MV64x60_PCI_ACC_CNTL_MBURST_128_BYTES
  323. | MV64x60_PCI_ACC_CNTL_RDSIZE_256_BYTES;
  324. mv64x60_config_ctlr_windows(bridge_base, bridge_pbase, is_coherent);
  325. mv64x60_config_pci_windows(bridge_base, bridge_pbase, 0, 0, mem_size,
  326. acc_bits);
  327. /* Get the cpu -> pci i/o & mem mappings from the device tree */
  328. devp = finddevice("/mv64x60/pci@80000000");
  329. if (devp == NULL)
  330. fatal("Error: Missing /mv64x60/pci@80000000"
  331. " device tree node\n\r");
  332. rc = getprop(devp, "ranges", v, sizeof(v));
  333. if (rc != sizeof(v))
  334. fatal("Error: Can't find /mv64x60/pci@80000000/ranges"
  335. " property\n\r");
  336. /* Get the cpu -> pci i/o & mem mappings from the device tree */
  337. devp = finddevice("/mv64x60");
  338. if (devp == NULL)
  339. fatal("Error: Missing /mv64x60 device tree node\n\r");
  340. enables = in_le32((u32 *)(bridge_base + MV64x60_CPU_BAR_ENABLE));
  341. enables |= 0x0007fe00; /* Disable all cpu->pci windows */
  342. out_le32((u32 *)(bridge_base + MV64x60_CPU_BAR_ENABLE), enables);
  343. for (i=0; i<12; i+=6) {
  344. switch (v[i] & 0xff000000) {
  345. case 0x01000000: /* PCI I/O Space */
  346. tbl = mv64x60_cpu2pci_io;
  347. break;
  348. case 0x02000000: /* PCI MEM Space */
  349. tbl = mv64x60_cpu2pci_mem;
  350. break;
  351. default:
  352. continue;
  353. }
  354. pci_base_hi = v[i+1];
  355. pci_base_lo = v[i+2];
  356. cpu_base = v[i+3];
  357. size = v[i+5];
  358. buf[0] = cpu_base;
  359. buf[1] = size;
  360. if (!dt_xlate_addr(devp, buf, sizeof(buf), &cpu_base))
  361. fatal("Error: Can't translate PCI address 0x%x\n\r",
  362. (u32)cpu_base);
  363. mv64x60_config_cpu2pci_window(bridge_base, 0, pci_base_hi,
  364. pci_base_lo, cpu_base, size, tbl);
  365. }
  366. enables &= ~0x00000600; /* Enable cpu->pci0 i/o, cpu->pci0 mem0 */
  367. out_le32((u32 *)(bridge_base + MV64x60_CPU_BAR_ENABLE), enables);
  368. }
  369. static void prpmc2800_fixups(void)
  370. {
  371. u32 v[2], l, mem_size;
  372. int rc;
  373. void *devp;
  374. char model[BOARD_MODEL_MAX];
  375. struct prpmc2800_board_info *bip;
  376. bip = prpmc2800_get_bip(); /* Get board info based on VPD */
  377. mem_size = (bip) ? bip->mem_size : mv64x60_get_mem_size(bridge_base);
  378. prpmc2800_bridge_setup(mem_size); /* Do necessary bridge setup */
  379. /* If the VPD doesn't match what we know about, just use the
  380. * defaults already in the device tree.
  381. */
  382. if (!bip)
  383. return;
  384. /* Know the board type so override device tree defaults */
  385. /* Set /model appropriately */
  386. devp = finddevice("/");
  387. if (devp == NULL)
  388. fatal("Error: Missing '/' device tree node\n\r");
  389. memset(model, 0, BOARD_MODEL_MAX);
  390. strncpy(model, BOARD_MODEL, BOARD_MODEL_MAX - 2);
  391. l = strlen(model);
  392. if (bip->model == BOARD_MODEL_PRPMC280)
  393. l--;
  394. model[l++] = bip->variant;
  395. model[l++] = '\0';
  396. setprop(devp, "model", model, l);
  397. /* Set /cpus/PowerPC,7447/clock-frequency */
  398. devp = finddevice("/cpus/PowerPC,7447");
  399. if (devp == NULL)
  400. fatal("Error: Missing proper /cpus device tree node\n\r");
  401. v[0] = bip->core_speed;
  402. setprop(devp, "clock-frequency", &v[0], sizeof(v[0]));
  403. /* Set /memory/reg size */
  404. devp = finddevice("/memory");
  405. if (devp == NULL)
  406. fatal("Error: Missing /memory device tree node\n\r");
  407. v[0] = 0;
  408. v[1] = bip->mem_size;
  409. setprop(devp, "reg", v, sizeof(v));
  410. /* Update /mv64x60/model, if this is a mv64362 */
  411. if (bip->bridge_type == BRIDGE_TYPE_MV64362) {
  412. devp = finddevice("/mv64x60");
  413. if (devp == NULL)
  414. fatal("Error: Missing /mv64x60 device tree node\n\r");
  415. setprop(devp, "model", "mv64362", strlen("mv64362") + 1);
  416. }
  417. /* Set User FLASH size */
  418. devp = finddevice("/mv64x60/flash@a0000000");
  419. if (devp == NULL)
  420. fatal("Error: Missing User FLASH device tree node\n\r");
  421. rc = getprop(devp, "reg", v, sizeof(v));
  422. if (rc != sizeof(v))
  423. fatal("Error: Can't find User FLASH reg property\n\r");
  424. v[1] = bip->user_flash;
  425. setprop(devp, "reg", v, sizeof(v));
  426. }
  427. #define MV64x60_MPP_CNTL_0 0xf000
  428. #define MV64x60_MPP_CNTL_2 0xf008
  429. #define MV64x60_GPP_IO_CNTL 0xf100
  430. #define MV64x60_GPP_LEVEL_CNTL 0xf110
  431. #define MV64x60_GPP_VALUE_SET 0xf118
  432. static void prpmc2800_reset(void)
  433. {
  434. u32 temp;
  435. udelay(5000000);
  436. if (bridge_base != 0) {
  437. temp = in_le32((u32 *)(bridge_base + MV64x60_MPP_CNTL_0));
  438. temp &= 0xFFFF0FFF;
  439. out_le32((u32 *)(bridge_base + MV64x60_MPP_CNTL_0), temp);
  440. temp = in_le32((u32 *)(bridge_base + MV64x60_GPP_LEVEL_CNTL));
  441. temp |= 0x00000004;
  442. out_le32((u32 *)(bridge_base + MV64x60_GPP_LEVEL_CNTL), temp);
  443. temp = in_le32((u32 *)(bridge_base + MV64x60_GPP_IO_CNTL));
  444. temp |= 0x00000004;
  445. out_le32((u32 *)(bridge_base + MV64x60_GPP_IO_CNTL), temp);
  446. temp = in_le32((u32 *)(bridge_base + MV64x60_MPP_CNTL_2));
  447. temp &= 0xFFFF0FFF;
  448. out_le32((u32 *)(bridge_base + MV64x60_MPP_CNTL_2), temp);
  449. temp = in_le32((u32 *)(bridge_base + MV64x60_GPP_LEVEL_CNTL));
  450. temp |= 0x00080000;
  451. out_le32((u32 *)(bridge_base + MV64x60_GPP_LEVEL_CNTL), temp);
  452. temp = in_le32((u32 *)(bridge_base + MV64x60_GPP_IO_CNTL));
  453. temp |= 0x00080000;
  454. out_le32((u32 *)(bridge_base + MV64x60_GPP_IO_CNTL), temp);
  455. out_le32((u32 *)(bridge_base + MV64x60_GPP_VALUE_SET),
  456. 0x00080004);
  457. }
  458. for (;;);
  459. }
  460. #define HEAP_SIZE (16*MB)
  461. static struct gunzip_state gzstate;
  462. void platform_init(unsigned long r3, unsigned long r4, unsigned long r5,
  463. unsigned long r6, unsigned long r7)
  464. {
  465. struct elf_info ei;
  466. char *heap_start, *dtb;
  467. int dt_size = _dtb_end - _dtb_start;
  468. void *vmlinuz_addr = _vmlinux_start;
  469. unsigned long vmlinuz_size = _vmlinux_end - _vmlinux_start;
  470. char elfheader[256];
  471. if (dt_size <= 0) /* No fdt */
  472. exit();
  473. /*
  474. * Start heap after end of the kernel (after decompressed to
  475. * address 0) or the end of the zImage, whichever is higher.
  476. * That's so things allocated by simple_alloc won't overwrite
  477. * any part of the zImage and the kernel won't overwrite the dtb
  478. * when decompressed & relocated.
  479. */
  480. gunzip_start(&gzstate, vmlinuz_addr, vmlinuz_size);
  481. gunzip_exactly(&gzstate, elfheader, sizeof(elfheader));
  482. if (!parse_elf32(elfheader, &ei))
  483. exit();
  484. heap_start = (char *)(ei.memsize + ei.elfoffset); /* end of kernel*/
  485. heap_start = max(heap_start, (char *)_end); /* end of zImage */
  486. if ((unsigned)simple_alloc_init(heap_start, HEAP_SIZE, 2*KB, 16)
  487. > (128*MB))
  488. exit();
  489. /* Relocate dtb to safe area past end of zImage & kernel */
  490. dtb = malloc(dt_size);
  491. if (!dtb)
  492. exit();
  493. memmove(dtb, _dtb_start, dt_size);
  494. if (ft_init(dtb, dt_size, 16))
  495. exit();
  496. bridge_base = mv64x60_get_bridge_base();
  497. platform_ops.fixups = prpmc2800_fixups;
  498. platform_ops.exit = prpmc2800_reset;
  499. if (serial_console_init() < 0)
  500. exit();
  501. }
  502. /* _zimage_start called very early--need to turn off external interrupts */
  503. asm (" .globl _zimage_start\n\
  504. _zimage_start:\n\
  505. mfmsr 10\n\
  506. rlwinm 10,10,0,~(1<<15) /* Clear MSR_EE */\n\
  507. sync\n\
  508. mtmsr 10\n\
  509. isync\n\
  510. b _zimage_start_lib\n\
  511. ");