time.c 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. #include <linux/types.h>
  2. #include <linux/interrupt.h>
  3. #include <linux/time.h>
  4. #include <asm/sni.h>
  5. #include <asm/time.h>
  6. #define SNI_CLOCK_TICK_RATE 3686400
  7. #define SNI_COUNTER2_DIV 64
  8. #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
  9. static void sni_a20r_timer_ack(void)
  10. {
  11. *(volatile u8 *)A20R_PT_TIM0_ACK = 0x0; wmb();
  12. }
  13. /*
  14. * a20r platform uses 2 counters to divide the input frequency.
  15. * Counter 2 output is connected to Counter 0 & 1 input.
  16. */
  17. static void __init sni_a20r_timer_setup(struct irqaction *irq)
  18. {
  19. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34; wmb();
  20. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = (SNI_COUNTER0_DIV) & 0xff; wmb();
  21. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = (SNI_COUNTER0_DIV >> 8) & 0xff; wmb();
  22. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4; wmb();
  23. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = (SNI_COUNTER2_DIV) & 0xff; wmb();
  24. *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = (SNI_COUNTER2_DIV >> 8) & 0xff; wmb();
  25. setup_irq(SNI_A20R_IRQ_TIMER, irq);
  26. mips_timer_ack = sni_a20r_timer_ack;
  27. }
  28. #define SNI_8254_TICK_RATE 1193182UL
  29. #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
  30. static __init unsigned long dosample(void)
  31. {
  32. u32 ct0, ct1;
  33. volatile u8 msb, lsb;
  34. /* Start the counter. */
  35. outb_p (0x34, 0x43);
  36. outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
  37. outb (SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
  38. /* Get initial counter invariant */
  39. ct0 = read_c0_count();
  40. /* Latch and spin until top byte of counter0 is zero */
  41. do {
  42. outb (0x00, 0x43);
  43. lsb = inb (0x40);
  44. msb = inb (0x40);
  45. ct1 = read_c0_count();
  46. } while (msb);
  47. /* Stop the counter. */
  48. outb (0x38, 0x43);
  49. /*
  50. * Return the difference, this is how far the r4k counter increments
  51. * for every 1/HZ seconds. We round off the nearest 1 MHz of master
  52. * clock (= 1000000 / HZ / 2).
  53. */
  54. /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
  55. return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
  56. }
  57. /*
  58. * Here we need to calibrate the cycle counter to at least be close.
  59. */
  60. __init void sni_cpu_time_init(void)
  61. {
  62. unsigned long r4k_ticks[3];
  63. unsigned long r4k_tick;
  64. /*
  65. * Figure out the r4k offset, the algorithm is very simple and works in
  66. * _all_ cases as long as the 8254 counter register itself works ok (as
  67. * an interrupt driving timer it does not because of bug, this is why
  68. * we are using the onchip r4k counter/compare register to serve this
  69. * purpose, but for r4k_offset calculation it will work ok for us).
  70. * There are other very complicated ways of performing this calculation
  71. * but this one works just fine so I am not going to futz around. ;-)
  72. */
  73. printk(KERN_INFO "Calibrating system timer... ");
  74. dosample(); /* Prime cache. */
  75. dosample(); /* Prime cache. */
  76. /* Zero is NOT an option. */
  77. do {
  78. r4k_ticks[0] = dosample();
  79. } while (!r4k_ticks[0]);
  80. do {
  81. r4k_ticks[1] = dosample();
  82. } while (!r4k_ticks[1]);
  83. if (r4k_ticks[0] != r4k_ticks[1]) {
  84. printk("warning: timer counts differ, retrying... ");
  85. r4k_ticks[2] = dosample();
  86. if (r4k_ticks[2] == r4k_ticks[0]
  87. || r4k_ticks[2] == r4k_ticks[1])
  88. r4k_tick = r4k_ticks[2];
  89. else {
  90. printk("disagreement, using average... ");
  91. r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
  92. + r4k_ticks[2]) / 3;
  93. }
  94. } else
  95. r4k_tick = r4k_ticks[0];
  96. printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
  97. (int) (r4k_tick / (500000 / HZ)),
  98. (int) (r4k_tick % (500000 / HZ)));
  99. mips_hpt_frequency = r4k_tick * HZ;
  100. }
  101. /*
  102. * R4k counter based timer interrupt. Works on RM200-225 and possibly
  103. * others but not on RM400
  104. */
  105. static void __init sni_cpu_timer_setup(struct irqaction *irq)
  106. {
  107. setup_irq(SNI_MIPS_IRQ_CPU_TIMER, irq);
  108. }
  109. void __init plat_timer_setup(struct irqaction *irq)
  110. {
  111. switch (sni_brd_type) {
  112. case SNI_BRD_10:
  113. case SNI_BRD_10NEW:
  114. case SNI_BRD_TOWER_OASIC:
  115. case SNI_BRD_MINITOWER:
  116. sni_a20r_timer_setup (irq);
  117. break;
  118. case SNI_BRD_PCI_TOWER:
  119. case SNI_BRD_RM200:
  120. case SNI_BRD_PCI_MTOWER:
  121. case SNI_BRD_PCI_DESKTOP:
  122. case SNI_BRD_PCI_TOWER_CPLUS:
  123. case SNI_BRD_PCI_MTOWER_CPLUS:
  124. sni_cpu_timer_setup (irq);
  125. break;
  126. }
  127. }