contig.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1998-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Stephane Eranian <eranian@hpl.hp.com>
  9. * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10. * Copyright (C) 1999 VA Linux Systems
  11. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12. * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13. *
  14. * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15. * memory.
  16. */
  17. #include <linux/bootmem.h>
  18. #include <linux/efi.h>
  19. #include <linux/mm.h>
  20. #include <linux/swap.h>
  21. #include <asm/meminit.h>
  22. #include <asm/pgalloc.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/sections.h>
  25. #include <asm/mca.h>
  26. #ifdef CONFIG_VIRTUAL_MEM_MAP
  27. static unsigned long max_gap;
  28. #endif
  29. /**
  30. * show_mem - give short summary of memory stats
  31. *
  32. * Shows a simple page count of reserved and used pages in the system.
  33. * For discontig machines, it does this on a per-pgdat basis.
  34. */
  35. void show_mem(void)
  36. {
  37. int i, total_reserved = 0;
  38. int total_shared = 0, total_cached = 0;
  39. unsigned long total_present = 0;
  40. pg_data_t *pgdat;
  41. printk(KERN_INFO "Mem-info:\n");
  42. show_free_areas();
  43. printk(KERN_INFO "Free swap: %6ldkB\n",
  44. nr_swap_pages<<(PAGE_SHIFT-10));
  45. printk(KERN_INFO "Node memory in pages:\n");
  46. for_each_online_pgdat(pgdat) {
  47. unsigned long present;
  48. unsigned long flags;
  49. int shared = 0, cached = 0, reserved = 0;
  50. pgdat_resize_lock(pgdat, &flags);
  51. present = pgdat->node_present_pages;
  52. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  53. struct page *page;
  54. if (pfn_valid(pgdat->node_start_pfn + i))
  55. page = pfn_to_page(pgdat->node_start_pfn + i);
  56. else {
  57. #ifdef CONFIG_VIRTUAL_MEM_MAP
  58. if (max_gap < LARGE_GAP)
  59. continue;
  60. #endif
  61. i = vmemmap_find_next_valid_pfn(pgdat->node_id,
  62. i) - 1;
  63. continue;
  64. }
  65. if (PageReserved(page))
  66. reserved++;
  67. else if (PageSwapCache(page))
  68. cached++;
  69. else if (page_count(page))
  70. shared += page_count(page)-1;
  71. }
  72. pgdat_resize_unlock(pgdat, &flags);
  73. total_present += present;
  74. total_reserved += reserved;
  75. total_cached += cached;
  76. total_shared += shared;
  77. printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
  78. "shrd: %10d, swpd: %10d\n", pgdat->node_id,
  79. present, reserved, shared, cached);
  80. }
  81. printk(KERN_INFO "%ld pages of RAM\n", total_present);
  82. printk(KERN_INFO "%d reserved pages\n", total_reserved);
  83. printk(KERN_INFO "%d pages shared\n", total_shared);
  84. printk(KERN_INFO "%d pages swap cached\n", total_cached);
  85. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  86. quicklist_total_size());
  87. printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  88. }
  89. /* physical address where the bootmem map is located */
  90. unsigned long bootmap_start;
  91. /**
  92. * find_bootmap_location - callback to find a memory area for the bootmap
  93. * @start: start of region
  94. * @end: end of region
  95. * @arg: unused callback data
  96. *
  97. * Find a place to put the bootmap and return its starting address in
  98. * bootmap_start. This address must be page-aligned.
  99. */
  100. static int __init
  101. find_bootmap_location (unsigned long start, unsigned long end, void *arg)
  102. {
  103. unsigned long needed = *(unsigned long *)arg;
  104. unsigned long range_start, range_end, free_start;
  105. int i;
  106. #if IGNORE_PFN0
  107. if (start == PAGE_OFFSET) {
  108. start += PAGE_SIZE;
  109. if (start >= end)
  110. return 0;
  111. }
  112. #endif
  113. free_start = PAGE_OFFSET;
  114. for (i = 0; i < num_rsvd_regions; i++) {
  115. range_start = max(start, free_start);
  116. range_end = min(end, rsvd_region[i].start & PAGE_MASK);
  117. free_start = PAGE_ALIGN(rsvd_region[i].end);
  118. if (range_end <= range_start)
  119. continue; /* skip over empty range */
  120. if (range_end - range_start >= needed) {
  121. bootmap_start = __pa(range_start);
  122. return -1; /* done */
  123. }
  124. /* nothing more available in this segment */
  125. if (range_end == end)
  126. return 0;
  127. }
  128. return 0;
  129. }
  130. /**
  131. * find_memory - setup memory map
  132. *
  133. * Walk the EFI memory map and find usable memory for the system, taking
  134. * into account reserved areas.
  135. */
  136. void __init
  137. find_memory (void)
  138. {
  139. unsigned long bootmap_size;
  140. reserve_memory();
  141. /* first find highest page frame number */
  142. min_low_pfn = ~0UL;
  143. max_low_pfn = 0;
  144. efi_memmap_walk(find_max_min_low_pfn, NULL);
  145. max_pfn = max_low_pfn;
  146. /* how many bytes to cover all the pages */
  147. bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
  148. /* look for a location to hold the bootmap */
  149. bootmap_start = ~0UL;
  150. efi_memmap_walk(find_bootmap_location, &bootmap_size);
  151. if (bootmap_start == ~0UL)
  152. panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
  153. bootmap_size = init_bootmem_node(NODE_DATA(0),
  154. (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
  155. /* Free all available memory, then mark bootmem-map as being in use. */
  156. efi_memmap_walk(filter_rsvd_memory, free_bootmem);
  157. reserve_bootmem(bootmap_start, bootmap_size);
  158. find_initrd();
  159. }
  160. #ifdef CONFIG_SMP
  161. /**
  162. * per_cpu_init - setup per-cpu variables
  163. *
  164. * Allocate and setup per-cpu data areas.
  165. */
  166. void * __cpuinit
  167. per_cpu_init (void)
  168. {
  169. void *cpu_data;
  170. int cpu;
  171. static int first_time=1;
  172. /*
  173. * get_free_pages() cannot be used before cpu_init() done. BSP
  174. * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
  175. * get_zeroed_page().
  176. */
  177. if (first_time) {
  178. first_time=0;
  179. cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
  180. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  181. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  182. memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
  183. __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
  184. cpu_data += PERCPU_PAGE_SIZE;
  185. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  186. }
  187. }
  188. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  189. }
  190. #endif /* CONFIG_SMP */
  191. static int
  192. count_pages (u64 start, u64 end, void *arg)
  193. {
  194. unsigned long *count = arg;
  195. *count += (end - start) >> PAGE_SHIFT;
  196. return 0;
  197. }
  198. /*
  199. * Set up the page tables.
  200. */
  201. void __init
  202. paging_init (void)
  203. {
  204. unsigned long max_dma;
  205. unsigned long max_zone_pfns[MAX_NR_ZONES];
  206. num_physpages = 0;
  207. efi_memmap_walk(count_pages, &num_physpages);
  208. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  209. #ifdef CONFIG_ZONE_DMA
  210. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  211. max_zone_pfns[ZONE_DMA] = max_dma;
  212. #endif
  213. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  214. #ifdef CONFIG_VIRTUAL_MEM_MAP
  215. efi_memmap_walk(register_active_ranges, NULL);
  216. efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
  217. if (max_gap < LARGE_GAP) {
  218. vmem_map = (struct page *) 0;
  219. free_area_init_nodes(max_zone_pfns);
  220. } else {
  221. unsigned long map_size;
  222. /* allocate virtual_mem_map */
  223. map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  224. sizeof(struct page));
  225. vmalloc_end -= map_size;
  226. vmem_map = (struct page *) vmalloc_end;
  227. efi_memmap_walk(create_mem_map_page_table, NULL);
  228. /*
  229. * alloc_node_mem_map makes an adjustment for mem_map
  230. * which isn't compatible with vmem_map.
  231. */
  232. NODE_DATA(0)->node_mem_map = vmem_map +
  233. find_min_pfn_with_active_regions();
  234. free_area_init_nodes(max_zone_pfns);
  235. printk("Virtual mem_map starts at 0x%p\n", mem_map);
  236. }
  237. #else /* !CONFIG_VIRTUAL_MEM_MAP */
  238. add_active_range(0, 0, max_low_pfn);
  239. free_area_init_nodes(max_zone_pfns);
  240. #endif /* !CONFIG_VIRTUAL_MEM_MAP */
  241. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  242. }