setup.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Stephane Eranian <eranian@hpl.hp.com>
  7. * Copyright (C) 2000, 2004 Intel Corp
  8. * Rohit Seth <rohit.seth@intel.com>
  9. * Suresh Siddha <suresh.b.siddha@intel.com>
  10. * Gordon Jin <gordon.jin@intel.com>
  11. * Copyright (C) 1999 VA Linux Systems
  12. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13. *
  14. * 12/26/04 S.Siddha, G.Jin, R.Seth
  15. * Add multi-threading and multi-core detection
  16. * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17. * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18. * 03/31/00 R.Seth cpu_initialized and current->processor fixes
  19. * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
  20. * 02/01/00 R.Seth fixed get_cpuinfo for SMP
  21. * 01/07/99 S.Eranian added the support for command line argument
  22. * 06/24/99 W.Drummond added boot_cpu_data.
  23. * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/acpi.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/console.h>
  30. #include <linux/delay.h>
  31. #include <linux/kernel.h>
  32. #include <linux/reboot.h>
  33. #include <linux/sched.h>
  34. #include <linux/seq_file.h>
  35. #include <linux/string.h>
  36. #include <linux/threads.h>
  37. #include <linux/screen_info.h>
  38. #include <linux/dmi.h>
  39. #include <linux/serial.h>
  40. #include <linux/serial_core.h>
  41. #include <linux/efi.h>
  42. #include <linux/initrd.h>
  43. #include <linux/pm.h>
  44. #include <linux/cpufreq.h>
  45. #include <linux/kexec.h>
  46. #include <linux/crash_dump.h>
  47. #include <asm/ia32.h>
  48. #include <asm/machvec.h>
  49. #include <asm/mca.h>
  50. #include <asm/meminit.h>
  51. #include <asm/page.h>
  52. #include <asm/patch.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/processor.h>
  55. #include <asm/sal.h>
  56. #include <asm/sections.h>
  57. #include <asm/setup.h>
  58. #include <asm/smp.h>
  59. #include <asm/system.h>
  60. #include <asm/unistd.h>
  61. #include <asm/system.h>
  62. #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  63. # error "struct cpuinfo_ia64 too big!"
  64. #endif
  65. #ifdef CONFIG_SMP
  66. unsigned long __per_cpu_offset[NR_CPUS];
  67. EXPORT_SYMBOL(__per_cpu_offset);
  68. #endif
  69. extern void ia64_setup_printk_clock(void);
  70. DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
  71. DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  72. unsigned long ia64_cycles_per_usec;
  73. struct ia64_boot_param *ia64_boot_param;
  74. struct screen_info screen_info;
  75. unsigned long vga_console_iobase;
  76. unsigned long vga_console_membase;
  77. static struct resource data_resource = {
  78. .name = "Kernel data",
  79. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  80. };
  81. static struct resource code_resource = {
  82. .name = "Kernel code",
  83. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  84. };
  85. extern char _text[], _end[], _etext[];
  86. unsigned long ia64_max_cacheline_size;
  87. int dma_get_cache_alignment(void)
  88. {
  89. return ia64_max_cacheline_size;
  90. }
  91. EXPORT_SYMBOL(dma_get_cache_alignment);
  92. unsigned long ia64_iobase; /* virtual address for I/O accesses */
  93. EXPORT_SYMBOL(ia64_iobase);
  94. struct io_space io_space[MAX_IO_SPACES];
  95. EXPORT_SYMBOL(io_space);
  96. unsigned int num_io_spaces;
  97. /*
  98. * "flush_icache_range()" needs to know what processor dependent stride size to use
  99. * when it makes i-cache(s) coherent with d-caches.
  100. */
  101. #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
  102. unsigned long ia64_i_cache_stride_shift = ~0;
  103. /*
  104. * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
  105. * mask specifies a mask of address bits that must be 0 in order for two buffers to be
  106. * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
  107. * address of the second buffer must be aligned to (merge_mask+1) in order to be
  108. * mergeable). By default, we assume there is no I/O MMU which can merge physically
  109. * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
  110. * page-size of 2^64.
  111. */
  112. unsigned long ia64_max_iommu_merge_mask = ~0UL;
  113. EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
  114. /*
  115. * We use a special marker for the end of memory and it uses the extra (+1) slot
  116. */
  117. struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
  118. int num_rsvd_regions __initdata;
  119. /*
  120. * Filter incoming memory segments based on the primitive map created from the boot
  121. * parameters. Segments contained in the map are removed from the memory ranges. A
  122. * caller-specified function is called with the memory ranges that remain after filtering.
  123. * This routine does not assume the incoming segments are sorted.
  124. */
  125. int __init
  126. filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
  127. {
  128. unsigned long range_start, range_end, prev_start;
  129. void (*func)(unsigned long, unsigned long, int);
  130. int i;
  131. #if IGNORE_PFN0
  132. if (start == PAGE_OFFSET) {
  133. printk(KERN_WARNING "warning: skipping physical page 0\n");
  134. start += PAGE_SIZE;
  135. if (start >= end) return 0;
  136. }
  137. #endif
  138. /*
  139. * lowest possible address(walker uses virtual)
  140. */
  141. prev_start = PAGE_OFFSET;
  142. func = arg;
  143. for (i = 0; i < num_rsvd_regions; ++i) {
  144. range_start = max(start, prev_start);
  145. range_end = min(end, rsvd_region[i].start);
  146. if (range_start < range_end)
  147. call_pernode_memory(__pa(range_start), range_end - range_start, func);
  148. /* nothing more available in this segment */
  149. if (range_end == end) return 0;
  150. prev_start = rsvd_region[i].end;
  151. }
  152. /* end of memory marker allows full processing inside loop body */
  153. return 0;
  154. }
  155. static void __init
  156. sort_regions (struct rsvd_region *rsvd_region, int max)
  157. {
  158. int j;
  159. /* simple bubble sorting */
  160. while (max--) {
  161. for (j = 0; j < max; ++j) {
  162. if (rsvd_region[j].start > rsvd_region[j+1].start) {
  163. struct rsvd_region tmp;
  164. tmp = rsvd_region[j];
  165. rsvd_region[j] = rsvd_region[j + 1];
  166. rsvd_region[j + 1] = tmp;
  167. }
  168. }
  169. }
  170. }
  171. /*
  172. * Request address space for all standard resources
  173. */
  174. static int __init register_memory(void)
  175. {
  176. code_resource.start = ia64_tpa(_text);
  177. code_resource.end = ia64_tpa(_etext) - 1;
  178. data_resource.start = ia64_tpa(_etext);
  179. data_resource.end = ia64_tpa(_end) - 1;
  180. efi_initialize_iomem_resources(&code_resource, &data_resource);
  181. return 0;
  182. }
  183. __initcall(register_memory);
  184. /**
  185. * reserve_memory - setup reserved memory areas
  186. *
  187. * Setup the reserved memory areas set aside for the boot parameters,
  188. * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
  189. * see include/asm-ia64/meminit.h if you need to define more.
  190. */
  191. void __init
  192. reserve_memory (void)
  193. {
  194. int n = 0;
  195. /*
  196. * none of the entries in this table overlap
  197. */
  198. rsvd_region[n].start = (unsigned long) ia64_boot_param;
  199. rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
  200. n++;
  201. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
  202. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
  203. n++;
  204. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
  205. rsvd_region[n].end = (rsvd_region[n].start
  206. + strlen(__va(ia64_boot_param->command_line)) + 1);
  207. n++;
  208. rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
  209. rsvd_region[n].end = (unsigned long) ia64_imva(_end);
  210. n++;
  211. #ifdef CONFIG_BLK_DEV_INITRD
  212. if (ia64_boot_param->initrd_start) {
  213. rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
  214. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
  215. n++;
  216. }
  217. #endif
  218. #ifdef CONFIG_PROC_VMCORE
  219. if (reserve_elfcorehdr(&rsvd_region[n].start,
  220. &rsvd_region[n].end) == 0)
  221. n++;
  222. #endif
  223. efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
  224. n++;
  225. #ifdef CONFIG_KEXEC
  226. /* crashkernel=size@offset specifies the size to reserve for a crash
  227. * kernel. If offset is 0, then it is determined automatically.
  228. * By reserving this memory we guarantee that linux never set's it
  229. * up as a DMA target.Useful for holding code to do something
  230. * appropriate after a kernel panic.
  231. */
  232. {
  233. char *from = strstr(boot_command_line, "crashkernel=");
  234. unsigned long base, size;
  235. if (from) {
  236. size = memparse(from + 12, &from);
  237. if (*from == '@')
  238. base = memparse(from+1, &from);
  239. else
  240. base = 0;
  241. if (size) {
  242. if (!base) {
  243. sort_regions(rsvd_region, n);
  244. base = kdump_find_rsvd_region(size,
  245. rsvd_region, n);
  246. }
  247. if (base != ~0UL) {
  248. rsvd_region[n].start =
  249. (unsigned long)__va(base);
  250. rsvd_region[n].end =
  251. (unsigned long)__va(base + size);
  252. n++;
  253. crashk_res.start = base;
  254. crashk_res.end = base + size - 1;
  255. }
  256. }
  257. }
  258. efi_memmap_res.start = ia64_boot_param->efi_memmap;
  259. efi_memmap_res.end = efi_memmap_res.start +
  260. ia64_boot_param->efi_memmap_size;
  261. boot_param_res.start = __pa(ia64_boot_param);
  262. boot_param_res.end = boot_param_res.start +
  263. sizeof(*ia64_boot_param);
  264. }
  265. #endif
  266. /* end of memory marker */
  267. rsvd_region[n].start = ~0UL;
  268. rsvd_region[n].end = ~0UL;
  269. n++;
  270. num_rsvd_regions = n;
  271. BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
  272. sort_regions(rsvd_region, num_rsvd_regions);
  273. }
  274. /**
  275. * find_initrd - get initrd parameters from the boot parameter structure
  276. *
  277. * Grab the initrd start and end from the boot parameter struct given us by
  278. * the boot loader.
  279. */
  280. void __init
  281. find_initrd (void)
  282. {
  283. #ifdef CONFIG_BLK_DEV_INITRD
  284. if (ia64_boot_param->initrd_start) {
  285. initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
  286. initrd_end = initrd_start+ia64_boot_param->initrd_size;
  287. printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
  288. initrd_start, ia64_boot_param->initrd_size);
  289. }
  290. #endif
  291. }
  292. static void __init
  293. io_port_init (void)
  294. {
  295. unsigned long phys_iobase;
  296. /*
  297. * Set `iobase' based on the EFI memory map or, failing that, the
  298. * value firmware left in ar.k0.
  299. *
  300. * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
  301. * the port's virtual address, so ia32_load_state() loads it with a
  302. * user virtual address. But in ia64 mode, glibc uses the
  303. * *physical* address in ar.k0 to mmap the appropriate area from
  304. * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
  305. * cases, user-mode can only use the legacy 0-64K I/O port space.
  306. *
  307. * ar.k0 is not involved in kernel I/O port accesses, which can use
  308. * any of the I/O port spaces and are done via MMIO using the
  309. * virtual mmio_base from the appropriate io_space[].
  310. */
  311. phys_iobase = efi_get_iobase();
  312. if (!phys_iobase) {
  313. phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
  314. printk(KERN_INFO "No I/O port range found in EFI memory map, "
  315. "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
  316. }
  317. ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
  318. ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
  319. /* setup legacy IO port space */
  320. io_space[0].mmio_base = ia64_iobase;
  321. io_space[0].sparse = 1;
  322. num_io_spaces = 1;
  323. }
  324. /**
  325. * early_console_setup - setup debugging console
  326. *
  327. * Consoles started here require little enough setup that we can start using
  328. * them very early in the boot process, either right after the machine
  329. * vector initialization, or even before if the drivers can detect their hw.
  330. *
  331. * Returns non-zero if a console couldn't be setup.
  332. */
  333. static inline int __init
  334. early_console_setup (char *cmdline)
  335. {
  336. int earlycons = 0;
  337. #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
  338. {
  339. extern int sn_serial_console_early_setup(void);
  340. if (!sn_serial_console_early_setup())
  341. earlycons++;
  342. }
  343. #endif
  344. #ifdef CONFIG_EFI_PCDP
  345. if (!efi_setup_pcdp_console(cmdline))
  346. earlycons++;
  347. #endif
  348. #ifdef CONFIG_SERIAL_8250_CONSOLE
  349. if (!early_serial_console_init(cmdline))
  350. earlycons++;
  351. #endif
  352. return (earlycons) ? 0 : -1;
  353. }
  354. static inline void
  355. mark_bsp_online (void)
  356. {
  357. #ifdef CONFIG_SMP
  358. /* If we register an early console, allow CPU 0 to printk */
  359. cpu_set(smp_processor_id(), cpu_online_map);
  360. #endif
  361. }
  362. #ifdef CONFIG_SMP
  363. static void __init
  364. check_for_logical_procs (void)
  365. {
  366. pal_logical_to_physical_t info;
  367. s64 status;
  368. status = ia64_pal_logical_to_phys(0, &info);
  369. if (status == -1) {
  370. printk(KERN_INFO "No logical to physical processor mapping "
  371. "available\n");
  372. return;
  373. }
  374. if (status) {
  375. printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
  376. status);
  377. return;
  378. }
  379. /*
  380. * Total number of siblings that BSP has. Though not all of them
  381. * may have booted successfully. The correct number of siblings
  382. * booted is in info.overview_num_log.
  383. */
  384. smp_num_siblings = info.overview_tpc;
  385. smp_num_cpucores = info.overview_cpp;
  386. }
  387. #endif
  388. static __initdata int nomca;
  389. static __init int setup_nomca(char *s)
  390. {
  391. nomca = 1;
  392. return 0;
  393. }
  394. early_param("nomca", setup_nomca);
  395. #ifdef CONFIG_PROC_VMCORE
  396. /* elfcorehdr= specifies the location of elf core header
  397. * stored by the crashed kernel.
  398. */
  399. static int __init parse_elfcorehdr(char *arg)
  400. {
  401. if (!arg)
  402. return -EINVAL;
  403. elfcorehdr_addr = memparse(arg, &arg);
  404. return 0;
  405. }
  406. early_param("elfcorehdr", parse_elfcorehdr);
  407. int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
  408. {
  409. unsigned long length;
  410. /* We get the address using the kernel command line,
  411. * but the size is extracted from the EFI tables.
  412. * Both address and size are required for reservation
  413. * to work properly.
  414. */
  415. if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
  416. return -EINVAL;
  417. if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
  418. elfcorehdr_addr = ELFCORE_ADDR_MAX;
  419. return -EINVAL;
  420. }
  421. *start = (unsigned long)__va(elfcorehdr_addr);
  422. *end = *start + length;
  423. return 0;
  424. }
  425. #endif /* CONFIG_PROC_VMCORE */
  426. void __init
  427. setup_arch (char **cmdline_p)
  428. {
  429. unw_init();
  430. ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
  431. *cmdline_p = __va(ia64_boot_param->command_line);
  432. strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
  433. efi_init();
  434. io_port_init();
  435. parse_early_param();
  436. #ifdef CONFIG_IA64_GENERIC
  437. machvec_init(NULL);
  438. #endif
  439. if (early_console_setup(*cmdline_p) == 0)
  440. mark_bsp_online();
  441. #ifdef CONFIG_ACPI
  442. /* Initialize the ACPI boot-time table parser */
  443. acpi_table_init();
  444. # ifdef CONFIG_ACPI_NUMA
  445. acpi_numa_init();
  446. # endif
  447. #else
  448. # ifdef CONFIG_SMP
  449. smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
  450. # endif
  451. #endif /* CONFIG_APCI_BOOT */
  452. find_memory();
  453. /* process SAL system table: */
  454. ia64_sal_init(__va(efi.sal_systab));
  455. ia64_setup_printk_clock();
  456. #ifdef CONFIG_SMP
  457. cpu_physical_id(0) = hard_smp_processor_id();
  458. cpu_set(0, cpu_sibling_map[0]);
  459. cpu_set(0, cpu_core_map[0]);
  460. check_for_logical_procs();
  461. if (smp_num_cpucores > 1)
  462. printk(KERN_INFO
  463. "cpu package is Multi-Core capable: number of cores=%d\n",
  464. smp_num_cpucores);
  465. if (smp_num_siblings > 1)
  466. printk(KERN_INFO
  467. "cpu package is Multi-Threading capable: number of siblings=%d\n",
  468. smp_num_siblings);
  469. #endif
  470. cpu_init(); /* initialize the bootstrap CPU */
  471. mmu_context_init(); /* initialize context_id bitmap */
  472. check_sal_cache_flush();
  473. #ifdef CONFIG_ACPI
  474. acpi_boot_init();
  475. #endif
  476. #ifdef CONFIG_VT
  477. if (!conswitchp) {
  478. # if defined(CONFIG_DUMMY_CONSOLE)
  479. conswitchp = &dummy_con;
  480. # endif
  481. # if defined(CONFIG_VGA_CONSOLE)
  482. /*
  483. * Non-legacy systems may route legacy VGA MMIO range to system
  484. * memory. vga_con probes the MMIO hole, so memory looks like
  485. * a VGA device to it. The EFI memory map can tell us if it's
  486. * memory so we can avoid this problem.
  487. */
  488. if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
  489. conswitchp = &vga_con;
  490. # endif
  491. }
  492. #endif
  493. /* enable IA-64 Machine Check Abort Handling unless disabled */
  494. if (!nomca)
  495. ia64_mca_init();
  496. platform_setup(cmdline_p);
  497. paging_init();
  498. }
  499. /*
  500. * Display cpu info for all cpu's.
  501. */
  502. static int
  503. show_cpuinfo (struct seq_file *m, void *v)
  504. {
  505. #ifdef CONFIG_SMP
  506. # define lpj c->loops_per_jiffy
  507. # define cpunum c->cpu
  508. #else
  509. # define lpj loops_per_jiffy
  510. # define cpunum 0
  511. #endif
  512. static struct {
  513. unsigned long mask;
  514. const char *feature_name;
  515. } feature_bits[] = {
  516. { 1UL << 0, "branchlong" },
  517. { 1UL << 1, "spontaneous deferral"},
  518. { 1UL << 2, "16-byte atomic ops" }
  519. };
  520. char features[128], *cp, *sep;
  521. struct cpuinfo_ia64 *c = v;
  522. unsigned long mask;
  523. unsigned long proc_freq;
  524. int i, size;
  525. mask = c->features;
  526. /* build the feature string: */
  527. memcpy(features, "standard", 9);
  528. cp = features;
  529. size = sizeof(features);
  530. sep = "";
  531. for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
  532. if (mask & feature_bits[i].mask) {
  533. cp += snprintf(cp, size, "%s%s", sep,
  534. feature_bits[i].feature_name),
  535. sep = ", ";
  536. mask &= ~feature_bits[i].mask;
  537. size = sizeof(features) - (cp - features);
  538. }
  539. }
  540. if (mask && size > 1) {
  541. /* print unknown features as a hex value */
  542. snprintf(cp, size, "%s0x%lx", sep, mask);
  543. }
  544. proc_freq = cpufreq_quick_get(cpunum);
  545. if (!proc_freq)
  546. proc_freq = c->proc_freq / 1000;
  547. seq_printf(m,
  548. "processor : %d\n"
  549. "vendor : %s\n"
  550. "arch : IA-64\n"
  551. "family : %u\n"
  552. "model : %u\n"
  553. "model name : %s\n"
  554. "revision : %u\n"
  555. "archrev : %u\n"
  556. "features : %s\n"
  557. "cpu number : %lu\n"
  558. "cpu regs : %u\n"
  559. "cpu MHz : %lu.%03lu\n"
  560. "itc MHz : %lu.%06lu\n"
  561. "BogoMIPS : %lu.%02lu\n",
  562. cpunum, c->vendor, c->family, c->model,
  563. c->model_name, c->revision, c->archrev,
  564. features, c->ppn, c->number,
  565. proc_freq / 1000, proc_freq % 1000,
  566. c->itc_freq / 1000000, c->itc_freq % 1000000,
  567. lpj*HZ/500000, (lpj*HZ/5000) % 100);
  568. #ifdef CONFIG_SMP
  569. seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
  570. if (c->threads_per_core > 1 || c->cores_per_socket > 1)
  571. seq_printf(m,
  572. "physical id: %u\n"
  573. "core id : %u\n"
  574. "thread id : %u\n",
  575. c->socket_id, c->core_id, c->thread_id);
  576. #endif
  577. seq_printf(m,"\n");
  578. return 0;
  579. }
  580. static void *
  581. c_start (struct seq_file *m, loff_t *pos)
  582. {
  583. #ifdef CONFIG_SMP
  584. while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
  585. ++*pos;
  586. #endif
  587. return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
  588. }
  589. static void *
  590. c_next (struct seq_file *m, void *v, loff_t *pos)
  591. {
  592. ++*pos;
  593. return c_start(m, pos);
  594. }
  595. static void
  596. c_stop (struct seq_file *m, void *v)
  597. {
  598. }
  599. struct seq_operations cpuinfo_op = {
  600. .start = c_start,
  601. .next = c_next,
  602. .stop = c_stop,
  603. .show = show_cpuinfo
  604. };
  605. #define MAX_BRANDS 8
  606. static char brandname[MAX_BRANDS][128];
  607. static char * __cpuinit
  608. get_model_name(__u8 family, __u8 model)
  609. {
  610. static int overflow;
  611. char brand[128];
  612. int i;
  613. memcpy(brand, "Unknown", 8);
  614. if (ia64_pal_get_brand_info(brand)) {
  615. if (family == 0x7)
  616. memcpy(brand, "Merced", 7);
  617. else if (family == 0x1f) switch (model) {
  618. case 0: memcpy(brand, "McKinley", 9); break;
  619. case 1: memcpy(brand, "Madison", 8); break;
  620. case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
  621. }
  622. }
  623. for (i = 0; i < MAX_BRANDS; i++)
  624. if (strcmp(brandname[i], brand) == 0)
  625. return brandname[i];
  626. for (i = 0; i < MAX_BRANDS; i++)
  627. if (brandname[i][0] == '\0')
  628. return strcpy(brandname[i], brand);
  629. if (overflow++ == 0)
  630. printk(KERN_ERR
  631. "%s: Table overflow. Some processor model information will be missing\n",
  632. __FUNCTION__);
  633. return "Unknown";
  634. }
  635. static void __cpuinit
  636. identify_cpu (struct cpuinfo_ia64 *c)
  637. {
  638. union {
  639. unsigned long bits[5];
  640. struct {
  641. /* id 0 & 1: */
  642. char vendor[16];
  643. /* id 2 */
  644. u64 ppn; /* processor serial number */
  645. /* id 3: */
  646. unsigned number : 8;
  647. unsigned revision : 8;
  648. unsigned model : 8;
  649. unsigned family : 8;
  650. unsigned archrev : 8;
  651. unsigned reserved : 24;
  652. /* id 4: */
  653. u64 features;
  654. } field;
  655. } cpuid;
  656. pal_vm_info_1_u_t vm1;
  657. pal_vm_info_2_u_t vm2;
  658. pal_status_t status;
  659. unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
  660. int i;
  661. for (i = 0; i < 5; ++i)
  662. cpuid.bits[i] = ia64_get_cpuid(i);
  663. memcpy(c->vendor, cpuid.field.vendor, 16);
  664. #ifdef CONFIG_SMP
  665. c->cpu = smp_processor_id();
  666. /* below default values will be overwritten by identify_siblings()
  667. * for Multi-Threading/Multi-Core capable cpu's
  668. */
  669. c->threads_per_core = c->cores_per_socket = c->num_log = 1;
  670. c->socket_id = -1;
  671. identify_siblings(c);
  672. #endif
  673. c->ppn = cpuid.field.ppn;
  674. c->number = cpuid.field.number;
  675. c->revision = cpuid.field.revision;
  676. c->model = cpuid.field.model;
  677. c->family = cpuid.field.family;
  678. c->archrev = cpuid.field.archrev;
  679. c->features = cpuid.field.features;
  680. c->model_name = get_model_name(c->family, c->model);
  681. status = ia64_pal_vm_summary(&vm1, &vm2);
  682. if (status == PAL_STATUS_SUCCESS) {
  683. impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
  684. phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
  685. }
  686. c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
  687. c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
  688. }
  689. void __init
  690. setup_per_cpu_areas (void)
  691. {
  692. /* start_kernel() requires this... */
  693. #ifdef CONFIG_ACPI_HOTPLUG_CPU
  694. prefill_possible_map();
  695. #endif
  696. }
  697. /*
  698. * Calculate the max. cache line size.
  699. *
  700. * In addition, the minimum of the i-cache stride sizes is calculated for
  701. * "flush_icache_range()".
  702. */
  703. static void __cpuinit
  704. get_max_cacheline_size (void)
  705. {
  706. unsigned long line_size, max = 1;
  707. unsigned int cache_size = 0;
  708. u64 l, levels, unique_caches;
  709. pal_cache_config_info_t cci;
  710. s64 status;
  711. status = ia64_pal_cache_summary(&levels, &unique_caches);
  712. if (status != 0) {
  713. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
  714. __FUNCTION__, status);
  715. max = SMP_CACHE_BYTES;
  716. /* Safest setup for "flush_icache_range()" */
  717. ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
  718. goto out;
  719. }
  720. for (l = 0; l < levels; ++l) {
  721. status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
  722. &cci);
  723. if (status != 0) {
  724. printk(KERN_ERR
  725. "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
  726. __FUNCTION__, l, status);
  727. max = SMP_CACHE_BYTES;
  728. /* The safest setup for "flush_icache_range()" */
  729. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  730. cci.pcci_unified = 1;
  731. }
  732. line_size = 1 << cci.pcci_line_size;
  733. if (line_size > max)
  734. max = line_size;
  735. if (cache_size < cci.pcci_cache_size)
  736. cache_size = cci.pcci_cache_size;
  737. if (!cci.pcci_unified) {
  738. status = ia64_pal_cache_config_info(l,
  739. /* cache_type (instruction)= */ 1,
  740. &cci);
  741. if (status != 0) {
  742. printk(KERN_ERR
  743. "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
  744. __FUNCTION__, l, status);
  745. /* The safest setup for "flush_icache_range()" */
  746. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  747. }
  748. }
  749. if (cci.pcci_stride < ia64_i_cache_stride_shift)
  750. ia64_i_cache_stride_shift = cci.pcci_stride;
  751. }
  752. out:
  753. #ifdef CONFIG_SMP
  754. max_cache_size = max(max_cache_size, cache_size);
  755. #endif
  756. if (max > ia64_max_cacheline_size)
  757. ia64_max_cacheline_size = max;
  758. }
  759. /*
  760. * cpu_init() initializes state that is per-CPU. This function acts
  761. * as a 'CPU state barrier', nothing should get across.
  762. */
  763. void __cpuinit
  764. cpu_init (void)
  765. {
  766. extern void __cpuinit ia64_mmu_init (void *);
  767. static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
  768. unsigned long num_phys_stacked;
  769. pal_vm_info_2_u_t vmi;
  770. unsigned int max_ctx;
  771. struct cpuinfo_ia64 *cpu_info;
  772. void *cpu_data;
  773. cpu_data = per_cpu_init();
  774. /*
  775. * We set ar.k3 so that assembly code in MCA handler can compute
  776. * physical addresses of per cpu variables with a simple:
  777. * phys = ar.k3 + &per_cpu_var
  778. */
  779. ia64_set_kr(IA64_KR_PER_CPU_DATA,
  780. ia64_tpa(cpu_data) - (long) __per_cpu_start);
  781. get_max_cacheline_size();
  782. /*
  783. * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
  784. * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
  785. * depends on the data returned by identify_cpu(). We break the dependency by
  786. * accessing cpu_data() through the canonical per-CPU address.
  787. */
  788. cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
  789. identify_cpu(cpu_info);
  790. #ifdef CONFIG_MCKINLEY
  791. {
  792. # define FEATURE_SET 16
  793. struct ia64_pal_retval iprv;
  794. if (cpu_info->family == 0x1f) {
  795. PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
  796. if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
  797. PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
  798. (iprv.v1 | 0x80), FEATURE_SET, 0);
  799. }
  800. }
  801. #endif
  802. /* Clear the stack memory reserved for pt_regs: */
  803. memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
  804. ia64_set_kr(IA64_KR_FPU_OWNER, 0);
  805. /*
  806. * Initialize the page-table base register to a global
  807. * directory with all zeroes. This ensure that we can handle
  808. * TLB-misses to user address-space even before we created the
  809. * first user address-space. This may happen, e.g., due to
  810. * aggressive use of lfetch.fault.
  811. */
  812. ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
  813. /*
  814. * Initialize default control register to defer speculative faults except
  815. * for those arising from TLB misses, which are not deferred. The
  816. * kernel MUST NOT depend on a particular setting of these bits (in other words,
  817. * the kernel must have recovery code for all speculative accesses). Turn on
  818. * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
  819. * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
  820. * be fine).
  821. */
  822. ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
  823. | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
  824. atomic_inc(&init_mm.mm_count);
  825. current->active_mm = &init_mm;
  826. if (current->mm)
  827. BUG();
  828. ia64_mmu_init(ia64_imva(cpu_data));
  829. ia64_mca_cpu_init(ia64_imva(cpu_data));
  830. #ifdef CONFIG_IA32_SUPPORT
  831. ia32_cpu_init();
  832. #endif
  833. /* Clear ITC to eliminiate sched_clock() overflows in human time. */
  834. ia64_set_itc(0);
  835. /* disable all local interrupt sources: */
  836. ia64_set_itv(1 << 16);
  837. ia64_set_lrr0(1 << 16);
  838. ia64_set_lrr1(1 << 16);
  839. ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
  840. ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
  841. /* clear TPR & XTP to enable all interrupt classes: */
  842. ia64_setreg(_IA64_REG_CR_TPR, 0);
  843. #ifdef CONFIG_SMP
  844. normal_xtp();
  845. #endif
  846. /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
  847. if (ia64_pal_vm_summary(NULL, &vmi) == 0)
  848. max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
  849. else {
  850. printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
  851. max_ctx = (1U << 15) - 1; /* use architected minimum */
  852. }
  853. while (max_ctx < ia64_ctx.max_ctx) {
  854. unsigned int old = ia64_ctx.max_ctx;
  855. if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
  856. break;
  857. }
  858. if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
  859. printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
  860. "stacked regs\n");
  861. num_phys_stacked = 96;
  862. }
  863. /* size of physical stacked register partition plus 8 bytes: */
  864. if (num_phys_stacked > max_num_phys_stacked) {
  865. ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
  866. max_num_phys_stacked = num_phys_stacked;
  867. }
  868. platform_cpu_init();
  869. pm_idle = default_idle;
  870. }
  871. /*
  872. * On SMP systems, when the scheduler does migration-cost autodetection,
  873. * it needs a way to flush as much of the CPU's caches as possible.
  874. */
  875. void sched_cacheflush(void)
  876. {
  877. ia64_sal_cache_flush(3);
  878. }
  879. void __init
  880. check_bugs (void)
  881. {
  882. ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
  883. (unsigned long) __end___mckinley_e9_bundles);
  884. }
  885. static int __init run_dmi_scan(void)
  886. {
  887. dmi_scan_machine();
  888. return 0;
  889. }
  890. core_initcall(run_dmi_scan);