efi.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
  5. *
  6. * Copyright (C) 1999 VA Linux Systems
  7. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  12. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  13. *
  14. * All EFI Runtime Services are not implemented yet as EFI only
  15. * supports physical mode addressing on SoftSDV. This is to be fixed
  16. * in a future version. --drummond 1999-07-20
  17. *
  18. * Implemented EFI runtime services and virtual mode calls. --davidm
  19. *
  20. * Goutham Rao: <goutham.rao@intel.com>
  21. * Skip non-WB memory and ignore empty memory ranges.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/kernel.h>
  26. #include <linux/init.h>
  27. #include <linux/types.h>
  28. #include <linux/time.h>
  29. #include <linux/efi.h>
  30. #include <linux/kexec.h>
  31. #include <asm/io.h>
  32. #include <asm/kregs.h>
  33. #include <asm/meminit.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/processor.h>
  36. #include <asm/mca.h>
  37. #define EFI_DEBUG 0
  38. extern efi_status_t efi_call_phys (void *, ...);
  39. struct efi efi;
  40. EXPORT_SYMBOL(efi);
  41. static efi_runtime_services_t *runtime;
  42. static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  43. #define efi_call_virt(f, args...) (*(f))(args)
  44. #define STUB_GET_TIME(prefix, adjust_arg) \
  45. static efi_status_t \
  46. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  47. { \
  48. struct ia64_fpreg fr[6]; \
  49. efi_time_cap_t *atc = NULL; \
  50. efi_status_t ret; \
  51. \
  52. if (tc) \
  53. atc = adjust_arg(tc); \
  54. ia64_save_scratch_fpregs(fr); \
  55. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
  56. ia64_load_scratch_fpregs(fr); \
  57. return ret; \
  58. }
  59. #define STUB_SET_TIME(prefix, adjust_arg) \
  60. static efi_status_t \
  61. prefix##_set_time (efi_time_t *tm) \
  62. { \
  63. struct ia64_fpreg fr[6]; \
  64. efi_status_t ret; \
  65. \
  66. ia64_save_scratch_fpregs(fr); \
  67. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
  68. ia64_load_scratch_fpregs(fr); \
  69. return ret; \
  70. }
  71. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  72. static efi_status_t \
  73. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
  74. { \
  75. struct ia64_fpreg fr[6]; \
  76. efi_status_t ret; \
  77. \
  78. ia64_save_scratch_fpregs(fr); \
  79. ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  80. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  81. ia64_load_scratch_fpregs(fr); \
  82. return ret; \
  83. }
  84. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  85. static efi_status_t \
  86. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  87. { \
  88. struct ia64_fpreg fr[6]; \
  89. efi_time_t *atm = NULL; \
  90. efi_status_t ret; \
  91. \
  92. if (tm) \
  93. atm = adjust_arg(tm); \
  94. ia64_save_scratch_fpregs(fr); \
  95. ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  96. enabled, atm); \
  97. ia64_load_scratch_fpregs(fr); \
  98. return ret; \
  99. }
  100. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  101. static efi_status_t \
  102. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  103. unsigned long *data_size, void *data) \
  104. { \
  105. struct ia64_fpreg fr[6]; \
  106. u32 *aattr = NULL; \
  107. efi_status_t ret; \
  108. \
  109. if (attr) \
  110. aattr = adjust_arg(attr); \
  111. ia64_save_scratch_fpregs(fr); \
  112. ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
  113. adjust_arg(name), adjust_arg(vendor), aattr, \
  114. adjust_arg(data_size), adjust_arg(data)); \
  115. ia64_load_scratch_fpregs(fr); \
  116. return ret; \
  117. }
  118. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  119. static efi_status_t \
  120. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
  121. { \
  122. struct ia64_fpreg fr[6]; \
  123. efi_status_t ret; \
  124. \
  125. ia64_save_scratch_fpregs(fr); \
  126. ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  127. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  128. ia64_load_scratch_fpregs(fr); \
  129. return ret; \
  130. }
  131. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  132. static efi_status_t \
  133. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
  134. unsigned long data_size, void *data) \
  135. { \
  136. struct ia64_fpreg fr[6]; \
  137. efi_status_t ret; \
  138. \
  139. ia64_save_scratch_fpregs(fr); \
  140. ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
  141. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  142. adjust_arg(data)); \
  143. ia64_load_scratch_fpregs(fr); \
  144. return ret; \
  145. }
  146. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  147. static efi_status_t \
  148. prefix##_get_next_high_mono_count (u32 *count) \
  149. { \
  150. struct ia64_fpreg fr[6]; \
  151. efi_status_t ret; \
  152. \
  153. ia64_save_scratch_fpregs(fr); \
  154. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  155. __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
  156. ia64_load_scratch_fpregs(fr); \
  157. return ret; \
  158. }
  159. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  160. static void \
  161. prefix##_reset_system (int reset_type, efi_status_t status, \
  162. unsigned long data_size, efi_char16_t *data) \
  163. { \
  164. struct ia64_fpreg fr[6]; \
  165. efi_char16_t *adata = NULL; \
  166. \
  167. if (data) \
  168. adata = adjust_arg(data); \
  169. \
  170. ia64_save_scratch_fpregs(fr); \
  171. efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
  172. reset_type, status, data_size, adata); \
  173. /* should not return, but just in case... */ \
  174. ia64_load_scratch_fpregs(fr); \
  175. }
  176. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  177. STUB_GET_TIME(phys, phys_ptr)
  178. STUB_SET_TIME(phys, phys_ptr)
  179. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  180. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  181. STUB_GET_VARIABLE(phys, phys_ptr)
  182. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  183. STUB_SET_VARIABLE(phys, phys_ptr)
  184. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  185. STUB_RESET_SYSTEM(phys, phys_ptr)
  186. #define id(arg) arg
  187. STUB_GET_TIME(virt, id)
  188. STUB_SET_TIME(virt, id)
  189. STUB_GET_WAKEUP_TIME(virt, id)
  190. STUB_SET_WAKEUP_TIME(virt, id)
  191. STUB_GET_VARIABLE(virt, id)
  192. STUB_GET_NEXT_VARIABLE(virt, id)
  193. STUB_SET_VARIABLE(virt, id)
  194. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  195. STUB_RESET_SYSTEM(virt, id)
  196. void
  197. efi_gettimeofday (struct timespec *ts)
  198. {
  199. efi_time_t tm;
  200. memset(ts, 0, sizeof(ts));
  201. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
  202. return;
  203. ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
  204. ts->tv_nsec = tm.nanosecond;
  205. }
  206. static int
  207. is_memory_available (efi_memory_desc_t *md)
  208. {
  209. if (!(md->attribute & EFI_MEMORY_WB))
  210. return 0;
  211. switch (md->type) {
  212. case EFI_LOADER_CODE:
  213. case EFI_LOADER_DATA:
  214. case EFI_BOOT_SERVICES_CODE:
  215. case EFI_BOOT_SERVICES_DATA:
  216. case EFI_CONVENTIONAL_MEMORY:
  217. return 1;
  218. }
  219. return 0;
  220. }
  221. typedef struct kern_memdesc {
  222. u64 attribute;
  223. u64 start;
  224. u64 num_pages;
  225. } kern_memdesc_t;
  226. static kern_memdesc_t *kern_memmap;
  227. #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
  228. static inline u64
  229. kmd_end(kern_memdesc_t *kmd)
  230. {
  231. return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
  232. }
  233. static inline u64
  234. efi_md_end(efi_memory_desc_t *md)
  235. {
  236. return (md->phys_addr + efi_md_size(md));
  237. }
  238. static inline int
  239. efi_wb(efi_memory_desc_t *md)
  240. {
  241. return (md->attribute & EFI_MEMORY_WB);
  242. }
  243. static inline int
  244. efi_uc(efi_memory_desc_t *md)
  245. {
  246. return (md->attribute & EFI_MEMORY_UC);
  247. }
  248. static void
  249. walk (efi_freemem_callback_t callback, void *arg, u64 attr)
  250. {
  251. kern_memdesc_t *k;
  252. u64 start, end, voff;
  253. voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
  254. for (k = kern_memmap; k->start != ~0UL; k++) {
  255. if (k->attribute != attr)
  256. continue;
  257. start = PAGE_ALIGN(k->start);
  258. end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
  259. if (start < end)
  260. if ((*callback)(start + voff, end + voff, arg) < 0)
  261. return;
  262. }
  263. }
  264. /*
  265. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  266. * has memory that is available for OS use.
  267. */
  268. void
  269. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  270. {
  271. walk(callback, arg, EFI_MEMORY_WB);
  272. }
  273. /*
  274. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  275. * has memory that is available for uncached allocator.
  276. */
  277. void
  278. efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
  279. {
  280. walk(callback, arg, EFI_MEMORY_UC);
  281. }
  282. /*
  283. * Look for the PAL_CODE region reported by EFI and maps it using an
  284. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  285. * Abstraction Layer chapter 11 in ADAG
  286. */
  287. void *
  288. efi_get_pal_addr (void)
  289. {
  290. void *efi_map_start, *efi_map_end, *p;
  291. efi_memory_desc_t *md;
  292. u64 efi_desc_size;
  293. int pal_code_count = 0;
  294. u64 vaddr, mask;
  295. efi_map_start = __va(ia64_boot_param->efi_memmap);
  296. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  297. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  298. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  299. md = p;
  300. if (md->type != EFI_PAL_CODE)
  301. continue;
  302. if (++pal_code_count > 1) {
  303. printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
  304. md->phys_addr);
  305. continue;
  306. }
  307. /*
  308. * The only ITLB entry in region 7 that is used is the one installed by
  309. * __start(). That entry covers a 64MB range.
  310. */
  311. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  312. vaddr = PAGE_OFFSET + md->phys_addr;
  313. /*
  314. * We must check that the PAL mapping won't overlap with the kernel
  315. * mapping.
  316. *
  317. * PAL code is guaranteed to be aligned on a power of 2 between 4k and
  318. * 256KB and that only one ITR is needed to map it. This implies that the
  319. * PAL code is always aligned on its size, i.e., the closest matching page
  320. * size supported by the TLB. Therefore PAL code is guaranteed never to
  321. * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
  322. * now the following test is enough to determine whether or not we need a
  323. * dedicated ITR for the PAL code.
  324. */
  325. if ((vaddr & mask) == (KERNEL_START & mask)) {
  326. printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
  327. __FUNCTION__);
  328. continue;
  329. }
  330. if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
  331. panic("Woah! PAL code size bigger than a granule!");
  332. #if EFI_DEBUG
  333. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  334. printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
  335. smp_processor_id(), md->phys_addr,
  336. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  337. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  338. #endif
  339. return __va(md->phys_addr);
  340. }
  341. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
  342. __FUNCTION__);
  343. return NULL;
  344. }
  345. void
  346. efi_map_pal_code (void)
  347. {
  348. void *pal_vaddr = efi_get_pal_addr ();
  349. u64 psr;
  350. if (!pal_vaddr)
  351. return;
  352. /*
  353. * Cannot write to CRx with PSR.ic=1
  354. */
  355. psr = ia64_clear_ic();
  356. ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  357. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  358. IA64_GRANULE_SHIFT);
  359. ia64_set_psr(psr); /* restore psr */
  360. ia64_srlz_i();
  361. }
  362. void __init
  363. efi_init (void)
  364. {
  365. void *efi_map_start, *efi_map_end;
  366. efi_config_table_t *config_tables;
  367. efi_char16_t *c16;
  368. u64 efi_desc_size;
  369. char *cp, vendor[100] = "unknown";
  370. int i;
  371. /* it's too early to be able to use the standard kernel command line support... */
  372. for (cp = boot_command_line; *cp; ) {
  373. if (memcmp(cp, "mem=", 4) == 0) {
  374. mem_limit = memparse(cp + 4, &cp);
  375. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  376. max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  377. } else if (memcmp(cp, "min_addr=", 9) == 0) {
  378. min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  379. } else {
  380. while (*cp != ' ' && *cp)
  381. ++cp;
  382. while (*cp == ' ')
  383. ++cp;
  384. }
  385. }
  386. if (min_addr != 0UL)
  387. printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
  388. if (max_addr != ~0UL)
  389. printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
  390. efi.systab = __va(ia64_boot_param->efi_systab);
  391. /*
  392. * Verify the EFI Table
  393. */
  394. if (efi.systab == NULL)
  395. panic("Woah! Can't find EFI system table.\n");
  396. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  397. panic("Woah! EFI system table signature incorrect\n");
  398. if ((efi.systab->hdr.revision >> 16) == 0)
  399. printk(KERN_WARNING "Warning: EFI system table version "
  400. "%d.%02d, expected 1.00 or greater\n",
  401. efi.systab->hdr.revision >> 16,
  402. efi.systab->hdr.revision & 0xffff);
  403. config_tables = __va(efi.systab->tables);
  404. /* Show what we know for posterity */
  405. c16 = __va(efi.systab->fw_vendor);
  406. if (c16) {
  407. for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
  408. vendor[i] = *c16++;
  409. vendor[i] = '\0';
  410. }
  411. printk(KERN_INFO "EFI v%u.%.02u by %s:",
  412. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
  413. efi.mps = EFI_INVALID_TABLE_ADDR;
  414. efi.acpi = EFI_INVALID_TABLE_ADDR;
  415. efi.acpi20 = EFI_INVALID_TABLE_ADDR;
  416. efi.smbios = EFI_INVALID_TABLE_ADDR;
  417. efi.sal_systab = EFI_INVALID_TABLE_ADDR;
  418. efi.boot_info = EFI_INVALID_TABLE_ADDR;
  419. efi.hcdp = EFI_INVALID_TABLE_ADDR;
  420. efi.uga = EFI_INVALID_TABLE_ADDR;
  421. for (i = 0; i < (int) efi.systab->nr_tables; i++) {
  422. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  423. efi.mps = config_tables[i].table;
  424. printk(" MPS=0x%lx", config_tables[i].table);
  425. } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  426. efi.acpi20 = config_tables[i].table;
  427. printk(" ACPI 2.0=0x%lx", config_tables[i].table);
  428. } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  429. efi.acpi = config_tables[i].table;
  430. printk(" ACPI=0x%lx", config_tables[i].table);
  431. } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  432. efi.smbios = config_tables[i].table;
  433. printk(" SMBIOS=0x%lx", config_tables[i].table);
  434. } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
  435. efi.sal_systab = config_tables[i].table;
  436. printk(" SALsystab=0x%lx", config_tables[i].table);
  437. } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  438. efi.hcdp = config_tables[i].table;
  439. printk(" HCDP=0x%lx", config_tables[i].table);
  440. }
  441. }
  442. printk("\n");
  443. runtime = __va(efi.systab->runtime);
  444. efi.get_time = phys_get_time;
  445. efi.set_time = phys_set_time;
  446. efi.get_wakeup_time = phys_get_wakeup_time;
  447. efi.set_wakeup_time = phys_set_wakeup_time;
  448. efi.get_variable = phys_get_variable;
  449. efi.get_next_variable = phys_get_next_variable;
  450. efi.set_variable = phys_set_variable;
  451. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  452. efi.reset_system = phys_reset_system;
  453. efi_map_start = __va(ia64_boot_param->efi_memmap);
  454. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  455. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  456. #if EFI_DEBUG
  457. /* print EFI memory map: */
  458. {
  459. efi_memory_desc_t *md;
  460. void *p;
  461. for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
  462. md = p;
  463. printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
  464. i, md->type, md->attribute, md->phys_addr,
  465. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  466. md->num_pages >> (20 - EFI_PAGE_SHIFT));
  467. }
  468. }
  469. #endif
  470. efi_map_pal_code();
  471. efi_enter_virtual_mode();
  472. }
  473. void
  474. efi_enter_virtual_mode (void)
  475. {
  476. void *efi_map_start, *efi_map_end, *p;
  477. efi_memory_desc_t *md;
  478. efi_status_t status;
  479. u64 efi_desc_size;
  480. efi_map_start = __va(ia64_boot_param->efi_memmap);
  481. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  482. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  483. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  484. md = p;
  485. if (md->attribute & EFI_MEMORY_RUNTIME) {
  486. /*
  487. * Some descriptors have multiple bits set, so the order of
  488. * the tests is relevant.
  489. */
  490. if (md->attribute & EFI_MEMORY_WB) {
  491. md->virt_addr = (u64) __va(md->phys_addr);
  492. } else if (md->attribute & EFI_MEMORY_UC) {
  493. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  494. } else if (md->attribute & EFI_MEMORY_WC) {
  495. #if 0
  496. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  497. | _PAGE_D
  498. | _PAGE_MA_WC
  499. | _PAGE_PL_0
  500. | _PAGE_AR_RW));
  501. #else
  502. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  503. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  504. #endif
  505. } else if (md->attribute & EFI_MEMORY_WT) {
  506. #if 0
  507. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  508. | _PAGE_D | _PAGE_MA_WT
  509. | _PAGE_PL_0
  510. | _PAGE_AR_RW));
  511. #else
  512. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  513. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  514. #endif
  515. }
  516. }
  517. }
  518. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  519. ia64_boot_param->efi_memmap_size,
  520. efi_desc_size, ia64_boot_param->efi_memdesc_version,
  521. ia64_boot_param->efi_memmap);
  522. if (status != EFI_SUCCESS) {
  523. printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
  524. "(status=%lu)\n", status);
  525. return;
  526. }
  527. /*
  528. * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
  529. */
  530. efi.get_time = virt_get_time;
  531. efi.set_time = virt_set_time;
  532. efi.get_wakeup_time = virt_get_wakeup_time;
  533. efi.set_wakeup_time = virt_set_wakeup_time;
  534. efi.get_variable = virt_get_variable;
  535. efi.get_next_variable = virt_get_next_variable;
  536. efi.set_variable = virt_set_variable;
  537. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  538. efi.reset_system = virt_reset_system;
  539. }
  540. /*
  541. * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
  542. * this type, other I/O port ranges should be described via ACPI.
  543. */
  544. u64
  545. efi_get_iobase (void)
  546. {
  547. void *efi_map_start, *efi_map_end, *p;
  548. efi_memory_desc_t *md;
  549. u64 efi_desc_size;
  550. efi_map_start = __va(ia64_boot_param->efi_memmap);
  551. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  552. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  553. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  554. md = p;
  555. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  556. if (md->attribute & EFI_MEMORY_UC)
  557. return md->phys_addr;
  558. }
  559. }
  560. return 0;
  561. }
  562. static struct kern_memdesc *
  563. kern_memory_descriptor (unsigned long phys_addr)
  564. {
  565. struct kern_memdesc *md;
  566. for (md = kern_memmap; md->start != ~0UL; md++) {
  567. if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
  568. return md;
  569. }
  570. return NULL;
  571. }
  572. static efi_memory_desc_t *
  573. efi_memory_descriptor (unsigned long phys_addr)
  574. {
  575. void *efi_map_start, *efi_map_end, *p;
  576. efi_memory_desc_t *md;
  577. u64 efi_desc_size;
  578. efi_map_start = __va(ia64_boot_param->efi_memmap);
  579. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  580. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  581. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  582. md = p;
  583. if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
  584. return md;
  585. }
  586. return NULL;
  587. }
  588. static int
  589. efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
  590. {
  591. void *efi_map_start, *efi_map_end, *p;
  592. efi_memory_desc_t *md;
  593. u64 efi_desc_size;
  594. unsigned long end;
  595. efi_map_start = __va(ia64_boot_param->efi_memmap);
  596. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  597. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  598. end = phys_addr + size;
  599. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  600. md = p;
  601. if (md->phys_addr < end && efi_md_end(md) > phys_addr)
  602. return 1;
  603. }
  604. return 0;
  605. }
  606. u32
  607. efi_mem_type (unsigned long phys_addr)
  608. {
  609. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  610. if (md)
  611. return md->type;
  612. return 0;
  613. }
  614. u64
  615. efi_mem_attributes (unsigned long phys_addr)
  616. {
  617. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  618. if (md)
  619. return md->attribute;
  620. return 0;
  621. }
  622. EXPORT_SYMBOL(efi_mem_attributes);
  623. u64
  624. efi_mem_attribute (unsigned long phys_addr, unsigned long size)
  625. {
  626. unsigned long end = phys_addr + size;
  627. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  628. u64 attr;
  629. if (!md)
  630. return 0;
  631. /*
  632. * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
  633. * the kernel that firmware needs this region mapped.
  634. */
  635. attr = md->attribute & ~EFI_MEMORY_RUNTIME;
  636. do {
  637. unsigned long md_end = efi_md_end(md);
  638. if (end <= md_end)
  639. return attr;
  640. md = efi_memory_descriptor(md_end);
  641. if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
  642. return 0;
  643. } while (md);
  644. return 0;
  645. }
  646. u64
  647. kern_mem_attribute (unsigned long phys_addr, unsigned long size)
  648. {
  649. unsigned long end = phys_addr + size;
  650. struct kern_memdesc *md;
  651. u64 attr;
  652. /*
  653. * This is a hack for ioremap calls before we set up kern_memmap.
  654. * Maybe we should do efi_memmap_init() earlier instead.
  655. */
  656. if (!kern_memmap) {
  657. attr = efi_mem_attribute(phys_addr, size);
  658. if (attr & EFI_MEMORY_WB)
  659. return EFI_MEMORY_WB;
  660. return 0;
  661. }
  662. md = kern_memory_descriptor(phys_addr);
  663. if (!md)
  664. return 0;
  665. attr = md->attribute;
  666. do {
  667. unsigned long md_end = kmd_end(md);
  668. if (end <= md_end)
  669. return attr;
  670. md = kern_memory_descriptor(md_end);
  671. if (!md || md->attribute != attr)
  672. return 0;
  673. } while (md);
  674. return 0;
  675. }
  676. EXPORT_SYMBOL(kern_mem_attribute);
  677. int
  678. valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
  679. {
  680. u64 attr;
  681. /*
  682. * /dev/mem reads and writes use copy_to_user(), which implicitly
  683. * uses a granule-sized kernel identity mapping. It's really
  684. * only safe to do this for regions in kern_memmap. For more
  685. * details, see Documentation/ia64/aliasing.txt.
  686. */
  687. attr = kern_mem_attribute(phys_addr, size);
  688. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  689. return 1;
  690. return 0;
  691. }
  692. int
  693. valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
  694. {
  695. unsigned long phys_addr = pfn << PAGE_SHIFT;
  696. u64 attr;
  697. attr = efi_mem_attribute(phys_addr, size);
  698. /*
  699. * /dev/mem mmap uses normal user pages, so we don't need the entire
  700. * granule, but the entire region we're mapping must support the same
  701. * attribute.
  702. */
  703. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  704. return 1;
  705. /*
  706. * Intel firmware doesn't tell us about all the MMIO regions, so
  707. * in general we have to allow mmap requests. But if EFI *does*
  708. * tell us about anything inside this region, we should deny it.
  709. * The user can always map a smaller region to avoid the overlap.
  710. */
  711. if (efi_memmap_intersects(phys_addr, size))
  712. return 0;
  713. return 1;
  714. }
  715. pgprot_t
  716. phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
  717. pgprot_t vma_prot)
  718. {
  719. unsigned long phys_addr = pfn << PAGE_SHIFT;
  720. u64 attr;
  721. /*
  722. * For /dev/mem mmap, we use user mappings, but if the region is
  723. * in kern_memmap (and hence may be covered by a kernel mapping),
  724. * we must use the same attribute as the kernel mapping.
  725. */
  726. attr = kern_mem_attribute(phys_addr, size);
  727. if (attr & EFI_MEMORY_WB)
  728. return pgprot_cacheable(vma_prot);
  729. else if (attr & EFI_MEMORY_UC)
  730. return pgprot_noncached(vma_prot);
  731. /*
  732. * Some chipsets don't support UC access to memory. If
  733. * WB is supported, we prefer that.
  734. */
  735. if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
  736. return pgprot_cacheable(vma_prot);
  737. return pgprot_noncached(vma_prot);
  738. }
  739. int __init
  740. efi_uart_console_only(void)
  741. {
  742. efi_status_t status;
  743. char *s, name[] = "ConOut";
  744. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  745. efi_char16_t *utf16, name_utf16[32];
  746. unsigned char data[1024];
  747. unsigned long size = sizeof(data);
  748. struct efi_generic_dev_path *hdr, *end_addr;
  749. int uart = 0;
  750. /* Convert to UTF-16 */
  751. utf16 = name_utf16;
  752. s = name;
  753. while (*s)
  754. *utf16++ = *s++ & 0x7f;
  755. *utf16 = 0;
  756. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  757. if (status != EFI_SUCCESS) {
  758. printk(KERN_ERR "No EFI %s variable?\n", name);
  759. return 0;
  760. }
  761. hdr = (struct efi_generic_dev_path *) data;
  762. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  763. while (hdr < end_addr) {
  764. if (hdr->type == EFI_DEV_MSG &&
  765. hdr->sub_type == EFI_DEV_MSG_UART)
  766. uart = 1;
  767. else if (hdr->type == EFI_DEV_END_PATH ||
  768. hdr->type == EFI_DEV_END_PATH2) {
  769. if (!uart)
  770. return 0;
  771. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  772. return 1;
  773. uart = 0;
  774. }
  775. hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
  776. }
  777. printk(KERN_ERR "Malformed %s value\n", name);
  778. return 0;
  779. }
  780. /*
  781. * Look for the first granule aligned memory descriptor memory
  782. * that is big enough to hold EFI memory map. Make sure this
  783. * descriptor is atleast granule sized so it does not get trimmed
  784. */
  785. struct kern_memdesc *
  786. find_memmap_space (void)
  787. {
  788. u64 contig_low=0, contig_high=0;
  789. u64 as = 0, ae;
  790. void *efi_map_start, *efi_map_end, *p, *q;
  791. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  792. u64 space_needed, efi_desc_size;
  793. unsigned long total_mem = 0;
  794. efi_map_start = __va(ia64_boot_param->efi_memmap);
  795. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  796. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  797. /*
  798. * Worst case: we need 3 kernel descriptors for each efi descriptor
  799. * (if every entry has a WB part in the middle, and UC head and tail),
  800. * plus one for the end marker.
  801. */
  802. space_needed = sizeof(kern_memdesc_t) *
  803. (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
  804. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  805. md = p;
  806. if (!efi_wb(md)) {
  807. continue;
  808. }
  809. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  810. contig_low = GRANULEROUNDUP(md->phys_addr);
  811. contig_high = efi_md_end(md);
  812. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  813. check_md = q;
  814. if (!efi_wb(check_md))
  815. break;
  816. if (contig_high != check_md->phys_addr)
  817. break;
  818. contig_high = efi_md_end(check_md);
  819. }
  820. contig_high = GRANULEROUNDDOWN(contig_high);
  821. }
  822. if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
  823. continue;
  824. /* Round ends inward to granule boundaries */
  825. as = max(contig_low, md->phys_addr);
  826. ae = min(contig_high, efi_md_end(md));
  827. /* keep within max_addr= and min_addr= command line arg */
  828. as = max(as, min_addr);
  829. ae = min(ae, max_addr);
  830. if (ae <= as)
  831. continue;
  832. /* avoid going over mem= command line arg */
  833. if (total_mem + (ae - as) > mem_limit)
  834. ae -= total_mem + (ae - as) - mem_limit;
  835. if (ae <= as)
  836. continue;
  837. if (ae - as > space_needed)
  838. break;
  839. }
  840. if (p >= efi_map_end)
  841. panic("Can't allocate space for kernel memory descriptors");
  842. return __va(as);
  843. }
  844. /*
  845. * Walk the EFI memory map and gather all memory available for kernel
  846. * to use. We can allocate partial granules only if the unavailable
  847. * parts exist, and are WB.
  848. */
  849. void
  850. efi_memmap_init(unsigned long *s, unsigned long *e)
  851. {
  852. struct kern_memdesc *k, *prev = NULL;
  853. u64 contig_low=0, contig_high=0;
  854. u64 as, ae, lim;
  855. void *efi_map_start, *efi_map_end, *p, *q;
  856. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  857. u64 efi_desc_size;
  858. unsigned long total_mem = 0;
  859. k = kern_memmap = find_memmap_space();
  860. efi_map_start = __va(ia64_boot_param->efi_memmap);
  861. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  862. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  863. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  864. md = p;
  865. if (!efi_wb(md)) {
  866. if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
  867. md->type == EFI_BOOT_SERVICES_DATA)) {
  868. k->attribute = EFI_MEMORY_UC;
  869. k->start = md->phys_addr;
  870. k->num_pages = md->num_pages;
  871. k++;
  872. }
  873. continue;
  874. }
  875. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  876. contig_low = GRANULEROUNDUP(md->phys_addr);
  877. contig_high = efi_md_end(md);
  878. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  879. check_md = q;
  880. if (!efi_wb(check_md))
  881. break;
  882. if (contig_high != check_md->phys_addr)
  883. break;
  884. contig_high = efi_md_end(check_md);
  885. }
  886. contig_high = GRANULEROUNDDOWN(contig_high);
  887. }
  888. if (!is_memory_available(md))
  889. continue;
  890. #ifdef CONFIG_CRASH_DUMP
  891. /* saved_max_pfn should ignore max_addr= command line arg */
  892. if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
  893. saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
  894. #endif
  895. /*
  896. * Round ends inward to granule boundaries
  897. * Give trimmings to uncached allocator
  898. */
  899. if (md->phys_addr < contig_low) {
  900. lim = min(efi_md_end(md), contig_low);
  901. if (efi_uc(md)) {
  902. if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
  903. kmd_end(k-1) == md->phys_addr) {
  904. (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  905. } else {
  906. k->attribute = EFI_MEMORY_UC;
  907. k->start = md->phys_addr;
  908. k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  909. k++;
  910. }
  911. }
  912. as = contig_low;
  913. } else
  914. as = md->phys_addr;
  915. if (efi_md_end(md) > contig_high) {
  916. lim = max(md->phys_addr, contig_high);
  917. if (efi_uc(md)) {
  918. if (lim == md->phys_addr && k > kern_memmap &&
  919. (k-1)->attribute == EFI_MEMORY_UC &&
  920. kmd_end(k-1) == md->phys_addr) {
  921. (k-1)->num_pages += md->num_pages;
  922. } else {
  923. k->attribute = EFI_MEMORY_UC;
  924. k->start = lim;
  925. k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
  926. k++;
  927. }
  928. }
  929. ae = contig_high;
  930. } else
  931. ae = efi_md_end(md);
  932. /* keep within max_addr= and min_addr= command line arg */
  933. as = max(as, min_addr);
  934. ae = min(ae, max_addr);
  935. if (ae <= as)
  936. continue;
  937. /* avoid going over mem= command line arg */
  938. if (total_mem + (ae - as) > mem_limit)
  939. ae -= total_mem + (ae - as) - mem_limit;
  940. if (ae <= as)
  941. continue;
  942. if (prev && kmd_end(prev) == md->phys_addr) {
  943. prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
  944. total_mem += ae - as;
  945. continue;
  946. }
  947. k->attribute = EFI_MEMORY_WB;
  948. k->start = as;
  949. k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
  950. total_mem += ae - as;
  951. prev = k++;
  952. }
  953. k->start = ~0L; /* end-marker */
  954. /* reserve the memory we are using for kern_memmap */
  955. *s = (u64)kern_memmap;
  956. *e = (u64)++k;
  957. }
  958. void
  959. efi_initialize_iomem_resources(struct resource *code_resource,
  960. struct resource *data_resource)
  961. {
  962. struct resource *res;
  963. void *efi_map_start, *efi_map_end, *p;
  964. efi_memory_desc_t *md;
  965. u64 efi_desc_size;
  966. char *name;
  967. unsigned long flags;
  968. efi_map_start = __va(ia64_boot_param->efi_memmap);
  969. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  970. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  971. res = NULL;
  972. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  973. md = p;
  974. if (md->num_pages == 0) /* should not happen */
  975. continue;
  976. flags = IORESOURCE_MEM;
  977. switch (md->type) {
  978. case EFI_MEMORY_MAPPED_IO:
  979. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  980. continue;
  981. case EFI_LOADER_CODE:
  982. case EFI_LOADER_DATA:
  983. case EFI_BOOT_SERVICES_DATA:
  984. case EFI_BOOT_SERVICES_CODE:
  985. case EFI_CONVENTIONAL_MEMORY:
  986. if (md->attribute & EFI_MEMORY_WP) {
  987. name = "System ROM";
  988. flags |= IORESOURCE_READONLY;
  989. } else {
  990. name = "System RAM";
  991. }
  992. break;
  993. case EFI_ACPI_MEMORY_NVS:
  994. name = "ACPI Non-volatile Storage";
  995. flags |= IORESOURCE_BUSY;
  996. break;
  997. case EFI_UNUSABLE_MEMORY:
  998. name = "reserved";
  999. flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
  1000. break;
  1001. case EFI_RESERVED_TYPE:
  1002. case EFI_RUNTIME_SERVICES_CODE:
  1003. case EFI_RUNTIME_SERVICES_DATA:
  1004. case EFI_ACPI_RECLAIM_MEMORY:
  1005. default:
  1006. name = "reserved";
  1007. flags |= IORESOURCE_BUSY;
  1008. break;
  1009. }
  1010. if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
  1011. printk(KERN_ERR "failed to alocate resource for iomem\n");
  1012. return;
  1013. }
  1014. res->name = name;
  1015. res->start = md->phys_addr;
  1016. res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
  1017. res->flags = flags;
  1018. if (insert_resource(&iomem_resource, res) < 0)
  1019. kfree(res);
  1020. else {
  1021. /*
  1022. * We don't know which region contains
  1023. * kernel data so we try it repeatedly and
  1024. * let the resource manager test it.
  1025. */
  1026. insert_resource(res, code_resource);
  1027. insert_resource(res, data_resource);
  1028. #ifdef CONFIG_KEXEC
  1029. insert_resource(res, &efi_memmap_res);
  1030. insert_resource(res, &boot_param_res);
  1031. if (crashk_res.end > crashk_res.start)
  1032. insert_resource(res, &crashk_res);
  1033. #endif
  1034. }
  1035. }
  1036. }
  1037. #ifdef CONFIG_KEXEC
  1038. /* find a block of memory aligned to 64M exclude reserved regions
  1039. rsvd_regions are sorted
  1040. */
  1041. unsigned long __init
  1042. kdump_find_rsvd_region (unsigned long size,
  1043. struct rsvd_region *r, int n)
  1044. {
  1045. int i;
  1046. u64 start, end;
  1047. u64 alignment = 1UL << _PAGE_SIZE_64M;
  1048. void *efi_map_start, *efi_map_end, *p;
  1049. efi_memory_desc_t *md;
  1050. u64 efi_desc_size;
  1051. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1052. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1053. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1054. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1055. md = p;
  1056. if (!efi_wb(md))
  1057. continue;
  1058. start = ALIGN(md->phys_addr, alignment);
  1059. end = efi_md_end(md);
  1060. for (i = 0; i < n; i++) {
  1061. if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
  1062. if (__pa(r[i].start) > start + size)
  1063. return start;
  1064. start = ALIGN(__pa(r[i].end), alignment);
  1065. if (i < n-1 && __pa(r[i+1].start) < start + size)
  1066. continue;
  1067. else
  1068. break;
  1069. }
  1070. }
  1071. if (end > start + size)
  1072. return start;
  1073. }
  1074. printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
  1075. size);
  1076. return ~0UL;
  1077. }
  1078. #endif
  1079. #ifdef CONFIG_PROC_VMCORE
  1080. /* locate the size find a the descriptor at a certain address */
  1081. unsigned long
  1082. vmcore_find_descriptor_size (unsigned long address)
  1083. {
  1084. void *efi_map_start, *efi_map_end, *p;
  1085. efi_memory_desc_t *md;
  1086. u64 efi_desc_size;
  1087. unsigned long ret = 0;
  1088. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1089. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1090. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1091. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1092. md = p;
  1093. if (efi_wb(md) && md->type == EFI_LOADER_DATA
  1094. && md->phys_addr == address) {
  1095. ret = efi_md_size(md);
  1096. break;
  1097. }
  1098. }
  1099. if (ret == 0)
  1100. printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
  1101. return ret;
  1102. }
  1103. #endif