acpi-cpufreq.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. /*
  2. * arch/ia64/kernel/cpufreq/acpi-cpufreq.c
  3. * This file provides the ACPI based P-state support. This
  4. * module works with generic cpufreq infrastructure. Most of
  5. * the code is based on i386 version
  6. * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
  7. *
  8. * Copyright (C) 2005 Intel Corp
  9. * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/cpufreq.h>
  15. #include <linux/proc_fs.h>
  16. #include <linux/seq_file.h>
  17. #include <asm/io.h>
  18. #include <asm/uaccess.h>
  19. #include <asm/pal.h>
  20. #include <linux/acpi.h>
  21. #include <acpi/processor.h>
  22. #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
  23. MODULE_AUTHOR("Venkatesh Pallipadi");
  24. MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  25. MODULE_LICENSE("GPL");
  26. struct cpufreq_acpi_io {
  27. struct acpi_processor_performance acpi_data;
  28. struct cpufreq_frequency_table *freq_table;
  29. unsigned int resume;
  30. };
  31. static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
  32. static struct cpufreq_driver acpi_cpufreq_driver;
  33. static int
  34. processor_set_pstate (
  35. u32 value)
  36. {
  37. s64 retval;
  38. dprintk("processor_set_pstate\n");
  39. retval = ia64_pal_set_pstate((u64)value);
  40. if (retval) {
  41. dprintk("Failed to set freq to 0x%x, with error 0x%x\n",
  42. value, retval);
  43. return -ENODEV;
  44. }
  45. return (int)retval;
  46. }
  47. static int
  48. processor_get_pstate (
  49. u32 *value)
  50. {
  51. u64 pstate_index = 0;
  52. s64 retval;
  53. dprintk("processor_get_pstate\n");
  54. retval = ia64_pal_get_pstate(&pstate_index,
  55. PAL_GET_PSTATE_TYPE_INSTANT);
  56. *value = (u32) pstate_index;
  57. if (retval)
  58. dprintk("Failed to get current freq with "
  59. "error 0x%x, idx 0x%x\n", retval, *value);
  60. return (int)retval;
  61. }
  62. /* To be used only after data->acpi_data is initialized */
  63. static unsigned
  64. extract_clock (
  65. struct cpufreq_acpi_io *data,
  66. unsigned value,
  67. unsigned int cpu)
  68. {
  69. unsigned long i;
  70. dprintk("extract_clock\n");
  71. for (i = 0; i < data->acpi_data.state_count; i++) {
  72. if (value == data->acpi_data.states[i].status)
  73. return data->acpi_data.states[i].core_frequency;
  74. }
  75. return data->acpi_data.states[i-1].core_frequency;
  76. }
  77. static unsigned int
  78. processor_get_freq (
  79. struct cpufreq_acpi_io *data,
  80. unsigned int cpu)
  81. {
  82. int ret = 0;
  83. u32 value = 0;
  84. cpumask_t saved_mask;
  85. unsigned long clock_freq;
  86. dprintk("processor_get_freq\n");
  87. saved_mask = current->cpus_allowed;
  88. set_cpus_allowed(current, cpumask_of_cpu(cpu));
  89. if (smp_processor_id() != cpu) {
  90. ret = -EAGAIN;
  91. goto migrate_end;
  92. }
  93. /* processor_get_pstate gets the instantaneous frequency */
  94. ret = processor_get_pstate(&value);
  95. if (ret) {
  96. set_cpus_allowed(current, saved_mask);
  97. printk(KERN_WARNING "get performance failed with error %d\n",
  98. ret);
  99. ret = -EAGAIN;
  100. goto migrate_end;
  101. }
  102. clock_freq = extract_clock(data, value, cpu);
  103. ret = (clock_freq*1000);
  104. migrate_end:
  105. set_cpus_allowed(current, saved_mask);
  106. return ret;
  107. }
  108. static int
  109. processor_set_freq (
  110. struct cpufreq_acpi_io *data,
  111. unsigned int cpu,
  112. int state)
  113. {
  114. int ret = 0;
  115. u32 value = 0;
  116. struct cpufreq_freqs cpufreq_freqs;
  117. cpumask_t saved_mask;
  118. int retval;
  119. dprintk("processor_set_freq\n");
  120. saved_mask = current->cpus_allowed;
  121. set_cpus_allowed(current, cpumask_of_cpu(cpu));
  122. if (smp_processor_id() != cpu) {
  123. retval = -EAGAIN;
  124. goto migrate_end;
  125. }
  126. if (state == data->acpi_data.state) {
  127. if (unlikely(data->resume)) {
  128. dprintk("Called after resume, resetting to P%d\n", state);
  129. data->resume = 0;
  130. } else {
  131. dprintk("Already at target state (P%d)\n", state);
  132. retval = 0;
  133. goto migrate_end;
  134. }
  135. }
  136. dprintk("Transitioning from P%d to P%d\n",
  137. data->acpi_data.state, state);
  138. /* cpufreq frequency struct */
  139. cpufreq_freqs.cpu = cpu;
  140. cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
  141. cpufreq_freqs.new = data->freq_table[state].frequency;
  142. /* notify cpufreq */
  143. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
  144. /*
  145. * First we write the target state's 'control' value to the
  146. * control_register.
  147. */
  148. value = (u32) data->acpi_data.states[state].control;
  149. dprintk("Transitioning to state: 0x%08x\n", value);
  150. ret = processor_set_pstate(value);
  151. if (ret) {
  152. unsigned int tmp = cpufreq_freqs.new;
  153. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
  154. cpufreq_freqs.new = cpufreq_freqs.old;
  155. cpufreq_freqs.old = tmp;
  156. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
  157. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
  158. printk(KERN_WARNING "Transition failed with error %d\n", ret);
  159. retval = -ENODEV;
  160. goto migrate_end;
  161. }
  162. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
  163. data->acpi_data.state = state;
  164. retval = 0;
  165. migrate_end:
  166. set_cpus_allowed(current, saved_mask);
  167. return (retval);
  168. }
  169. static unsigned int
  170. acpi_cpufreq_get (
  171. unsigned int cpu)
  172. {
  173. struct cpufreq_acpi_io *data = acpi_io_data[cpu];
  174. dprintk("acpi_cpufreq_get\n");
  175. return processor_get_freq(data, cpu);
  176. }
  177. static int
  178. acpi_cpufreq_target (
  179. struct cpufreq_policy *policy,
  180. unsigned int target_freq,
  181. unsigned int relation)
  182. {
  183. struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
  184. unsigned int next_state = 0;
  185. unsigned int result = 0;
  186. dprintk("acpi_cpufreq_setpolicy\n");
  187. result = cpufreq_frequency_table_target(policy,
  188. data->freq_table, target_freq, relation, &next_state);
  189. if (result)
  190. return (result);
  191. result = processor_set_freq(data, policy->cpu, next_state);
  192. return (result);
  193. }
  194. static int
  195. acpi_cpufreq_verify (
  196. struct cpufreq_policy *policy)
  197. {
  198. unsigned int result = 0;
  199. struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
  200. dprintk("acpi_cpufreq_verify\n");
  201. result = cpufreq_frequency_table_verify(policy,
  202. data->freq_table);
  203. return (result);
  204. }
  205. static int
  206. acpi_cpufreq_cpu_init (
  207. struct cpufreq_policy *policy)
  208. {
  209. unsigned int i;
  210. unsigned int cpu = policy->cpu;
  211. struct cpufreq_acpi_io *data;
  212. unsigned int result = 0;
  213. dprintk("acpi_cpufreq_cpu_init\n");
  214. data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
  215. if (!data)
  216. return (-ENOMEM);
  217. acpi_io_data[cpu] = data;
  218. result = acpi_processor_register_performance(&data->acpi_data, cpu);
  219. if (result)
  220. goto err_free;
  221. /* capability check */
  222. if (data->acpi_data.state_count <= 1) {
  223. dprintk("No P-States\n");
  224. result = -ENODEV;
  225. goto err_unreg;
  226. }
  227. if ((data->acpi_data.control_register.space_id !=
  228. ACPI_ADR_SPACE_FIXED_HARDWARE) ||
  229. (data->acpi_data.status_register.space_id !=
  230. ACPI_ADR_SPACE_FIXED_HARDWARE)) {
  231. dprintk("Unsupported address space [%d, %d]\n",
  232. (u32) (data->acpi_data.control_register.space_id),
  233. (u32) (data->acpi_data.status_register.space_id));
  234. result = -ENODEV;
  235. goto err_unreg;
  236. }
  237. /* alloc freq_table */
  238. data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
  239. (data->acpi_data.state_count + 1),
  240. GFP_KERNEL);
  241. if (!data->freq_table) {
  242. result = -ENOMEM;
  243. goto err_unreg;
  244. }
  245. /* detect transition latency */
  246. policy->cpuinfo.transition_latency = 0;
  247. for (i=0; i<data->acpi_data.state_count; i++) {
  248. if ((data->acpi_data.states[i].transition_latency * 1000) >
  249. policy->cpuinfo.transition_latency) {
  250. policy->cpuinfo.transition_latency =
  251. data->acpi_data.states[i].transition_latency * 1000;
  252. }
  253. }
  254. policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
  255. policy->cur = processor_get_freq(data, policy->cpu);
  256. /* table init */
  257. for (i = 0; i <= data->acpi_data.state_count; i++)
  258. {
  259. data->freq_table[i].index = i;
  260. if (i < data->acpi_data.state_count) {
  261. data->freq_table[i].frequency =
  262. data->acpi_data.states[i].core_frequency * 1000;
  263. } else {
  264. data->freq_table[i].frequency = CPUFREQ_TABLE_END;
  265. }
  266. }
  267. result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
  268. if (result) {
  269. goto err_freqfree;
  270. }
  271. /* notify BIOS that we exist */
  272. acpi_processor_notify_smm(THIS_MODULE);
  273. printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
  274. "activated.\n", cpu);
  275. for (i = 0; i < data->acpi_data.state_count; i++)
  276. dprintk(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
  277. (i == data->acpi_data.state?'*':' '), i,
  278. (u32) data->acpi_data.states[i].core_frequency,
  279. (u32) data->acpi_data.states[i].power,
  280. (u32) data->acpi_data.states[i].transition_latency,
  281. (u32) data->acpi_data.states[i].bus_master_latency,
  282. (u32) data->acpi_data.states[i].status,
  283. (u32) data->acpi_data.states[i].control);
  284. cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
  285. /* the first call to ->target() should result in us actually
  286. * writing something to the appropriate registers. */
  287. data->resume = 1;
  288. return (result);
  289. err_freqfree:
  290. kfree(data->freq_table);
  291. err_unreg:
  292. acpi_processor_unregister_performance(&data->acpi_data, cpu);
  293. err_free:
  294. kfree(data);
  295. acpi_io_data[cpu] = NULL;
  296. return (result);
  297. }
  298. static int
  299. acpi_cpufreq_cpu_exit (
  300. struct cpufreq_policy *policy)
  301. {
  302. struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
  303. dprintk("acpi_cpufreq_cpu_exit\n");
  304. if (data) {
  305. cpufreq_frequency_table_put_attr(policy->cpu);
  306. acpi_io_data[policy->cpu] = NULL;
  307. acpi_processor_unregister_performance(&data->acpi_data,
  308. policy->cpu);
  309. kfree(data);
  310. }
  311. return (0);
  312. }
  313. static struct freq_attr* acpi_cpufreq_attr[] = {
  314. &cpufreq_freq_attr_scaling_available_freqs,
  315. NULL,
  316. };
  317. static struct cpufreq_driver acpi_cpufreq_driver = {
  318. .verify = acpi_cpufreq_verify,
  319. .target = acpi_cpufreq_target,
  320. .get = acpi_cpufreq_get,
  321. .init = acpi_cpufreq_cpu_init,
  322. .exit = acpi_cpufreq_cpu_exit,
  323. .name = "acpi-cpufreq",
  324. .owner = THIS_MODULE,
  325. .attr = acpi_cpufreq_attr,
  326. };
  327. static int __init
  328. acpi_cpufreq_init (void)
  329. {
  330. dprintk("acpi_cpufreq_init\n");
  331. return cpufreq_register_driver(&acpi_cpufreq_driver);
  332. }
  333. static void __exit
  334. acpi_cpufreq_exit (void)
  335. {
  336. dprintk("acpi_cpufreq_exit\n");
  337. cpufreq_unregister_driver(&acpi_cpufreq_driver);
  338. return;
  339. }
  340. late_initcall(acpi_cpufreq_init);
  341. module_exit(acpi_cpufreq_exit);