traps.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202
  1. /*
  2. * linux/arch/i386/traps.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * 'Traps.c' handles hardware traps and faults after we have saved some
  11. * state in 'asm.s'.
  12. */
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/string.h>
  16. #include <linux/errno.h>
  17. #include <linux/timer.h>
  18. #include <linux/mm.h>
  19. #include <linux/init.h>
  20. #include <linux/delay.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/highmem.h>
  24. #include <linux/kallsyms.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/utsname.h>
  27. #include <linux/kprobes.h>
  28. #include <linux/kexec.h>
  29. #include <linux/unwind.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/nmi.h>
  32. #include <linux/bug.h>
  33. #ifdef CONFIG_EISA
  34. #include <linux/ioport.h>
  35. #include <linux/eisa.h>
  36. #endif
  37. #ifdef CONFIG_MCA
  38. #include <linux/mca.h>
  39. #endif
  40. #include <asm/processor.h>
  41. #include <asm/system.h>
  42. #include <asm/io.h>
  43. #include <asm/atomic.h>
  44. #include <asm/debugreg.h>
  45. #include <asm/desc.h>
  46. #include <asm/i387.h>
  47. #include <asm/nmi.h>
  48. #include <asm/unwind.h>
  49. #include <asm/smp.h>
  50. #include <asm/arch_hooks.h>
  51. #include <linux/kdebug.h>
  52. #include <asm/stacktrace.h>
  53. #include <linux/module.h>
  54. #include "mach_traps.h"
  55. int panic_on_unrecovered_nmi;
  56. asmlinkage int system_call(void);
  57. /* Do we ignore FPU interrupts ? */
  58. char ignore_fpu_irq = 0;
  59. /*
  60. * The IDT has to be page-aligned to simplify the Pentium
  61. * F0 0F bug workaround.. We have a special link segment
  62. * for this.
  63. */
  64. struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
  65. asmlinkage void divide_error(void);
  66. asmlinkage void debug(void);
  67. asmlinkage void nmi(void);
  68. asmlinkage void int3(void);
  69. asmlinkage void overflow(void);
  70. asmlinkage void bounds(void);
  71. asmlinkage void invalid_op(void);
  72. asmlinkage void device_not_available(void);
  73. asmlinkage void coprocessor_segment_overrun(void);
  74. asmlinkage void invalid_TSS(void);
  75. asmlinkage void segment_not_present(void);
  76. asmlinkage void stack_segment(void);
  77. asmlinkage void general_protection(void);
  78. asmlinkage void page_fault(void);
  79. asmlinkage void coprocessor_error(void);
  80. asmlinkage void simd_coprocessor_error(void);
  81. asmlinkage void alignment_check(void);
  82. asmlinkage void spurious_interrupt_bug(void);
  83. asmlinkage void machine_check(void);
  84. int kstack_depth_to_print = 24;
  85. static unsigned int code_bytes = 64;
  86. static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
  87. {
  88. return p > (void *)tinfo &&
  89. p < (void *)tinfo + THREAD_SIZE - 3;
  90. }
  91. static inline unsigned long print_context_stack(struct thread_info *tinfo,
  92. unsigned long *stack, unsigned long ebp,
  93. struct stacktrace_ops *ops, void *data)
  94. {
  95. unsigned long addr;
  96. #ifdef CONFIG_FRAME_POINTER
  97. while (valid_stack_ptr(tinfo, (void *)ebp)) {
  98. unsigned long new_ebp;
  99. addr = *(unsigned long *)(ebp + 4);
  100. ops->address(data, addr);
  101. /*
  102. * break out of recursive entries (such as
  103. * end_of_stack_stop_unwind_function). Also,
  104. * we can never allow a frame pointer to
  105. * move downwards!
  106. */
  107. new_ebp = *(unsigned long *)ebp;
  108. if (new_ebp <= ebp)
  109. break;
  110. ebp = new_ebp;
  111. }
  112. #else
  113. while (valid_stack_ptr(tinfo, stack)) {
  114. addr = *stack++;
  115. if (__kernel_text_address(addr))
  116. ops->address(data, addr);
  117. }
  118. #endif
  119. return ebp;
  120. }
  121. #define MSG(msg) ops->warning(data, msg)
  122. void dump_trace(struct task_struct *task, struct pt_regs *regs,
  123. unsigned long *stack,
  124. struct stacktrace_ops *ops, void *data)
  125. {
  126. unsigned long ebp = 0;
  127. if (!task)
  128. task = current;
  129. if (!stack) {
  130. unsigned long dummy;
  131. stack = &dummy;
  132. if (task && task != current)
  133. stack = (unsigned long *)task->thread.esp;
  134. }
  135. #ifdef CONFIG_FRAME_POINTER
  136. if (!ebp) {
  137. if (task == current) {
  138. /* Grab ebp right from our regs */
  139. asm ("movl %%ebp, %0" : "=r" (ebp) : );
  140. } else {
  141. /* ebp is the last reg pushed by switch_to */
  142. ebp = *(unsigned long *) task->thread.esp;
  143. }
  144. }
  145. #endif
  146. while (1) {
  147. struct thread_info *context;
  148. context = (struct thread_info *)
  149. ((unsigned long)stack & (~(THREAD_SIZE - 1)));
  150. ebp = print_context_stack(context, stack, ebp, ops, data);
  151. /* Should be after the line below, but somewhere
  152. in early boot context comes out corrupted and we
  153. can't reference it -AK */
  154. if (ops->stack(data, "IRQ") < 0)
  155. break;
  156. stack = (unsigned long*)context->previous_esp;
  157. if (!stack)
  158. break;
  159. touch_nmi_watchdog();
  160. }
  161. }
  162. EXPORT_SYMBOL(dump_trace);
  163. static void
  164. print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
  165. {
  166. printk(data);
  167. print_symbol(msg, symbol);
  168. printk("\n");
  169. }
  170. static void print_trace_warning(void *data, char *msg)
  171. {
  172. printk("%s%s\n", (char *)data, msg);
  173. }
  174. static int print_trace_stack(void *data, char *name)
  175. {
  176. return 0;
  177. }
  178. /*
  179. * Print one address/symbol entries per line.
  180. */
  181. static void print_trace_address(void *data, unsigned long addr)
  182. {
  183. printk("%s [<%08lx>] ", (char *)data, addr);
  184. print_symbol("%s\n", addr);
  185. }
  186. static struct stacktrace_ops print_trace_ops = {
  187. .warning = print_trace_warning,
  188. .warning_symbol = print_trace_warning_symbol,
  189. .stack = print_trace_stack,
  190. .address = print_trace_address,
  191. };
  192. static void
  193. show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
  194. unsigned long * stack, char *log_lvl)
  195. {
  196. dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
  197. printk("%s =======================\n", log_lvl);
  198. }
  199. void show_trace(struct task_struct *task, struct pt_regs *regs,
  200. unsigned long * stack)
  201. {
  202. show_trace_log_lvl(task, regs, stack, "");
  203. }
  204. static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
  205. unsigned long *esp, char *log_lvl)
  206. {
  207. unsigned long *stack;
  208. int i;
  209. if (esp == NULL) {
  210. if (task)
  211. esp = (unsigned long*)task->thread.esp;
  212. else
  213. esp = (unsigned long *)&esp;
  214. }
  215. stack = esp;
  216. for(i = 0; i < kstack_depth_to_print; i++) {
  217. if (kstack_end(stack))
  218. break;
  219. if (i && ((i % 8) == 0))
  220. printk("\n%s ", log_lvl);
  221. printk("%08lx ", *stack++);
  222. }
  223. printk("\n%sCall Trace:\n", log_lvl);
  224. show_trace_log_lvl(task, regs, esp, log_lvl);
  225. }
  226. void show_stack(struct task_struct *task, unsigned long *esp)
  227. {
  228. printk(" ");
  229. show_stack_log_lvl(task, NULL, esp, "");
  230. }
  231. /*
  232. * The architecture-independent dump_stack generator
  233. */
  234. void dump_stack(void)
  235. {
  236. unsigned long stack;
  237. show_trace(current, NULL, &stack);
  238. }
  239. EXPORT_SYMBOL(dump_stack);
  240. void show_registers(struct pt_regs *regs)
  241. {
  242. int i;
  243. int in_kernel = 1;
  244. unsigned long esp;
  245. unsigned short ss, gs;
  246. esp = (unsigned long) (&regs->esp);
  247. savesegment(ss, ss);
  248. savesegment(gs, gs);
  249. if (user_mode_vm(regs)) {
  250. in_kernel = 0;
  251. esp = regs->esp;
  252. ss = regs->xss & 0xffff;
  253. }
  254. print_modules();
  255. printk(KERN_EMERG "CPU: %d\n"
  256. KERN_EMERG "EIP: %04x:[<%08lx>] %s VLI\n"
  257. KERN_EMERG "EFLAGS: %08lx (%s %.*s)\n",
  258. smp_processor_id(), 0xffff & regs->xcs, regs->eip,
  259. print_tainted(), regs->eflags, init_utsname()->release,
  260. (int)strcspn(init_utsname()->version, " "),
  261. init_utsname()->version);
  262. print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
  263. printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
  264. regs->eax, regs->ebx, regs->ecx, regs->edx);
  265. printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
  266. regs->esi, regs->edi, regs->ebp, esp);
  267. printk(KERN_EMERG "ds: %04x es: %04x fs: %04x gs: %04x ss: %04x\n",
  268. regs->xds & 0xffff, regs->xes & 0xffff, regs->xfs & 0xffff, gs, ss);
  269. printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
  270. TASK_COMM_LEN, current->comm, current->pid,
  271. current_thread_info(), current, task_thread_info(current));
  272. /*
  273. * When in-kernel, we also print out the stack and code at the
  274. * time of the fault..
  275. */
  276. if (in_kernel) {
  277. u8 *eip;
  278. unsigned int code_prologue = code_bytes * 43 / 64;
  279. unsigned int code_len = code_bytes;
  280. unsigned char c;
  281. printk("\n" KERN_EMERG "Stack: ");
  282. show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG);
  283. printk(KERN_EMERG "Code: ");
  284. eip = (u8 *)regs->eip - code_prologue;
  285. if (eip < (u8 *)PAGE_OFFSET ||
  286. probe_kernel_address(eip, c)) {
  287. /* try starting at EIP */
  288. eip = (u8 *)regs->eip;
  289. code_len = code_len - code_prologue + 1;
  290. }
  291. for (i = 0; i < code_len; i++, eip++) {
  292. if (eip < (u8 *)PAGE_OFFSET ||
  293. probe_kernel_address(eip, c)) {
  294. printk(" Bad EIP value.");
  295. break;
  296. }
  297. if (eip == (u8 *)regs->eip)
  298. printk("<%02x> ", c);
  299. else
  300. printk("%02x ", c);
  301. }
  302. }
  303. printk("\n");
  304. }
  305. int is_valid_bugaddr(unsigned long eip)
  306. {
  307. unsigned short ud2;
  308. if (eip < PAGE_OFFSET)
  309. return 0;
  310. if (probe_kernel_address((unsigned short *)eip, ud2))
  311. return 0;
  312. return ud2 == 0x0b0f;
  313. }
  314. /*
  315. * This is gone through when something in the kernel has done something bad and
  316. * is about to be terminated.
  317. */
  318. void die(const char * str, struct pt_regs * regs, long err)
  319. {
  320. static struct {
  321. spinlock_t lock;
  322. u32 lock_owner;
  323. int lock_owner_depth;
  324. } die = {
  325. .lock = __SPIN_LOCK_UNLOCKED(die.lock),
  326. .lock_owner = -1,
  327. .lock_owner_depth = 0
  328. };
  329. static int die_counter;
  330. unsigned long flags;
  331. oops_enter();
  332. if (die.lock_owner != raw_smp_processor_id()) {
  333. console_verbose();
  334. spin_lock_irqsave(&die.lock, flags);
  335. die.lock_owner = smp_processor_id();
  336. die.lock_owner_depth = 0;
  337. bust_spinlocks(1);
  338. }
  339. else
  340. local_save_flags(flags);
  341. if (++die.lock_owner_depth < 3) {
  342. int nl = 0;
  343. unsigned long esp;
  344. unsigned short ss;
  345. report_bug(regs->eip);
  346. printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
  347. #ifdef CONFIG_PREEMPT
  348. printk(KERN_EMERG "PREEMPT ");
  349. nl = 1;
  350. #endif
  351. #ifdef CONFIG_SMP
  352. if (!nl)
  353. printk(KERN_EMERG);
  354. printk("SMP ");
  355. nl = 1;
  356. #endif
  357. #ifdef CONFIG_DEBUG_PAGEALLOC
  358. if (!nl)
  359. printk(KERN_EMERG);
  360. printk("DEBUG_PAGEALLOC");
  361. nl = 1;
  362. #endif
  363. if (nl)
  364. printk("\n");
  365. if (notify_die(DIE_OOPS, str, regs, err,
  366. current->thread.trap_no, SIGSEGV) !=
  367. NOTIFY_STOP) {
  368. show_registers(regs);
  369. /* Executive summary in case the oops scrolled away */
  370. esp = (unsigned long) (&regs->esp);
  371. savesegment(ss, ss);
  372. if (user_mode(regs)) {
  373. esp = regs->esp;
  374. ss = regs->xss & 0xffff;
  375. }
  376. printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
  377. print_symbol("%s", regs->eip);
  378. printk(" SS:ESP %04x:%08lx\n", ss, esp);
  379. }
  380. else
  381. regs = NULL;
  382. } else
  383. printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
  384. bust_spinlocks(0);
  385. die.lock_owner = -1;
  386. spin_unlock_irqrestore(&die.lock, flags);
  387. if (!regs)
  388. return;
  389. if (kexec_should_crash(current))
  390. crash_kexec(regs);
  391. if (in_interrupt())
  392. panic("Fatal exception in interrupt");
  393. if (panic_on_oops)
  394. panic("Fatal exception");
  395. oops_exit();
  396. do_exit(SIGSEGV);
  397. }
  398. static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
  399. {
  400. if (!user_mode_vm(regs))
  401. die(str, regs, err);
  402. }
  403. static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
  404. struct pt_regs * regs, long error_code,
  405. siginfo_t *info)
  406. {
  407. struct task_struct *tsk = current;
  408. if (regs->eflags & VM_MASK) {
  409. if (vm86)
  410. goto vm86_trap;
  411. goto trap_signal;
  412. }
  413. if (!user_mode(regs))
  414. goto kernel_trap;
  415. trap_signal: {
  416. /*
  417. * We want error_code and trap_no set for userspace faults and
  418. * kernelspace faults which result in die(), but not
  419. * kernelspace faults which are fixed up. die() gives the
  420. * process no chance to handle the signal and notice the
  421. * kernel fault information, so that won't result in polluting
  422. * the information about previously queued, but not yet
  423. * delivered, faults. See also do_general_protection below.
  424. */
  425. tsk->thread.error_code = error_code;
  426. tsk->thread.trap_no = trapnr;
  427. if (info)
  428. force_sig_info(signr, info, tsk);
  429. else
  430. force_sig(signr, tsk);
  431. return;
  432. }
  433. kernel_trap: {
  434. if (!fixup_exception(regs)) {
  435. tsk->thread.error_code = error_code;
  436. tsk->thread.trap_no = trapnr;
  437. die(str, regs, error_code);
  438. }
  439. return;
  440. }
  441. vm86_trap: {
  442. int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
  443. if (ret) goto trap_signal;
  444. return;
  445. }
  446. }
  447. #define DO_ERROR(trapnr, signr, str, name) \
  448. fastcall void do_##name(struct pt_regs * regs, long error_code) \
  449. { \
  450. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  451. == NOTIFY_STOP) \
  452. return; \
  453. do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
  454. }
  455. #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
  456. fastcall void do_##name(struct pt_regs * regs, long error_code) \
  457. { \
  458. siginfo_t info; \
  459. info.si_signo = signr; \
  460. info.si_errno = 0; \
  461. info.si_code = sicode; \
  462. info.si_addr = (void __user *)siaddr; \
  463. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  464. == NOTIFY_STOP) \
  465. return; \
  466. do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
  467. }
  468. #define DO_VM86_ERROR(trapnr, signr, str, name) \
  469. fastcall void do_##name(struct pt_regs * regs, long error_code) \
  470. { \
  471. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  472. == NOTIFY_STOP) \
  473. return; \
  474. do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
  475. }
  476. #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
  477. fastcall void do_##name(struct pt_regs * regs, long error_code) \
  478. { \
  479. siginfo_t info; \
  480. info.si_signo = signr; \
  481. info.si_errno = 0; \
  482. info.si_code = sicode; \
  483. info.si_addr = (void __user *)siaddr; \
  484. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  485. == NOTIFY_STOP) \
  486. return; \
  487. do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
  488. }
  489. DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
  490. #ifndef CONFIG_KPROBES
  491. DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
  492. #endif
  493. DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
  494. DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
  495. DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip)
  496. DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
  497. DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
  498. DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
  499. DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
  500. DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
  501. DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
  502. fastcall void __kprobes do_general_protection(struct pt_regs * regs,
  503. long error_code)
  504. {
  505. int cpu = get_cpu();
  506. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  507. struct thread_struct *thread = &current->thread;
  508. /*
  509. * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
  510. * invalid offset set (the LAZY one) and the faulting thread has
  511. * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
  512. * and we set the offset field correctly. Then we let the CPU to
  513. * restart the faulting instruction.
  514. */
  515. if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
  516. thread->io_bitmap_ptr) {
  517. memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
  518. thread->io_bitmap_max);
  519. /*
  520. * If the previously set map was extending to higher ports
  521. * than the current one, pad extra space with 0xff (no access).
  522. */
  523. if (thread->io_bitmap_max < tss->io_bitmap_max)
  524. memset((char *) tss->io_bitmap +
  525. thread->io_bitmap_max, 0xff,
  526. tss->io_bitmap_max - thread->io_bitmap_max);
  527. tss->io_bitmap_max = thread->io_bitmap_max;
  528. tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  529. tss->io_bitmap_owner = thread;
  530. put_cpu();
  531. return;
  532. }
  533. put_cpu();
  534. if (regs->eflags & VM_MASK)
  535. goto gp_in_vm86;
  536. if (!user_mode(regs))
  537. goto gp_in_kernel;
  538. current->thread.error_code = error_code;
  539. current->thread.trap_no = 13;
  540. force_sig(SIGSEGV, current);
  541. return;
  542. gp_in_vm86:
  543. local_irq_enable();
  544. handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
  545. return;
  546. gp_in_kernel:
  547. if (!fixup_exception(regs)) {
  548. current->thread.error_code = error_code;
  549. current->thread.trap_no = 13;
  550. if (notify_die(DIE_GPF, "general protection fault", regs,
  551. error_code, 13, SIGSEGV) == NOTIFY_STOP)
  552. return;
  553. die("general protection fault", regs, error_code);
  554. }
  555. }
  556. static __kprobes void
  557. mem_parity_error(unsigned char reason, struct pt_regs * regs)
  558. {
  559. printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
  560. "CPU %d.\n", reason, smp_processor_id());
  561. printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
  562. if (panic_on_unrecovered_nmi)
  563. panic("NMI: Not continuing");
  564. printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
  565. /* Clear and disable the memory parity error line. */
  566. clear_mem_error(reason);
  567. }
  568. static __kprobes void
  569. io_check_error(unsigned char reason, struct pt_regs * regs)
  570. {
  571. unsigned long i;
  572. printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
  573. show_registers(regs);
  574. /* Re-enable the IOCK line, wait for a few seconds */
  575. reason = (reason & 0xf) | 8;
  576. outb(reason, 0x61);
  577. i = 2000;
  578. while (--i) udelay(1000);
  579. reason &= ~8;
  580. outb(reason, 0x61);
  581. }
  582. static __kprobes void
  583. unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
  584. {
  585. #ifdef CONFIG_MCA
  586. /* Might actually be able to figure out what the guilty party
  587. * is. */
  588. if( MCA_bus ) {
  589. mca_handle_nmi();
  590. return;
  591. }
  592. #endif
  593. printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
  594. "CPU %d.\n", reason, smp_processor_id());
  595. printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
  596. if (panic_on_unrecovered_nmi)
  597. panic("NMI: Not continuing");
  598. printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
  599. }
  600. static DEFINE_SPINLOCK(nmi_print_lock);
  601. void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
  602. {
  603. if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
  604. NOTIFY_STOP)
  605. return;
  606. spin_lock(&nmi_print_lock);
  607. /*
  608. * We are in trouble anyway, lets at least try
  609. * to get a message out.
  610. */
  611. bust_spinlocks(1);
  612. printk(KERN_EMERG "%s", msg);
  613. printk(" on CPU%d, eip %08lx, registers:\n",
  614. smp_processor_id(), regs->eip);
  615. show_registers(regs);
  616. console_silent();
  617. spin_unlock(&nmi_print_lock);
  618. bust_spinlocks(0);
  619. /* If we are in kernel we are probably nested up pretty bad
  620. * and might aswell get out now while we still can.
  621. */
  622. if (!user_mode_vm(regs)) {
  623. current->thread.trap_no = 2;
  624. crash_kexec(regs);
  625. }
  626. do_exit(SIGSEGV);
  627. }
  628. static __kprobes void default_do_nmi(struct pt_regs * regs)
  629. {
  630. unsigned char reason = 0;
  631. /* Only the BSP gets external NMIs from the system. */
  632. if (!smp_processor_id())
  633. reason = get_nmi_reason();
  634. if (!(reason & 0xc0)) {
  635. if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
  636. == NOTIFY_STOP)
  637. return;
  638. #ifdef CONFIG_X86_LOCAL_APIC
  639. /*
  640. * Ok, so this is none of the documented NMI sources,
  641. * so it must be the NMI watchdog.
  642. */
  643. if (nmi_watchdog_tick(regs, reason))
  644. return;
  645. if (!do_nmi_callback(regs, smp_processor_id()))
  646. #endif
  647. unknown_nmi_error(reason, regs);
  648. return;
  649. }
  650. if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
  651. return;
  652. if (reason & 0x80)
  653. mem_parity_error(reason, regs);
  654. if (reason & 0x40)
  655. io_check_error(reason, regs);
  656. /*
  657. * Reassert NMI in case it became active meanwhile
  658. * as it's edge-triggered.
  659. */
  660. reassert_nmi();
  661. }
  662. fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code)
  663. {
  664. int cpu;
  665. nmi_enter();
  666. cpu = smp_processor_id();
  667. ++nmi_count(cpu);
  668. default_do_nmi(regs);
  669. nmi_exit();
  670. }
  671. #ifdef CONFIG_KPROBES
  672. fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
  673. {
  674. if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
  675. == NOTIFY_STOP)
  676. return;
  677. /* This is an interrupt gate, because kprobes wants interrupts
  678. disabled. Normal trap handlers don't. */
  679. restore_interrupts(regs);
  680. do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
  681. }
  682. #endif
  683. /*
  684. * Our handling of the processor debug registers is non-trivial.
  685. * We do not clear them on entry and exit from the kernel. Therefore
  686. * it is possible to get a watchpoint trap here from inside the kernel.
  687. * However, the code in ./ptrace.c has ensured that the user can
  688. * only set watchpoints on userspace addresses. Therefore the in-kernel
  689. * watchpoint trap can only occur in code which is reading/writing
  690. * from user space. Such code must not hold kernel locks (since it
  691. * can equally take a page fault), therefore it is safe to call
  692. * force_sig_info even though that claims and releases locks.
  693. *
  694. * Code in ./signal.c ensures that the debug control register
  695. * is restored before we deliver any signal, and therefore that
  696. * user code runs with the correct debug control register even though
  697. * we clear it here.
  698. *
  699. * Being careful here means that we don't have to be as careful in a
  700. * lot of more complicated places (task switching can be a bit lazy
  701. * about restoring all the debug state, and ptrace doesn't have to
  702. * find every occurrence of the TF bit that could be saved away even
  703. * by user code)
  704. */
  705. fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
  706. {
  707. unsigned int condition;
  708. struct task_struct *tsk = current;
  709. get_debugreg(condition, 6);
  710. if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
  711. SIGTRAP) == NOTIFY_STOP)
  712. return;
  713. /* It's safe to allow irq's after DR6 has been saved */
  714. if (regs->eflags & X86_EFLAGS_IF)
  715. local_irq_enable();
  716. /* Mask out spurious debug traps due to lazy DR7 setting */
  717. if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
  718. if (!tsk->thread.debugreg[7])
  719. goto clear_dr7;
  720. }
  721. if (regs->eflags & VM_MASK)
  722. goto debug_vm86;
  723. /* Save debug status register where ptrace can see it */
  724. tsk->thread.debugreg[6] = condition;
  725. /*
  726. * Single-stepping through TF: make sure we ignore any events in
  727. * kernel space (but re-enable TF when returning to user mode).
  728. */
  729. if (condition & DR_STEP) {
  730. /*
  731. * We already checked v86 mode above, so we can
  732. * check for kernel mode by just checking the CPL
  733. * of CS.
  734. */
  735. if (!user_mode(regs))
  736. goto clear_TF_reenable;
  737. }
  738. /* Ok, finally something we can handle */
  739. send_sigtrap(tsk, regs, error_code);
  740. /* Disable additional traps. They'll be re-enabled when
  741. * the signal is delivered.
  742. */
  743. clear_dr7:
  744. set_debugreg(0, 7);
  745. return;
  746. debug_vm86:
  747. handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
  748. return;
  749. clear_TF_reenable:
  750. set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
  751. regs->eflags &= ~TF_MASK;
  752. return;
  753. }
  754. /*
  755. * Note that we play around with the 'TS' bit in an attempt to get
  756. * the correct behaviour even in the presence of the asynchronous
  757. * IRQ13 behaviour
  758. */
  759. void math_error(void __user *eip)
  760. {
  761. struct task_struct * task;
  762. siginfo_t info;
  763. unsigned short cwd, swd;
  764. /*
  765. * Save the info for the exception handler and clear the error.
  766. */
  767. task = current;
  768. save_init_fpu(task);
  769. task->thread.trap_no = 16;
  770. task->thread.error_code = 0;
  771. info.si_signo = SIGFPE;
  772. info.si_errno = 0;
  773. info.si_code = __SI_FAULT;
  774. info.si_addr = eip;
  775. /*
  776. * (~cwd & swd) will mask out exceptions that are not set to unmasked
  777. * status. 0x3f is the exception bits in these regs, 0x200 is the
  778. * C1 reg you need in case of a stack fault, 0x040 is the stack
  779. * fault bit. We should only be taking one exception at a time,
  780. * so if this combination doesn't produce any single exception,
  781. * then we have a bad program that isn't syncronizing its FPU usage
  782. * and it will suffer the consequences since we won't be able to
  783. * fully reproduce the context of the exception
  784. */
  785. cwd = get_fpu_cwd(task);
  786. swd = get_fpu_swd(task);
  787. switch (swd & ~cwd & 0x3f) {
  788. case 0x000: /* No unmasked exception */
  789. return;
  790. default: /* Multiple exceptions */
  791. break;
  792. case 0x001: /* Invalid Op */
  793. /*
  794. * swd & 0x240 == 0x040: Stack Underflow
  795. * swd & 0x240 == 0x240: Stack Overflow
  796. * User must clear the SF bit (0x40) if set
  797. */
  798. info.si_code = FPE_FLTINV;
  799. break;
  800. case 0x002: /* Denormalize */
  801. case 0x010: /* Underflow */
  802. info.si_code = FPE_FLTUND;
  803. break;
  804. case 0x004: /* Zero Divide */
  805. info.si_code = FPE_FLTDIV;
  806. break;
  807. case 0x008: /* Overflow */
  808. info.si_code = FPE_FLTOVF;
  809. break;
  810. case 0x020: /* Precision */
  811. info.si_code = FPE_FLTRES;
  812. break;
  813. }
  814. force_sig_info(SIGFPE, &info, task);
  815. }
  816. fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
  817. {
  818. ignore_fpu_irq = 1;
  819. math_error((void __user *)regs->eip);
  820. }
  821. static void simd_math_error(void __user *eip)
  822. {
  823. struct task_struct * task;
  824. siginfo_t info;
  825. unsigned short mxcsr;
  826. /*
  827. * Save the info for the exception handler and clear the error.
  828. */
  829. task = current;
  830. save_init_fpu(task);
  831. task->thread.trap_no = 19;
  832. task->thread.error_code = 0;
  833. info.si_signo = SIGFPE;
  834. info.si_errno = 0;
  835. info.si_code = __SI_FAULT;
  836. info.si_addr = eip;
  837. /*
  838. * The SIMD FPU exceptions are handled a little differently, as there
  839. * is only a single status/control register. Thus, to determine which
  840. * unmasked exception was caught we must mask the exception mask bits
  841. * at 0x1f80, and then use these to mask the exception bits at 0x3f.
  842. */
  843. mxcsr = get_fpu_mxcsr(task);
  844. switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
  845. case 0x000:
  846. default:
  847. break;
  848. case 0x001: /* Invalid Op */
  849. info.si_code = FPE_FLTINV;
  850. break;
  851. case 0x002: /* Denormalize */
  852. case 0x010: /* Underflow */
  853. info.si_code = FPE_FLTUND;
  854. break;
  855. case 0x004: /* Zero Divide */
  856. info.si_code = FPE_FLTDIV;
  857. break;
  858. case 0x008: /* Overflow */
  859. info.si_code = FPE_FLTOVF;
  860. break;
  861. case 0x020: /* Precision */
  862. info.si_code = FPE_FLTRES;
  863. break;
  864. }
  865. force_sig_info(SIGFPE, &info, task);
  866. }
  867. fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
  868. long error_code)
  869. {
  870. if (cpu_has_xmm) {
  871. /* Handle SIMD FPU exceptions on PIII+ processors. */
  872. ignore_fpu_irq = 1;
  873. simd_math_error((void __user *)regs->eip);
  874. } else {
  875. /*
  876. * Handle strange cache flush from user space exception
  877. * in all other cases. This is undocumented behaviour.
  878. */
  879. if (regs->eflags & VM_MASK) {
  880. handle_vm86_fault((struct kernel_vm86_regs *)regs,
  881. error_code);
  882. return;
  883. }
  884. current->thread.trap_no = 19;
  885. current->thread.error_code = error_code;
  886. die_if_kernel("cache flush denied", regs, error_code);
  887. force_sig(SIGSEGV, current);
  888. }
  889. }
  890. fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
  891. long error_code)
  892. {
  893. #if 0
  894. /* No need to warn about this any longer. */
  895. printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
  896. #endif
  897. }
  898. fastcall unsigned long patch_espfix_desc(unsigned long uesp,
  899. unsigned long kesp)
  900. {
  901. struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
  902. unsigned long base = (kesp - uesp) & -THREAD_SIZE;
  903. unsigned long new_kesp = kesp - base;
  904. unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
  905. __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
  906. /* Set up base for espfix segment */
  907. desc &= 0x00f0ff0000000000ULL;
  908. desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
  909. ((((__u64)base) << 32) & 0xff00000000000000ULL) |
  910. ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
  911. (lim_pages & 0xffff);
  912. *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
  913. return new_kesp;
  914. }
  915. /*
  916. * 'math_state_restore()' saves the current math information in the
  917. * old math state array, and gets the new ones from the current task
  918. *
  919. * Careful.. There are problems with IBM-designed IRQ13 behaviour.
  920. * Don't touch unless you *really* know how it works.
  921. *
  922. * Must be called with kernel preemption disabled (in this case,
  923. * local interrupts are disabled at the call-site in entry.S).
  924. */
  925. asmlinkage void math_state_restore(void)
  926. {
  927. struct thread_info *thread = current_thread_info();
  928. struct task_struct *tsk = thread->task;
  929. clts(); /* Allow maths ops (or we recurse) */
  930. if (!tsk_used_math(tsk))
  931. init_fpu(tsk);
  932. restore_fpu(tsk);
  933. thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
  934. tsk->fpu_counter++;
  935. }
  936. #ifndef CONFIG_MATH_EMULATION
  937. asmlinkage void math_emulate(long arg)
  938. {
  939. printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
  940. printk(KERN_EMERG "killing %s.\n",current->comm);
  941. force_sig(SIGFPE,current);
  942. schedule();
  943. }
  944. #endif /* CONFIG_MATH_EMULATION */
  945. #ifdef CONFIG_X86_F00F_BUG
  946. void __init trap_init_f00f_bug(void)
  947. {
  948. __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
  949. /*
  950. * Update the IDT descriptor and reload the IDT so that
  951. * it uses the read-only mapped virtual address.
  952. */
  953. idt_descr.address = fix_to_virt(FIX_F00F_IDT);
  954. load_idt(&idt_descr);
  955. }
  956. #endif
  957. /*
  958. * This needs to use 'idt_table' rather than 'idt', and
  959. * thus use the _nonmapped_ version of the IDT, as the
  960. * Pentium F0 0F bugfix can have resulted in the mapped
  961. * IDT being write-protected.
  962. */
  963. void set_intr_gate(unsigned int n, void *addr)
  964. {
  965. _set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS);
  966. }
  967. /*
  968. * This routine sets up an interrupt gate at directory privilege level 3.
  969. */
  970. static inline void set_system_intr_gate(unsigned int n, void *addr)
  971. {
  972. _set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS);
  973. }
  974. static void __init set_trap_gate(unsigned int n, void *addr)
  975. {
  976. _set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS);
  977. }
  978. static void __init set_system_gate(unsigned int n, void *addr)
  979. {
  980. _set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS);
  981. }
  982. static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
  983. {
  984. _set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3));
  985. }
  986. void __init trap_init(void)
  987. {
  988. #ifdef CONFIG_EISA
  989. void __iomem *p = ioremap(0x0FFFD9, 4);
  990. if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
  991. EISA_bus = 1;
  992. }
  993. iounmap(p);
  994. #endif
  995. #ifdef CONFIG_X86_LOCAL_APIC
  996. init_apic_mappings();
  997. #endif
  998. set_trap_gate(0,&divide_error);
  999. set_intr_gate(1,&debug);
  1000. set_intr_gate(2,&nmi);
  1001. set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
  1002. set_system_gate(4,&overflow);
  1003. set_trap_gate(5,&bounds);
  1004. set_trap_gate(6,&invalid_op);
  1005. set_trap_gate(7,&device_not_available);
  1006. set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
  1007. set_trap_gate(9,&coprocessor_segment_overrun);
  1008. set_trap_gate(10,&invalid_TSS);
  1009. set_trap_gate(11,&segment_not_present);
  1010. set_trap_gate(12,&stack_segment);
  1011. set_trap_gate(13,&general_protection);
  1012. set_intr_gate(14,&page_fault);
  1013. set_trap_gate(15,&spurious_interrupt_bug);
  1014. set_trap_gate(16,&coprocessor_error);
  1015. set_trap_gate(17,&alignment_check);
  1016. #ifdef CONFIG_X86_MCE
  1017. set_trap_gate(18,&machine_check);
  1018. #endif
  1019. set_trap_gate(19,&simd_coprocessor_error);
  1020. if (cpu_has_fxsr) {
  1021. /*
  1022. * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
  1023. * Generates a compile-time "error: zero width for bit-field" if
  1024. * the alignment is wrong.
  1025. */
  1026. struct fxsrAlignAssert {
  1027. int _:!(offsetof(struct task_struct,
  1028. thread.i387.fxsave) & 15);
  1029. };
  1030. printk(KERN_INFO "Enabling fast FPU save and restore... ");
  1031. set_in_cr4(X86_CR4_OSFXSR);
  1032. printk("done.\n");
  1033. }
  1034. if (cpu_has_xmm) {
  1035. printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
  1036. "support... ");
  1037. set_in_cr4(X86_CR4_OSXMMEXCPT);
  1038. printk("done.\n");
  1039. }
  1040. set_system_gate(SYSCALL_VECTOR,&system_call);
  1041. /*
  1042. * Should be a barrier for any external CPU state.
  1043. */
  1044. cpu_init();
  1045. trap_init_hook();
  1046. }
  1047. static int __init kstack_setup(char *s)
  1048. {
  1049. kstack_depth_to_print = simple_strtoul(s, NULL, 0);
  1050. return 1;
  1051. }
  1052. __setup("kstack=", kstack_setup);
  1053. static int __init code_bytes_setup(char *s)
  1054. {
  1055. code_bytes = simple_strtoul(s, NULL, 0);
  1056. if (code_bytes > 8192)
  1057. code_bytes = 8192;
  1058. return 1;
  1059. }
  1060. __setup("code_bytes=", code_bytes_setup);