smp.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706
  1. /*
  2. * Intel SMP support routines.
  3. *
  4. * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
  5. * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
  6. *
  7. * This code is released under the GNU General Public License version 2 or
  8. * later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/mm.h>
  12. #include <linux/delay.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/kernel_stat.h>
  15. #include <linux/mc146818rtc.h>
  16. #include <linux/cache.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/cpu.h>
  19. #include <linux/module.h>
  20. #include <asm/mtrr.h>
  21. #include <asm/tlbflush.h>
  22. #include <mach_apic.h>
  23. /*
  24. * Some notes on x86 processor bugs affecting SMP operation:
  25. *
  26. * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
  27. * The Linux implications for SMP are handled as follows:
  28. *
  29. * Pentium III / [Xeon]
  30. * None of the E1AP-E3AP errata are visible to the user.
  31. *
  32. * E1AP. see PII A1AP
  33. * E2AP. see PII A2AP
  34. * E3AP. see PII A3AP
  35. *
  36. * Pentium II / [Xeon]
  37. * None of the A1AP-A3AP errata are visible to the user.
  38. *
  39. * A1AP. see PPro 1AP
  40. * A2AP. see PPro 2AP
  41. * A3AP. see PPro 7AP
  42. *
  43. * Pentium Pro
  44. * None of 1AP-9AP errata are visible to the normal user,
  45. * except occasional delivery of 'spurious interrupt' as trap #15.
  46. * This is very rare and a non-problem.
  47. *
  48. * 1AP. Linux maps APIC as non-cacheable
  49. * 2AP. worked around in hardware
  50. * 3AP. fixed in C0 and above steppings microcode update.
  51. * Linux does not use excessive STARTUP_IPIs.
  52. * 4AP. worked around in hardware
  53. * 5AP. symmetric IO mode (normal Linux operation) not affected.
  54. * 'noapic' mode has vector 0xf filled out properly.
  55. * 6AP. 'noapic' mode might be affected - fixed in later steppings
  56. * 7AP. We do not assume writes to the LVT deassering IRQs
  57. * 8AP. We do not enable low power mode (deep sleep) during MP bootup
  58. * 9AP. We do not use mixed mode
  59. *
  60. * Pentium
  61. * There is a marginal case where REP MOVS on 100MHz SMP
  62. * machines with B stepping processors can fail. XXX should provide
  63. * an L1cache=Writethrough or L1cache=off option.
  64. *
  65. * B stepping CPUs may hang. There are hardware work arounds
  66. * for this. We warn about it in case your board doesn't have the work
  67. * arounds. Basically thats so I can tell anyone with a B stepping
  68. * CPU and SMP problems "tough".
  69. *
  70. * Specific items [From Pentium Processor Specification Update]
  71. *
  72. * 1AP. Linux doesn't use remote read
  73. * 2AP. Linux doesn't trust APIC errors
  74. * 3AP. We work around this
  75. * 4AP. Linux never generated 3 interrupts of the same priority
  76. * to cause a lost local interrupt.
  77. * 5AP. Remote read is never used
  78. * 6AP. not affected - worked around in hardware
  79. * 7AP. not affected - worked around in hardware
  80. * 8AP. worked around in hardware - we get explicit CS errors if not
  81. * 9AP. only 'noapic' mode affected. Might generate spurious
  82. * interrupts, we log only the first one and count the
  83. * rest silently.
  84. * 10AP. not affected - worked around in hardware
  85. * 11AP. Linux reads the APIC between writes to avoid this, as per
  86. * the documentation. Make sure you preserve this as it affects
  87. * the C stepping chips too.
  88. * 12AP. not affected - worked around in hardware
  89. * 13AP. not affected - worked around in hardware
  90. * 14AP. we always deassert INIT during bootup
  91. * 15AP. not affected - worked around in hardware
  92. * 16AP. not affected - worked around in hardware
  93. * 17AP. not affected - worked around in hardware
  94. * 18AP. not affected - worked around in hardware
  95. * 19AP. not affected - worked around in BIOS
  96. *
  97. * If this sounds worrying believe me these bugs are either ___RARE___,
  98. * or are signal timing bugs worked around in hardware and there's
  99. * about nothing of note with C stepping upwards.
  100. */
  101. DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
  102. /*
  103. * the following functions deal with sending IPIs between CPUs.
  104. *
  105. * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
  106. */
  107. static inline int __prepare_ICR (unsigned int shortcut, int vector)
  108. {
  109. unsigned int icr = shortcut | APIC_DEST_LOGICAL;
  110. switch (vector) {
  111. default:
  112. icr |= APIC_DM_FIXED | vector;
  113. break;
  114. case NMI_VECTOR:
  115. icr |= APIC_DM_NMI;
  116. break;
  117. }
  118. return icr;
  119. }
  120. static inline int __prepare_ICR2 (unsigned int mask)
  121. {
  122. return SET_APIC_DEST_FIELD(mask);
  123. }
  124. void __send_IPI_shortcut(unsigned int shortcut, int vector)
  125. {
  126. /*
  127. * Subtle. In the case of the 'never do double writes' workaround
  128. * we have to lock out interrupts to be safe. As we don't care
  129. * of the value read we use an atomic rmw access to avoid costly
  130. * cli/sti. Otherwise we use an even cheaper single atomic write
  131. * to the APIC.
  132. */
  133. unsigned int cfg;
  134. /*
  135. * Wait for idle.
  136. */
  137. apic_wait_icr_idle();
  138. /*
  139. * No need to touch the target chip field
  140. */
  141. cfg = __prepare_ICR(shortcut, vector);
  142. /*
  143. * Send the IPI. The write to APIC_ICR fires this off.
  144. */
  145. apic_write_around(APIC_ICR, cfg);
  146. }
  147. void fastcall send_IPI_self(int vector)
  148. {
  149. __send_IPI_shortcut(APIC_DEST_SELF, vector);
  150. }
  151. /*
  152. * This is used to send an IPI with no shorthand notation (the destination is
  153. * specified in bits 56 to 63 of the ICR).
  154. */
  155. static inline void __send_IPI_dest_field(unsigned long mask, int vector)
  156. {
  157. unsigned long cfg;
  158. /*
  159. * Wait for idle.
  160. */
  161. if (unlikely(vector == NMI_VECTOR))
  162. safe_apic_wait_icr_idle();
  163. else
  164. apic_wait_icr_idle();
  165. /*
  166. * prepare target chip field
  167. */
  168. cfg = __prepare_ICR2(mask);
  169. apic_write_around(APIC_ICR2, cfg);
  170. /*
  171. * program the ICR
  172. */
  173. cfg = __prepare_ICR(0, vector);
  174. /*
  175. * Send the IPI. The write to APIC_ICR fires this off.
  176. */
  177. apic_write_around(APIC_ICR, cfg);
  178. }
  179. /*
  180. * This is only used on smaller machines.
  181. */
  182. void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
  183. {
  184. unsigned long mask = cpus_addr(cpumask)[0];
  185. unsigned long flags;
  186. local_irq_save(flags);
  187. WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
  188. __send_IPI_dest_field(mask, vector);
  189. local_irq_restore(flags);
  190. }
  191. void send_IPI_mask_sequence(cpumask_t mask, int vector)
  192. {
  193. unsigned long flags;
  194. unsigned int query_cpu;
  195. /*
  196. * Hack. The clustered APIC addressing mode doesn't allow us to send
  197. * to an arbitrary mask, so I do a unicasts to each CPU instead. This
  198. * should be modified to do 1 message per cluster ID - mbligh
  199. */
  200. local_irq_save(flags);
  201. for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
  202. if (cpu_isset(query_cpu, mask)) {
  203. __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu),
  204. vector);
  205. }
  206. }
  207. local_irq_restore(flags);
  208. }
  209. #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
  210. /*
  211. * Smarter SMP flushing macros.
  212. * c/o Linus Torvalds.
  213. *
  214. * These mean you can really definitely utterly forget about
  215. * writing to user space from interrupts. (Its not allowed anyway).
  216. *
  217. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  218. */
  219. static cpumask_t flush_cpumask;
  220. static struct mm_struct * flush_mm;
  221. static unsigned long flush_va;
  222. static DEFINE_SPINLOCK(tlbstate_lock);
  223. /*
  224. * We cannot call mmdrop() because we are in interrupt context,
  225. * instead update mm->cpu_vm_mask.
  226. *
  227. * We need to reload %cr3 since the page tables may be going
  228. * away from under us..
  229. */
  230. static inline void leave_mm (unsigned long cpu)
  231. {
  232. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
  233. BUG();
  234. cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
  235. load_cr3(swapper_pg_dir);
  236. }
  237. /*
  238. *
  239. * The flush IPI assumes that a thread switch happens in this order:
  240. * [cpu0: the cpu that switches]
  241. * 1) switch_mm() either 1a) or 1b)
  242. * 1a) thread switch to a different mm
  243. * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  244. * Stop ipi delivery for the old mm. This is not synchronized with
  245. * the other cpus, but smp_invalidate_interrupt ignore flush ipis
  246. * for the wrong mm, and in the worst case we perform a superflous
  247. * tlb flush.
  248. * 1a2) set cpu_tlbstate to TLBSTATE_OK
  249. * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  250. * was in lazy tlb mode.
  251. * 1a3) update cpu_tlbstate[].active_mm
  252. * Now cpu0 accepts tlb flushes for the new mm.
  253. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  254. * Now the other cpus will send tlb flush ipis.
  255. * 1a4) change cr3.
  256. * 1b) thread switch without mm change
  257. * cpu_tlbstate[].active_mm is correct, cpu0 already handles
  258. * flush ipis.
  259. * 1b1) set cpu_tlbstate to TLBSTATE_OK
  260. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  261. * Atomically set the bit [other cpus will start sending flush ipis],
  262. * and test the bit.
  263. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  264. * 2) switch %%esp, ie current
  265. *
  266. * The interrupt must handle 2 special cases:
  267. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  268. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  269. * runs in kernel space, the cpu could load tlb entries for user space
  270. * pages.
  271. *
  272. * The good news is that cpu_tlbstate is local to each cpu, no
  273. * write/read ordering problems.
  274. */
  275. /*
  276. * TLB flush IPI:
  277. *
  278. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  279. * 2) Leave the mm if we are in the lazy tlb mode.
  280. */
  281. fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
  282. {
  283. unsigned long cpu;
  284. cpu = get_cpu();
  285. if (!cpu_isset(cpu, flush_cpumask))
  286. goto out;
  287. /*
  288. * This was a BUG() but until someone can quote me the
  289. * line from the intel manual that guarantees an IPI to
  290. * multiple CPUs is retried _only_ on the erroring CPUs
  291. * its staying as a return
  292. *
  293. * BUG();
  294. */
  295. if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
  296. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
  297. if (flush_va == TLB_FLUSH_ALL)
  298. local_flush_tlb();
  299. else
  300. __flush_tlb_one(flush_va);
  301. } else
  302. leave_mm(cpu);
  303. }
  304. ack_APIC_irq();
  305. smp_mb__before_clear_bit();
  306. cpu_clear(cpu, flush_cpumask);
  307. smp_mb__after_clear_bit();
  308. out:
  309. put_cpu_no_resched();
  310. }
  311. void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
  312. unsigned long va)
  313. {
  314. cpumask_t cpumask = *cpumaskp;
  315. /*
  316. * A couple of (to be removed) sanity checks:
  317. *
  318. * - current CPU must not be in mask
  319. * - mask must exist :)
  320. */
  321. BUG_ON(cpus_empty(cpumask));
  322. BUG_ON(cpu_isset(smp_processor_id(), cpumask));
  323. BUG_ON(!mm);
  324. #ifdef CONFIG_HOTPLUG_CPU
  325. /* If a CPU which we ran on has gone down, OK. */
  326. cpus_and(cpumask, cpumask, cpu_online_map);
  327. if (unlikely(cpus_empty(cpumask)))
  328. return;
  329. #endif
  330. /*
  331. * i'm not happy about this global shared spinlock in the
  332. * MM hot path, but we'll see how contended it is.
  333. * AK: x86-64 has a faster method that could be ported.
  334. */
  335. spin_lock(&tlbstate_lock);
  336. flush_mm = mm;
  337. flush_va = va;
  338. cpus_or(flush_cpumask, cpumask, flush_cpumask);
  339. /*
  340. * We have to send the IPI only to
  341. * CPUs affected.
  342. */
  343. send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
  344. while (!cpus_empty(flush_cpumask))
  345. /* nothing. lockup detection does not belong here */
  346. cpu_relax();
  347. flush_mm = NULL;
  348. flush_va = 0;
  349. spin_unlock(&tlbstate_lock);
  350. }
  351. void flush_tlb_current_task(void)
  352. {
  353. struct mm_struct *mm = current->mm;
  354. cpumask_t cpu_mask;
  355. preempt_disable();
  356. cpu_mask = mm->cpu_vm_mask;
  357. cpu_clear(smp_processor_id(), cpu_mask);
  358. local_flush_tlb();
  359. if (!cpus_empty(cpu_mask))
  360. flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
  361. preempt_enable();
  362. }
  363. void flush_tlb_mm (struct mm_struct * mm)
  364. {
  365. cpumask_t cpu_mask;
  366. preempt_disable();
  367. cpu_mask = mm->cpu_vm_mask;
  368. cpu_clear(smp_processor_id(), cpu_mask);
  369. if (current->active_mm == mm) {
  370. if (current->mm)
  371. local_flush_tlb();
  372. else
  373. leave_mm(smp_processor_id());
  374. }
  375. if (!cpus_empty(cpu_mask))
  376. flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
  377. check_pgt_cache();
  378. preempt_enable();
  379. }
  380. void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
  381. {
  382. struct mm_struct *mm = vma->vm_mm;
  383. cpumask_t cpu_mask;
  384. preempt_disable();
  385. cpu_mask = mm->cpu_vm_mask;
  386. cpu_clear(smp_processor_id(), cpu_mask);
  387. if (current->active_mm == mm) {
  388. if(current->mm)
  389. __flush_tlb_one(va);
  390. else
  391. leave_mm(smp_processor_id());
  392. }
  393. if (!cpus_empty(cpu_mask))
  394. flush_tlb_others(cpu_mask, mm, va);
  395. preempt_enable();
  396. }
  397. EXPORT_SYMBOL(flush_tlb_page);
  398. static void do_flush_tlb_all(void* info)
  399. {
  400. unsigned long cpu = smp_processor_id();
  401. __flush_tlb_all();
  402. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
  403. leave_mm(cpu);
  404. }
  405. void flush_tlb_all(void)
  406. {
  407. on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
  408. }
  409. /*
  410. * this function sends a 'reschedule' IPI to another CPU.
  411. * it goes straight through and wastes no time serializing
  412. * anything. Worst case is that we lose a reschedule ...
  413. */
  414. static void native_smp_send_reschedule(int cpu)
  415. {
  416. WARN_ON(cpu_is_offline(cpu));
  417. send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
  418. }
  419. /*
  420. * Structure and data for smp_call_function(). This is designed to minimise
  421. * static memory requirements. It also looks cleaner.
  422. */
  423. static DEFINE_SPINLOCK(call_lock);
  424. struct call_data_struct {
  425. void (*func) (void *info);
  426. void *info;
  427. atomic_t started;
  428. atomic_t finished;
  429. int wait;
  430. };
  431. void lock_ipi_call_lock(void)
  432. {
  433. spin_lock_irq(&call_lock);
  434. }
  435. void unlock_ipi_call_lock(void)
  436. {
  437. spin_unlock_irq(&call_lock);
  438. }
  439. static struct call_data_struct *call_data;
  440. static void __smp_call_function(void (*func) (void *info), void *info,
  441. int nonatomic, int wait)
  442. {
  443. struct call_data_struct data;
  444. int cpus = num_online_cpus() - 1;
  445. if (!cpus)
  446. return;
  447. data.func = func;
  448. data.info = info;
  449. atomic_set(&data.started, 0);
  450. data.wait = wait;
  451. if (wait)
  452. atomic_set(&data.finished, 0);
  453. call_data = &data;
  454. mb();
  455. /* Send a message to all other CPUs and wait for them to respond */
  456. send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  457. /* Wait for response */
  458. while (atomic_read(&data.started) != cpus)
  459. cpu_relax();
  460. if (wait)
  461. while (atomic_read(&data.finished) != cpus)
  462. cpu_relax();
  463. }
  464. /**
  465. * smp_call_function_mask(): Run a function on a set of other CPUs.
  466. * @mask: The set of cpus to run on. Must not include the current cpu.
  467. * @func: The function to run. This must be fast and non-blocking.
  468. * @info: An arbitrary pointer to pass to the function.
  469. * @wait: If true, wait (atomically) until function has completed on other CPUs.
  470. *
  471. * Returns 0 on success, else a negative status code.
  472. *
  473. * If @wait is true, then returns once @func has returned; otherwise
  474. * it returns just before the target cpu calls @func.
  475. *
  476. * You must not call this function with disabled interrupts or from a
  477. * hardware interrupt handler or from a bottom half handler.
  478. */
  479. static int
  480. native_smp_call_function_mask(cpumask_t mask,
  481. void (*func)(void *), void *info,
  482. int wait)
  483. {
  484. struct call_data_struct data;
  485. cpumask_t allbutself;
  486. int cpus;
  487. /* Can deadlock when called with interrupts disabled */
  488. WARN_ON(irqs_disabled());
  489. /* Holding any lock stops cpus from going down. */
  490. spin_lock(&call_lock);
  491. allbutself = cpu_online_map;
  492. cpu_clear(smp_processor_id(), allbutself);
  493. cpus_and(mask, mask, allbutself);
  494. cpus = cpus_weight(mask);
  495. if (!cpus) {
  496. spin_unlock(&call_lock);
  497. return 0;
  498. }
  499. data.func = func;
  500. data.info = info;
  501. atomic_set(&data.started, 0);
  502. data.wait = wait;
  503. if (wait)
  504. atomic_set(&data.finished, 0);
  505. call_data = &data;
  506. mb();
  507. /* Send a message to other CPUs */
  508. if (cpus_equal(mask, allbutself))
  509. send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  510. else
  511. send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
  512. /* Wait for response */
  513. while (atomic_read(&data.started) != cpus)
  514. cpu_relax();
  515. if (wait)
  516. while (atomic_read(&data.finished) != cpus)
  517. cpu_relax();
  518. spin_unlock(&call_lock);
  519. return 0;
  520. }
  521. static void stop_this_cpu (void * dummy)
  522. {
  523. local_irq_disable();
  524. /*
  525. * Remove this CPU:
  526. */
  527. cpu_clear(smp_processor_id(), cpu_online_map);
  528. disable_local_APIC();
  529. if (cpu_data[smp_processor_id()].hlt_works_ok)
  530. for(;;) halt();
  531. for (;;);
  532. }
  533. /*
  534. * this function calls the 'stop' function on all other CPUs in the system.
  535. */
  536. static void native_smp_send_stop(void)
  537. {
  538. /* Don't deadlock on the call lock in panic */
  539. int nolock = !spin_trylock(&call_lock);
  540. unsigned long flags;
  541. local_irq_save(flags);
  542. __smp_call_function(stop_this_cpu, NULL, 0, 0);
  543. if (!nolock)
  544. spin_unlock(&call_lock);
  545. disable_local_APIC();
  546. local_irq_restore(flags);
  547. }
  548. /*
  549. * Reschedule call back. Nothing to do,
  550. * all the work is done automatically when
  551. * we return from the interrupt.
  552. */
  553. fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
  554. {
  555. ack_APIC_irq();
  556. }
  557. fastcall void smp_call_function_interrupt(struct pt_regs *regs)
  558. {
  559. void (*func) (void *info) = call_data->func;
  560. void *info = call_data->info;
  561. int wait = call_data->wait;
  562. ack_APIC_irq();
  563. /*
  564. * Notify initiating CPU that I've grabbed the data and am
  565. * about to execute the function
  566. */
  567. mb();
  568. atomic_inc(&call_data->started);
  569. /*
  570. * At this point the info structure may be out of scope unless wait==1
  571. */
  572. irq_enter();
  573. (*func)(info);
  574. irq_exit();
  575. if (wait) {
  576. mb();
  577. atomic_inc(&call_data->finished);
  578. }
  579. }
  580. static int convert_apicid_to_cpu(int apic_id)
  581. {
  582. int i;
  583. for (i = 0; i < NR_CPUS; i++) {
  584. if (x86_cpu_to_apicid[i] == apic_id)
  585. return i;
  586. }
  587. return -1;
  588. }
  589. int safe_smp_processor_id(void)
  590. {
  591. int apicid, cpuid;
  592. if (!boot_cpu_has(X86_FEATURE_APIC))
  593. return 0;
  594. apicid = hard_smp_processor_id();
  595. if (apicid == BAD_APICID)
  596. return 0;
  597. cpuid = convert_apicid_to_cpu(apicid);
  598. return cpuid >= 0 ? cpuid : 0;
  599. }
  600. struct smp_ops smp_ops = {
  601. .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
  602. .smp_prepare_cpus = native_smp_prepare_cpus,
  603. .cpu_up = native_cpu_up,
  604. .smp_cpus_done = native_smp_cpus_done,
  605. .smp_send_stop = native_smp_send_stop,
  606. .smp_send_reschedule = native_smp_send_reschedule,
  607. .smp_call_function_mask = native_smp_call_function_mask,
  608. };