kprobes.txt 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. Title : Kernel Probes (Kprobes)
  2. Authors : Jim Keniston <jkenisto@us.ibm.com>
  3. : Prasanna S Panchamukhi <prasanna@in.ibm.com>
  4. CONTENTS
  5. 1. Concepts: Kprobes, Jprobes, Return Probes
  6. 2. Architectures Supported
  7. 3. Configuring Kprobes
  8. 4. API Reference
  9. 5. Kprobes Features and Limitations
  10. 6. Probe Overhead
  11. 7. TODO
  12. 8. Kprobes Example
  13. 9. Jprobes Example
  14. 10. Kretprobes Example
  15. Appendix A: The kprobes debugfs interface
  16. 1. Concepts: Kprobes, Jprobes, Return Probes
  17. Kprobes enables you to dynamically break into any kernel routine and
  18. collect debugging and performance information non-disruptively. You
  19. can trap at almost any kernel code address, specifying a handler
  20. routine to be invoked when the breakpoint is hit.
  21. There are currently three types of probes: kprobes, jprobes, and
  22. kretprobes (also called return probes). A kprobe can be inserted
  23. on virtually any instruction in the kernel. A jprobe is inserted at
  24. the entry to a kernel function, and provides convenient access to the
  25. function's arguments. A return probe fires when a specified function
  26. returns.
  27. In the typical case, Kprobes-based instrumentation is packaged as
  28. a kernel module. The module's init function installs ("registers")
  29. one or more probes, and the exit function unregisters them. A
  30. registration function such as register_kprobe() specifies where
  31. the probe is to be inserted and what handler is to be called when
  32. the probe is hit.
  33. The next three subsections explain how the different types of
  34. probes work. They explain certain things that you'll need to
  35. know in order to make the best use of Kprobes -- e.g., the
  36. difference between a pre_handler and a post_handler, and how
  37. to use the maxactive and nmissed fields of a kretprobe. But
  38. if you're in a hurry to start using Kprobes, you can skip ahead
  39. to section 2.
  40. 1.1 How Does a Kprobe Work?
  41. When a kprobe is registered, Kprobes makes a copy of the probed
  42. instruction and replaces the first byte(s) of the probed instruction
  43. with a breakpoint instruction (e.g., int3 on i386 and x86_64).
  44. When a CPU hits the breakpoint instruction, a trap occurs, the CPU's
  45. registers are saved, and control passes to Kprobes via the
  46. notifier_call_chain mechanism. Kprobes executes the "pre_handler"
  47. associated with the kprobe, passing the handler the addresses of the
  48. kprobe struct and the saved registers.
  49. Next, Kprobes single-steps its copy of the probed instruction.
  50. (It would be simpler to single-step the actual instruction in place,
  51. but then Kprobes would have to temporarily remove the breakpoint
  52. instruction. This would open a small time window when another CPU
  53. could sail right past the probepoint.)
  54. After the instruction is single-stepped, Kprobes executes the
  55. "post_handler," if any, that is associated with the kprobe.
  56. Execution then continues with the instruction following the probepoint.
  57. 1.2 How Does a Jprobe Work?
  58. A jprobe is implemented using a kprobe that is placed on a function's
  59. entry point. It employs a simple mirroring principle to allow
  60. seamless access to the probed function's arguments. The jprobe
  61. handler routine should have the same signature (arg list and return
  62. type) as the function being probed, and must always end by calling
  63. the Kprobes function jprobe_return().
  64. Here's how it works. When the probe is hit, Kprobes makes a copy of
  65. the saved registers and a generous portion of the stack (see below).
  66. Kprobes then points the saved instruction pointer at the jprobe's
  67. handler routine, and returns from the trap. As a result, control
  68. passes to the handler, which is presented with the same register and
  69. stack contents as the probed function. When it is done, the handler
  70. calls jprobe_return(), which traps again to restore the original stack
  71. contents and processor state and switch to the probed function.
  72. By convention, the callee owns its arguments, so gcc may produce code
  73. that unexpectedly modifies that portion of the stack. This is why
  74. Kprobes saves a copy of the stack and restores it after the jprobe
  75. handler has run. Up to MAX_STACK_SIZE bytes are copied -- e.g.,
  76. 64 bytes on i386.
  77. Note that the probed function's args may be passed on the stack
  78. or in registers (e.g., for x86_64 or for an i386 fastcall function).
  79. The jprobe will work in either case, so long as the handler's
  80. prototype matches that of the probed function.
  81. 1.3 How Does a Return Probe Work?
  82. When you call register_kretprobe(), Kprobes establishes a kprobe at
  83. the entry to the function. When the probed function is called and this
  84. probe is hit, Kprobes saves a copy of the return address, and replaces
  85. the return address with the address of a "trampoline." The trampoline
  86. is an arbitrary piece of code -- typically just a nop instruction.
  87. At boot time, Kprobes registers a kprobe at the trampoline.
  88. When the probed function executes its return instruction, control
  89. passes to the trampoline and that probe is hit. Kprobes' trampoline
  90. handler calls the user-specified handler associated with the kretprobe,
  91. then sets the saved instruction pointer to the saved return address,
  92. and that's where execution resumes upon return from the trap.
  93. While the probed function is executing, its return address is
  94. stored in an object of type kretprobe_instance. Before calling
  95. register_kretprobe(), the user sets the maxactive field of the
  96. kretprobe struct to specify how many instances of the specified
  97. function can be probed simultaneously. register_kretprobe()
  98. pre-allocates the indicated number of kretprobe_instance objects.
  99. For example, if the function is non-recursive and is called with a
  100. spinlock held, maxactive = 1 should be enough. If the function is
  101. non-recursive and can never relinquish the CPU (e.g., via a semaphore
  102. or preemption), NR_CPUS should be enough. If maxactive <= 0, it is
  103. set to a default value. If CONFIG_PREEMPT is enabled, the default
  104. is max(10, 2*NR_CPUS). Otherwise, the default is NR_CPUS.
  105. It's not a disaster if you set maxactive too low; you'll just miss
  106. some probes. In the kretprobe struct, the nmissed field is set to
  107. zero when the return probe is registered, and is incremented every
  108. time the probed function is entered but there is no kretprobe_instance
  109. object available for establishing the return probe.
  110. 2. Architectures Supported
  111. Kprobes, jprobes, and return probes are implemented on the following
  112. architectures:
  113. - i386
  114. - x86_64 (AMD-64, EM64T)
  115. - ppc64
  116. - ia64 (Does not support probes on instruction slot1.)
  117. - sparc64 (Return probes not yet implemented.)
  118. 3. Configuring Kprobes
  119. When configuring the kernel using make menuconfig/xconfig/oldconfig,
  120. ensure that CONFIG_KPROBES is set to "y". Under "Instrumentation
  121. Support", look for "Kprobes".
  122. So that you can load and unload Kprobes-based instrumentation modules,
  123. make sure "Loadable module support" (CONFIG_MODULES) and "Module
  124. unloading" (CONFIG_MODULE_UNLOAD) are set to "y".
  125. Also make sure that CONFIG_KALLSYMS and perhaps even CONFIG_KALLSYMS_ALL
  126. are set to "y", since kallsyms_lookup_name() is used by the in-kernel
  127. kprobe address resolution code.
  128. If you need to insert a probe in the middle of a function, you may find
  129. it useful to "Compile the kernel with debug info" (CONFIG_DEBUG_INFO),
  130. so you can use "objdump -d -l vmlinux" to see the source-to-object
  131. code mapping.
  132. 4. API Reference
  133. The Kprobes API includes a "register" function and an "unregister"
  134. function for each type of probe. Here are terse, mini-man-page
  135. specifications for these functions and the associated probe handlers
  136. that you'll write. See the latter half of this document for examples.
  137. 4.1 register_kprobe
  138. #include <linux/kprobes.h>
  139. int register_kprobe(struct kprobe *kp);
  140. Sets a breakpoint at the address kp->addr. When the breakpoint is
  141. hit, Kprobes calls kp->pre_handler. After the probed instruction
  142. is single-stepped, Kprobe calls kp->post_handler. If a fault
  143. occurs during execution of kp->pre_handler or kp->post_handler,
  144. or during single-stepping of the probed instruction, Kprobes calls
  145. kp->fault_handler. Any or all handlers can be NULL.
  146. NOTE:
  147. 1. With the introduction of the "symbol_name" field to struct kprobe,
  148. the probepoint address resolution will now be taken care of by the kernel.
  149. The following will now work:
  150. kp.symbol_name = "symbol_name";
  151. (64-bit powerpc intricacies such as function descriptors are handled
  152. transparently)
  153. 2. Use the "offset" field of struct kprobe if the offset into the symbol
  154. to install a probepoint is known. This field is used to calculate the
  155. probepoint.
  156. 3. Specify either the kprobe "symbol_name" OR the "addr". If both are
  157. specified, kprobe registration will fail with -EINVAL.
  158. 4. With CISC architectures (such as i386 and x86_64), the kprobes code
  159. does not validate if the kprobe.addr is at an instruction boundary.
  160. Use "offset" with caution.
  161. register_kprobe() returns 0 on success, or a negative errno otherwise.
  162. User's pre-handler (kp->pre_handler):
  163. #include <linux/kprobes.h>
  164. #include <linux/ptrace.h>
  165. int pre_handler(struct kprobe *p, struct pt_regs *regs);
  166. Called with p pointing to the kprobe associated with the breakpoint,
  167. and regs pointing to the struct containing the registers saved when
  168. the breakpoint was hit. Return 0 here unless you're a Kprobes geek.
  169. User's post-handler (kp->post_handler):
  170. #include <linux/kprobes.h>
  171. #include <linux/ptrace.h>
  172. void post_handler(struct kprobe *p, struct pt_regs *regs,
  173. unsigned long flags);
  174. p and regs are as described for the pre_handler. flags always seems
  175. to be zero.
  176. User's fault-handler (kp->fault_handler):
  177. #include <linux/kprobes.h>
  178. #include <linux/ptrace.h>
  179. int fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr);
  180. p and regs are as described for the pre_handler. trapnr is the
  181. architecture-specific trap number associated with the fault (e.g.,
  182. on i386, 13 for a general protection fault or 14 for a page fault).
  183. Returns 1 if it successfully handled the exception.
  184. 4.2 register_jprobe
  185. #include <linux/kprobes.h>
  186. int register_jprobe(struct jprobe *jp)
  187. Sets a breakpoint at the address jp->kp.addr, which must be the address
  188. of the first instruction of a function. When the breakpoint is hit,
  189. Kprobes runs the handler whose address is jp->entry.
  190. The handler should have the same arg list and return type as the probed
  191. function; and just before it returns, it must call jprobe_return().
  192. (The handler never actually returns, since jprobe_return() returns
  193. control to Kprobes.) If the probed function is declared asmlinkage,
  194. fastcall, or anything else that affects how args are passed, the
  195. handler's declaration must match.
  196. NOTE: A macro JPROBE_ENTRY is provided to handle architecture-specific
  197. aliasing of jp->entry. In the interest of portability, it is advised
  198. to use:
  199. jp->entry = JPROBE_ENTRY(handler);
  200. register_jprobe() returns 0 on success, or a negative errno otherwise.
  201. 4.3 register_kretprobe
  202. #include <linux/kprobes.h>
  203. int register_kretprobe(struct kretprobe *rp);
  204. Establishes a return probe for the function whose address is
  205. rp->kp.addr. When that function returns, Kprobes calls rp->handler.
  206. You must set rp->maxactive appropriately before you call
  207. register_kretprobe(); see "How Does a Return Probe Work?" for details.
  208. register_kretprobe() returns 0 on success, or a negative errno
  209. otherwise.
  210. User's return-probe handler (rp->handler):
  211. #include <linux/kprobes.h>
  212. #include <linux/ptrace.h>
  213. int kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs);
  214. regs is as described for kprobe.pre_handler. ri points to the
  215. kretprobe_instance object, of which the following fields may be
  216. of interest:
  217. - ret_addr: the return address
  218. - rp: points to the corresponding kretprobe object
  219. - task: points to the corresponding task struct
  220. The regs_return_value(regs) macro provides a simple abstraction to
  221. extract the return value from the appropriate register as defined by
  222. the architecture's ABI.
  223. The handler's return value is currently ignored.
  224. 4.4 unregister_*probe
  225. #include <linux/kprobes.h>
  226. void unregister_kprobe(struct kprobe *kp);
  227. void unregister_jprobe(struct jprobe *jp);
  228. void unregister_kretprobe(struct kretprobe *rp);
  229. Removes the specified probe. The unregister function can be called
  230. at any time after the probe has been registered.
  231. 5. Kprobes Features and Limitations
  232. Kprobes allows multiple probes at the same address. Currently,
  233. however, there cannot be multiple jprobes on the same function at
  234. the same time.
  235. In general, you can install a probe anywhere in the kernel.
  236. In particular, you can probe interrupt handlers. Known exceptions
  237. are discussed in this section.
  238. The register_*probe functions will return -EINVAL if you attempt
  239. to install a probe in the code that implements Kprobes (mostly
  240. kernel/kprobes.c and arch/*/kernel/kprobes.c, but also functions such
  241. as do_page_fault and notifier_call_chain).
  242. If you install a probe in an inline-able function, Kprobes makes
  243. no attempt to chase down all inline instances of the function and
  244. install probes there. gcc may inline a function without being asked,
  245. so keep this in mind if you're not seeing the probe hits you expect.
  246. A probe handler can modify the environment of the probed function
  247. -- e.g., by modifying kernel data structures, or by modifying the
  248. contents of the pt_regs struct (which are restored to the registers
  249. upon return from the breakpoint). So Kprobes can be used, for example,
  250. to install a bug fix or to inject faults for testing. Kprobes, of
  251. course, has no way to distinguish the deliberately injected faults
  252. from the accidental ones. Don't drink and probe.
  253. Kprobes makes no attempt to prevent probe handlers from stepping on
  254. each other -- e.g., probing printk() and then calling printk() from a
  255. probe handler. If a probe handler hits a probe, that second probe's
  256. handlers won't be run in that instance, and the kprobe.nmissed member
  257. of the second probe will be incremented.
  258. As of Linux v2.6.15-rc1, multiple handlers (or multiple instances of
  259. the same handler) may run concurrently on different CPUs.
  260. Kprobes does not use mutexes or allocate memory except during
  261. registration and unregistration.
  262. Probe handlers are run with preemption disabled. Depending on the
  263. architecture, handlers may also run with interrupts disabled. In any
  264. case, your handler should not yield the CPU (e.g., by attempting to
  265. acquire a semaphore).
  266. Since a return probe is implemented by replacing the return
  267. address with the trampoline's address, stack backtraces and calls
  268. to __builtin_return_address() will typically yield the trampoline's
  269. address instead of the real return address for kretprobed functions.
  270. (As far as we can tell, __builtin_return_address() is used only
  271. for instrumentation and error reporting.)
  272. If the number of times a function is called does not match the number
  273. of times it returns, registering a return probe on that function may
  274. produce undesirable results. In such a case, a line:
  275. kretprobe BUG!: Processing kretprobe d000000000041aa8 @ c00000000004f48c
  276. gets printed. With this information, one will be able to correlate the
  277. exact instance of the kretprobe that caused the problem. We have the
  278. do_exit() case covered. do_execve() and do_fork() are not an issue.
  279. We're unaware of other specific cases where this could be a problem.
  280. If, upon entry to or exit from a function, the CPU is running on
  281. a stack other than that of the current task, registering a return
  282. probe on that function may produce undesirable results. For this
  283. reason, Kprobes doesn't support return probes (or kprobes or jprobes)
  284. on the x86_64 version of __switch_to(); the registration functions
  285. return -EINVAL.
  286. 6. Probe Overhead
  287. On a typical CPU in use in 2005, a kprobe hit takes 0.5 to 1.0
  288. microseconds to process. Specifically, a benchmark that hits the same
  289. probepoint repeatedly, firing a simple handler each time, reports 1-2
  290. million hits per second, depending on the architecture. A jprobe or
  291. return-probe hit typically takes 50-75% longer than a kprobe hit.
  292. When you have a return probe set on a function, adding a kprobe at
  293. the entry to that function adds essentially no overhead.
  294. Here are sample overhead figures (in usec) for different architectures.
  295. k = kprobe; j = jprobe; r = return probe; kr = kprobe + return probe
  296. on same function; jr = jprobe + return probe on same function
  297. i386: Intel Pentium M, 1495 MHz, 2957.31 bogomips
  298. k = 0.57 usec; j = 1.00; r = 0.92; kr = 0.99; jr = 1.40
  299. x86_64: AMD Opteron 246, 1994 MHz, 3971.48 bogomips
  300. k = 0.49 usec; j = 0.76; r = 0.80; kr = 0.82; jr = 1.07
  301. ppc64: POWER5 (gr), 1656 MHz (SMT disabled, 1 virtual CPU per physical CPU)
  302. k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99
  303. 7. TODO
  304. a. SystemTap (http://sourceware.org/systemtap): Provides a simplified
  305. programming interface for probe-based instrumentation. Try it out.
  306. b. Kernel return probes for sparc64.
  307. c. Support for other architectures.
  308. d. User-space probes.
  309. e. Watchpoint probes (which fire on data references).
  310. 8. Kprobes Example
  311. Here's a sample kernel module showing the use of kprobes to dump a
  312. stack trace and selected i386 registers when do_fork() is called.
  313. ----- cut here -----
  314. /*kprobe_example.c*/
  315. #include <linux/kernel.h>
  316. #include <linux/module.h>
  317. #include <linux/kprobes.h>
  318. #include <linux/sched.h>
  319. /*For each probe you need to allocate a kprobe structure*/
  320. static struct kprobe kp;
  321. /*kprobe pre_handler: called just before the probed instruction is executed*/
  322. int handler_pre(struct kprobe *p, struct pt_regs *regs)
  323. {
  324. printk("pre_handler: p->addr=0x%p, eip=%lx, eflags=0x%lx\n",
  325. p->addr, regs->eip, regs->eflags);
  326. dump_stack();
  327. return 0;
  328. }
  329. /*kprobe post_handler: called after the probed instruction is executed*/
  330. void handler_post(struct kprobe *p, struct pt_regs *regs, unsigned long flags)
  331. {
  332. printk("post_handler: p->addr=0x%p, eflags=0x%lx\n",
  333. p->addr, regs->eflags);
  334. }
  335. /* fault_handler: this is called if an exception is generated for any
  336. * instruction within the pre- or post-handler, or when Kprobes
  337. * single-steps the probed instruction.
  338. */
  339. int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
  340. {
  341. printk("fault_handler: p->addr=0x%p, trap #%dn",
  342. p->addr, trapnr);
  343. /* Return 0 because we don't handle the fault. */
  344. return 0;
  345. }
  346. static int __init kprobe_init(void)
  347. {
  348. int ret;
  349. kp.pre_handler = handler_pre;
  350. kp.post_handler = handler_post;
  351. kp.fault_handler = handler_fault;
  352. kp.symbol_name = "do_fork";
  353. ret = register_kprobe(&kp);
  354. if (ret < 0) {
  355. printk("register_kprobe failed, returned %d\n", ret);
  356. return ret;
  357. }
  358. printk("kprobe registered\n");
  359. return 0;
  360. }
  361. static void __exit kprobe_exit(void)
  362. {
  363. unregister_kprobe(&kp);
  364. printk("kprobe unregistered\n");
  365. }
  366. module_init(kprobe_init)
  367. module_exit(kprobe_exit)
  368. MODULE_LICENSE("GPL");
  369. ----- cut here -----
  370. You can build the kernel module, kprobe-example.ko, using the following
  371. Makefile:
  372. ----- cut here -----
  373. obj-m := kprobe-example.o
  374. KDIR := /lib/modules/$(shell uname -r)/build
  375. PWD := $(shell pwd)
  376. default:
  377. $(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
  378. clean:
  379. rm -f *.mod.c *.ko *.o
  380. ----- cut here -----
  381. $ make
  382. $ su -
  383. ...
  384. # insmod kprobe-example.ko
  385. You will see the trace data in /var/log/messages and on the console
  386. whenever do_fork() is invoked to create a new process.
  387. 9. Jprobes Example
  388. Here's a sample kernel module showing the use of jprobes to dump
  389. the arguments of do_fork().
  390. ----- cut here -----
  391. /*jprobe-example.c */
  392. #include <linux/kernel.h>
  393. #include <linux/module.h>
  394. #include <linux/fs.h>
  395. #include <linux/uio.h>
  396. #include <linux/kprobes.h>
  397. /*
  398. * Jumper probe for do_fork.
  399. * Mirror principle enables access to arguments of the probed routine
  400. * from the probe handler.
  401. */
  402. /* Proxy routine having the same arguments as actual do_fork() routine */
  403. long jdo_fork(unsigned long clone_flags, unsigned long stack_start,
  404. struct pt_regs *regs, unsigned long stack_size,
  405. int __user * parent_tidptr, int __user * child_tidptr)
  406. {
  407. printk("jprobe: clone_flags=0x%lx, stack_size=0x%lx, regs=0x%p\n",
  408. clone_flags, stack_size, regs);
  409. /* Always end with a call to jprobe_return(). */
  410. jprobe_return();
  411. /*NOTREACHED*/
  412. return 0;
  413. }
  414. static struct jprobe my_jprobe = {
  415. .entry = JPROBE_ENTRY(jdo_fork)
  416. };
  417. static int __init jprobe_init(void)
  418. {
  419. int ret;
  420. my_jprobe.kp.symbol_name = "do_fork";
  421. if ((ret = register_jprobe(&my_jprobe)) <0) {
  422. printk("register_jprobe failed, returned %d\n", ret);
  423. return -1;
  424. }
  425. printk("Planted jprobe at %p, handler addr %p\n",
  426. my_jprobe.kp.addr, my_jprobe.entry);
  427. return 0;
  428. }
  429. static void __exit jprobe_exit(void)
  430. {
  431. unregister_jprobe(&my_jprobe);
  432. printk("jprobe unregistered\n");
  433. }
  434. module_init(jprobe_init)
  435. module_exit(jprobe_exit)
  436. MODULE_LICENSE("GPL");
  437. ----- cut here -----
  438. Build and insert the kernel module as shown in the above kprobe
  439. example. You will see the trace data in /var/log/messages and on
  440. the console whenever do_fork() is invoked to create a new process.
  441. (Some messages may be suppressed if syslogd is configured to
  442. eliminate duplicate messages.)
  443. 10. Kretprobes Example
  444. Here's a sample kernel module showing the use of return probes to
  445. report failed calls to sys_open().
  446. ----- cut here -----
  447. /*kretprobe-example.c*/
  448. #include <linux/kernel.h>
  449. #include <linux/module.h>
  450. #include <linux/kprobes.h>
  451. static const char *probed_func = "sys_open";
  452. /* Return-probe handler: If the probed function fails, log the return value. */
  453. static int ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
  454. {
  455. int retval = regs_return_value(regs);
  456. if (retval < 0) {
  457. printk("%s returns %d\n", probed_func, retval);
  458. }
  459. return 0;
  460. }
  461. static struct kretprobe my_kretprobe = {
  462. .handler = ret_handler,
  463. /* Probe up to 20 instances concurrently. */
  464. .maxactive = 20
  465. };
  466. static int __init kretprobe_init(void)
  467. {
  468. int ret;
  469. my_kretprobe.kp.symbol_name = (char *)probed_func;
  470. if ((ret = register_kretprobe(&my_kretprobe)) < 0) {
  471. printk("register_kretprobe failed, returned %d\n", ret);
  472. return -1;
  473. }
  474. printk("Planted return probe at %p\n", my_kretprobe.kp.addr);
  475. return 0;
  476. }
  477. static void __exit kretprobe_exit(void)
  478. {
  479. unregister_kretprobe(&my_kretprobe);
  480. printk("kretprobe unregistered\n");
  481. /* nmissed > 0 suggests that maxactive was set too low. */
  482. printk("Missed probing %d instances of %s\n",
  483. my_kretprobe.nmissed, probed_func);
  484. }
  485. module_init(kretprobe_init)
  486. module_exit(kretprobe_exit)
  487. MODULE_LICENSE("GPL");
  488. ----- cut here -----
  489. Build and insert the kernel module as shown in the above kprobe
  490. example. You will see the trace data in /var/log/messages and on the
  491. console whenever sys_open() returns a negative value. (Some messages
  492. may be suppressed if syslogd is configured to eliminate duplicate
  493. messages.)
  494. For additional information on Kprobes, refer to the following URLs:
  495. http://www-106.ibm.com/developerworks/library/l-kprobes.html?ca=dgr-lnxw42Kprobe
  496. http://www.redhat.com/magazine/005mar05/features/kprobes/
  497. http://www-users.cs.umn.edu/~boutcher/kprobes/
  498. http://www.linuxsymposium.org/2006/linuxsymposium_procv2.pdf (pages 101-115)
  499. Appendix A: The kprobes debugfs interface
  500. With recent kernels (> 2.6.20) the list of registered kprobes is visible
  501. under the /debug/kprobes/ directory (assuming debugfs is mounted at /debug).
  502. /debug/kprobes/list: Lists all registered probes on the system
  503. c015d71a k vfs_read+0x0
  504. c011a316 j do_fork+0x0
  505. c03dedc5 r tcp_v4_rcv+0x0
  506. The first column provides the kernel address where the probe is inserted.
  507. The second column identifies the type of probe (k - kprobe, r - kretprobe
  508. and j - jprobe), while the third column specifies the symbol+offset of
  509. the probe. If the probed function belongs to a module, the module name
  510. is also specified.
  511. /debug/kprobes/enabled: Turn kprobes ON/OFF
  512. Provides a knob to globally turn registered kprobes ON or OFF. By default,
  513. all kprobes are enabled. By echoing "0" to this file, all registered probes
  514. will be disarmed, till such time a "1" is echoed to this file.