slab.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. /*
  2. * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
  3. *
  4. * (C) SGI 2006, Christoph Lameter
  5. * Cleaned up and restructured to ease the addition of alternative
  6. * implementations of SLAB allocators.
  7. */
  8. #ifndef _LINUX_SLAB_H
  9. #define _LINUX_SLAB_H
  10. #include <linux/gfp.h>
  11. #include <linux/types.h>
  12. /*
  13. * Flags to pass to kmem_cache_create().
  14. * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  15. */
  16. #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
  17. #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
  18. #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
  19. #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
  20. #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
  21. #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
  22. #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
  23. /*
  24. * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  25. *
  26. * This delays freeing the SLAB page by a grace period, it does _NOT_
  27. * delay object freeing. This means that if you do kmem_cache_free()
  28. * that memory location is free to be reused at any time. Thus it may
  29. * be possible to see another object there in the same RCU grace period.
  30. *
  31. * This feature only ensures the memory location backing the object
  32. * stays valid, the trick to using this is relying on an independent
  33. * object validation pass. Something like:
  34. *
  35. * rcu_read_lock()
  36. * again:
  37. * obj = lockless_lookup(key);
  38. * if (obj) {
  39. * if (!try_get_ref(obj)) // might fail for free objects
  40. * goto again;
  41. *
  42. * if (obj->key != key) { // not the object we expected
  43. * put_ref(obj);
  44. * goto again;
  45. * }
  46. * }
  47. * rcu_read_unlock();
  48. *
  49. * See also the comment on struct slab_rcu in mm/slab.c.
  50. */
  51. #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
  52. #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
  53. #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
  54. /* Flag to prevent checks on free */
  55. #ifdef CONFIG_DEBUG_OBJECTS
  56. # define SLAB_DEBUG_OBJECTS 0x00400000UL
  57. #else
  58. # define SLAB_DEBUG_OBJECTS 0x00000000UL
  59. #endif
  60. #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
  61. /* Don't track use of uninitialized memory */
  62. #ifdef CONFIG_KMEMCHECK
  63. # define SLAB_NOTRACK 0x01000000UL
  64. #else
  65. # define SLAB_NOTRACK 0x00000000UL
  66. #endif
  67. #ifdef CONFIG_FAILSLAB
  68. # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
  69. #else
  70. # define SLAB_FAILSLAB 0x00000000UL
  71. #endif
  72. /* The following flags affect the page allocator grouping pages by mobility */
  73. #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
  74. #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
  75. /*
  76. * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  77. *
  78. * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  79. *
  80. * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  81. * Both make kfree a no-op.
  82. */
  83. #define ZERO_SIZE_PTR ((void *)16)
  84. #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  85. (unsigned long)ZERO_SIZE_PTR)
  86. /*
  87. * struct kmem_cache related prototypes
  88. */
  89. void __init kmem_cache_init(void);
  90. int slab_is_available(void);
  91. struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
  92. unsigned long,
  93. void (*)(void *));
  94. void kmem_cache_destroy(struct kmem_cache *);
  95. int kmem_cache_shrink(struct kmem_cache *);
  96. void kmem_cache_free(struct kmem_cache *, void *);
  97. unsigned int kmem_cache_size(struct kmem_cache *);
  98. const char *kmem_cache_name(struct kmem_cache *);
  99. int kern_ptr_validate(const void *ptr, unsigned long size);
  100. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
  101. /*
  102. * Please use this macro to create slab caches. Simply specify the
  103. * name of the structure and maybe some flags that are listed above.
  104. *
  105. * The alignment of the struct determines object alignment. If you
  106. * f.e. add ____cacheline_aligned_in_smp to the struct declaration
  107. * then the objects will be properly aligned in SMP configurations.
  108. */
  109. #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
  110. sizeof(struct __struct), __alignof__(struct __struct),\
  111. (__flags), NULL)
  112. /*
  113. * The largest kmalloc size supported by the slab allocators is
  114. * 32 megabyte (2^25) or the maximum allocatable page order if that is
  115. * less than 32 MB.
  116. *
  117. * WARNING: Its not easy to increase this value since the allocators have
  118. * to do various tricks to work around compiler limitations in order to
  119. * ensure proper constant folding.
  120. */
  121. #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
  122. (MAX_ORDER + PAGE_SHIFT - 1) : 25)
  123. #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
  124. #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
  125. /*
  126. * Common kmalloc functions provided by all allocators
  127. */
  128. void * __must_check __krealloc(const void *, size_t, gfp_t);
  129. void * __must_check krealloc(const void *, size_t, gfp_t);
  130. void kfree(const void *);
  131. void kzfree(const void *);
  132. size_t ksize(const void *);
  133. /*
  134. * Allocator specific definitions. These are mainly used to establish optimized
  135. * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
  136. * selecting the appropriate general cache at compile time.
  137. *
  138. * Allocators must define at least:
  139. *
  140. * kmem_cache_alloc()
  141. * __kmalloc()
  142. * kmalloc()
  143. *
  144. * Those wishing to support NUMA must also define:
  145. *
  146. * kmem_cache_alloc_node()
  147. * kmalloc_node()
  148. *
  149. * See each allocator definition file for additional comments and
  150. * implementation notes.
  151. */
  152. #ifdef CONFIG_SLUB
  153. #include <linux/slub_def.h>
  154. #elif defined(CONFIG_SLOB)
  155. #include <linux/slob_def.h>
  156. #else
  157. #include <linux/slab_def.h>
  158. #endif
  159. /**
  160. * kcalloc - allocate memory for an array. The memory is set to zero.
  161. * @n: number of elements.
  162. * @size: element size.
  163. * @flags: the type of memory to allocate.
  164. *
  165. * The @flags argument may be one of:
  166. *
  167. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  168. *
  169. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  170. *
  171. * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
  172. * For example, use this inside interrupt handlers.
  173. *
  174. * %GFP_HIGHUSER - Allocate pages from high memory.
  175. *
  176. * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
  177. *
  178. * %GFP_NOFS - Do not make any fs calls while trying to get memory.
  179. *
  180. * %GFP_NOWAIT - Allocation will not sleep.
  181. *
  182. * %GFP_THISNODE - Allocate node-local memory only.
  183. *
  184. * %GFP_DMA - Allocation suitable for DMA.
  185. * Should only be used for kmalloc() caches. Otherwise, use a
  186. * slab created with SLAB_DMA.
  187. *
  188. * Also it is possible to set different flags by OR'ing
  189. * in one or more of the following additional @flags:
  190. *
  191. * %__GFP_COLD - Request cache-cold pages instead of
  192. * trying to return cache-warm pages.
  193. *
  194. * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
  195. *
  196. * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
  197. * (think twice before using).
  198. *
  199. * %__GFP_NORETRY - If memory is not immediately available,
  200. * then give up at once.
  201. *
  202. * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
  203. *
  204. * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
  205. *
  206. * There are other flags available as well, but these are not intended
  207. * for general use, and so are not documented here. For a full list of
  208. * potential flags, always refer to linux/gfp.h.
  209. */
  210. static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
  211. {
  212. if (size != 0 && n > ULONG_MAX / size)
  213. return NULL;
  214. return __kmalloc(n * size, flags | __GFP_ZERO);
  215. }
  216. #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
  217. /**
  218. * kmalloc_node - allocate memory from a specific node
  219. * @size: how many bytes of memory are required.
  220. * @flags: the type of memory to allocate (see kcalloc).
  221. * @node: node to allocate from.
  222. *
  223. * kmalloc() for non-local nodes, used to allocate from a specific node
  224. * if available. Equivalent to kmalloc() in the non-NUMA single-node
  225. * case.
  226. */
  227. static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  228. {
  229. return kmalloc(size, flags);
  230. }
  231. static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
  232. {
  233. return __kmalloc(size, flags);
  234. }
  235. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  236. static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
  237. gfp_t flags, int node)
  238. {
  239. return kmem_cache_alloc(cachep, flags);
  240. }
  241. #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
  242. /*
  243. * kmalloc_track_caller is a special version of kmalloc that records the
  244. * calling function of the routine calling it for slab leak tracking instead
  245. * of just the calling function (confusing, eh?).
  246. * It's useful when the call to kmalloc comes from a widely-used standard
  247. * allocator where we care about the real place the memory allocation
  248. * request comes from.
  249. */
  250. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
  251. extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
  252. #define kmalloc_track_caller(size, flags) \
  253. __kmalloc_track_caller(size, flags, _RET_IP_)
  254. #else
  255. #define kmalloc_track_caller(size, flags) \
  256. __kmalloc(size, flags)
  257. #endif /* DEBUG_SLAB */
  258. #ifdef CONFIG_NUMA
  259. /*
  260. * kmalloc_node_track_caller is a special version of kmalloc_node that
  261. * records the calling function of the routine calling it for slab leak
  262. * tracking instead of just the calling function (confusing, eh?).
  263. * It's useful when the call to kmalloc_node comes from a widely-used
  264. * standard allocator where we care about the real place the memory
  265. * allocation request comes from.
  266. */
  267. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
  268. extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
  269. #define kmalloc_node_track_caller(size, flags, node) \
  270. __kmalloc_node_track_caller(size, flags, node, \
  271. _RET_IP_)
  272. #else
  273. #define kmalloc_node_track_caller(size, flags, node) \
  274. __kmalloc_node(size, flags, node)
  275. #endif
  276. #else /* CONFIG_NUMA */
  277. #define kmalloc_node_track_caller(size, flags, node) \
  278. kmalloc_track_caller(size, flags)
  279. #endif /* CONFIG_NUMA */
  280. /*
  281. * Shortcuts
  282. */
  283. static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
  284. {
  285. return kmem_cache_alloc(k, flags | __GFP_ZERO);
  286. }
  287. /**
  288. * kzalloc - allocate memory. The memory is set to zero.
  289. * @size: how many bytes of memory are required.
  290. * @flags: the type of memory to allocate (see kmalloc).
  291. */
  292. static inline void *kzalloc(size_t size, gfp_t flags)
  293. {
  294. return kmalloc(size, flags | __GFP_ZERO);
  295. }
  296. /**
  297. * kzalloc_node - allocate zeroed memory from a particular memory node.
  298. * @size: how many bytes of memory are required.
  299. * @flags: the type of memory to allocate (see kmalloc).
  300. * @node: memory node from which to allocate
  301. */
  302. static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
  303. {
  304. return kmalloc_node(size, flags | __GFP_ZERO, node);
  305. }
  306. void __init kmem_cache_init_late(void);
  307. #endif /* _LINUX_SLAB_H */