sched_rt.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_SMP
  6. static inline int rt_overloaded(struct rq *rq)
  7. {
  8. return atomic_read(&rq->rd->rto_count);
  9. }
  10. static inline void rt_set_overload(struct rq *rq)
  11. {
  12. cpu_set(rq->cpu, rq->rd->rto_mask);
  13. /*
  14. * Make sure the mask is visible before we set
  15. * the overload count. That is checked to determine
  16. * if we should look at the mask. It would be a shame
  17. * if we looked at the mask, but the mask was not
  18. * updated yet.
  19. */
  20. wmb();
  21. atomic_inc(&rq->rd->rto_count);
  22. }
  23. static inline void rt_clear_overload(struct rq *rq)
  24. {
  25. /* the order here really doesn't matter */
  26. atomic_dec(&rq->rd->rto_count);
  27. cpu_clear(rq->cpu, rq->rd->rto_mask);
  28. }
  29. static void update_rt_migration(struct rq *rq)
  30. {
  31. if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
  32. if (!rq->rt.overloaded) {
  33. rt_set_overload(rq);
  34. rq->rt.overloaded = 1;
  35. }
  36. } else if (rq->rt.overloaded) {
  37. rt_clear_overload(rq);
  38. rq->rt.overloaded = 0;
  39. }
  40. }
  41. #endif /* CONFIG_SMP */
  42. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  43. {
  44. return container_of(rt_se, struct task_struct, rt);
  45. }
  46. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  47. {
  48. return !list_empty(&rt_se->run_list);
  49. }
  50. #ifdef CONFIG_RT_GROUP_SCHED
  51. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  52. {
  53. if (!rt_rq->tg)
  54. return RUNTIME_INF;
  55. return rt_rq->rt_runtime;
  56. }
  57. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  58. {
  59. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  60. }
  61. #define for_each_leaf_rt_rq(rt_rq, rq) \
  62. list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  63. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  64. {
  65. return rt_rq->rq;
  66. }
  67. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  68. {
  69. return rt_se->rt_rq;
  70. }
  71. #define for_each_sched_rt_entity(rt_se) \
  72. for (; rt_se; rt_se = rt_se->parent)
  73. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  74. {
  75. return rt_se->my_q;
  76. }
  77. static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
  78. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  79. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  80. {
  81. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  82. if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
  83. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  84. enqueue_rt_entity(rt_se);
  85. if (rt_rq->highest_prio < curr->prio)
  86. resched_task(curr);
  87. }
  88. }
  89. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  90. {
  91. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  92. if (rt_se && on_rt_rq(rt_se))
  93. dequeue_rt_entity(rt_se);
  94. }
  95. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  96. {
  97. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  98. }
  99. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  100. {
  101. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  102. struct task_struct *p;
  103. if (rt_rq)
  104. return !!rt_rq->rt_nr_boosted;
  105. p = rt_task_of(rt_se);
  106. return p->prio != p->normal_prio;
  107. }
  108. #ifdef CONFIG_SMP
  109. static inline cpumask_t sched_rt_period_mask(void)
  110. {
  111. return cpu_rq(smp_processor_id())->rd->span;
  112. }
  113. #else
  114. static inline cpumask_t sched_rt_period_mask(void)
  115. {
  116. return cpu_online_map;
  117. }
  118. #endif
  119. static inline
  120. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  121. {
  122. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  123. }
  124. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  125. {
  126. return &rt_rq->tg->rt_bandwidth;
  127. }
  128. #else
  129. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  130. {
  131. return rt_rq->rt_runtime;
  132. }
  133. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  134. {
  135. return ktime_to_ns(def_rt_bandwidth.rt_period);
  136. }
  137. #define for_each_leaf_rt_rq(rt_rq, rq) \
  138. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  139. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  140. {
  141. return container_of(rt_rq, struct rq, rt);
  142. }
  143. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  144. {
  145. struct task_struct *p = rt_task_of(rt_se);
  146. struct rq *rq = task_rq(p);
  147. return &rq->rt;
  148. }
  149. #define for_each_sched_rt_entity(rt_se) \
  150. for (; rt_se; rt_se = NULL)
  151. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  152. {
  153. return NULL;
  154. }
  155. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  156. {
  157. }
  158. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  159. {
  160. }
  161. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  162. {
  163. return rt_rq->rt_throttled;
  164. }
  165. static inline cpumask_t sched_rt_period_mask(void)
  166. {
  167. return cpu_online_map;
  168. }
  169. static inline
  170. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  171. {
  172. return &cpu_rq(cpu)->rt;
  173. }
  174. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  175. {
  176. return &def_rt_bandwidth;
  177. }
  178. #endif
  179. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  180. {
  181. int i, idle = 1;
  182. cpumask_t span;
  183. if (rt_b->rt_runtime == RUNTIME_INF)
  184. return 1;
  185. span = sched_rt_period_mask();
  186. for_each_cpu_mask(i, span) {
  187. int enqueue = 0;
  188. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  189. struct rq *rq = rq_of_rt_rq(rt_rq);
  190. spin_lock(&rq->lock);
  191. if (rt_rq->rt_time) {
  192. u64 runtime;
  193. spin_lock(&rt_rq->rt_runtime_lock);
  194. runtime = rt_rq->rt_runtime;
  195. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  196. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  197. rt_rq->rt_throttled = 0;
  198. enqueue = 1;
  199. }
  200. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  201. idle = 0;
  202. spin_unlock(&rt_rq->rt_runtime_lock);
  203. }
  204. if (enqueue)
  205. sched_rt_rq_enqueue(rt_rq);
  206. spin_unlock(&rq->lock);
  207. }
  208. return idle;
  209. }
  210. #ifdef CONFIG_SMP
  211. static int balance_runtime(struct rt_rq *rt_rq)
  212. {
  213. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  214. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  215. int i, weight, more = 0;
  216. u64 rt_period;
  217. weight = cpus_weight(rd->span);
  218. spin_lock(&rt_b->rt_runtime_lock);
  219. rt_period = ktime_to_ns(rt_b->rt_period);
  220. for_each_cpu_mask(i, rd->span) {
  221. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  222. s64 diff;
  223. if (iter == rt_rq)
  224. continue;
  225. spin_lock(&iter->rt_runtime_lock);
  226. diff = iter->rt_runtime - iter->rt_time;
  227. if (diff > 0) {
  228. do_div(diff, weight);
  229. if (rt_rq->rt_runtime + diff > rt_period)
  230. diff = rt_period - rt_rq->rt_runtime;
  231. iter->rt_runtime -= diff;
  232. rt_rq->rt_runtime += diff;
  233. more = 1;
  234. if (rt_rq->rt_runtime == rt_period) {
  235. spin_unlock(&iter->rt_runtime_lock);
  236. break;
  237. }
  238. }
  239. spin_unlock(&iter->rt_runtime_lock);
  240. }
  241. spin_unlock(&rt_b->rt_runtime_lock);
  242. return more;
  243. }
  244. #endif
  245. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  246. {
  247. #ifdef CONFIG_RT_GROUP_SCHED
  248. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  249. if (rt_rq)
  250. return rt_rq->highest_prio;
  251. #endif
  252. return rt_task_of(rt_se)->prio;
  253. }
  254. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  255. {
  256. u64 runtime = sched_rt_runtime(rt_rq);
  257. if (runtime == RUNTIME_INF)
  258. return 0;
  259. if (rt_rq->rt_throttled)
  260. return rt_rq_throttled(rt_rq);
  261. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  262. return 0;
  263. #ifdef CONFIG_SMP
  264. if (rt_rq->rt_time > runtime) {
  265. int more;
  266. spin_unlock(&rt_rq->rt_runtime_lock);
  267. more = balance_runtime(rt_rq);
  268. spin_lock(&rt_rq->rt_runtime_lock);
  269. if (more)
  270. runtime = sched_rt_runtime(rt_rq);
  271. }
  272. #endif
  273. if (rt_rq->rt_time > runtime) {
  274. rt_rq->rt_throttled = 1;
  275. if (rt_rq_throttled(rt_rq)) {
  276. sched_rt_rq_dequeue(rt_rq);
  277. return 1;
  278. }
  279. }
  280. return 0;
  281. }
  282. /*
  283. * Update the current task's runtime statistics. Skip current tasks that
  284. * are not in our scheduling class.
  285. */
  286. static void update_curr_rt(struct rq *rq)
  287. {
  288. struct task_struct *curr = rq->curr;
  289. struct sched_rt_entity *rt_se = &curr->rt;
  290. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  291. u64 delta_exec;
  292. if (!task_has_rt_policy(curr))
  293. return;
  294. delta_exec = rq->clock - curr->se.exec_start;
  295. if (unlikely((s64)delta_exec < 0))
  296. delta_exec = 0;
  297. schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
  298. curr->se.sum_exec_runtime += delta_exec;
  299. curr->se.exec_start = rq->clock;
  300. cpuacct_charge(curr, delta_exec);
  301. spin_lock(&rt_rq->rt_runtime_lock);
  302. rt_rq->rt_time += delta_exec;
  303. if (sched_rt_runtime_exceeded(rt_rq))
  304. resched_task(curr);
  305. spin_unlock(&rt_rq->rt_runtime_lock);
  306. }
  307. static inline
  308. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  309. {
  310. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  311. rt_rq->rt_nr_running++;
  312. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  313. if (rt_se_prio(rt_se) < rt_rq->highest_prio)
  314. rt_rq->highest_prio = rt_se_prio(rt_se);
  315. #endif
  316. #ifdef CONFIG_SMP
  317. if (rt_se->nr_cpus_allowed > 1) {
  318. struct rq *rq = rq_of_rt_rq(rt_rq);
  319. rq->rt.rt_nr_migratory++;
  320. }
  321. update_rt_migration(rq_of_rt_rq(rt_rq));
  322. #endif
  323. #ifdef CONFIG_RT_GROUP_SCHED
  324. if (rt_se_boosted(rt_se))
  325. rt_rq->rt_nr_boosted++;
  326. if (rt_rq->tg)
  327. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  328. #else
  329. start_rt_bandwidth(&def_rt_bandwidth);
  330. #endif
  331. }
  332. static inline
  333. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  334. {
  335. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  336. WARN_ON(!rt_rq->rt_nr_running);
  337. rt_rq->rt_nr_running--;
  338. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  339. if (rt_rq->rt_nr_running) {
  340. struct rt_prio_array *array;
  341. WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
  342. if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
  343. /* recalculate */
  344. array = &rt_rq->active;
  345. rt_rq->highest_prio =
  346. sched_find_first_bit(array->bitmap);
  347. } /* otherwise leave rq->highest prio alone */
  348. } else
  349. rt_rq->highest_prio = MAX_RT_PRIO;
  350. #endif
  351. #ifdef CONFIG_SMP
  352. if (rt_se->nr_cpus_allowed > 1) {
  353. struct rq *rq = rq_of_rt_rq(rt_rq);
  354. rq->rt.rt_nr_migratory--;
  355. }
  356. update_rt_migration(rq_of_rt_rq(rt_rq));
  357. #endif /* CONFIG_SMP */
  358. #ifdef CONFIG_RT_GROUP_SCHED
  359. if (rt_se_boosted(rt_se))
  360. rt_rq->rt_nr_boosted--;
  361. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  362. #endif
  363. }
  364. static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
  365. {
  366. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  367. struct rt_prio_array *array = &rt_rq->active;
  368. struct rt_rq *group_rq = group_rt_rq(rt_se);
  369. if (group_rq && rt_rq_throttled(group_rq))
  370. return;
  371. list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
  372. __set_bit(rt_se_prio(rt_se), array->bitmap);
  373. inc_rt_tasks(rt_se, rt_rq);
  374. }
  375. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  376. {
  377. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  378. struct rt_prio_array *array = &rt_rq->active;
  379. list_del_init(&rt_se->run_list);
  380. if (list_empty(array->queue + rt_se_prio(rt_se)))
  381. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  382. dec_rt_tasks(rt_se, rt_rq);
  383. }
  384. /*
  385. * Because the prio of an upper entry depends on the lower
  386. * entries, we must remove entries top - down.
  387. *
  388. * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
  389. * doesn't matter much for now, as h=2 for GROUP_SCHED.
  390. */
  391. static void dequeue_rt_stack(struct task_struct *p)
  392. {
  393. struct sched_rt_entity *rt_se, *top_se;
  394. /*
  395. * dequeue all, top - down.
  396. */
  397. do {
  398. rt_se = &p->rt;
  399. top_se = NULL;
  400. for_each_sched_rt_entity(rt_se) {
  401. if (on_rt_rq(rt_se))
  402. top_se = rt_se;
  403. }
  404. if (top_se)
  405. dequeue_rt_entity(top_se);
  406. } while (top_se);
  407. }
  408. /*
  409. * Adding/removing a task to/from a priority array:
  410. */
  411. static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
  412. {
  413. struct sched_rt_entity *rt_se = &p->rt;
  414. if (wakeup)
  415. rt_se->timeout = 0;
  416. dequeue_rt_stack(p);
  417. /*
  418. * enqueue everybody, bottom - up.
  419. */
  420. for_each_sched_rt_entity(rt_se)
  421. enqueue_rt_entity(rt_se);
  422. }
  423. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
  424. {
  425. struct sched_rt_entity *rt_se = &p->rt;
  426. struct rt_rq *rt_rq;
  427. update_curr_rt(rq);
  428. dequeue_rt_stack(p);
  429. /*
  430. * re-enqueue all non-empty rt_rq entities.
  431. */
  432. for_each_sched_rt_entity(rt_se) {
  433. rt_rq = group_rt_rq(rt_se);
  434. if (rt_rq && rt_rq->rt_nr_running)
  435. enqueue_rt_entity(rt_se);
  436. }
  437. }
  438. /*
  439. * Put task to the end of the run list without the overhead of dequeue
  440. * followed by enqueue.
  441. */
  442. static
  443. void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
  444. {
  445. struct rt_prio_array *array = &rt_rq->active;
  446. list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
  447. }
  448. static void requeue_task_rt(struct rq *rq, struct task_struct *p)
  449. {
  450. struct sched_rt_entity *rt_se = &p->rt;
  451. struct rt_rq *rt_rq;
  452. for_each_sched_rt_entity(rt_se) {
  453. rt_rq = rt_rq_of_se(rt_se);
  454. requeue_rt_entity(rt_rq, rt_se);
  455. }
  456. }
  457. static void yield_task_rt(struct rq *rq)
  458. {
  459. requeue_task_rt(rq, rq->curr);
  460. }
  461. #ifdef CONFIG_SMP
  462. static int find_lowest_rq(struct task_struct *task);
  463. static int select_task_rq_rt(struct task_struct *p, int sync)
  464. {
  465. struct rq *rq = task_rq(p);
  466. /*
  467. * If the current task is an RT task, then
  468. * try to see if we can wake this RT task up on another
  469. * runqueue. Otherwise simply start this RT task
  470. * on its current runqueue.
  471. *
  472. * We want to avoid overloading runqueues. Even if
  473. * the RT task is of higher priority than the current RT task.
  474. * RT tasks behave differently than other tasks. If
  475. * one gets preempted, we try to push it off to another queue.
  476. * So trying to keep a preempting RT task on the same
  477. * cache hot CPU will force the running RT task to
  478. * a cold CPU. So we waste all the cache for the lower
  479. * RT task in hopes of saving some of a RT task
  480. * that is just being woken and probably will have
  481. * cold cache anyway.
  482. */
  483. if (unlikely(rt_task(rq->curr)) &&
  484. (p->rt.nr_cpus_allowed > 1)) {
  485. int cpu = find_lowest_rq(p);
  486. return (cpu == -1) ? task_cpu(p) : cpu;
  487. }
  488. /*
  489. * Otherwise, just let it ride on the affined RQ and the
  490. * post-schedule router will push the preempted task away
  491. */
  492. return task_cpu(p);
  493. }
  494. #endif /* CONFIG_SMP */
  495. /*
  496. * Preempt the current task with a newly woken task if needed:
  497. */
  498. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
  499. {
  500. if (p->prio < rq->curr->prio)
  501. resched_task(rq->curr);
  502. }
  503. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  504. struct rt_rq *rt_rq)
  505. {
  506. struct rt_prio_array *array = &rt_rq->active;
  507. struct sched_rt_entity *next = NULL;
  508. struct list_head *queue;
  509. int idx;
  510. idx = sched_find_first_bit(array->bitmap);
  511. BUG_ON(idx >= MAX_RT_PRIO);
  512. queue = array->queue + idx;
  513. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  514. return next;
  515. }
  516. static struct task_struct *pick_next_task_rt(struct rq *rq)
  517. {
  518. struct sched_rt_entity *rt_se;
  519. struct task_struct *p;
  520. struct rt_rq *rt_rq;
  521. rt_rq = &rq->rt;
  522. if (unlikely(!rt_rq->rt_nr_running))
  523. return NULL;
  524. if (rt_rq_throttled(rt_rq))
  525. return NULL;
  526. do {
  527. rt_se = pick_next_rt_entity(rq, rt_rq);
  528. BUG_ON(!rt_se);
  529. rt_rq = group_rt_rq(rt_se);
  530. } while (rt_rq);
  531. p = rt_task_of(rt_se);
  532. p->se.exec_start = rq->clock;
  533. return p;
  534. }
  535. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  536. {
  537. update_curr_rt(rq);
  538. p->se.exec_start = 0;
  539. }
  540. #ifdef CONFIG_SMP
  541. /* Only try algorithms three times */
  542. #define RT_MAX_TRIES 3
  543. static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
  544. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  545. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  546. {
  547. if (!task_running(rq, p) &&
  548. (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
  549. (p->rt.nr_cpus_allowed > 1))
  550. return 1;
  551. return 0;
  552. }
  553. /* Return the second highest RT task, NULL otherwise */
  554. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  555. {
  556. struct task_struct *next = NULL;
  557. struct sched_rt_entity *rt_se;
  558. struct rt_prio_array *array;
  559. struct rt_rq *rt_rq;
  560. int idx;
  561. for_each_leaf_rt_rq(rt_rq, rq) {
  562. array = &rt_rq->active;
  563. idx = sched_find_first_bit(array->bitmap);
  564. next_idx:
  565. if (idx >= MAX_RT_PRIO)
  566. continue;
  567. if (next && next->prio < idx)
  568. continue;
  569. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  570. struct task_struct *p = rt_task_of(rt_se);
  571. if (pick_rt_task(rq, p, cpu)) {
  572. next = p;
  573. break;
  574. }
  575. }
  576. if (!next) {
  577. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  578. goto next_idx;
  579. }
  580. }
  581. return next;
  582. }
  583. static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
  584. static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
  585. {
  586. int lowest_prio = -1;
  587. int lowest_cpu = -1;
  588. int count = 0;
  589. int cpu;
  590. cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
  591. /*
  592. * Scan each rq for the lowest prio.
  593. */
  594. for_each_cpu_mask(cpu, *lowest_mask) {
  595. struct rq *rq = cpu_rq(cpu);
  596. /* We look for lowest RT prio or non-rt CPU */
  597. if (rq->rt.highest_prio >= MAX_RT_PRIO) {
  598. /*
  599. * if we already found a low RT queue
  600. * and now we found this non-rt queue
  601. * clear the mask and set our bit.
  602. * Otherwise just return the queue as is
  603. * and the count==1 will cause the algorithm
  604. * to use the first bit found.
  605. */
  606. if (lowest_cpu != -1) {
  607. cpus_clear(*lowest_mask);
  608. cpu_set(rq->cpu, *lowest_mask);
  609. }
  610. return 1;
  611. }
  612. /* no locking for now */
  613. if ((rq->rt.highest_prio > task->prio)
  614. && (rq->rt.highest_prio >= lowest_prio)) {
  615. if (rq->rt.highest_prio > lowest_prio) {
  616. /* new low - clear old data */
  617. lowest_prio = rq->rt.highest_prio;
  618. lowest_cpu = cpu;
  619. count = 0;
  620. }
  621. count++;
  622. } else
  623. cpu_clear(cpu, *lowest_mask);
  624. }
  625. /*
  626. * Clear out all the set bits that represent
  627. * runqueues that were of higher prio than
  628. * the lowest_prio.
  629. */
  630. if (lowest_cpu > 0) {
  631. /*
  632. * Perhaps we could add another cpumask op to
  633. * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
  634. * Then that could be optimized to use memset and such.
  635. */
  636. for_each_cpu_mask(cpu, *lowest_mask) {
  637. if (cpu >= lowest_cpu)
  638. break;
  639. cpu_clear(cpu, *lowest_mask);
  640. }
  641. }
  642. return count;
  643. }
  644. static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
  645. {
  646. int first;
  647. /* "this_cpu" is cheaper to preempt than a remote processor */
  648. if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
  649. return this_cpu;
  650. first = first_cpu(*mask);
  651. if (first != NR_CPUS)
  652. return first;
  653. return -1;
  654. }
  655. static int find_lowest_rq(struct task_struct *task)
  656. {
  657. struct sched_domain *sd;
  658. cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
  659. int this_cpu = smp_processor_id();
  660. int cpu = task_cpu(task);
  661. int count = find_lowest_cpus(task, lowest_mask);
  662. if (!count)
  663. return -1; /* No targets found */
  664. /*
  665. * There is no sense in performing an optimal search if only one
  666. * target is found.
  667. */
  668. if (count == 1)
  669. return first_cpu(*lowest_mask);
  670. /*
  671. * At this point we have built a mask of cpus representing the
  672. * lowest priority tasks in the system. Now we want to elect
  673. * the best one based on our affinity and topology.
  674. *
  675. * We prioritize the last cpu that the task executed on since
  676. * it is most likely cache-hot in that location.
  677. */
  678. if (cpu_isset(cpu, *lowest_mask))
  679. return cpu;
  680. /*
  681. * Otherwise, we consult the sched_domains span maps to figure
  682. * out which cpu is logically closest to our hot cache data.
  683. */
  684. if (this_cpu == cpu)
  685. this_cpu = -1; /* Skip this_cpu opt if the same */
  686. for_each_domain(cpu, sd) {
  687. if (sd->flags & SD_WAKE_AFFINE) {
  688. cpumask_t domain_mask;
  689. int best_cpu;
  690. cpus_and(domain_mask, sd->span, *lowest_mask);
  691. best_cpu = pick_optimal_cpu(this_cpu,
  692. &domain_mask);
  693. if (best_cpu != -1)
  694. return best_cpu;
  695. }
  696. }
  697. /*
  698. * And finally, if there were no matches within the domains
  699. * just give the caller *something* to work with from the compatible
  700. * locations.
  701. */
  702. return pick_optimal_cpu(this_cpu, lowest_mask);
  703. }
  704. /* Will lock the rq it finds */
  705. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  706. {
  707. struct rq *lowest_rq = NULL;
  708. int tries;
  709. int cpu;
  710. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  711. cpu = find_lowest_rq(task);
  712. if ((cpu == -1) || (cpu == rq->cpu))
  713. break;
  714. lowest_rq = cpu_rq(cpu);
  715. /* if the prio of this runqueue changed, try again */
  716. if (double_lock_balance(rq, lowest_rq)) {
  717. /*
  718. * We had to unlock the run queue. In
  719. * the mean time, task could have
  720. * migrated already or had its affinity changed.
  721. * Also make sure that it wasn't scheduled on its rq.
  722. */
  723. if (unlikely(task_rq(task) != rq ||
  724. !cpu_isset(lowest_rq->cpu,
  725. task->cpus_allowed) ||
  726. task_running(rq, task) ||
  727. !task->se.on_rq)) {
  728. spin_unlock(&lowest_rq->lock);
  729. lowest_rq = NULL;
  730. break;
  731. }
  732. }
  733. /* If this rq is still suitable use it. */
  734. if (lowest_rq->rt.highest_prio > task->prio)
  735. break;
  736. /* try again */
  737. spin_unlock(&lowest_rq->lock);
  738. lowest_rq = NULL;
  739. }
  740. return lowest_rq;
  741. }
  742. /*
  743. * If the current CPU has more than one RT task, see if the non
  744. * running task can migrate over to a CPU that is running a task
  745. * of lesser priority.
  746. */
  747. static int push_rt_task(struct rq *rq)
  748. {
  749. struct task_struct *next_task;
  750. struct rq *lowest_rq;
  751. int ret = 0;
  752. int paranoid = RT_MAX_TRIES;
  753. if (!rq->rt.overloaded)
  754. return 0;
  755. next_task = pick_next_highest_task_rt(rq, -1);
  756. if (!next_task)
  757. return 0;
  758. retry:
  759. if (unlikely(next_task == rq->curr)) {
  760. WARN_ON(1);
  761. return 0;
  762. }
  763. /*
  764. * It's possible that the next_task slipped in of
  765. * higher priority than current. If that's the case
  766. * just reschedule current.
  767. */
  768. if (unlikely(next_task->prio < rq->curr->prio)) {
  769. resched_task(rq->curr);
  770. return 0;
  771. }
  772. /* We might release rq lock */
  773. get_task_struct(next_task);
  774. /* find_lock_lowest_rq locks the rq if found */
  775. lowest_rq = find_lock_lowest_rq(next_task, rq);
  776. if (!lowest_rq) {
  777. struct task_struct *task;
  778. /*
  779. * find lock_lowest_rq releases rq->lock
  780. * so it is possible that next_task has changed.
  781. * If it has, then try again.
  782. */
  783. task = pick_next_highest_task_rt(rq, -1);
  784. if (unlikely(task != next_task) && task && paranoid--) {
  785. put_task_struct(next_task);
  786. next_task = task;
  787. goto retry;
  788. }
  789. goto out;
  790. }
  791. deactivate_task(rq, next_task, 0);
  792. set_task_cpu(next_task, lowest_rq->cpu);
  793. activate_task(lowest_rq, next_task, 0);
  794. resched_task(lowest_rq->curr);
  795. spin_unlock(&lowest_rq->lock);
  796. ret = 1;
  797. out:
  798. put_task_struct(next_task);
  799. return ret;
  800. }
  801. /*
  802. * TODO: Currently we just use the second highest prio task on
  803. * the queue, and stop when it can't migrate (or there's
  804. * no more RT tasks). There may be a case where a lower
  805. * priority RT task has a different affinity than the
  806. * higher RT task. In this case the lower RT task could
  807. * possibly be able to migrate where as the higher priority
  808. * RT task could not. We currently ignore this issue.
  809. * Enhancements are welcome!
  810. */
  811. static void push_rt_tasks(struct rq *rq)
  812. {
  813. /* push_rt_task will return true if it moved an RT */
  814. while (push_rt_task(rq))
  815. ;
  816. }
  817. static int pull_rt_task(struct rq *this_rq)
  818. {
  819. int this_cpu = this_rq->cpu, ret = 0, cpu;
  820. struct task_struct *p, *next;
  821. struct rq *src_rq;
  822. if (likely(!rt_overloaded(this_rq)))
  823. return 0;
  824. next = pick_next_task_rt(this_rq);
  825. for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
  826. if (this_cpu == cpu)
  827. continue;
  828. src_rq = cpu_rq(cpu);
  829. /*
  830. * We can potentially drop this_rq's lock in
  831. * double_lock_balance, and another CPU could
  832. * steal our next task - hence we must cause
  833. * the caller to recalculate the next task
  834. * in that case:
  835. */
  836. if (double_lock_balance(this_rq, src_rq)) {
  837. struct task_struct *old_next = next;
  838. next = pick_next_task_rt(this_rq);
  839. if (next != old_next)
  840. ret = 1;
  841. }
  842. /*
  843. * Are there still pullable RT tasks?
  844. */
  845. if (src_rq->rt.rt_nr_running <= 1)
  846. goto skip;
  847. p = pick_next_highest_task_rt(src_rq, this_cpu);
  848. /*
  849. * Do we have an RT task that preempts
  850. * the to-be-scheduled task?
  851. */
  852. if (p && (!next || (p->prio < next->prio))) {
  853. WARN_ON(p == src_rq->curr);
  854. WARN_ON(!p->se.on_rq);
  855. /*
  856. * There's a chance that p is higher in priority
  857. * than what's currently running on its cpu.
  858. * This is just that p is wakeing up and hasn't
  859. * had a chance to schedule. We only pull
  860. * p if it is lower in priority than the
  861. * current task on the run queue or
  862. * this_rq next task is lower in prio than
  863. * the current task on that rq.
  864. */
  865. if (p->prio < src_rq->curr->prio ||
  866. (next && next->prio < src_rq->curr->prio))
  867. goto skip;
  868. ret = 1;
  869. deactivate_task(src_rq, p, 0);
  870. set_task_cpu(p, this_cpu);
  871. activate_task(this_rq, p, 0);
  872. /*
  873. * We continue with the search, just in
  874. * case there's an even higher prio task
  875. * in another runqueue. (low likelyhood
  876. * but possible)
  877. *
  878. * Update next so that we won't pick a task
  879. * on another cpu with a priority lower (or equal)
  880. * than the one we just picked.
  881. */
  882. next = p;
  883. }
  884. skip:
  885. spin_unlock(&src_rq->lock);
  886. }
  887. return ret;
  888. }
  889. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  890. {
  891. /* Try to pull RT tasks here if we lower this rq's prio */
  892. if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
  893. pull_rt_task(rq);
  894. }
  895. static void post_schedule_rt(struct rq *rq)
  896. {
  897. /*
  898. * If we have more than one rt_task queued, then
  899. * see if we can push the other rt_tasks off to other CPUS.
  900. * Note we may release the rq lock, and since
  901. * the lock was owned by prev, we need to release it
  902. * first via finish_lock_switch and then reaquire it here.
  903. */
  904. if (unlikely(rq->rt.overloaded)) {
  905. spin_lock_irq(&rq->lock);
  906. push_rt_tasks(rq);
  907. spin_unlock_irq(&rq->lock);
  908. }
  909. }
  910. static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
  911. {
  912. if (!task_running(rq, p) &&
  913. (p->prio >= rq->rt.highest_prio) &&
  914. rq->rt.overloaded)
  915. push_rt_tasks(rq);
  916. }
  917. static unsigned long
  918. load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  919. unsigned long max_load_move,
  920. struct sched_domain *sd, enum cpu_idle_type idle,
  921. int *all_pinned, int *this_best_prio)
  922. {
  923. /* don't touch RT tasks */
  924. return 0;
  925. }
  926. static int
  927. move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  928. struct sched_domain *sd, enum cpu_idle_type idle)
  929. {
  930. /* don't touch RT tasks */
  931. return 0;
  932. }
  933. static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
  934. {
  935. int weight = cpus_weight(*new_mask);
  936. BUG_ON(!rt_task(p));
  937. /*
  938. * Update the migration status of the RQ if we have an RT task
  939. * which is running AND changing its weight value.
  940. */
  941. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  942. struct rq *rq = task_rq(p);
  943. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  944. rq->rt.rt_nr_migratory++;
  945. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  946. BUG_ON(!rq->rt.rt_nr_migratory);
  947. rq->rt.rt_nr_migratory--;
  948. }
  949. update_rt_migration(rq);
  950. }
  951. p->cpus_allowed = *new_mask;
  952. p->rt.nr_cpus_allowed = weight;
  953. }
  954. /* Assumes rq->lock is held */
  955. static void join_domain_rt(struct rq *rq)
  956. {
  957. if (rq->rt.overloaded)
  958. rt_set_overload(rq);
  959. }
  960. /* Assumes rq->lock is held */
  961. static void leave_domain_rt(struct rq *rq)
  962. {
  963. if (rq->rt.overloaded)
  964. rt_clear_overload(rq);
  965. }
  966. /*
  967. * When switch from the rt queue, we bring ourselves to a position
  968. * that we might want to pull RT tasks from other runqueues.
  969. */
  970. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  971. int running)
  972. {
  973. /*
  974. * If there are other RT tasks then we will reschedule
  975. * and the scheduling of the other RT tasks will handle
  976. * the balancing. But if we are the last RT task
  977. * we may need to handle the pulling of RT tasks
  978. * now.
  979. */
  980. if (!rq->rt.rt_nr_running)
  981. pull_rt_task(rq);
  982. }
  983. #endif /* CONFIG_SMP */
  984. /*
  985. * When switching a task to RT, we may overload the runqueue
  986. * with RT tasks. In this case we try to push them off to
  987. * other runqueues.
  988. */
  989. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  990. int running)
  991. {
  992. int check_resched = 1;
  993. /*
  994. * If we are already running, then there's nothing
  995. * that needs to be done. But if we are not running
  996. * we may need to preempt the current running task.
  997. * If that current running task is also an RT task
  998. * then see if we can move to another run queue.
  999. */
  1000. if (!running) {
  1001. #ifdef CONFIG_SMP
  1002. if (rq->rt.overloaded && push_rt_task(rq) &&
  1003. /* Don't resched if we changed runqueues */
  1004. rq != task_rq(p))
  1005. check_resched = 0;
  1006. #endif /* CONFIG_SMP */
  1007. if (check_resched && p->prio < rq->curr->prio)
  1008. resched_task(rq->curr);
  1009. }
  1010. }
  1011. /*
  1012. * Priority of the task has changed. This may cause
  1013. * us to initiate a push or pull.
  1014. */
  1015. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1016. int oldprio, int running)
  1017. {
  1018. if (running) {
  1019. #ifdef CONFIG_SMP
  1020. /*
  1021. * If our priority decreases while running, we
  1022. * may need to pull tasks to this runqueue.
  1023. */
  1024. if (oldprio < p->prio)
  1025. pull_rt_task(rq);
  1026. /*
  1027. * If there's a higher priority task waiting to run
  1028. * then reschedule. Note, the above pull_rt_task
  1029. * can release the rq lock and p could migrate.
  1030. * Only reschedule if p is still on the same runqueue.
  1031. */
  1032. if (p->prio > rq->rt.highest_prio && rq->curr == p)
  1033. resched_task(p);
  1034. #else
  1035. /* For UP simply resched on drop of prio */
  1036. if (oldprio < p->prio)
  1037. resched_task(p);
  1038. #endif /* CONFIG_SMP */
  1039. } else {
  1040. /*
  1041. * This task is not running, but if it is
  1042. * greater than the current running task
  1043. * then reschedule.
  1044. */
  1045. if (p->prio < rq->curr->prio)
  1046. resched_task(rq->curr);
  1047. }
  1048. }
  1049. static void watchdog(struct rq *rq, struct task_struct *p)
  1050. {
  1051. unsigned long soft, hard;
  1052. if (!p->signal)
  1053. return;
  1054. soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
  1055. hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
  1056. if (soft != RLIM_INFINITY) {
  1057. unsigned long next;
  1058. p->rt.timeout++;
  1059. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1060. if (p->rt.timeout > next)
  1061. p->it_sched_expires = p->se.sum_exec_runtime;
  1062. }
  1063. }
  1064. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1065. {
  1066. update_curr_rt(rq);
  1067. watchdog(rq, p);
  1068. /*
  1069. * RR tasks need a special form of timeslice management.
  1070. * FIFO tasks have no timeslices.
  1071. */
  1072. if (p->policy != SCHED_RR)
  1073. return;
  1074. if (--p->rt.time_slice)
  1075. return;
  1076. p->rt.time_slice = DEF_TIMESLICE;
  1077. /*
  1078. * Requeue to the end of queue if we are not the only element
  1079. * on the queue:
  1080. */
  1081. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1082. requeue_task_rt(rq, p);
  1083. set_tsk_need_resched(p);
  1084. }
  1085. }
  1086. static void set_curr_task_rt(struct rq *rq)
  1087. {
  1088. struct task_struct *p = rq->curr;
  1089. p->se.exec_start = rq->clock;
  1090. }
  1091. const struct sched_class rt_sched_class = {
  1092. .next = &fair_sched_class,
  1093. .enqueue_task = enqueue_task_rt,
  1094. .dequeue_task = dequeue_task_rt,
  1095. .yield_task = yield_task_rt,
  1096. #ifdef CONFIG_SMP
  1097. .select_task_rq = select_task_rq_rt,
  1098. #endif /* CONFIG_SMP */
  1099. .check_preempt_curr = check_preempt_curr_rt,
  1100. .pick_next_task = pick_next_task_rt,
  1101. .put_prev_task = put_prev_task_rt,
  1102. #ifdef CONFIG_SMP
  1103. .load_balance = load_balance_rt,
  1104. .move_one_task = move_one_task_rt,
  1105. .set_cpus_allowed = set_cpus_allowed_rt,
  1106. .join_domain = join_domain_rt,
  1107. .leave_domain = leave_domain_rt,
  1108. .pre_schedule = pre_schedule_rt,
  1109. .post_schedule = post_schedule_rt,
  1110. .task_wake_up = task_wake_up_rt,
  1111. .switched_from = switched_from_rt,
  1112. #endif
  1113. .set_curr_task = set_curr_task_rt,
  1114. .task_tick = task_tick_rt,
  1115. .prio_changed = prio_changed_rt,
  1116. .switched_to = switched_to_rt,
  1117. };