skd_main.c 140 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480
  1. /* Copyright 2012 STEC, Inc.
  2. *
  3. * This file is licensed under the terms of the 3-clause
  4. * BSD License (http://opensource.org/licenses/BSD-3-Clause)
  5. * or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
  6. * at your option. Both licenses are also available in the LICENSE file
  7. * distributed with this project. This file may not be copied, modified,
  8. * or distributed except in accordance with those terms.
  9. * Gordoni Waidhofer <gwaidhofer@stec-inc.com>
  10. * Initial Driver Design!
  11. * Thomas Swann <tswann@stec-inc.com>
  12. * Interrupt handling.
  13. * Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
  14. * biomode implementation.
  15. * Akhil Bhansali <abhansali@stec-inc.com>
  16. * Added support for DISCARD / FLUSH and FUA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/init.h>
  21. #include <linux/pci.h>
  22. #include <linux/slab.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/sched.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/compiler.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/bitops.h>
  30. #include <linux/delay.h>
  31. #include <linux/time.h>
  32. #include <linux/hdreg.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/completion.h>
  35. #include <linux/scatterlist.h>
  36. #include <linux/version.h>
  37. #include <linux/err.h>
  38. #include <linux/scatterlist.h>
  39. #include <linux/aer.h>
  40. #include <linux/ctype.h>
  41. #include <linux/wait.h>
  42. #include <linux/uio.h>
  43. #include <scsi/scsi.h>
  44. #include <scsi/scsi_host.h>
  45. #include <scsi/scsi_tcq.h>
  46. #include <scsi/scsi_cmnd.h>
  47. #include <scsi/sg.h>
  48. #include <linux/io.h>
  49. #include <linux/uaccess.h>
  50. #include <asm-generic/unaligned.h>
  51. #include "skd_s1120.h"
  52. static int skd_dbg_level;
  53. static int skd_isr_comp_limit = 4;
  54. enum {
  55. STEC_LINK_2_5GTS = 0,
  56. STEC_LINK_5GTS = 1,
  57. STEC_LINK_8GTS = 2,
  58. STEC_LINK_UNKNOWN = 0xFF
  59. };
  60. enum {
  61. SKD_FLUSH_INITIALIZER,
  62. SKD_FLUSH_ZERO_SIZE_FIRST,
  63. SKD_FLUSH_DATA_SECOND,
  64. };
  65. #define SKD_ASSERT(expr) \
  66. do { \
  67. if (unlikely(!(expr))) { \
  68. pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
  69. # expr, __FILE__, __func__, __LINE__); \
  70. } \
  71. } while (0)
  72. #define DRV_NAME "skd"
  73. #define DRV_VERSION "2.2.1"
  74. #define DRV_BUILD_ID "0260"
  75. #define PFX DRV_NAME ": "
  76. #define DRV_BIN_VERSION 0x100
  77. #define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
  78. MODULE_AUTHOR("bug-reports: support@stec-inc.com");
  79. MODULE_LICENSE("Dual BSD/GPL");
  80. MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
  81. MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
  82. #define PCI_VENDOR_ID_STEC 0x1B39
  83. #define PCI_DEVICE_ID_S1120 0x0001
  84. #define SKD_FUA_NV (1 << 1)
  85. #define SKD_MINORS_PER_DEVICE 16
  86. #define SKD_MAX_QUEUE_DEPTH 200u
  87. #define SKD_PAUSE_TIMEOUT (5 * 1000)
  88. #define SKD_N_FITMSG_BYTES (512u)
  89. #define SKD_N_SPECIAL_CONTEXT 32u
  90. #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
  91. /* SG elements are 32 bytes, so we can make this 4096 and still be under the
  92. * 128KB limit. That allows 4096*4K = 16M xfer size
  93. */
  94. #define SKD_N_SG_PER_REQ_DEFAULT 256u
  95. #define SKD_N_SG_PER_SPECIAL 256u
  96. #define SKD_N_COMPLETION_ENTRY 256u
  97. #define SKD_N_READ_CAP_BYTES (8u)
  98. #define SKD_N_INTERNAL_BYTES (512u)
  99. /* 5 bits of uniqifier, 0xF800 */
  100. #define SKD_ID_INCR (0x400)
  101. #define SKD_ID_TABLE_MASK (3u << 8u)
  102. #define SKD_ID_RW_REQUEST (0u << 8u)
  103. #define SKD_ID_INTERNAL (1u << 8u)
  104. #define SKD_ID_SPECIAL_REQUEST (2u << 8u)
  105. #define SKD_ID_FIT_MSG (3u << 8u)
  106. #define SKD_ID_SLOT_MASK 0x00FFu
  107. #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
  108. #define SKD_N_TIMEOUT_SLOT 4u
  109. #define SKD_TIMEOUT_SLOT_MASK 3u
  110. #define SKD_N_MAX_SECTORS 2048u
  111. #define SKD_MAX_RETRIES 2u
  112. #define SKD_TIMER_SECONDS(seconds) (seconds)
  113. #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
  114. #define INQ_STD_NBYTES 36
  115. #define SKD_DISCARD_CDB_LENGTH 24
  116. enum skd_drvr_state {
  117. SKD_DRVR_STATE_LOAD,
  118. SKD_DRVR_STATE_IDLE,
  119. SKD_DRVR_STATE_BUSY,
  120. SKD_DRVR_STATE_STARTING,
  121. SKD_DRVR_STATE_ONLINE,
  122. SKD_DRVR_STATE_PAUSING,
  123. SKD_DRVR_STATE_PAUSED,
  124. SKD_DRVR_STATE_DRAINING_TIMEOUT,
  125. SKD_DRVR_STATE_RESTARTING,
  126. SKD_DRVR_STATE_RESUMING,
  127. SKD_DRVR_STATE_STOPPING,
  128. SKD_DRVR_STATE_FAULT,
  129. SKD_DRVR_STATE_DISAPPEARED,
  130. SKD_DRVR_STATE_PROTOCOL_MISMATCH,
  131. SKD_DRVR_STATE_BUSY_ERASE,
  132. SKD_DRVR_STATE_BUSY_SANITIZE,
  133. SKD_DRVR_STATE_BUSY_IMMINENT,
  134. SKD_DRVR_STATE_WAIT_BOOT,
  135. SKD_DRVR_STATE_SYNCING,
  136. };
  137. #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
  138. #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
  139. #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
  140. #define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
  141. #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
  142. #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
  143. #define SKD_START_WAIT_SECONDS 90u
  144. enum skd_req_state {
  145. SKD_REQ_STATE_IDLE,
  146. SKD_REQ_STATE_SETUP,
  147. SKD_REQ_STATE_BUSY,
  148. SKD_REQ_STATE_COMPLETED,
  149. SKD_REQ_STATE_TIMEOUT,
  150. SKD_REQ_STATE_ABORTED,
  151. };
  152. enum skd_fit_msg_state {
  153. SKD_MSG_STATE_IDLE,
  154. SKD_MSG_STATE_BUSY,
  155. };
  156. enum skd_check_status_action {
  157. SKD_CHECK_STATUS_REPORT_GOOD,
  158. SKD_CHECK_STATUS_REPORT_SMART_ALERT,
  159. SKD_CHECK_STATUS_REQUEUE_REQUEST,
  160. SKD_CHECK_STATUS_REPORT_ERROR,
  161. SKD_CHECK_STATUS_BUSY_IMMINENT,
  162. };
  163. struct skd_fitmsg_context {
  164. enum skd_fit_msg_state state;
  165. struct skd_fitmsg_context *next;
  166. u32 id;
  167. u16 outstanding;
  168. u32 length;
  169. u32 offset;
  170. u8 *msg_buf;
  171. dma_addr_t mb_dma_address;
  172. };
  173. struct skd_request_context {
  174. enum skd_req_state state;
  175. struct skd_request_context *next;
  176. u16 id;
  177. u32 fitmsg_id;
  178. struct request *req;
  179. u8 flush_cmd;
  180. u8 discard_page;
  181. u32 timeout_stamp;
  182. u8 sg_data_dir;
  183. struct scatterlist *sg;
  184. u32 n_sg;
  185. u32 sg_byte_count;
  186. struct fit_sg_descriptor *sksg_list;
  187. dma_addr_t sksg_dma_address;
  188. struct fit_completion_entry_v1 completion;
  189. struct fit_comp_error_info err_info;
  190. };
  191. #define SKD_DATA_DIR_HOST_TO_CARD 1
  192. #define SKD_DATA_DIR_CARD_TO_HOST 2
  193. #define SKD_DATA_DIR_NONE 3 /* especially for DISCARD requests. */
  194. struct skd_special_context {
  195. struct skd_request_context req;
  196. u8 orphaned;
  197. void *data_buf;
  198. dma_addr_t db_dma_address;
  199. u8 *msg_buf;
  200. dma_addr_t mb_dma_address;
  201. };
  202. struct skd_sg_io {
  203. fmode_t mode;
  204. void __user *argp;
  205. struct sg_io_hdr sg;
  206. u8 cdb[16];
  207. u32 dxfer_len;
  208. u32 iovcnt;
  209. struct sg_iovec *iov;
  210. struct sg_iovec no_iov_iov;
  211. struct skd_special_context *skspcl;
  212. };
  213. typedef enum skd_irq_type {
  214. SKD_IRQ_LEGACY,
  215. SKD_IRQ_MSI,
  216. SKD_IRQ_MSIX
  217. } skd_irq_type_t;
  218. #define SKD_MAX_BARS 2
  219. struct skd_device {
  220. volatile void __iomem *mem_map[SKD_MAX_BARS];
  221. resource_size_t mem_phys[SKD_MAX_BARS];
  222. u32 mem_size[SKD_MAX_BARS];
  223. skd_irq_type_t irq_type;
  224. u32 msix_count;
  225. struct skd_msix_entry *msix_entries;
  226. struct pci_dev *pdev;
  227. int pcie_error_reporting_is_enabled;
  228. spinlock_t lock;
  229. struct gendisk *disk;
  230. struct request_queue *queue;
  231. struct device *class_dev;
  232. int gendisk_on;
  233. int sync_done;
  234. atomic_t device_count;
  235. u32 devno;
  236. u32 major;
  237. char name[32];
  238. char isr_name[30];
  239. enum skd_drvr_state state;
  240. u32 drive_state;
  241. u32 in_flight;
  242. u32 cur_max_queue_depth;
  243. u32 queue_low_water_mark;
  244. u32 dev_max_queue_depth;
  245. u32 num_fitmsg_context;
  246. u32 num_req_context;
  247. u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
  248. u32 timeout_stamp;
  249. struct skd_fitmsg_context *skmsg_free_list;
  250. struct skd_fitmsg_context *skmsg_table;
  251. struct skd_request_context *skreq_free_list;
  252. struct skd_request_context *skreq_table;
  253. struct skd_special_context *skspcl_free_list;
  254. struct skd_special_context *skspcl_table;
  255. struct skd_special_context internal_skspcl;
  256. u32 read_cap_blocksize;
  257. u32 read_cap_last_lba;
  258. int read_cap_is_valid;
  259. int inquiry_is_valid;
  260. u8 inq_serial_num[13]; /*12 chars plus null term */
  261. u8 id_str[80]; /* holds a composite name (pci + sernum) */
  262. u8 skcomp_cycle;
  263. u32 skcomp_ix;
  264. struct fit_completion_entry_v1 *skcomp_table;
  265. struct fit_comp_error_info *skerr_table;
  266. dma_addr_t cq_dma_address;
  267. wait_queue_head_t waitq;
  268. struct timer_list timer;
  269. u32 timer_countdown;
  270. u32 timer_substate;
  271. int n_special;
  272. int sgs_per_request;
  273. u32 last_mtd;
  274. u32 proto_ver;
  275. int dbg_level;
  276. u32 connect_time_stamp;
  277. int connect_retries;
  278. #define SKD_MAX_CONNECT_RETRIES 16
  279. u32 drive_jiffies;
  280. u32 timo_slot;
  281. struct work_struct completion_worker;
  282. };
  283. #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
  284. #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
  285. #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
  286. static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
  287. {
  288. u32 val;
  289. if (likely(skdev->dbg_level < 2))
  290. return readl(skdev->mem_map[1] + offset);
  291. else {
  292. barrier();
  293. val = readl(skdev->mem_map[1] + offset);
  294. barrier();
  295. pr_debug("%s:%s:%d offset %x = %x\n",
  296. skdev->name, __func__, __LINE__, offset, val);
  297. return val;
  298. }
  299. }
  300. static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
  301. u32 offset)
  302. {
  303. if (likely(skdev->dbg_level < 2)) {
  304. writel(val, skdev->mem_map[1] + offset);
  305. barrier();
  306. } else {
  307. barrier();
  308. writel(val, skdev->mem_map[1] + offset);
  309. barrier();
  310. pr_debug("%s:%s:%d offset %x = %x\n",
  311. skdev->name, __func__, __LINE__, offset, val);
  312. }
  313. }
  314. static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
  315. u32 offset)
  316. {
  317. if (likely(skdev->dbg_level < 2)) {
  318. writeq(val, skdev->mem_map[1] + offset);
  319. barrier();
  320. } else {
  321. barrier();
  322. writeq(val, skdev->mem_map[1] + offset);
  323. barrier();
  324. pr_debug("%s:%s:%d offset %x = %016llx\n",
  325. skdev->name, __func__, __LINE__, offset, val);
  326. }
  327. }
  328. #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
  329. static int skd_isr_type = SKD_IRQ_DEFAULT;
  330. module_param(skd_isr_type, int, 0444);
  331. MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
  332. " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
  333. #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
  334. static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  335. module_param(skd_max_req_per_msg, int, 0444);
  336. MODULE_PARM_DESC(skd_max_req_per_msg,
  337. "Maximum SCSI requests packed in a single message."
  338. " (1-14, default==1)");
  339. #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
  340. #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
  341. static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  342. module_param(skd_max_queue_depth, int, 0444);
  343. MODULE_PARM_DESC(skd_max_queue_depth,
  344. "Maximum SCSI requests issued to s1120."
  345. " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
  346. static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  347. module_param(skd_sgs_per_request, int, 0444);
  348. MODULE_PARM_DESC(skd_sgs_per_request,
  349. "Maximum SG elements per block request."
  350. " (1-4096, default==256)");
  351. static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
  352. module_param(skd_max_pass_thru, int, 0444);
  353. MODULE_PARM_DESC(skd_max_pass_thru,
  354. "Maximum SCSI pass-thru at a time." " (1-50, default==32)");
  355. module_param(skd_dbg_level, int, 0444);
  356. MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
  357. module_param(skd_isr_comp_limit, int, 0444);
  358. MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
  359. /* Major device number dynamically assigned. */
  360. static u32 skd_major;
  361. static struct skd_device *skd_construct(struct pci_dev *pdev);
  362. static void skd_destruct(struct skd_device *skdev);
  363. static const struct block_device_operations skd_blockdev_ops;
  364. static void skd_send_fitmsg(struct skd_device *skdev,
  365. struct skd_fitmsg_context *skmsg);
  366. static void skd_send_special_fitmsg(struct skd_device *skdev,
  367. struct skd_special_context *skspcl);
  368. static void skd_request_fn(struct request_queue *rq);
  369. static void skd_end_request(struct skd_device *skdev,
  370. struct skd_request_context *skreq, int error);
  371. static int skd_preop_sg_list(struct skd_device *skdev,
  372. struct skd_request_context *skreq);
  373. static void skd_postop_sg_list(struct skd_device *skdev,
  374. struct skd_request_context *skreq);
  375. static void skd_restart_device(struct skd_device *skdev);
  376. static int skd_quiesce_dev(struct skd_device *skdev);
  377. static int skd_unquiesce_dev(struct skd_device *skdev);
  378. static void skd_release_special(struct skd_device *skdev,
  379. struct skd_special_context *skspcl);
  380. static void skd_disable_interrupts(struct skd_device *skdev);
  381. static void skd_isr_fwstate(struct skd_device *skdev);
  382. static void skd_recover_requests(struct skd_device *skdev, int requeue);
  383. static void skd_soft_reset(struct skd_device *skdev);
  384. static const char *skd_name(struct skd_device *skdev);
  385. const char *skd_drive_state_to_str(int state);
  386. const char *skd_skdev_state_to_str(enum skd_drvr_state state);
  387. static void skd_log_skdev(struct skd_device *skdev, const char *event);
  388. static void skd_log_skmsg(struct skd_device *skdev,
  389. struct skd_fitmsg_context *skmsg, const char *event);
  390. static void skd_log_skreq(struct skd_device *skdev,
  391. struct skd_request_context *skreq, const char *event);
  392. /*
  393. *****************************************************************************
  394. * READ/WRITE REQUESTS
  395. *****************************************************************************
  396. */
  397. static void skd_fail_all_pending(struct skd_device *skdev)
  398. {
  399. struct request_queue *q = skdev->queue;
  400. struct request *req;
  401. for (;; ) {
  402. req = blk_peek_request(q);
  403. if (req == NULL)
  404. break;
  405. blk_start_request(req);
  406. __blk_end_request_all(req, -EIO);
  407. }
  408. }
  409. static void
  410. skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
  411. int data_dir, unsigned lba,
  412. unsigned count)
  413. {
  414. if (data_dir == READ)
  415. scsi_req->cdb[0] = 0x28;
  416. else
  417. scsi_req->cdb[0] = 0x2a;
  418. scsi_req->cdb[1] = 0;
  419. scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
  420. scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
  421. scsi_req->cdb[4] = (lba & 0xff00) >> 8;
  422. scsi_req->cdb[5] = (lba & 0xff);
  423. scsi_req->cdb[6] = 0;
  424. scsi_req->cdb[7] = (count & 0xff00) >> 8;
  425. scsi_req->cdb[8] = count & 0xff;
  426. scsi_req->cdb[9] = 0;
  427. }
  428. static void
  429. skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
  430. struct skd_request_context *skreq)
  431. {
  432. skreq->flush_cmd = 1;
  433. scsi_req->cdb[0] = 0x35;
  434. scsi_req->cdb[1] = 0;
  435. scsi_req->cdb[2] = 0;
  436. scsi_req->cdb[3] = 0;
  437. scsi_req->cdb[4] = 0;
  438. scsi_req->cdb[5] = 0;
  439. scsi_req->cdb[6] = 0;
  440. scsi_req->cdb[7] = 0;
  441. scsi_req->cdb[8] = 0;
  442. scsi_req->cdb[9] = 0;
  443. }
  444. static void
  445. skd_prep_discard_cdb(struct skd_scsi_request *scsi_req,
  446. struct skd_request_context *skreq,
  447. struct page *page,
  448. u32 lba, u32 count)
  449. {
  450. char *buf;
  451. unsigned long len;
  452. struct request *req;
  453. buf = page_address(page);
  454. len = SKD_DISCARD_CDB_LENGTH;
  455. scsi_req->cdb[0] = UNMAP;
  456. scsi_req->cdb[8] = len;
  457. put_unaligned_be16(6 + 16, &buf[0]);
  458. put_unaligned_be16(16, &buf[2]);
  459. put_unaligned_be64(lba, &buf[8]);
  460. put_unaligned_be32(count, &buf[16]);
  461. req = skreq->req;
  462. blk_add_request_payload(req, page, len);
  463. req->buffer = buf;
  464. }
  465. static void skd_request_fn_not_online(struct request_queue *q);
  466. static void skd_request_fn(struct request_queue *q)
  467. {
  468. struct skd_device *skdev = q->queuedata;
  469. struct skd_fitmsg_context *skmsg = NULL;
  470. struct fit_msg_hdr *fmh = NULL;
  471. struct skd_request_context *skreq;
  472. struct request *req = NULL;
  473. struct skd_scsi_request *scsi_req;
  474. struct page *page;
  475. unsigned long io_flags;
  476. int error;
  477. u32 lba;
  478. u32 count;
  479. int data_dir;
  480. u32 be_lba;
  481. u32 be_count;
  482. u64 be_dmaa;
  483. u64 cmdctxt;
  484. u32 timo_slot;
  485. void *cmd_ptr;
  486. int flush, fua;
  487. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  488. skd_request_fn_not_online(q);
  489. return;
  490. }
  491. if (blk_queue_stopped(skdev->queue)) {
  492. if (skdev->skmsg_free_list == NULL ||
  493. skdev->skreq_free_list == NULL ||
  494. skdev->in_flight >= skdev->queue_low_water_mark)
  495. /* There is still some kind of shortage */
  496. return;
  497. queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
  498. }
  499. /*
  500. * Stop conditions:
  501. * - There are no more native requests
  502. * - There are already the maximum number of requests in progress
  503. * - There are no more skd_request_context entries
  504. * - There are no more FIT msg buffers
  505. */
  506. for (;; ) {
  507. flush = fua = 0;
  508. req = blk_peek_request(q);
  509. /* Are there any native requests to start? */
  510. if (req == NULL)
  511. break;
  512. lba = (u32)blk_rq_pos(req);
  513. count = blk_rq_sectors(req);
  514. data_dir = rq_data_dir(req);
  515. io_flags = req->cmd_flags;
  516. if (io_flags & REQ_FLUSH)
  517. flush++;
  518. if (io_flags & REQ_FUA)
  519. fua++;
  520. pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) "
  521. "count=%u(0x%x) dir=%d\n",
  522. skdev->name, __func__, __LINE__,
  523. req, lba, lba, count, count, data_dir);
  524. /* At this point we know there is a request */
  525. /* Are too many requets already in progress? */
  526. if (skdev->in_flight >= skdev->cur_max_queue_depth) {
  527. pr_debug("%s:%s:%d qdepth %d, limit %d\n",
  528. skdev->name, __func__, __LINE__,
  529. skdev->in_flight, skdev->cur_max_queue_depth);
  530. break;
  531. }
  532. /* Is a skd_request_context available? */
  533. skreq = skdev->skreq_free_list;
  534. if (skreq == NULL) {
  535. pr_debug("%s:%s:%d Out of req=%p\n",
  536. skdev->name, __func__, __LINE__, q);
  537. break;
  538. }
  539. SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
  540. SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
  541. /* Now we check to see if we can get a fit msg */
  542. if (skmsg == NULL) {
  543. if (skdev->skmsg_free_list == NULL) {
  544. pr_debug("%s:%s:%d Out of msg\n",
  545. skdev->name, __func__, __LINE__);
  546. break;
  547. }
  548. }
  549. skreq->flush_cmd = 0;
  550. skreq->n_sg = 0;
  551. skreq->sg_byte_count = 0;
  552. skreq->discard_page = 0;
  553. /*
  554. * OK to now dequeue request from q.
  555. *
  556. * At this point we are comitted to either start or reject
  557. * the native request. Note that skd_request_context is
  558. * available but is still at the head of the free list.
  559. */
  560. blk_start_request(req);
  561. skreq->req = req;
  562. skreq->fitmsg_id = 0;
  563. /* Either a FIT msg is in progress or we have to start one. */
  564. if (skmsg == NULL) {
  565. /* Are there any FIT msg buffers available? */
  566. skmsg = skdev->skmsg_free_list;
  567. if (skmsg == NULL) {
  568. pr_debug("%s:%s:%d Out of msg skdev=%p\n",
  569. skdev->name, __func__, __LINE__,
  570. skdev);
  571. break;
  572. }
  573. SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
  574. SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
  575. skdev->skmsg_free_list = skmsg->next;
  576. skmsg->state = SKD_MSG_STATE_BUSY;
  577. skmsg->id += SKD_ID_INCR;
  578. /* Initialize the FIT msg header */
  579. fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
  580. memset(fmh, 0, sizeof(*fmh));
  581. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  582. skmsg->length = sizeof(*fmh);
  583. }
  584. skreq->fitmsg_id = skmsg->id;
  585. /*
  586. * Note that a FIT msg may have just been started
  587. * but contains no SoFIT requests yet.
  588. */
  589. /*
  590. * Transcode the request, checking as we go. The outcome of
  591. * the transcoding is represented by the error variable.
  592. */
  593. cmd_ptr = &skmsg->msg_buf[skmsg->length];
  594. memset(cmd_ptr, 0, 32);
  595. be_lba = cpu_to_be32(lba);
  596. be_count = cpu_to_be32(count);
  597. be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
  598. cmdctxt = skreq->id + SKD_ID_INCR;
  599. scsi_req = cmd_ptr;
  600. scsi_req->hdr.tag = cmdctxt;
  601. scsi_req->hdr.sg_list_dma_address = be_dmaa;
  602. if (data_dir == READ)
  603. skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
  604. else
  605. skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
  606. if (io_flags & REQ_DISCARD) {
  607. page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
  608. if (!page) {
  609. pr_err("request_fn:Page allocation failed.\n");
  610. skd_end_request(skdev, skreq, -ENOMEM);
  611. break;
  612. }
  613. skreq->discard_page = 1;
  614. skd_prep_discard_cdb(scsi_req, skreq, page, lba, count);
  615. } else if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
  616. skd_prep_zerosize_flush_cdb(scsi_req, skreq);
  617. SKD_ASSERT(skreq->flush_cmd == 1);
  618. } else {
  619. skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
  620. }
  621. if (fua)
  622. scsi_req->cdb[1] |= SKD_FUA_NV;
  623. if (!req->bio)
  624. goto skip_sg;
  625. error = skd_preop_sg_list(skdev, skreq);
  626. if (error != 0) {
  627. /*
  628. * Complete the native request with error.
  629. * Note that the request context is still at the
  630. * head of the free list, and that the SoFIT request
  631. * was encoded into the FIT msg buffer but the FIT
  632. * msg length has not been updated. In short, the
  633. * only resource that has been allocated but might
  634. * not be used is that the FIT msg could be empty.
  635. */
  636. pr_debug("%s:%s:%d error Out\n",
  637. skdev->name, __func__, __LINE__);
  638. skd_end_request(skdev, skreq, error);
  639. continue;
  640. }
  641. skip_sg:
  642. scsi_req->hdr.sg_list_len_bytes =
  643. cpu_to_be32(skreq->sg_byte_count);
  644. /* Complete resource allocations. */
  645. skdev->skreq_free_list = skreq->next;
  646. skreq->state = SKD_REQ_STATE_BUSY;
  647. skreq->id += SKD_ID_INCR;
  648. skmsg->length += sizeof(struct skd_scsi_request);
  649. fmh->num_protocol_cmds_coalesced++;
  650. /*
  651. * Update the active request counts.
  652. * Capture the timeout timestamp.
  653. */
  654. skreq->timeout_stamp = skdev->timeout_stamp;
  655. timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  656. skdev->timeout_slot[timo_slot]++;
  657. skdev->in_flight++;
  658. pr_debug("%s:%s:%d req=0x%x busy=%d\n",
  659. skdev->name, __func__, __LINE__,
  660. skreq->id, skdev->in_flight);
  661. /*
  662. * If the FIT msg buffer is full send it.
  663. */
  664. if (skmsg->length >= SKD_N_FITMSG_BYTES ||
  665. fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
  666. skd_send_fitmsg(skdev, skmsg);
  667. skmsg = NULL;
  668. fmh = NULL;
  669. }
  670. }
  671. /*
  672. * Is a FIT msg in progress? If it is empty put the buffer back
  673. * on the free list. If it is non-empty send what we got.
  674. * This minimizes latency when there are fewer requests than
  675. * what fits in a FIT msg.
  676. */
  677. if (skmsg != NULL) {
  678. /* Bigger than just a FIT msg header? */
  679. if (skmsg->length > sizeof(struct fit_msg_hdr)) {
  680. pr_debug("%s:%s:%d sending msg=%p, len %d\n",
  681. skdev->name, __func__, __LINE__,
  682. skmsg, skmsg->length);
  683. skd_send_fitmsg(skdev, skmsg);
  684. } else {
  685. /*
  686. * The FIT msg is empty. It means we got started
  687. * on the msg, but the requests were rejected.
  688. */
  689. skmsg->state = SKD_MSG_STATE_IDLE;
  690. skmsg->id += SKD_ID_INCR;
  691. skmsg->next = skdev->skmsg_free_list;
  692. skdev->skmsg_free_list = skmsg;
  693. }
  694. skmsg = NULL;
  695. fmh = NULL;
  696. }
  697. /*
  698. * If req is non-NULL it means there is something to do but
  699. * we are out of a resource.
  700. */
  701. if (req)
  702. blk_stop_queue(skdev->queue);
  703. }
  704. static void skd_end_request(struct skd_device *skdev,
  705. struct skd_request_context *skreq, int error)
  706. {
  707. struct request *req = skreq->req;
  708. unsigned int io_flags = req->cmd_flags;
  709. if ((io_flags & REQ_DISCARD) &&
  710. (skreq->discard_page == 1)) {
  711. pr_debug("%s:%s:%d, free the page!",
  712. skdev->name, __func__, __LINE__);
  713. free_page((unsigned long)req->buffer);
  714. req->buffer = NULL;
  715. }
  716. if (unlikely(error)) {
  717. struct request *req = skreq->req;
  718. char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
  719. u32 lba = (u32)blk_rq_pos(req);
  720. u32 count = blk_rq_sectors(req);
  721. pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
  722. skd_name(skdev), cmd, lba, count, skreq->id);
  723. } else
  724. pr_debug("%s:%s:%d id=0x%x error=%d\n",
  725. skdev->name, __func__, __LINE__, skreq->id, error);
  726. __blk_end_request_all(skreq->req, error);
  727. }
  728. static int skd_preop_sg_list(struct skd_device *skdev,
  729. struct skd_request_context *skreq)
  730. {
  731. struct request *req = skreq->req;
  732. int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
  733. int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
  734. struct scatterlist *sg = &skreq->sg[0];
  735. int n_sg;
  736. int i;
  737. skreq->sg_byte_count = 0;
  738. /* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
  739. skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
  740. n_sg = blk_rq_map_sg(skdev->queue, req, sg);
  741. if (n_sg <= 0)
  742. return -EINVAL;
  743. /*
  744. * Map scatterlist to PCI bus addresses.
  745. * Note PCI might change the number of entries.
  746. */
  747. n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
  748. if (n_sg <= 0)
  749. return -EINVAL;
  750. SKD_ASSERT(n_sg <= skdev->sgs_per_request);
  751. skreq->n_sg = n_sg;
  752. for (i = 0; i < n_sg; i++) {
  753. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  754. u32 cnt = sg_dma_len(&sg[i]);
  755. uint64_t dma_addr = sg_dma_address(&sg[i]);
  756. sgd->control = FIT_SGD_CONTROL_NOT_LAST;
  757. sgd->byte_count = cnt;
  758. skreq->sg_byte_count += cnt;
  759. sgd->host_side_addr = dma_addr;
  760. sgd->dev_side_addr = 0;
  761. }
  762. skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
  763. skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
  764. if (unlikely(skdev->dbg_level > 1)) {
  765. pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
  766. skdev->name, __func__, __LINE__,
  767. skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
  768. for (i = 0; i < n_sg; i++) {
  769. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  770. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  771. "addr=0x%llx next=0x%llx\n",
  772. skdev->name, __func__, __LINE__,
  773. i, sgd->byte_count, sgd->control,
  774. sgd->host_side_addr, sgd->next_desc_ptr);
  775. }
  776. }
  777. return 0;
  778. }
  779. static void skd_postop_sg_list(struct skd_device *skdev,
  780. struct skd_request_context *skreq)
  781. {
  782. int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
  783. int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
  784. /*
  785. * restore the next ptr for next IO request so we
  786. * don't have to set it every time.
  787. */
  788. skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
  789. skreq->sksg_dma_address +
  790. ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
  791. pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
  792. }
  793. static void skd_request_fn_not_online(struct request_queue *q)
  794. {
  795. struct skd_device *skdev = q->queuedata;
  796. int error;
  797. SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
  798. skd_log_skdev(skdev, "req_not_online");
  799. switch (skdev->state) {
  800. case SKD_DRVR_STATE_PAUSING:
  801. case SKD_DRVR_STATE_PAUSED:
  802. case SKD_DRVR_STATE_STARTING:
  803. case SKD_DRVR_STATE_RESTARTING:
  804. case SKD_DRVR_STATE_WAIT_BOOT:
  805. /* In case of starting, we haven't started the queue,
  806. * so we can't get here... but requests are
  807. * possibly hanging out waiting for us because we
  808. * reported the dev/skd0 already. They'll wait
  809. * forever if connect doesn't complete.
  810. * What to do??? delay dev/skd0 ??
  811. */
  812. case SKD_DRVR_STATE_BUSY:
  813. case SKD_DRVR_STATE_BUSY_IMMINENT:
  814. case SKD_DRVR_STATE_BUSY_ERASE:
  815. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  816. return;
  817. case SKD_DRVR_STATE_BUSY_SANITIZE:
  818. case SKD_DRVR_STATE_STOPPING:
  819. case SKD_DRVR_STATE_SYNCING:
  820. case SKD_DRVR_STATE_FAULT:
  821. case SKD_DRVR_STATE_DISAPPEARED:
  822. default:
  823. error = -EIO;
  824. break;
  825. }
  826. /* If we get here, terminate all pending block requeusts
  827. * with EIO and any scsi pass thru with appropriate sense
  828. */
  829. skd_fail_all_pending(skdev);
  830. }
  831. /*
  832. *****************************************************************************
  833. * TIMER
  834. *****************************************************************************
  835. */
  836. static void skd_timer_tick_not_online(struct skd_device *skdev);
  837. static void skd_timer_tick(ulong arg)
  838. {
  839. struct skd_device *skdev = (struct skd_device *)arg;
  840. u32 timo_slot;
  841. u32 overdue_timestamp;
  842. unsigned long reqflags;
  843. u32 state;
  844. if (skdev->state == SKD_DRVR_STATE_FAULT)
  845. /* The driver has declared fault, and we want it to
  846. * stay that way until driver is reloaded.
  847. */
  848. return;
  849. spin_lock_irqsave(&skdev->lock, reqflags);
  850. state = SKD_READL(skdev, FIT_STATUS);
  851. state &= FIT_SR_DRIVE_STATE_MASK;
  852. if (state != skdev->drive_state)
  853. skd_isr_fwstate(skdev);
  854. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  855. skd_timer_tick_not_online(skdev);
  856. goto timer_func_out;
  857. }
  858. skdev->timeout_stamp++;
  859. timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  860. /*
  861. * All requests that happened during the previous use of
  862. * this slot should be done by now. The previous use was
  863. * over 7 seconds ago.
  864. */
  865. if (skdev->timeout_slot[timo_slot] == 0)
  866. goto timer_func_out;
  867. /* Something is overdue */
  868. overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
  869. pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n",
  870. skdev->name, __func__, __LINE__,
  871. skdev->timeout_slot[timo_slot], skdev->in_flight);
  872. pr_err("(%s): Overdue IOs (%d), busy %d\n",
  873. skd_name(skdev), skdev->timeout_slot[timo_slot],
  874. skdev->in_flight);
  875. skdev->timer_countdown = SKD_DRAINING_TIMO;
  876. skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
  877. skdev->timo_slot = timo_slot;
  878. blk_stop_queue(skdev->queue);
  879. timer_func_out:
  880. mod_timer(&skdev->timer, (jiffies + HZ));
  881. spin_unlock_irqrestore(&skdev->lock, reqflags);
  882. }
  883. static void skd_timer_tick_not_online(struct skd_device *skdev)
  884. {
  885. switch (skdev->state) {
  886. case SKD_DRVR_STATE_IDLE:
  887. case SKD_DRVR_STATE_LOAD:
  888. break;
  889. case SKD_DRVR_STATE_BUSY_SANITIZE:
  890. pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n",
  891. skdev->name, __func__, __LINE__,
  892. skdev->drive_state, skdev->state);
  893. /* If we've been in sanitize for 3 seconds, we figure we're not
  894. * going to get anymore completions, so recover requests now
  895. */
  896. if (skdev->timer_countdown > 0) {
  897. skdev->timer_countdown--;
  898. return;
  899. }
  900. skd_recover_requests(skdev, 0);
  901. break;
  902. case SKD_DRVR_STATE_BUSY:
  903. case SKD_DRVR_STATE_BUSY_IMMINENT:
  904. case SKD_DRVR_STATE_BUSY_ERASE:
  905. pr_debug("%s:%s:%d busy[%x], countdown=%d\n",
  906. skdev->name, __func__, __LINE__,
  907. skdev->state, skdev->timer_countdown);
  908. if (skdev->timer_countdown > 0) {
  909. skdev->timer_countdown--;
  910. return;
  911. }
  912. pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.",
  913. skdev->name, __func__, __LINE__,
  914. skdev->state, skdev->timer_countdown);
  915. skd_restart_device(skdev);
  916. break;
  917. case SKD_DRVR_STATE_WAIT_BOOT:
  918. case SKD_DRVR_STATE_STARTING:
  919. if (skdev->timer_countdown > 0) {
  920. skdev->timer_countdown--;
  921. return;
  922. }
  923. /* For now, we fault the drive. Could attempt resets to
  924. * revcover at some point. */
  925. skdev->state = SKD_DRVR_STATE_FAULT;
  926. pr_err("(%s): DriveFault Connect Timeout (%x)\n",
  927. skd_name(skdev), skdev->drive_state);
  928. /*start the queue so we can respond with error to requests */
  929. /* wakeup anyone waiting for startup complete */
  930. blk_start_queue(skdev->queue);
  931. skdev->gendisk_on = -1;
  932. wake_up_interruptible(&skdev->waitq);
  933. break;
  934. case SKD_DRVR_STATE_ONLINE:
  935. /* shouldn't get here. */
  936. break;
  937. case SKD_DRVR_STATE_PAUSING:
  938. case SKD_DRVR_STATE_PAUSED:
  939. break;
  940. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  941. pr_debug("%s:%s:%d "
  942. "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
  943. skdev->name, __func__, __LINE__,
  944. skdev->timo_slot,
  945. skdev->timer_countdown,
  946. skdev->in_flight,
  947. skdev->timeout_slot[skdev->timo_slot]);
  948. /* if the slot has cleared we can let the I/O continue */
  949. if (skdev->timeout_slot[skdev->timo_slot] == 0) {
  950. pr_debug("%s:%s:%d Slot drained, starting queue.\n",
  951. skdev->name, __func__, __LINE__);
  952. skdev->state = SKD_DRVR_STATE_ONLINE;
  953. blk_start_queue(skdev->queue);
  954. return;
  955. }
  956. if (skdev->timer_countdown > 0) {
  957. skdev->timer_countdown--;
  958. return;
  959. }
  960. skd_restart_device(skdev);
  961. break;
  962. case SKD_DRVR_STATE_RESTARTING:
  963. if (skdev->timer_countdown > 0) {
  964. skdev->timer_countdown--;
  965. return;
  966. }
  967. /* For now, we fault the drive. Could attempt resets to
  968. * revcover at some point. */
  969. skdev->state = SKD_DRVR_STATE_FAULT;
  970. pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
  971. skd_name(skdev), skdev->drive_state);
  972. /*
  973. * Recovering does two things:
  974. * 1. completes IO with error
  975. * 2. reclaims dma resources
  976. * When is it safe to recover requests?
  977. * - if the drive state is faulted
  978. * - if the state is still soft reset after out timeout
  979. * - if the drive registers are dead (state = FF)
  980. * If it is "unsafe", we still need to recover, so we will
  981. * disable pci bus mastering and disable our interrupts.
  982. */
  983. if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
  984. (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
  985. (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
  986. /* It never came out of soft reset. Try to
  987. * recover the requests and then let them
  988. * fail. This is to mitigate hung processes. */
  989. skd_recover_requests(skdev, 0);
  990. else {
  991. pr_err("(%s): Disable BusMaster (%x)\n",
  992. skd_name(skdev), skdev->drive_state);
  993. pci_disable_device(skdev->pdev);
  994. skd_disable_interrupts(skdev);
  995. skd_recover_requests(skdev, 0);
  996. }
  997. /*start the queue so we can respond with error to requests */
  998. /* wakeup anyone waiting for startup complete */
  999. blk_start_queue(skdev->queue);
  1000. skdev->gendisk_on = -1;
  1001. wake_up_interruptible(&skdev->waitq);
  1002. break;
  1003. case SKD_DRVR_STATE_RESUMING:
  1004. case SKD_DRVR_STATE_STOPPING:
  1005. case SKD_DRVR_STATE_SYNCING:
  1006. case SKD_DRVR_STATE_FAULT:
  1007. case SKD_DRVR_STATE_DISAPPEARED:
  1008. default:
  1009. break;
  1010. }
  1011. }
  1012. static int skd_start_timer(struct skd_device *skdev)
  1013. {
  1014. int rc;
  1015. init_timer(&skdev->timer);
  1016. setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
  1017. rc = mod_timer(&skdev->timer, (jiffies + HZ));
  1018. if (rc)
  1019. pr_err("%s: failed to start timer %d\n",
  1020. __func__, rc);
  1021. return rc;
  1022. }
  1023. static void skd_kill_timer(struct skd_device *skdev)
  1024. {
  1025. del_timer_sync(&skdev->timer);
  1026. }
  1027. /*
  1028. *****************************************************************************
  1029. * IOCTL
  1030. *****************************************************************************
  1031. */
  1032. static int skd_ioctl_sg_io(struct skd_device *skdev,
  1033. fmode_t mode, void __user *argp);
  1034. static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
  1035. struct skd_sg_io *sksgio);
  1036. static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
  1037. struct skd_sg_io *sksgio);
  1038. static int skd_sg_io_prep_buffering(struct skd_device *skdev,
  1039. struct skd_sg_io *sksgio);
  1040. static int skd_sg_io_copy_buffer(struct skd_device *skdev,
  1041. struct skd_sg_io *sksgio, int dxfer_dir);
  1042. static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
  1043. struct skd_sg_io *sksgio);
  1044. static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
  1045. static int skd_sg_io_release_skspcl(struct skd_device *skdev,
  1046. struct skd_sg_io *sksgio);
  1047. static int skd_sg_io_put_status(struct skd_device *skdev,
  1048. struct skd_sg_io *sksgio);
  1049. static void skd_complete_special(struct skd_device *skdev,
  1050. volatile struct fit_completion_entry_v1
  1051. *skcomp,
  1052. volatile struct fit_comp_error_info *skerr,
  1053. struct skd_special_context *skspcl);
  1054. static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
  1055. uint cmd_in, ulong arg)
  1056. {
  1057. int rc = 0;
  1058. struct gendisk *disk = bdev->bd_disk;
  1059. struct skd_device *skdev = disk->private_data;
  1060. void __user *p = (void *)arg;
  1061. pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
  1062. skdev->name, __func__, __LINE__,
  1063. disk->disk_name, current->comm, mode, cmd_in, arg);
  1064. if (!capable(CAP_SYS_ADMIN))
  1065. return -EPERM;
  1066. switch (cmd_in) {
  1067. case SG_SET_TIMEOUT:
  1068. case SG_GET_TIMEOUT:
  1069. case SG_GET_VERSION_NUM:
  1070. rc = scsi_cmd_ioctl(disk->queue, disk, mode, cmd_in, p);
  1071. break;
  1072. case SG_IO:
  1073. rc = skd_ioctl_sg_io(skdev, mode, p);
  1074. break;
  1075. default:
  1076. rc = -ENOTTY;
  1077. break;
  1078. }
  1079. pr_debug("%s:%s:%d %s: completion rc %d\n",
  1080. skdev->name, __func__, __LINE__, disk->disk_name, rc);
  1081. return rc;
  1082. }
  1083. static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
  1084. void __user *argp)
  1085. {
  1086. int rc;
  1087. struct skd_sg_io sksgio;
  1088. memset(&sksgio, 0, sizeof(sksgio));
  1089. sksgio.mode = mode;
  1090. sksgio.argp = argp;
  1091. sksgio.iov = &sksgio.no_iov_iov;
  1092. switch (skdev->state) {
  1093. case SKD_DRVR_STATE_ONLINE:
  1094. case SKD_DRVR_STATE_BUSY_IMMINENT:
  1095. break;
  1096. default:
  1097. pr_debug("%s:%s:%d drive not online\n",
  1098. skdev->name, __func__, __LINE__);
  1099. rc = -ENXIO;
  1100. goto out;
  1101. }
  1102. rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
  1103. if (rc)
  1104. goto out;
  1105. rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
  1106. if (rc)
  1107. goto out;
  1108. rc = skd_sg_io_prep_buffering(skdev, &sksgio);
  1109. if (rc)
  1110. goto out;
  1111. rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
  1112. if (rc)
  1113. goto out;
  1114. rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
  1115. if (rc)
  1116. goto out;
  1117. rc = skd_sg_io_await(skdev, &sksgio);
  1118. if (rc)
  1119. goto out;
  1120. rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
  1121. if (rc)
  1122. goto out;
  1123. rc = skd_sg_io_put_status(skdev, &sksgio);
  1124. if (rc)
  1125. goto out;
  1126. rc = 0;
  1127. out:
  1128. skd_sg_io_release_skspcl(skdev, &sksgio);
  1129. if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
  1130. kfree(sksgio.iov);
  1131. return rc;
  1132. }
  1133. static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
  1134. struct skd_sg_io *sksgio)
  1135. {
  1136. struct sg_io_hdr *sgp = &sksgio->sg;
  1137. int i, acc;
  1138. if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
  1139. pr_debug("%s:%s:%d access sg failed %p\n",
  1140. skdev->name, __func__, __LINE__, sksgio->argp);
  1141. return -EFAULT;
  1142. }
  1143. if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
  1144. pr_debug("%s:%s:%d copy_from_user sg failed %p\n",
  1145. skdev->name, __func__, __LINE__, sksgio->argp);
  1146. return -EFAULT;
  1147. }
  1148. if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
  1149. pr_debug("%s:%s:%d interface_id invalid 0x%x\n",
  1150. skdev->name, __func__, __LINE__, sgp->interface_id);
  1151. return -EINVAL;
  1152. }
  1153. if (sgp->cmd_len > sizeof(sksgio->cdb)) {
  1154. pr_debug("%s:%s:%d cmd_len invalid %d\n",
  1155. skdev->name, __func__, __LINE__, sgp->cmd_len);
  1156. return -EINVAL;
  1157. }
  1158. if (sgp->iovec_count > 256) {
  1159. pr_debug("%s:%s:%d iovec_count invalid %d\n",
  1160. skdev->name, __func__, __LINE__, sgp->iovec_count);
  1161. return -EINVAL;
  1162. }
  1163. if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
  1164. pr_debug("%s:%s:%d dxfer_len invalid %d\n",
  1165. skdev->name, __func__, __LINE__, sgp->dxfer_len);
  1166. return -EINVAL;
  1167. }
  1168. switch (sgp->dxfer_direction) {
  1169. case SG_DXFER_NONE:
  1170. acc = -1;
  1171. break;
  1172. case SG_DXFER_TO_DEV:
  1173. acc = VERIFY_READ;
  1174. break;
  1175. case SG_DXFER_FROM_DEV:
  1176. case SG_DXFER_TO_FROM_DEV:
  1177. acc = VERIFY_WRITE;
  1178. break;
  1179. default:
  1180. pr_debug("%s:%s:%d dxfer_dir invalid %d\n",
  1181. skdev->name, __func__, __LINE__, sgp->dxfer_direction);
  1182. return -EINVAL;
  1183. }
  1184. if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
  1185. pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n",
  1186. skdev->name, __func__, __LINE__, sgp->cmdp);
  1187. return -EFAULT;
  1188. }
  1189. if (sgp->mx_sb_len != 0) {
  1190. if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
  1191. pr_debug("%s:%s:%d access sbp failed %p\n",
  1192. skdev->name, __func__, __LINE__, sgp->sbp);
  1193. return -EFAULT;
  1194. }
  1195. }
  1196. if (sgp->iovec_count == 0) {
  1197. sksgio->iov[0].iov_base = sgp->dxferp;
  1198. sksgio->iov[0].iov_len = sgp->dxfer_len;
  1199. sksgio->iovcnt = 1;
  1200. sksgio->dxfer_len = sgp->dxfer_len;
  1201. } else {
  1202. struct sg_iovec *iov;
  1203. uint nbytes = sizeof(*iov) * sgp->iovec_count;
  1204. size_t iov_data_len;
  1205. iov = kmalloc(nbytes, GFP_KERNEL);
  1206. if (iov == NULL) {
  1207. pr_debug("%s:%s:%d alloc iovec failed %d\n",
  1208. skdev->name, __func__, __LINE__,
  1209. sgp->iovec_count);
  1210. return -ENOMEM;
  1211. }
  1212. sksgio->iov = iov;
  1213. sksgio->iovcnt = sgp->iovec_count;
  1214. if (copy_from_user(iov, sgp->dxferp, nbytes)) {
  1215. pr_debug("%s:%s:%d copy_from_user iovec failed %p\n",
  1216. skdev->name, __func__, __LINE__, sgp->dxferp);
  1217. return -EFAULT;
  1218. }
  1219. /*
  1220. * Sum up the vecs, making sure they don't overflow
  1221. */
  1222. iov_data_len = 0;
  1223. for (i = 0; i < sgp->iovec_count; i++) {
  1224. if (iov_data_len + iov[i].iov_len < iov_data_len)
  1225. return -EINVAL;
  1226. iov_data_len += iov[i].iov_len;
  1227. }
  1228. /* SG_IO howto says that the shorter of the two wins */
  1229. if (sgp->dxfer_len < iov_data_len) {
  1230. sksgio->iovcnt = iov_shorten((struct iovec *)iov,
  1231. sgp->iovec_count,
  1232. sgp->dxfer_len);
  1233. sksgio->dxfer_len = sgp->dxfer_len;
  1234. } else
  1235. sksgio->dxfer_len = iov_data_len;
  1236. }
  1237. if (sgp->dxfer_direction != SG_DXFER_NONE) {
  1238. struct sg_iovec *iov = sksgio->iov;
  1239. for (i = 0; i < sksgio->iovcnt; i++, iov++) {
  1240. if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
  1241. pr_debug("%s:%s:%d access data failed %p/%d\n",
  1242. skdev->name, __func__, __LINE__,
  1243. iov->iov_base, (int)iov->iov_len);
  1244. return -EFAULT;
  1245. }
  1246. }
  1247. }
  1248. return 0;
  1249. }
  1250. static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
  1251. struct skd_sg_io *sksgio)
  1252. {
  1253. struct skd_special_context *skspcl = NULL;
  1254. int rc;
  1255. for (;;) {
  1256. ulong flags;
  1257. spin_lock_irqsave(&skdev->lock, flags);
  1258. skspcl = skdev->skspcl_free_list;
  1259. if (skspcl != NULL) {
  1260. skdev->skspcl_free_list =
  1261. (struct skd_special_context *)skspcl->req.next;
  1262. skspcl->req.id += SKD_ID_INCR;
  1263. skspcl->req.state = SKD_REQ_STATE_SETUP;
  1264. skspcl->orphaned = 0;
  1265. skspcl->req.n_sg = 0;
  1266. }
  1267. spin_unlock_irqrestore(&skdev->lock, flags);
  1268. if (skspcl != NULL) {
  1269. rc = 0;
  1270. break;
  1271. }
  1272. pr_debug("%s:%s:%d blocking\n",
  1273. skdev->name, __func__, __LINE__);
  1274. rc = wait_event_interruptible_timeout(
  1275. skdev->waitq,
  1276. (skdev->skspcl_free_list != NULL),
  1277. msecs_to_jiffies(sksgio->sg.timeout));
  1278. pr_debug("%s:%s:%d unblocking, rc=%d\n",
  1279. skdev->name, __func__, __LINE__, rc);
  1280. if (rc <= 0) {
  1281. if (rc == 0)
  1282. rc = -ETIMEDOUT;
  1283. else
  1284. rc = -EINTR;
  1285. break;
  1286. }
  1287. /*
  1288. * If we get here rc > 0 meaning the timeout to
  1289. * wait_event_interruptible_timeout() had time left, hence the
  1290. * sought event -- non-empty free list -- happened.
  1291. * Retry the allocation.
  1292. */
  1293. }
  1294. sksgio->skspcl = skspcl;
  1295. return rc;
  1296. }
  1297. static int skd_skreq_prep_buffering(struct skd_device *skdev,
  1298. struct skd_request_context *skreq,
  1299. u32 dxfer_len)
  1300. {
  1301. u32 resid = dxfer_len;
  1302. /*
  1303. * The DMA engine must have aligned addresses and byte counts.
  1304. */
  1305. resid += (-resid) & 3;
  1306. skreq->sg_byte_count = resid;
  1307. skreq->n_sg = 0;
  1308. while (resid > 0) {
  1309. u32 nbytes = PAGE_SIZE;
  1310. u32 ix = skreq->n_sg;
  1311. struct scatterlist *sg = &skreq->sg[ix];
  1312. struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
  1313. struct page *page;
  1314. if (nbytes > resid)
  1315. nbytes = resid;
  1316. page = alloc_page(GFP_KERNEL);
  1317. if (page == NULL)
  1318. return -ENOMEM;
  1319. sg_set_page(sg, page, nbytes, 0);
  1320. /* TODO: This should be going through a pci_???()
  1321. * routine to do proper mapping. */
  1322. sksg->control = FIT_SGD_CONTROL_NOT_LAST;
  1323. sksg->byte_count = nbytes;
  1324. sksg->host_side_addr = sg_phys(sg);
  1325. sksg->dev_side_addr = 0;
  1326. sksg->next_desc_ptr = skreq->sksg_dma_address +
  1327. (ix + 1) * sizeof(*sksg);
  1328. skreq->n_sg++;
  1329. resid -= nbytes;
  1330. }
  1331. if (skreq->n_sg > 0) {
  1332. u32 ix = skreq->n_sg - 1;
  1333. struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
  1334. sksg->control = FIT_SGD_CONTROL_LAST;
  1335. sksg->next_desc_ptr = 0;
  1336. }
  1337. if (unlikely(skdev->dbg_level > 1)) {
  1338. u32 i;
  1339. pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
  1340. skdev->name, __func__, __LINE__,
  1341. skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
  1342. for (i = 0; i < skreq->n_sg; i++) {
  1343. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  1344. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  1345. "addr=0x%llx next=0x%llx\n",
  1346. skdev->name, __func__, __LINE__,
  1347. i, sgd->byte_count, sgd->control,
  1348. sgd->host_side_addr, sgd->next_desc_ptr);
  1349. }
  1350. }
  1351. return 0;
  1352. }
  1353. static int skd_sg_io_prep_buffering(struct skd_device *skdev,
  1354. struct skd_sg_io *sksgio)
  1355. {
  1356. struct skd_special_context *skspcl = sksgio->skspcl;
  1357. struct skd_request_context *skreq = &skspcl->req;
  1358. u32 dxfer_len = sksgio->dxfer_len;
  1359. int rc;
  1360. rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
  1361. /*
  1362. * Eventually, errors or not, skd_release_special() is called
  1363. * to recover allocations including partial allocations.
  1364. */
  1365. return rc;
  1366. }
  1367. static int skd_sg_io_copy_buffer(struct skd_device *skdev,
  1368. struct skd_sg_io *sksgio, int dxfer_dir)
  1369. {
  1370. struct skd_special_context *skspcl = sksgio->skspcl;
  1371. u32 iov_ix = 0;
  1372. struct sg_iovec curiov;
  1373. u32 sksg_ix = 0;
  1374. u8 *bufp = NULL;
  1375. u32 buf_len = 0;
  1376. u32 resid = sksgio->dxfer_len;
  1377. int rc;
  1378. curiov.iov_len = 0;
  1379. curiov.iov_base = NULL;
  1380. if (dxfer_dir != sksgio->sg.dxfer_direction) {
  1381. if (dxfer_dir != SG_DXFER_TO_DEV ||
  1382. sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
  1383. return 0;
  1384. }
  1385. while (resid > 0) {
  1386. u32 nbytes = PAGE_SIZE;
  1387. if (curiov.iov_len == 0) {
  1388. curiov = sksgio->iov[iov_ix++];
  1389. continue;
  1390. }
  1391. if (buf_len == 0) {
  1392. struct page *page;
  1393. page = sg_page(&skspcl->req.sg[sksg_ix++]);
  1394. bufp = page_address(page);
  1395. buf_len = PAGE_SIZE;
  1396. }
  1397. nbytes = min_t(u32, nbytes, resid);
  1398. nbytes = min_t(u32, nbytes, curiov.iov_len);
  1399. nbytes = min_t(u32, nbytes, buf_len);
  1400. if (dxfer_dir == SG_DXFER_TO_DEV)
  1401. rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
  1402. else
  1403. rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
  1404. if (rc)
  1405. return -EFAULT;
  1406. resid -= nbytes;
  1407. curiov.iov_len -= nbytes;
  1408. curiov.iov_base += nbytes;
  1409. buf_len -= nbytes;
  1410. }
  1411. return 0;
  1412. }
  1413. static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
  1414. struct skd_sg_io *sksgio)
  1415. {
  1416. struct skd_special_context *skspcl = sksgio->skspcl;
  1417. struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
  1418. struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
  1419. memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
  1420. /* Initialize the FIT msg header */
  1421. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  1422. fmh->num_protocol_cmds_coalesced = 1;
  1423. /* Initialize the SCSI request */
  1424. if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
  1425. scsi_req->hdr.sg_list_dma_address =
  1426. cpu_to_be64(skspcl->req.sksg_dma_address);
  1427. scsi_req->hdr.tag = skspcl->req.id;
  1428. scsi_req->hdr.sg_list_len_bytes =
  1429. cpu_to_be32(skspcl->req.sg_byte_count);
  1430. memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
  1431. skspcl->req.state = SKD_REQ_STATE_BUSY;
  1432. skd_send_special_fitmsg(skdev, skspcl);
  1433. return 0;
  1434. }
  1435. static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
  1436. {
  1437. unsigned long flags;
  1438. int rc;
  1439. rc = wait_event_interruptible_timeout(skdev->waitq,
  1440. (sksgio->skspcl->req.state !=
  1441. SKD_REQ_STATE_BUSY),
  1442. msecs_to_jiffies(sksgio->sg.
  1443. timeout));
  1444. spin_lock_irqsave(&skdev->lock, flags);
  1445. if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
  1446. pr_debug("%s:%s:%d skspcl %p aborted\n",
  1447. skdev->name, __func__, __LINE__, sksgio->skspcl);
  1448. /* Build check cond, sense and let command finish. */
  1449. /* For a timeout, we must fabricate completion and sense
  1450. * data to complete the command */
  1451. sksgio->skspcl->req.completion.status =
  1452. SAM_STAT_CHECK_CONDITION;
  1453. memset(&sksgio->skspcl->req.err_info, 0,
  1454. sizeof(sksgio->skspcl->req.err_info));
  1455. sksgio->skspcl->req.err_info.type = 0x70;
  1456. sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
  1457. sksgio->skspcl->req.err_info.code = 0x44;
  1458. sksgio->skspcl->req.err_info.qual = 0;
  1459. rc = 0;
  1460. } else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
  1461. /* No longer on the adapter. We finish. */
  1462. rc = 0;
  1463. else {
  1464. /* Something's gone wrong. Still busy. Timeout or
  1465. * user interrupted (control-C). Mark as an orphan
  1466. * so it will be disposed when completed. */
  1467. sksgio->skspcl->orphaned = 1;
  1468. sksgio->skspcl = NULL;
  1469. if (rc == 0) {
  1470. pr_debug("%s:%s:%d timed out %p (%u ms)\n",
  1471. skdev->name, __func__, __LINE__,
  1472. sksgio, sksgio->sg.timeout);
  1473. rc = -ETIMEDOUT;
  1474. } else {
  1475. pr_debug("%s:%s:%d cntlc %p\n",
  1476. skdev->name, __func__, __LINE__, sksgio);
  1477. rc = -EINTR;
  1478. }
  1479. }
  1480. spin_unlock_irqrestore(&skdev->lock, flags);
  1481. return rc;
  1482. }
  1483. static int skd_sg_io_put_status(struct skd_device *skdev,
  1484. struct skd_sg_io *sksgio)
  1485. {
  1486. struct sg_io_hdr *sgp = &sksgio->sg;
  1487. struct skd_special_context *skspcl = sksgio->skspcl;
  1488. int resid = 0;
  1489. u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
  1490. sgp->status = skspcl->req.completion.status;
  1491. resid = sksgio->dxfer_len - nb;
  1492. sgp->masked_status = sgp->status & STATUS_MASK;
  1493. sgp->msg_status = 0;
  1494. sgp->host_status = 0;
  1495. sgp->driver_status = 0;
  1496. sgp->resid = resid;
  1497. if (sgp->masked_status || sgp->host_status || sgp->driver_status)
  1498. sgp->info |= SG_INFO_CHECK;
  1499. pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n",
  1500. skdev->name, __func__, __LINE__,
  1501. sgp->status, sgp->masked_status, sgp->resid);
  1502. if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
  1503. if (sgp->mx_sb_len > 0) {
  1504. struct fit_comp_error_info *ei = &skspcl->req.err_info;
  1505. u32 nbytes = sizeof(*ei);
  1506. nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
  1507. sgp->sb_len_wr = nbytes;
  1508. if (__copy_to_user(sgp->sbp, ei, nbytes)) {
  1509. pr_debug("%s:%s:%d copy_to_user sense failed %p\n",
  1510. skdev->name, __func__, __LINE__,
  1511. sgp->sbp);
  1512. return -EFAULT;
  1513. }
  1514. }
  1515. }
  1516. if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
  1517. pr_debug("%s:%s:%d copy_to_user sg failed %p\n",
  1518. skdev->name, __func__, __LINE__, sksgio->argp);
  1519. return -EFAULT;
  1520. }
  1521. return 0;
  1522. }
  1523. static int skd_sg_io_release_skspcl(struct skd_device *skdev,
  1524. struct skd_sg_io *sksgio)
  1525. {
  1526. struct skd_special_context *skspcl = sksgio->skspcl;
  1527. if (skspcl != NULL) {
  1528. ulong flags;
  1529. sksgio->skspcl = NULL;
  1530. spin_lock_irqsave(&skdev->lock, flags);
  1531. skd_release_special(skdev, skspcl);
  1532. spin_unlock_irqrestore(&skdev->lock, flags);
  1533. }
  1534. return 0;
  1535. }
  1536. /*
  1537. *****************************************************************************
  1538. * INTERNAL REQUESTS -- generated by driver itself
  1539. *****************************************************************************
  1540. */
  1541. static int skd_format_internal_skspcl(struct skd_device *skdev)
  1542. {
  1543. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  1544. struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
  1545. struct fit_msg_hdr *fmh;
  1546. uint64_t dma_address;
  1547. struct skd_scsi_request *scsi;
  1548. fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
  1549. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  1550. fmh->num_protocol_cmds_coalesced = 1;
  1551. scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1552. memset(scsi, 0, sizeof(*scsi));
  1553. dma_address = skspcl->req.sksg_dma_address;
  1554. scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
  1555. sgd->control = FIT_SGD_CONTROL_LAST;
  1556. sgd->byte_count = 0;
  1557. sgd->host_side_addr = skspcl->db_dma_address;
  1558. sgd->dev_side_addr = 0;
  1559. sgd->next_desc_ptr = 0LL;
  1560. return 1;
  1561. }
  1562. #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
  1563. static void skd_send_internal_skspcl(struct skd_device *skdev,
  1564. struct skd_special_context *skspcl,
  1565. u8 opcode)
  1566. {
  1567. struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
  1568. struct skd_scsi_request *scsi;
  1569. unsigned char *buf = skspcl->data_buf;
  1570. int i;
  1571. if (skspcl->req.state != SKD_REQ_STATE_IDLE)
  1572. /*
  1573. * A refresh is already in progress.
  1574. * Just wait for it to finish.
  1575. */
  1576. return;
  1577. SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
  1578. skspcl->req.state = SKD_REQ_STATE_BUSY;
  1579. skspcl->req.id += SKD_ID_INCR;
  1580. scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1581. scsi->hdr.tag = skspcl->req.id;
  1582. memset(scsi->cdb, 0, sizeof(scsi->cdb));
  1583. switch (opcode) {
  1584. case TEST_UNIT_READY:
  1585. scsi->cdb[0] = TEST_UNIT_READY;
  1586. sgd->byte_count = 0;
  1587. scsi->hdr.sg_list_len_bytes = 0;
  1588. break;
  1589. case READ_CAPACITY:
  1590. scsi->cdb[0] = READ_CAPACITY;
  1591. sgd->byte_count = SKD_N_READ_CAP_BYTES;
  1592. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1593. break;
  1594. case INQUIRY:
  1595. scsi->cdb[0] = INQUIRY;
  1596. scsi->cdb[1] = 0x01; /* evpd */
  1597. scsi->cdb[2] = 0x80; /* serial number page */
  1598. scsi->cdb[4] = 0x10;
  1599. sgd->byte_count = 16;
  1600. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1601. break;
  1602. case SYNCHRONIZE_CACHE:
  1603. scsi->cdb[0] = SYNCHRONIZE_CACHE;
  1604. sgd->byte_count = 0;
  1605. scsi->hdr.sg_list_len_bytes = 0;
  1606. break;
  1607. case WRITE_BUFFER:
  1608. scsi->cdb[0] = WRITE_BUFFER;
  1609. scsi->cdb[1] = 0x02;
  1610. scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
  1611. scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
  1612. sgd->byte_count = WR_BUF_SIZE;
  1613. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1614. /* fill incrementing byte pattern */
  1615. for (i = 0; i < sgd->byte_count; i++)
  1616. buf[i] = i & 0xFF;
  1617. break;
  1618. case READ_BUFFER:
  1619. scsi->cdb[0] = READ_BUFFER;
  1620. scsi->cdb[1] = 0x02;
  1621. scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
  1622. scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
  1623. sgd->byte_count = WR_BUF_SIZE;
  1624. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1625. memset(skspcl->data_buf, 0, sgd->byte_count);
  1626. break;
  1627. default:
  1628. SKD_ASSERT("Don't know what to send");
  1629. return;
  1630. }
  1631. skd_send_special_fitmsg(skdev, skspcl);
  1632. }
  1633. static void skd_refresh_device_data(struct skd_device *skdev)
  1634. {
  1635. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  1636. skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
  1637. }
  1638. static int skd_chk_read_buf(struct skd_device *skdev,
  1639. struct skd_special_context *skspcl)
  1640. {
  1641. unsigned char *buf = skspcl->data_buf;
  1642. int i;
  1643. /* check for incrementing byte pattern */
  1644. for (i = 0; i < WR_BUF_SIZE; i++)
  1645. if (buf[i] != (i & 0xFF))
  1646. return 1;
  1647. return 0;
  1648. }
  1649. static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
  1650. u8 code, u8 qual, u8 fruc)
  1651. {
  1652. /* If the check condition is of special interest, log a message */
  1653. if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
  1654. && (code == 0x04) && (qual == 0x06)) {
  1655. pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
  1656. "ascq/fruc %02x/%02x/%02x/%02x\n",
  1657. skd_name(skdev), key, code, qual, fruc);
  1658. }
  1659. }
  1660. static void skd_complete_internal(struct skd_device *skdev,
  1661. volatile struct fit_completion_entry_v1
  1662. *skcomp,
  1663. volatile struct fit_comp_error_info *skerr,
  1664. struct skd_special_context *skspcl)
  1665. {
  1666. u8 *buf = skspcl->data_buf;
  1667. u8 status;
  1668. int i;
  1669. struct skd_scsi_request *scsi =
  1670. (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1671. SKD_ASSERT(skspcl == &skdev->internal_skspcl);
  1672. pr_debug("%s:%s:%d complete internal %x\n",
  1673. skdev->name, __func__, __LINE__, scsi->cdb[0]);
  1674. skspcl->req.completion = *skcomp;
  1675. skspcl->req.state = SKD_REQ_STATE_IDLE;
  1676. skspcl->req.id += SKD_ID_INCR;
  1677. status = skspcl->req.completion.status;
  1678. skd_log_check_status(skdev, status, skerr->key, skerr->code,
  1679. skerr->qual, skerr->fruc);
  1680. switch (scsi->cdb[0]) {
  1681. case TEST_UNIT_READY:
  1682. if (status == SAM_STAT_GOOD)
  1683. skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
  1684. else if ((status == SAM_STAT_CHECK_CONDITION) &&
  1685. (skerr->key == MEDIUM_ERROR))
  1686. skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
  1687. else {
  1688. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1689. pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n",
  1690. skdev->name, __func__, __LINE__,
  1691. skdev->state);
  1692. return;
  1693. }
  1694. pr_debug("%s:%s:%d **** TUR failed, retry skerr\n",
  1695. skdev->name, __func__, __LINE__);
  1696. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  1697. }
  1698. break;
  1699. case WRITE_BUFFER:
  1700. if (status == SAM_STAT_GOOD)
  1701. skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
  1702. else {
  1703. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1704. pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n",
  1705. skdev->name, __func__, __LINE__,
  1706. skdev->state);
  1707. return;
  1708. }
  1709. pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n",
  1710. skdev->name, __func__, __LINE__);
  1711. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  1712. }
  1713. break;
  1714. case READ_BUFFER:
  1715. if (status == SAM_STAT_GOOD) {
  1716. if (skd_chk_read_buf(skdev, skspcl) == 0)
  1717. skd_send_internal_skspcl(skdev, skspcl,
  1718. READ_CAPACITY);
  1719. else {
  1720. pr_err(
  1721. "(%s):*** W/R Buffer mismatch %d ***\n",
  1722. skd_name(skdev), skdev->connect_retries);
  1723. if (skdev->connect_retries <
  1724. SKD_MAX_CONNECT_RETRIES) {
  1725. skdev->connect_retries++;
  1726. skd_soft_reset(skdev);
  1727. } else {
  1728. pr_err(
  1729. "(%s): W/R Buffer Connect Error\n",
  1730. skd_name(skdev));
  1731. return;
  1732. }
  1733. }
  1734. } else {
  1735. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1736. pr_debug("%s:%s:%d "
  1737. "read buffer failed, don't send anymore state 0x%x\n",
  1738. skdev->name, __func__, __LINE__,
  1739. skdev->state);
  1740. return;
  1741. }
  1742. pr_debug("%s:%s:%d "
  1743. "**** read buffer failed, retry skerr\n",
  1744. skdev->name, __func__, __LINE__);
  1745. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  1746. }
  1747. break;
  1748. case READ_CAPACITY:
  1749. skdev->read_cap_is_valid = 0;
  1750. if (status == SAM_STAT_GOOD) {
  1751. skdev->read_cap_last_lba =
  1752. (buf[0] << 24) | (buf[1] << 16) |
  1753. (buf[2] << 8) | buf[3];
  1754. skdev->read_cap_blocksize =
  1755. (buf[4] << 24) | (buf[5] << 16) |
  1756. (buf[6] << 8) | buf[7];
  1757. pr_debug("%s:%s:%d last lba %d, bs %d\n",
  1758. skdev->name, __func__, __LINE__,
  1759. skdev->read_cap_last_lba,
  1760. skdev->read_cap_blocksize);
  1761. set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
  1762. skdev->read_cap_is_valid = 1;
  1763. skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
  1764. } else if ((status == SAM_STAT_CHECK_CONDITION) &&
  1765. (skerr->key == MEDIUM_ERROR)) {
  1766. skdev->read_cap_last_lba = ~0;
  1767. set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
  1768. pr_debug("%s:%s:%d "
  1769. "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n",
  1770. skdev->name, __func__, __LINE__);
  1771. skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
  1772. } else {
  1773. pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n",
  1774. skdev->name, __func__, __LINE__);
  1775. skd_send_internal_skspcl(skdev, skspcl,
  1776. TEST_UNIT_READY);
  1777. }
  1778. break;
  1779. case INQUIRY:
  1780. skdev->inquiry_is_valid = 0;
  1781. if (status == SAM_STAT_GOOD) {
  1782. skdev->inquiry_is_valid = 1;
  1783. for (i = 0; i < 12; i++)
  1784. skdev->inq_serial_num[i] = buf[i + 4];
  1785. skdev->inq_serial_num[12] = 0;
  1786. }
  1787. if (skd_unquiesce_dev(skdev) < 0)
  1788. pr_debug("%s:%s:%d **** failed, to ONLINE device\n",
  1789. skdev->name, __func__, __LINE__);
  1790. /* connection is complete */
  1791. skdev->connect_retries = 0;
  1792. break;
  1793. case SYNCHRONIZE_CACHE:
  1794. if (status == SAM_STAT_GOOD)
  1795. skdev->sync_done = 1;
  1796. else
  1797. skdev->sync_done = -1;
  1798. wake_up_interruptible(&skdev->waitq);
  1799. break;
  1800. default:
  1801. SKD_ASSERT("we didn't send this");
  1802. }
  1803. }
  1804. /*
  1805. *****************************************************************************
  1806. * FIT MESSAGES
  1807. *****************************************************************************
  1808. */
  1809. static void skd_send_fitmsg(struct skd_device *skdev,
  1810. struct skd_fitmsg_context *skmsg)
  1811. {
  1812. u64 qcmd;
  1813. struct fit_msg_hdr *fmh;
  1814. pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n",
  1815. skdev->name, __func__, __LINE__,
  1816. skmsg->mb_dma_address, skdev->in_flight);
  1817. pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n",
  1818. skdev->name, __func__, __LINE__,
  1819. skmsg->msg_buf, skmsg->offset);
  1820. qcmd = skmsg->mb_dma_address;
  1821. qcmd |= FIT_QCMD_QID_NORMAL;
  1822. fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
  1823. skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
  1824. if (unlikely(skdev->dbg_level > 1)) {
  1825. u8 *bp = (u8 *)skmsg->msg_buf;
  1826. int i;
  1827. for (i = 0; i < skmsg->length; i += 8) {
  1828. pr_debug("%s:%s:%d msg[%2d] %02x %02x %02x %02x "
  1829. "%02x %02x %02x %02x\n",
  1830. skdev->name, __func__, __LINE__,
  1831. i, bp[i + 0], bp[i + 1], bp[i + 2],
  1832. bp[i + 3], bp[i + 4], bp[i + 5],
  1833. bp[i + 6], bp[i + 7]);
  1834. if (i == 0)
  1835. i = 64 - 8;
  1836. }
  1837. }
  1838. if (skmsg->length > 256)
  1839. qcmd |= FIT_QCMD_MSGSIZE_512;
  1840. else if (skmsg->length > 128)
  1841. qcmd |= FIT_QCMD_MSGSIZE_256;
  1842. else if (skmsg->length > 64)
  1843. qcmd |= FIT_QCMD_MSGSIZE_128;
  1844. else
  1845. /*
  1846. * This makes no sense because the FIT msg header is
  1847. * 64 bytes. If the msg is only 64 bytes long it has
  1848. * no payload.
  1849. */
  1850. qcmd |= FIT_QCMD_MSGSIZE_64;
  1851. SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
  1852. }
  1853. static void skd_send_special_fitmsg(struct skd_device *skdev,
  1854. struct skd_special_context *skspcl)
  1855. {
  1856. u64 qcmd;
  1857. if (unlikely(skdev->dbg_level > 1)) {
  1858. u8 *bp = (u8 *)skspcl->msg_buf;
  1859. int i;
  1860. for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
  1861. pr_debug("%s:%s:%d spcl[%2d] %02x %02x %02x %02x "
  1862. "%02x %02x %02x %02x\n",
  1863. skdev->name, __func__, __LINE__, i,
  1864. bp[i + 0], bp[i + 1], bp[i + 2], bp[i + 3],
  1865. bp[i + 4], bp[i + 5], bp[i + 6], bp[i + 7]);
  1866. if (i == 0)
  1867. i = 64 - 8;
  1868. }
  1869. pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
  1870. skdev->name, __func__, __LINE__,
  1871. skspcl, skspcl->req.id, skspcl->req.sksg_list,
  1872. skspcl->req.sksg_dma_address);
  1873. for (i = 0; i < skspcl->req.n_sg; i++) {
  1874. struct fit_sg_descriptor *sgd =
  1875. &skspcl->req.sksg_list[i];
  1876. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  1877. "addr=0x%llx next=0x%llx\n",
  1878. skdev->name, __func__, __LINE__,
  1879. i, sgd->byte_count, sgd->control,
  1880. sgd->host_side_addr, sgd->next_desc_ptr);
  1881. }
  1882. }
  1883. /*
  1884. * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
  1885. * and one 64-byte SSDI command.
  1886. */
  1887. qcmd = skspcl->mb_dma_address;
  1888. qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
  1889. SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
  1890. }
  1891. /*
  1892. *****************************************************************************
  1893. * COMPLETION QUEUE
  1894. *****************************************************************************
  1895. */
  1896. static void skd_complete_other(struct skd_device *skdev,
  1897. volatile struct fit_completion_entry_v1 *skcomp,
  1898. volatile struct fit_comp_error_info *skerr);
  1899. struct sns_info {
  1900. u8 type;
  1901. u8 stat;
  1902. u8 key;
  1903. u8 asc;
  1904. u8 ascq;
  1905. u8 mask;
  1906. enum skd_check_status_action action;
  1907. };
  1908. static struct sns_info skd_chkstat_table[] = {
  1909. /* Good */
  1910. { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
  1911. SKD_CHECK_STATUS_REPORT_GOOD },
  1912. /* Smart alerts */
  1913. { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
  1914. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1915. { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
  1916. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1917. { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
  1918. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  1919. /* Retry (with limits) */
  1920. { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
  1921. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1922. { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
  1923. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1924. { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
  1925. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1926. { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
  1927. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  1928. /* Busy (or about to be) */
  1929. { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
  1930. SKD_CHECK_STATUS_BUSY_IMMINENT },
  1931. };
  1932. /*
  1933. * Look up status and sense data to decide how to handle the error
  1934. * from the device.
  1935. * mask says which fields must match e.g., mask=0x18 means check
  1936. * type and stat, ignore key, asc, ascq.
  1937. */
  1938. static enum skd_check_status_action
  1939. skd_check_status(struct skd_device *skdev,
  1940. u8 cmp_status, volatile struct fit_comp_error_info *skerr)
  1941. {
  1942. int i, n;
  1943. pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
  1944. skd_name(skdev), skerr->key, skerr->code, skerr->qual,
  1945. skerr->fruc);
  1946. pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
  1947. skdev->name, __func__, __LINE__, skerr->type, cmp_status,
  1948. skerr->key, skerr->code, skerr->qual, skerr->fruc);
  1949. /* Does the info match an entry in the good category? */
  1950. n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
  1951. for (i = 0; i < n; i++) {
  1952. struct sns_info *sns = &skd_chkstat_table[i];
  1953. if (sns->mask & 0x10)
  1954. if (skerr->type != sns->type)
  1955. continue;
  1956. if (sns->mask & 0x08)
  1957. if (cmp_status != sns->stat)
  1958. continue;
  1959. if (sns->mask & 0x04)
  1960. if (skerr->key != sns->key)
  1961. continue;
  1962. if (sns->mask & 0x02)
  1963. if (skerr->code != sns->asc)
  1964. continue;
  1965. if (sns->mask & 0x01)
  1966. if (skerr->qual != sns->ascq)
  1967. continue;
  1968. if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
  1969. pr_err("(%s): SMART Alert: sense key/asc/ascq "
  1970. "%02x/%02x/%02x\n",
  1971. skd_name(skdev), skerr->key,
  1972. skerr->code, skerr->qual);
  1973. }
  1974. return sns->action;
  1975. }
  1976. /* No other match, so nonzero status means error,
  1977. * zero status means good
  1978. */
  1979. if (cmp_status) {
  1980. pr_debug("%s:%s:%d status check: error\n",
  1981. skdev->name, __func__, __LINE__);
  1982. return SKD_CHECK_STATUS_REPORT_ERROR;
  1983. }
  1984. pr_debug("%s:%s:%d status check good default\n",
  1985. skdev->name, __func__, __LINE__);
  1986. return SKD_CHECK_STATUS_REPORT_GOOD;
  1987. }
  1988. static void skd_resolve_req_exception(struct skd_device *skdev,
  1989. struct skd_request_context *skreq)
  1990. {
  1991. u8 cmp_status = skreq->completion.status;
  1992. switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
  1993. case SKD_CHECK_STATUS_REPORT_GOOD:
  1994. case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
  1995. skd_end_request(skdev, skreq, 0);
  1996. break;
  1997. case SKD_CHECK_STATUS_BUSY_IMMINENT:
  1998. skd_log_skreq(skdev, skreq, "retry(busy)");
  1999. blk_requeue_request(skdev->queue, skreq->req);
  2000. pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
  2001. skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
  2002. skdev->timer_countdown = SKD_TIMER_MINUTES(20);
  2003. skd_quiesce_dev(skdev);
  2004. break;
  2005. case SKD_CHECK_STATUS_REQUEUE_REQUEST:
  2006. if ((unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) {
  2007. skd_log_skreq(skdev, skreq, "retry");
  2008. blk_requeue_request(skdev->queue, skreq->req);
  2009. break;
  2010. }
  2011. /* fall through to report error */
  2012. case SKD_CHECK_STATUS_REPORT_ERROR:
  2013. default:
  2014. skd_end_request(skdev, skreq, -EIO);
  2015. break;
  2016. }
  2017. }
  2018. /* assume spinlock is already held */
  2019. static void skd_release_skreq(struct skd_device *skdev,
  2020. struct skd_request_context *skreq)
  2021. {
  2022. u32 msg_slot;
  2023. struct skd_fitmsg_context *skmsg;
  2024. u32 timo_slot;
  2025. /*
  2026. * Reclaim the FIT msg buffer if this is
  2027. * the first of the requests it carried to
  2028. * be completed. The FIT msg buffer used to
  2029. * send this request cannot be reused until
  2030. * we are sure the s1120 card has copied
  2031. * it to its memory. The FIT msg might have
  2032. * contained several requests. As soon as
  2033. * any of them are completed we know that
  2034. * the entire FIT msg was transferred.
  2035. * Only the first completed request will
  2036. * match the FIT msg buffer id. The FIT
  2037. * msg buffer id is immediately updated.
  2038. * When subsequent requests complete the FIT
  2039. * msg buffer id won't match, so we know
  2040. * quite cheaply that it is already done.
  2041. */
  2042. msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
  2043. SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
  2044. skmsg = &skdev->skmsg_table[msg_slot];
  2045. if (skmsg->id == skreq->fitmsg_id) {
  2046. SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
  2047. SKD_ASSERT(skmsg->outstanding > 0);
  2048. skmsg->outstanding--;
  2049. if (skmsg->outstanding == 0) {
  2050. skmsg->state = SKD_MSG_STATE_IDLE;
  2051. skmsg->id += SKD_ID_INCR;
  2052. skmsg->next = skdev->skmsg_free_list;
  2053. skdev->skmsg_free_list = skmsg;
  2054. }
  2055. }
  2056. /*
  2057. * Decrease the number of active requests.
  2058. * Also decrements the count in the timeout slot.
  2059. */
  2060. SKD_ASSERT(skdev->in_flight > 0);
  2061. skdev->in_flight -= 1;
  2062. timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  2063. SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
  2064. skdev->timeout_slot[timo_slot] -= 1;
  2065. /*
  2066. * Reset backpointer
  2067. */
  2068. skreq->req = NULL;
  2069. /*
  2070. * Reclaim the skd_request_context
  2071. */
  2072. skreq->state = SKD_REQ_STATE_IDLE;
  2073. skreq->id += SKD_ID_INCR;
  2074. skreq->next = skdev->skreq_free_list;
  2075. skdev->skreq_free_list = skreq;
  2076. }
  2077. #define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
  2078. static void skd_do_inq_page_00(struct skd_device *skdev,
  2079. volatile struct fit_completion_entry_v1 *skcomp,
  2080. volatile struct fit_comp_error_info *skerr,
  2081. uint8_t *cdb, uint8_t *buf)
  2082. {
  2083. uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
  2084. /* Caller requested "supported pages". The driver needs to insert
  2085. * its page.
  2086. */
  2087. pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n",
  2088. skdev->name, __func__, __LINE__);
  2089. /* If the device rejected the request because the CDB was
  2090. * improperly formed, then just leave.
  2091. */
  2092. if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
  2093. skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
  2094. return;
  2095. /* Get the amount of space the caller allocated */
  2096. max_bytes = (cdb[3] << 8) | cdb[4];
  2097. /* Get the number of pages actually returned by the device */
  2098. drive_pages = (buf[2] << 8) | buf[3];
  2099. drive_bytes = drive_pages + 4;
  2100. new_size = drive_pages + 1;
  2101. /* Supported pages must be in numerical order, so find where
  2102. * the driver page needs to be inserted into the list of
  2103. * pages returned by the device.
  2104. */
  2105. for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
  2106. if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
  2107. return; /* Device using this page code. abort */
  2108. else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
  2109. break;
  2110. }
  2111. if (insert_pt < max_bytes) {
  2112. uint16_t u;
  2113. /* Shift everything up one byte to make room. */
  2114. for (u = new_size + 3; u > insert_pt; u--)
  2115. buf[u] = buf[u - 1];
  2116. buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
  2117. /* SCSI byte order increment of num_returned_bytes by 1 */
  2118. skcomp->num_returned_bytes =
  2119. be32_to_cpu(skcomp->num_returned_bytes) + 1;
  2120. skcomp->num_returned_bytes =
  2121. be32_to_cpu(skcomp->num_returned_bytes);
  2122. }
  2123. /* update page length field to reflect the driver's page too */
  2124. buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
  2125. buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
  2126. }
  2127. static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
  2128. {
  2129. int pcie_reg;
  2130. u16 pci_bus_speed;
  2131. u8 pci_lanes;
  2132. pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  2133. if (pcie_reg) {
  2134. u16 linksta;
  2135. pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
  2136. pci_bus_speed = linksta & 0xF;
  2137. pci_lanes = (linksta & 0x3F0) >> 4;
  2138. } else {
  2139. *speed = STEC_LINK_UNKNOWN;
  2140. *width = 0xFF;
  2141. return;
  2142. }
  2143. switch (pci_bus_speed) {
  2144. case 1:
  2145. *speed = STEC_LINK_2_5GTS;
  2146. break;
  2147. case 2:
  2148. *speed = STEC_LINK_5GTS;
  2149. break;
  2150. case 3:
  2151. *speed = STEC_LINK_8GTS;
  2152. break;
  2153. default:
  2154. *speed = STEC_LINK_UNKNOWN;
  2155. break;
  2156. }
  2157. if (pci_lanes <= 0x20)
  2158. *width = pci_lanes;
  2159. else
  2160. *width = 0xFF;
  2161. }
  2162. static void skd_do_inq_page_da(struct skd_device *skdev,
  2163. volatile struct fit_completion_entry_v1 *skcomp,
  2164. volatile struct fit_comp_error_info *skerr,
  2165. uint8_t *cdb, uint8_t *buf)
  2166. {
  2167. unsigned max_bytes;
  2168. struct driver_inquiry_data inq;
  2169. u16 val;
  2170. pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n",
  2171. skdev->name, __func__, __LINE__);
  2172. memset(&inq, 0, sizeof(inq));
  2173. inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
  2174. if (skdev->pdev && skdev->pdev->bus) {
  2175. skd_get_link_info(skdev->pdev,
  2176. &inq.pcie_link_speed, &inq.pcie_link_lanes);
  2177. inq.pcie_bus_number = cpu_to_be16(skdev->pdev->bus->number);
  2178. inq.pcie_device_number = PCI_SLOT(skdev->pdev->devfn);
  2179. inq.pcie_function_number = PCI_FUNC(skdev->pdev->devfn);
  2180. pci_read_config_word(skdev->pdev, PCI_VENDOR_ID, &val);
  2181. inq.pcie_vendor_id = cpu_to_be16(val);
  2182. pci_read_config_word(skdev->pdev, PCI_DEVICE_ID, &val);
  2183. inq.pcie_device_id = cpu_to_be16(val);
  2184. pci_read_config_word(skdev->pdev, PCI_SUBSYSTEM_VENDOR_ID,
  2185. &val);
  2186. inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
  2187. pci_read_config_word(skdev->pdev, PCI_SUBSYSTEM_ID, &val);
  2188. inq.pcie_subsystem_device_id = cpu_to_be16(val);
  2189. } else {
  2190. inq.pcie_bus_number = 0xFFFF;
  2191. inq.pcie_device_number = 0xFF;
  2192. inq.pcie_function_number = 0xFF;
  2193. inq.pcie_link_speed = 0xFF;
  2194. inq.pcie_link_lanes = 0xFF;
  2195. inq.pcie_vendor_id = 0xFFFF;
  2196. inq.pcie_device_id = 0xFFFF;
  2197. inq.pcie_subsystem_vendor_id = 0xFFFF;
  2198. inq.pcie_subsystem_device_id = 0xFFFF;
  2199. }
  2200. /* Driver version, fixed lenth, padded with spaces on the right */
  2201. inq.driver_version_length = sizeof(inq.driver_version);
  2202. memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
  2203. memcpy(inq.driver_version, DRV_VER_COMPL,
  2204. min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
  2205. inq.page_length = cpu_to_be16((sizeof(inq) - 4));
  2206. /* Clear the error set by the device */
  2207. skcomp->status = SAM_STAT_GOOD;
  2208. memset((void *)skerr, 0, sizeof(*skerr));
  2209. /* copy response into output buffer */
  2210. max_bytes = (cdb[3] << 8) | cdb[4];
  2211. memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
  2212. skcomp->num_returned_bytes =
  2213. be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
  2214. }
  2215. static void skd_do_driver_inq(struct skd_device *skdev,
  2216. volatile struct fit_completion_entry_v1 *skcomp,
  2217. volatile struct fit_comp_error_info *skerr,
  2218. uint8_t *cdb, uint8_t *buf)
  2219. {
  2220. if (!buf)
  2221. return;
  2222. else if (cdb[0] != INQUIRY)
  2223. return; /* Not an INQUIRY */
  2224. else if ((cdb[1] & 1) == 0)
  2225. return; /* EVPD not set */
  2226. else if (cdb[2] == 0)
  2227. /* Need to add driver's page to supported pages list */
  2228. skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
  2229. else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
  2230. /* Caller requested driver's page */
  2231. skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
  2232. }
  2233. static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
  2234. {
  2235. if (!sg)
  2236. return NULL;
  2237. if (!sg_page(sg))
  2238. return NULL;
  2239. return sg_virt(sg);
  2240. }
  2241. static void skd_process_scsi_inq(struct skd_device *skdev,
  2242. volatile struct fit_completion_entry_v1
  2243. *skcomp,
  2244. volatile struct fit_comp_error_info *skerr,
  2245. struct skd_special_context *skspcl)
  2246. {
  2247. uint8_t *buf;
  2248. struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
  2249. struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
  2250. dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
  2251. skspcl->req.sg_data_dir);
  2252. buf = skd_sg_1st_page_ptr(skspcl->req.sg);
  2253. if (buf)
  2254. skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
  2255. }
  2256. static int skd_isr_completion_posted(struct skd_device *skdev,
  2257. int limit, int *enqueued)
  2258. {
  2259. volatile struct fit_completion_entry_v1 *skcmp = NULL;
  2260. volatile struct fit_comp_error_info *skerr;
  2261. u16 req_id;
  2262. u32 req_slot;
  2263. struct skd_request_context *skreq;
  2264. u16 cmp_cntxt = 0;
  2265. u8 cmp_status = 0;
  2266. u8 cmp_cycle = 0;
  2267. u32 cmp_bytes = 0;
  2268. int rc = 0;
  2269. int processed = 0;
  2270. for (;; ) {
  2271. SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
  2272. skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
  2273. cmp_cycle = skcmp->cycle;
  2274. cmp_cntxt = skcmp->tag;
  2275. cmp_status = skcmp->status;
  2276. cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
  2277. skerr = &skdev->skerr_table[skdev->skcomp_ix];
  2278. pr_debug("%s:%s:%d "
  2279. "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
  2280. "busy=%d rbytes=0x%x proto=%d\n",
  2281. skdev->name, __func__, __LINE__, skdev->skcomp_cycle,
  2282. skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
  2283. skdev->in_flight, cmp_bytes, skdev->proto_ver);
  2284. if (cmp_cycle != skdev->skcomp_cycle) {
  2285. pr_debug("%s:%s:%d end of completions\n",
  2286. skdev->name, __func__, __LINE__);
  2287. break;
  2288. }
  2289. /*
  2290. * Update the completion queue head index and possibly
  2291. * the completion cycle count. 8-bit wrap-around.
  2292. */
  2293. skdev->skcomp_ix++;
  2294. if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
  2295. skdev->skcomp_ix = 0;
  2296. skdev->skcomp_cycle++;
  2297. }
  2298. /*
  2299. * The command context is a unique 32-bit ID. The low order
  2300. * bits help locate the request. The request is usually a
  2301. * r/w request (see skd_start() above) or a special request.
  2302. */
  2303. req_id = cmp_cntxt;
  2304. req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
  2305. /* Is this other than a r/w request? */
  2306. if (req_slot >= skdev->num_req_context) {
  2307. /*
  2308. * This is not a completion for a r/w request.
  2309. */
  2310. skd_complete_other(skdev, skcmp, skerr);
  2311. continue;
  2312. }
  2313. skreq = &skdev->skreq_table[req_slot];
  2314. /*
  2315. * Make sure the request ID for the slot matches.
  2316. */
  2317. if (skreq->id != req_id) {
  2318. pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n",
  2319. skdev->name, __func__, __LINE__,
  2320. req_id, skreq->id);
  2321. {
  2322. u16 new_id = cmp_cntxt;
  2323. pr_err("(%s): Completion mismatch "
  2324. "comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
  2325. skd_name(skdev), req_id,
  2326. skreq->id, new_id);
  2327. continue;
  2328. }
  2329. }
  2330. SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
  2331. if (skreq->state == SKD_REQ_STATE_ABORTED) {
  2332. pr_debug("%s:%s:%d reclaim req %p id=%04x\n",
  2333. skdev->name, __func__, __LINE__,
  2334. skreq, skreq->id);
  2335. /* a previously timed out command can
  2336. * now be cleaned up */
  2337. skd_release_skreq(skdev, skreq);
  2338. continue;
  2339. }
  2340. skreq->completion = *skcmp;
  2341. if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
  2342. skreq->err_info = *skerr;
  2343. skd_log_check_status(skdev, cmp_status, skerr->key,
  2344. skerr->code, skerr->qual,
  2345. skerr->fruc);
  2346. }
  2347. /* Release DMA resources for the request. */
  2348. if (skreq->n_sg > 0)
  2349. skd_postop_sg_list(skdev, skreq);
  2350. if (!skreq->req) {
  2351. pr_debug("%s:%s:%d NULL backptr skdreq %p, "
  2352. "req=0x%x req_id=0x%x\n",
  2353. skdev->name, __func__, __LINE__,
  2354. skreq, skreq->id, req_id);
  2355. } else {
  2356. /*
  2357. * Capture the outcome and post it back to the
  2358. * native request.
  2359. */
  2360. if (likely(cmp_status == SAM_STAT_GOOD))
  2361. skd_end_request(skdev, skreq, 0);
  2362. else
  2363. skd_resolve_req_exception(skdev, skreq);
  2364. }
  2365. /*
  2366. * Release the skreq, its FIT msg (if one), timeout slot,
  2367. * and queue depth.
  2368. */
  2369. skd_release_skreq(skdev, skreq);
  2370. /* skd_isr_comp_limit equal zero means no limit */
  2371. if (limit) {
  2372. if (++processed >= limit) {
  2373. rc = 1;
  2374. break;
  2375. }
  2376. }
  2377. }
  2378. if ((skdev->state == SKD_DRVR_STATE_PAUSING)
  2379. && (skdev->in_flight) == 0) {
  2380. skdev->state = SKD_DRVR_STATE_PAUSED;
  2381. wake_up_interruptible(&skdev->waitq);
  2382. }
  2383. return rc;
  2384. }
  2385. static void skd_complete_other(struct skd_device *skdev,
  2386. volatile struct fit_completion_entry_v1 *skcomp,
  2387. volatile struct fit_comp_error_info *skerr)
  2388. {
  2389. u32 req_id = 0;
  2390. u32 req_table;
  2391. u32 req_slot;
  2392. struct skd_special_context *skspcl;
  2393. req_id = skcomp->tag;
  2394. req_table = req_id & SKD_ID_TABLE_MASK;
  2395. req_slot = req_id & SKD_ID_SLOT_MASK;
  2396. pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n",
  2397. skdev->name, __func__, __LINE__,
  2398. req_table, req_id, req_slot);
  2399. /*
  2400. * Based on the request id, determine how to dispatch this completion.
  2401. * This swich/case is finding the good cases and forwarding the
  2402. * completion entry. Errors are reported below the switch.
  2403. */
  2404. switch (req_table) {
  2405. case SKD_ID_RW_REQUEST:
  2406. /*
  2407. * The caller, skd_completion_posted_isr() above,
  2408. * handles r/w requests. The only way we get here
  2409. * is if the req_slot is out of bounds.
  2410. */
  2411. break;
  2412. case SKD_ID_SPECIAL_REQUEST:
  2413. /*
  2414. * Make sure the req_slot is in bounds and that the id
  2415. * matches.
  2416. */
  2417. if (req_slot < skdev->n_special) {
  2418. skspcl = &skdev->skspcl_table[req_slot];
  2419. if (skspcl->req.id == req_id &&
  2420. skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2421. skd_complete_special(skdev,
  2422. skcomp, skerr, skspcl);
  2423. return;
  2424. }
  2425. }
  2426. break;
  2427. case SKD_ID_INTERNAL:
  2428. if (req_slot == 0) {
  2429. skspcl = &skdev->internal_skspcl;
  2430. if (skspcl->req.id == req_id &&
  2431. skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2432. skd_complete_internal(skdev,
  2433. skcomp, skerr, skspcl);
  2434. return;
  2435. }
  2436. }
  2437. break;
  2438. case SKD_ID_FIT_MSG:
  2439. /*
  2440. * These id's should never appear in a completion record.
  2441. */
  2442. break;
  2443. default:
  2444. /*
  2445. * These id's should never appear anywhere;
  2446. */
  2447. break;
  2448. }
  2449. /*
  2450. * If we get here it is a bad or stale id.
  2451. */
  2452. }
  2453. static void skd_complete_special(struct skd_device *skdev,
  2454. volatile struct fit_completion_entry_v1
  2455. *skcomp,
  2456. volatile struct fit_comp_error_info *skerr,
  2457. struct skd_special_context *skspcl)
  2458. {
  2459. pr_debug("%s:%s:%d completing special request %p\n",
  2460. skdev->name, __func__, __LINE__, skspcl);
  2461. if (skspcl->orphaned) {
  2462. /* Discard orphaned request */
  2463. /* ?: Can this release directly or does it need
  2464. * to use a worker? */
  2465. pr_debug("%s:%s:%d release orphaned %p\n",
  2466. skdev->name, __func__, __LINE__, skspcl);
  2467. skd_release_special(skdev, skspcl);
  2468. return;
  2469. }
  2470. skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
  2471. skspcl->req.state = SKD_REQ_STATE_COMPLETED;
  2472. skspcl->req.completion = *skcomp;
  2473. skspcl->req.err_info = *skerr;
  2474. skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
  2475. skerr->code, skerr->qual, skerr->fruc);
  2476. wake_up_interruptible(&skdev->waitq);
  2477. }
  2478. /* assume spinlock is already held */
  2479. static void skd_release_special(struct skd_device *skdev,
  2480. struct skd_special_context *skspcl)
  2481. {
  2482. int i, was_depleted;
  2483. for (i = 0; i < skspcl->req.n_sg; i++) {
  2484. struct page *page = sg_page(&skspcl->req.sg[i]);
  2485. __free_page(page);
  2486. }
  2487. was_depleted = (skdev->skspcl_free_list == NULL);
  2488. skspcl->req.state = SKD_REQ_STATE_IDLE;
  2489. skspcl->req.id += SKD_ID_INCR;
  2490. skspcl->req.next =
  2491. (struct skd_request_context *)skdev->skspcl_free_list;
  2492. skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
  2493. if (was_depleted) {
  2494. pr_debug("%s:%s:%d skspcl was depleted\n",
  2495. skdev->name, __func__, __LINE__);
  2496. /* Free list was depleted. Their might be waiters. */
  2497. wake_up_interruptible(&skdev->waitq);
  2498. }
  2499. }
  2500. static void skd_reset_skcomp(struct skd_device *skdev)
  2501. {
  2502. u32 nbytes;
  2503. struct fit_completion_entry_v1 *skcomp;
  2504. nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
  2505. nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
  2506. memset(skdev->skcomp_table, 0, nbytes);
  2507. skdev->skcomp_ix = 0;
  2508. skdev->skcomp_cycle = 1;
  2509. }
  2510. /*
  2511. *****************************************************************************
  2512. * INTERRUPTS
  2513. *****************************************************************************
  2514. */
  2515. static void skd_completion_worker(struct work_struct *work)
  2516. {
  2517. struct skd_device *skdev =
  2518. container_of(work, struct skd_device, completion_worker);
  2519. unsigned long flags;
  2520. int flush_enqueued = 0;
  2521. spin_lock_irqsave(&skdev->lock, flags);
  2522. /*
  2523. * pass in limit=0, which means no limit..
  2524. * process everything in compq
  2525. */
  2526. skd_isr_completion_posted(skdev, 0, &flush_enqueued);
  2527. skd_request_fn(skdev->queue);
  2528. spin_unlock_irqrestore(&skdev->lock, flags);
  2529. }
  2530. static void skd_isr_msg_from_dev(struct skd_device *skdev);
  2531. irqreturn_t
  2532. static skd_isr(int irq, void *ptr)
  2533. {
  2534. struct skd_device *skdev;
  2535. u32 intstat;
  2536. u32 ack;
  2537. int rc = 0;
  2538. int deferred = 0;
  2539. int flush_enqueued = 0;
  2540. skdev = (struct skd_device *)ptr;
  2541. spin_lock(&skdev->lock);
  2542. for (;; ) {
  2543. intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
  2544. ack = FIT_INT_DEF_MASK;
  2545. ack &= intstat;
  2546. pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n",
  2547. skdev->name, __func__, __LINE__, intstat, ack);
  2548. /* As long as there is an int pending on device, keep
  2549. * running loop. When none, get out, but if we've never
  2550. * done any processing, call completion handler?
  2551. */
  2552. if (ack == 0) {
  2553. /* No interrupts on device, but run the completion
  2554. * processor anyway?
  2555. */
  2556. if (rc == 0)
  2557. if (likely (skdev->state
  2558. == SKD_DRVR_STATE_ONLINE))
  2559. deferred = 1;
  2560. break;
  2561. }
  2562. rc = IRQ_HANDLED;
  2563. SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
  2564. if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
  2565. (skdev->state != SKD_DRVR_STATE_STOPPING))) {
  2566. if (intstat & FIT_ISH_COMPLETION_POSTED) {
  2567. /*
  2568. * If we have already deferred completion
  2569. * processing, don't bother running it again
  2570. */
  2571. if (deferred == 0)
  2572. deferred =
  2573. skd_isr_completion_posted(skdev,
  2574. skd_isr_comp_limit, &flush_enqueued);
  2575. }
  2576. if (intstat & FIT_ISH_FW_STATE_CHANGE) {
  2577. skd_isr_fwstate(skdev);
  2578. if (skdev->state == SKD_DRVR_STATE_FAULT ||
  2579. skdev->state ==
  2580. SKD_DRVR_STATE_DISAPPEARED) {
  2581. spin_unlock(&skdev->lock);
  2582. return rc;
  2583. }
  2584. }
  2585. if (intstat & FIT_ISH_MSG_FROM_DEV)
  2586. skd_isr_msg_from_dev(skdev);
  2587. }
  2588. }
  2589. if (unlikely(flush_enqueued))
  2590. skd_request_fn(skdev->queue);
  2591. if (deferred)
  2592. schedule_work(&skdev->completion_worker);
  2593. else if (!flush_enqueued)
  2594. skd_request_fn(skdev->queue);
  2595. spin_unlock(&skdev->lock);
  2596. return rc;
  2597. }
  2598. static void skd_drive_fault(struct skd_device *skdev)
  2599. {
  2600. skdev->state = SKD_DRVR_STATE_FAULT;
  2601. pr_err("(%s): Drive FAULT\n", skd_name(skdev));
  2602. }
  2603. static void skd_drive_disappeared(struct skd_device *skdev)
  2604. {
  2605. skdev->state = SKD_DRVR_STATE_DISAPPEARED;
  2606. pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
  2607. }
  2608. static void skd_isr_fwstate(struct skd_device *skdev)
  2609. {
  2610. u32 sense;
  2611. u32 state;
  2612. u32 mtd;
  2613. int prev_driver_state = skdev->state;
  2614. sense = SKD_READL(skdev, FIT_STATUS);
  2615. state = sense & FIT_SR_DRIVE_STATE_MASK;
  2616. pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
  2617. skd_name(skdev),
  2618. skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
  2619. skd_drive_state_to_str(state), state);
  2620. skdev->drive_state = state;
  2621. switch (skdev->drive_state) {
  2622. case FIT_SR_DRIVE_INIT:
  2623. if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
  2624. skd_disable_interrupts(skdev);
  2625. break;
  2626. }
  2627. if (skdev->state == SKD_DRVR_STATE_RESTARTING)
  2628. skd_recover_requests(skdev, 0);
  2629. if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
  2630. skdev->timer_countdown = SKD_STARTING_TIMO;
  2631. skdev->state = SKD_DRVR_STATE_STARTING;
  2632. skd_soft_reset(skdev);
  2633. break;
  2634. }
  2635. mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
  2636. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2637. skdev->last_mtd = mtd;
  2638. break;
  2639. case FIT_SR_DRIVE_ONLINE:
  2640. skdev->cur_max_queue_depth = skd_max_queue_depth;
  2641. if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
  2642. skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
  2643. skdev->queue_low_water_mark =
  2644. skdev->cur_max_queue_depth * 2 / 3 + 1;
  2645. if (skdev->queue_low_water_mark < 1)
  2646. skdev->queue_low_water_mark = 1;
  2647. pr_info(
  2648. "(%s): Queue depth limit=%d dev=%d lowat=%d\n",
  2649. skd_name(skdev),
  2650. skdev->cur_max_queue_depth,
  2651. skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
  2652. skd_refresh_device_data(skdev);
  2653. break;
  2654. case FIT_SR_DRIVE_BUSY:
  2655. skdev->state = SKD_DRVR_STATE_BUSY;
  2656. skdev->timer_countdown = SKD_BUSY_TIMO;
  2657. skd_quiesce_dev(skdev);
  2658. break;
  2659. case FIT_SR_DRIVE_BUSY_SANITIZE:
  2660. /* set timer for 3 seconds, we'll abort any unfinished
  2661. * commands after that expires
  2662. */
  2663. skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
  2664. skdev->timer_countdown = SKD_TIMER_SECONDS(3);
  2665. blk_start_queue(skdev->queue);
  2666. break;
  2667. case FIT_SR_DRIVE_BUSY_ERASE:
  2668. skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
  2669. skdev->timer_countdown = SKD_BUSY_TIMO;
  2670. break;
  2671. case FIT_SR_DRIVE_OFFLINE:
  2672. skdev->state = SKD_DRVR_STATE_IDLE;
  2673. break;
  2674. case FIT_SR_DRIVE_SOFT_RESET:
  2675. switch (skdev->state) {
  2676. case SKD_DRVR_STATE_STARTING:
  2677. case SKD_DRVR_STATE_RESTARTING:
  2678. /* Expected by a caller of skd_soft_reset() */
  2679. break;
  2680. default:
  2681. skdev->state = SKD_DRVR_STATE_RESTARTING;
  2682. break;
  2683. }
  2684. break;
  2685. case FIT_SR_DRIVE_FW_BOOTING:
  2686. pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n",
  2687. skdev->name, __func__, __LINE__, skdev->name);
  2688. skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
  2689. skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
  2690. break;
  2691. case FIT_SR_DRIVE_DEGRADED:
  2692. case FIT_SR_PCIE_LINK_DOWN:
  2693. case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
  2694. break;
  2695. case FIT_SR_DRIVE_FAULT:
  2696. skd_drive_fault(skdev);
  2697. skd_recover_requests(skdev, 0);
  2698. blk_start_queue(skdev->queue);
  2699. break;
  2700. /* PCIe bus returned all Fs? */
  2701. case 0xFF:
  2702. pr_info("(%s): state=0x%x sense=0x%x\n",
  2703. skd_name(skdev), state, sense);
  2704. skd_drive_disappeared(skdev);
  2705. skd_recover_requests(skdev, 0);
  2706. blk_start_queue(skdev->queue);
  2707. break;
  2708. default:
  2709. /*
  2710. * Uknown FW State. Wait for a state we recognize.
  2711. */
  2712. break;
  2713. }
  2714. pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
  2715. skd_name(skdev),
  2716. skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
  2717. skd_skdev_state_to_str(skdev->state), skdev->state);
  2718. }
  2719. static void skd_recover_requests(struct skd_device *skdev, int requeue)
  2720. {
  2721. int i;
  2722. for (i = 0; i < skdev->num_req_context; i++) {
  2723. struct skd_request_context *skreq = &skdev->skreq_table[i];
  2724. if (skreq->state == SKD_REQ_STATE_BUSY) {
  2725. skd_log_skreq(skdev, skreq, "recover");
  2726. SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
  2727. SKD_ASSERT(skreq->req != NULL);
  2728. /* Release DMA resources for the request. */
  2729. if (skreq->n_sg > 0)
  2730. skd_postop_sg_list(skdev, skreq);
  2731. if (requeue &&
  2732. (unsigned long) ++skreq->req->special <
  2733. SKD_MAX_RETRIES)
  2734. blk_requeue_request(skdev->queue, skreq->req);
  2735. else
  2736. skd_end_request(skdev, skreq, -EIO);
  2737. skreq->req = NULL;
  2738. skreq->state = SKD_REQ_STATE_IDLE;
  2739. skreq->id += SKD_ID_INCR;
  2740. }
  2741. if (i > 0)
  2742. skreq[-1].next = skreq;
  2743. skreq->next = NULL;
  2744. }
  2745. skdev->skreq_free_list = skdev->skreq_table;
  2746. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  2747. struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
  2748. if (skmsg->state == SKD_MSG_STATE_BUSY) {
  2749. skd_log_skmsg(skdev, skmsg, "salvaged");
  2750. SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
  2751. skmsg->state = SKD_MSG_STATE_IDLE;
  2752. skmsg->id += SKD_ID_INCR;
  2753. }
  2754. if (i > 0)
  2755. skmsg[-1].next = skmsg;
  2756. skmsg->next = NULL;
  2757. }
  2758. skdev->skmsg_free_list = skdev->skmsg_table;
  2759. for (i = 0; i < skdev->n_special; i++) {
  2760. struct skd_special_context *skspcl = &skdev->skspcl_table[i];
  2761. /* If orphaned, reclaim it because it has already been reported
  2762. * to the process as an error (it was just waiting for
  2763. * a completion that didn't come, and now it will never come)
  2764. * If busy, change to a state that will cause it to error
  2765. * out in the wait routine and let it do the normal
  2766. * reporting and reclaiming
  2767. */
  2768. if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2769. if (skspcl->orphaned) {
  2770. pr_debug("%s:%s:%d orphaned %p\n",
  2771. skdev->name, __func__, __LINE__,
  2772. skspcl);
  2773. skd_release_special(skdev, skspcl);
  2774. } else {
  2775. pr_debug("%s:%s:%d not orphaned %p\n",
  2776. skdev->name, __func__, __LINE__,
  2777. skspcl);
  2778. skspcl->req.state = SKD_REQ_STATE_ABORTED;
  2779. }
  2780. }
  2781. }
  2782. skdev->skspcl_free_list = skdev->skspcl_table;
  2783. for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
  2784. skdev->timeout_slot[i] = 0;
  2785. skdev->in_flight = 0;
  2786. }
  2787. static void skd_isr_msg_from_dev(struct skd_device *skdev)
  2788. {
  2789. u32 mfd;
  2790. u32 mtd;
  2791. u32 data;
  2792. mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
  2793. pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n",
  2794. skdev->name, __func__, __LINE__, mfd, skdev->last_mtd);
  2795. /* ignore any mtd that is an ack for something we didn't send */
  2796. if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
  2797. return;
  2798. switch (FIT_MXD_TYPE(mfd)) {
  2799. case FIT_MTD_FITFW_INIT:
  2800. skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
  2801. if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
  2802. pr_err("(%s): protocol mismatch\n",
  2803. skdev->name);
  2804. pr_err("(%s): got=%d support=%d\n",
  2805. skdev->name, skdev->proto_ver,
  2806. FIT_PROTOCOL_VERSION_1);
  2807. pr_err("(%s): please upgrade driver\n",
  2808. skdev->name);
  2809. skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
  2810. skd_soft_reset(skdev);
  2811. break;
  2812. }
  2813. mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
  2814. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2815. skdev->last_mtd = mtd;
  2816. break;
  2817. case FIT_MTD_GET_CMDQ_DEPTH:
  2818. skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
  2819. mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
  2820. SKD_N_COMPLETION_ENTRY);
  2821. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2822. skdev->last_mtd = mtd;
  2823. break;
  2824. case FIT_MTD_SET_COMPQ_DEPTH:
  2825. SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
  2826. mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
  2827. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2828. skdev->last_mtd = mtd;
  2829. break;
  2830. case FIT_MTD_SET_COMPQ_ADDR:
  2831. skd_reset_skcomp(skdev);
  2832. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
  2833. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2834. skdev->last_mtd = mtd;
  2835. break;
  2836. case FIT_MTD_CMD_LOG_HOST_ID:
  2837. skdev->connect_time_stamp = get_seconds();
  2838. data = skdev->connect_time_stamp & 0xFFFF;
  2839. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
  2840. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2841. skdev->last_mtd = mtd;
  2842. break;
  2843. case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
  2844. skdev->drive_jiffies = FIT_MXD_DATA(mfd);
  2845. data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
  2846. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
  2847. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2848. skdev->last_mtd = mtd;
  2849. break;
  2850. case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
  2851. skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
  2852. mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
  2853. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2854. skdev->last_mtd = mtd;
  2855. pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
  2856. skd_name(skdev),
  2857. skdev->connect_time_stamp, skdev->drive_jiffies);
  2858. break;
  2859. case FIT_MTD_ARM_QUEUE:
  2860. skdev->last_mtd = 0;
  2861. /*
  2862. * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
  2863. */
  2864. break;
  2865. default:
  2866. break;
  2867. }
  2868. }
  2869. static void skd_disable_interrupts(struct skd_device *skdev)
  2870. {
  2871. u32 sense;
  2872. sense = SKD_READL(skdev, FIT_CONTROL);
  2873. sense &= ~FIT_CR_ENABLE_INTERRUPTS;
  2874. SKD_WRITEL(skdev, sense, FIT_CONTROL);
  2875. pr_debug("%s:%s:%d sense 0x%x\n",
  2876. skdev->name, __func__, __LINE__, sense);
  2877. /* Note that the 1s is written. A 1-bit means
  2878. * disable, a 0 means enable.
  2879. */
  2880. SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
  2881. }
  2882. static void skd_enable_interrupts(struct skd_device *skdev)
  2883. {
  2884. u32 val;
  2885. /* unmask interrupts first */
  2886. val = FIT_ISH_FW_STATE_CHANGE +
  2887. FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
  2888. /* Note that the compliment of mask is written. A 1-bit means
  2889. * disable, a 0 means enable. */
  2890. SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
  2891. pr_debug("%s:%s:%d interrupt mask=0x%x\n",
  2892. skdev->name, __func__, __LINE__, ~val);
  2893. val = SKD_READL(skdev, FIT_CONTROL);
  2894. val |= FIT_CR_ENABLE_INTERRUPTS;
  2895. pr_debug("%s:%s:%d control=0x%x\n",
  2896. skdev->name, __func__, __LINE__, val);
  2897. SKD_WRITEL(skdev, val, FIT_CONTROL);
  2898. }
  2899. /*
  2900. *****************************************************************************
  2901. * START, STOP, RESTART, QUIESCE, UNQUIESCE
  2902. *****************************************************************************
  2903. */
  2904. static void skd_soft_reset(struct skd_device *skdev)
  2905. {
  2906. u32 val;
  2907. val = SKD_READL(skdev, FIT_CONTROL);
  2908. val |= (FIT_CR_SOFT_RESET);
  2909. pr_debug("%s:%s:%d control=0x%x\n",
  2910. skdev->name, __func__, __LINE__, val);
  2911. SKD_WRITEL(skdev, val, FIT_CONTROL);
  2912. }
  2913. static void skd_start_device(struct skd_device *skdev)
  2914. {
  2915. unsigned long flags;
  2916. u32 sense;
  2917. u32 state;
  2918. spin_lock_irqsave(&skdev->lock, flags);
  2919. /* ack all ghost interrupts */
  2920. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  2921. sense = SKD_READL(skdev, FIT_STATUS);
  2922. pr_debug("%s:%s:%d initial status=0x%x\n",
  2923. skdev->name, __func__, __LINE__, sense);
  2924. state = sense & FIT_SR_DRIVE_STATE_MASK;
  2925. skdev->drive_state = state;
  2926. skdev->last_mtd = 0;
  2927. skdev->state = SKD_DRVR_STATE_STARTING;
  2928. skdev->timer_countdown = SKD_STARTING_TIMO;
  2929. skd_enable_interrupts(skdev);
  2930. switch (skdev->drive_state) {
  2931. case FIT_SR_DRIVE_OFFLINE:
  2932. pr_err("(%s): Drive offline...\n", skd_name(skdev));
  2933. break;
  2934. case FIT_SR_DRIVE_FW_BOOTING:
  2935. pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n",
  2936. skdev->name, __func__, __LINE__, skdev->name);
  2937. skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
  2938. skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
  2939. break;
  2940. case FIT_SR_DRIVE_BUSY_SANITIZE:
  2941. pr_info("(%s): Start: BUSY_SANITIZE\n",
  2942. skd_name(skdev));
  2943. skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
  2944. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  2945. break;
  2946. case FIT_SR_DRIVE_BUSY_ERASE:
  2947. pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
  2948. skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
  2949. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  2950. break;
  2951. case FIT_SR_DRIVE_INIT:
  2952. case FIT_SR_DRIVE_ONLINE:
  2953. skd_soft_reset(skdev);
  2954. break;
  2955. case FIT_SR_DRIVE_BUSY:
  2956. pr_err("(%s): Drive Busy...\n", skd_name(skdev));
  2957. skdev->state = SKD_DRVR_STATE_BUSY;
  2958. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  2959. break;
  2960. case FIT_SR_DRIVE_SOFT_RESET:
  2961. pr_err("(%s) drive soft reset in prog\n",
  2962. skd_name(skdev));
  2963. break;
  2964. case FIT_SR_DRIVE_FAULT:
  2965. /* Fault state is bad...soft reset won't do it...
  2966. * Hard reset, maybe, but does it work on device?
  2967. * For now, just fault so the system doesn't hang.
  2968. */
  2969. skd_drive_fault(skdev);
  2970. /*start the queue so we can respond with error to requests */
  2971. pr_debug("%s:%s:%d starting %s queue\n",
  2972. skdev->name, __func__, __LINE__, skdev->name);
  2973. blk_start_queue(skdev->queue);
  2974. skdev->gendisk_on = -1;
  2975. wake_up_interruptible(&skdev->waitq);
  2976. break;
  2977. case 0xFF:
  2978. /* Most likely the device isn't there or isn't responding
  2979. * to the BAR1 addresses. */
  2980. skd_drive_disappeared(skdev);
  2981. /*start the queue so we can respond with error to requests */
  2982. pr_debug("%s:%s:%d starting %s queue to error-out reqs\n",
  2983. skdev->name, __func__, __LINE__, skdev->name);
  2984. blk_start_queue(skdev->queue);
  2985. skdev->gendisk_on = -1;
  2986. wake_up_interruptible(&skdev->waitq);
  2987. break;
  2988. default:
  2989. pr_err("(%s) Start: unknown state %x\n",
  2990. skd_name(skdev), skdev->drive_state);
  2991. break;
  2992. }
  2993. state = SKD_READL(skdev, FIT_CONTROL);
  2994. pr_debug("%s:%s:%d FIT Control Status=0x%x\n",
  2995. skdev->name, __func__, __LINE__, state);
  2996. state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
  2997. pr_debug("%s:%s:%d Intr Status=0x%x\n",
  2998. skdev->name, __func__, __LINE__, state);
  2999. state = SKD_READL(skdev, FIT_INT_MASK_HOST);
  3000. pr_debug("%s:%s:%d Intr Mask=0x%x\n",
  3001. skdev->name, __func__, __LINE__, state);
  3002. state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
  3003. pr_debug("%s:%s:%d Msg from Dev=0x%x\n",
  3004. skdev->name, __func__, __LINE__, state);
  3005. state = SKD_READL(skdev, FIT_HW_VERSION);
  3006. pr_debug("%s:%s:%d HW version=0x%x\n",
  3007. skdev->name, __func__, __LINE__, state);
  3008. spin_unlock_irqrestore(&skdev->lock, flags);
  3009. }
  3010. static void skd_stop_device(struct skd_device *skdev)
  3011. {
  3012. unsigned long flags;
  3013. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  3014. u32 dev_state;
  3015. int i;
  3016. spin_lock_irqsave(&skdev->lock, flags);
  3017. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  3018. pr_err("(%s): skd_stop_device not online no sync\n",
  3019. skd_name(skdev));
  3020. goto stop_out;
  3021. }
  3022. if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
  3023. pr_err("(%s): skd_stop_device no special\n",
  3024. skd_name(skdev));
  3025. goto stop_out;
  3026. }
  3027. skdev->state = SKD_DRVR_STATE_SYNCING;
  3028. skdev->sync_done = 0;
  3029. skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
  3030. spin_unlock_irqrestore(&skdev->lock, flags);
  3031. wait_event_interruptible_timeout(skdev->waitq,
  3032. (skdev->sync_done), (10 * HZ));
  3033. spin_lock_irqsave(&skdev->lock, flags);
  3034. switch (skdev->sync_done) {
  3035. case 0:
  3036. pr_err("(%s): skd_stop_device no sync\n",
  3037. skd_name(skdev));
  3038. break;
  3039. case 1:
  3040. pr_err("(%s): skd_stop_device sync done\n",
  3041. skd_name(skdev));
  3042. break;
  3043. default:
  3044. pr_err("(%s): skd_stop_device sync error\n",
  3045. skd_name(skdev));
  3046. }
  3047. stop_out:
  3048. skdev->state = SKD_DRVR_STATE_STOPPING;
  3049. spin_unlock_irqrestore(&skdev->lock, flags);
  3050. skd_kill_timer(skdev);
  3051. spin_lock_irqsave(&skdev->lock, flags);
  3052. skd_disable_interrupts(skdev);
  3053. /* ensure all ints on device are cleared */
  3054. /* soft reset the device to unload with a clean slate */
  3055. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  3056. SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
  3057. spin_unlock_irqrestore(&skdev->lock, flags);
  3058. /* poll every 100ms, 1 second timeout */
  3059. for (i = 0; i < 10; i++) {
  3060. dev_state =
  3061. SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
  3062. if (dev_state == FIT_SR_DRIVE_INIT)
  3063. break;
  3064. set_current_state(TASK_INTERRUPTIBLE);
  3065. schedule_timeout(msecs_to_jiffies(100));
  3066. }
  3067. if (dev_state != FIT_SR_DRIVE_INIT)
  3068. pr_err("(%s): skd_stop_device state error 0x%02x\n",
  3069. skd_name(skdev), dev_state);
  3070. }
  3071. /* assume spinlock is held */
  3072. static void skd_restart_device(struct skd_device *skdev)
  3073. {
  3074. u32 state;
  3075. /* ack all ghost interrupts */
  3076. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  3077. state = SKD_READL(skdev, FIT_STATUS);
  3078. pr_debug("%s:%s:%d drive status=0x%x\n",
  3079. skdev->name, __func__, __LINE__, state);
  3080. state &= FIT_SR_DRIVE_STATE_MASK;
  3081. skdev->drive_state = state;
  3082. skdev->last_mtd = 0;
  3083. skdev->state = SKD_DRVR_STATE_RESTARTING;
  3084. skdev->timer_countdown = SKD_RESTARTING_TIMO;
  3085. skd_soft_reset(skdev);
  3086. }
  3087. /* assume spinlock is held */
  3088. static int skd_quiesce_dev(struct skd_device *skdev)
  3089. {
  3090. int rc = 0;
  3091. switch (skdev->state) {
  3092. case SKD_DRVR_STATE_BUSY:
  3093. case SKD_DRVR_STATE_BUSY_IMMINENT:
  3094. pr_debug("%s:%s:%d stopping %s queue\n",
  3095. skdev->name, __func__, __LINE__, skdev->name);
  3096. blk_stop_queue(skdev->queue);
  3097. break;
  3098. case SKD_DRVR_STATE_ONLINE:
  3099. case SKD_DRVR_STATE_STOPPING:
  3100. case SKD_DRVR_STATE_SYNCING:
  3101. case SKD_DRVR_STATE_PAUSING:
  3102. case SKD_DRVR_STATE_PAUSED:
  3103. case SKD_DRVR_STATE_STARTING:
  3104. case SKD_DRVR_STATE_RESTARTING:
  3105. case SKD_DRVR_STATE_RESUMING:
  3106. default:
  3107. rc = -EINVAL;
  3108. pr_debug("%s:%s:%d state [%d] not implemented\n",
  3109. skdev->name, __func__, __LINE__, skdev->state);
  3110. }
  3111. return rc;
  3112. }
  3113. /* assume spinlock is held */
  3114. static int skd_unquiesce_dev(struct skd_device *skdev)
  3115. {
  3116. int prev_driver_state = skdev->state;
  3117. skd_log_skdev(skdev, "unquiesce");
  3118. if (skdev->state == SKD_DRVR_STATE_ONLINE) {
  3119. pr_debug("%s:%s:%d **** device already ONLINE\n",
  3120. skdev->name, __func__, __LINE__);
  3121. return 0;
  3122. }
  3123. if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
  3124. /*
  3125. * If there has been an state change to other than
  3126. * ONLINE, we will rely on controller state change
  3127. * to come back online and restart the queue.
  3128. * The BUSY state means that driver is ready to
  3129. * continue normal processing but waiting for controller
  3130. * to become available.
  3131. */
  3132. skdev->state = SKD_DRVR_STATE_BUSY;
  3133. pr_debug("%s:%s:%d drive BUSY state\n",
  3134. skdev->name, __func__, __LINE__);
  3135. return 0;
  3136. }
  3137. /*
  3138. * Drive has just come online, driver is either in startup,
  3139. * paused performing a task, or bust waiting for hardware.
  3140. */
  3141. switch (skdev->state) {
  3142. case SKD_DRVR_STATE_PAUSED:
  3143. case SKD_DRVR_STATE_BUSY:
  3144. case SKD_DRVR_STATE_BUSY_IMMINENT:
  3145. case SKD_DRVR_STATE_BUSY_ERASE:
  3146. case SKD_DRVR_STATE_STARTING:
  3147. case SKD_DRVR_STATE_RESTARTING:
  3148. case SKD_DRVR_STATE_FAULT:
  3149. case SKD_DRVR_STATE_IDLE:
  3150. case SKD_DRVR_STATE_LOAD:
  3151. skdev->state = SKD_DRVR_STATE_ONLINE;
  3152. pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
  3153. skd_name(skdev),
  3154. skd_skdev_state_to_str(prev_driver_state),
  3155. prev_driver_state, skd_skdev_state_to_str(skdev->state),
  3156. skdev->state);
  3157. pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n",
  3158. skdev->name, __func__, __LINE__);
  3159. pr_debug("%s:%s:%d starting %s queue\n",
  3160. skdev->name, __func__, __LINE__, skdev->name);
  3161. pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
  3162. blk_start_queue(skdev->queue);
  3163. skdev->gendisk_on = 1;
  3164. wake_up_interruptible(&skdev->waitq);
  3165. break;
  3166. case SKD_DRVR_STATE_DISAPPEARED:
  3167. default:
  3168. pr_debug("%s:%s:%d **** driver state %d, not implemented \n",
  3169. skdev->name, __func__, __LINE__,
  3170. skdev->state);
  3171. return -EBUSY;
  3172. }
  3173. return 0;
  3174. }
  3175. /*
  3176. *****************************************************************************
  3177. * PCIe MSI/MSI-X INTERRUPT HANDLERS
  3178. *****************************************************************************
  3179. */
  3180. static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
  3181. {
  3182. struct skd_device *skdev = skd_host_data;
  3183. unsigned long flags;
  3184. spin_lock_irqsave(&skdev->lock, flags);
  3185. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3186. skdev->name, __func__, __LINE__,
  3187. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3188. pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
  3189. irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3190. SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
  3191. spin_unlock_irqrestore(&skdev->lock, flags);
  3192. return IRQ_HANDLED;
  3193. }
  3194. static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
  3195. {
  3196. struct skd_device *skdev = skd_host_data;
  3197. unsigned long flags;
  3198. spin_lock_irqsave(&skdev->lock, flags);
  3199. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3200. skdev->name, __func__, __LINE__,
  3201. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3202. SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
  3203. skd_isr_fwstate(skdev);
  3204. spin_unlock_irqrestore(&skdev->lock, flags);
  3205. return IRQ_HANDLED;
  3206. }
  3207. static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
  3208. {
  3209. struct skd_device *skdev = skd_host_data;
  3210. unsigned long flags;
  3211. int flush_enqueued = 0;
  3212. int deferred;
  3213. spin_lock_irqsave(&skdev->lock, flags);
  3214. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3215. skdev->name, __func__, __LINE__,
  3216. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3217. SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
  3218. deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
  3219. &flush_enqueued);
  3220. if (flush_enqueued)
  3221. skd_request_fn(skdev->queue);
  3222. if (deferred)
  3223. schedule_work(&skdev->completion_worker);
  3224. else if (!flush_enqueued)
  3225. skd_request_fn(skdev->queue);
  3226. spin_unlock_irqrestore(&skdev->lock, flags);
  3227. return IRQ_HANDLED;
  3228. }
  3229. static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
  3230. {
  3231. struct skd_device *skdev = skd_host_data;
  3232. unsigned long flags;
  3233. spin_lock_irqsave(&skdev->lock, flags);
  3234. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3235. skdev->name, __func__, __LINE__,
  3236. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3237. SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
  3238. skd_isr_msg_from_dev(skdev);
  3239. spin_unlock_irqrestore(&skdev->lock, flags);
  3240. return IRQ_HANDLED;
  3241. }
  3242. static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
  3243. {
  3244. struct skd_device *skdev = skd_host_data;
  3245. unsigned long flags;
  3246. spin_lock_irqsave(&skdev->lock, flags);
  3247. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3248. skdev->name, __func__, __LINE__,
  3249. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3250. SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
  3251. spin_unlock_irqrestore(&skdev->lock, flags);
  3252. return IRQ_HANDLED;
  3253. }
  3254. /*
  3255. *****************************************************************************
  3256. * PCIe MSI/MSI-X SETUP
  3257. *****************************************************************************
  3258. */
  3259. struct skd_msix_entry {
  3260. int have_irq;
  3261. u32 vector;
  3262. u32 entry;
  3263. struct skd_device *rsp;
  3264. char isr_name[30];
  3265. };
  3266. struct skd_init_msix_entry {
  3267. const char *name;
  3268. irq_handler_t handler;
  3269. };
  3270. #define SKD_MAX_MSIX_COUNT 13
  3271. #define SKD_MIN_MSIX_COUNT 7
  3272. #define SKD_BASE_MSIX_IRQ 4
  3273. static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
  3274. { "(DMA 0)", skd_reserved_isr },
  3275. { "(DMA 1)", skd_reserved_isr },
  3276. { "(DMA 2)", skd_reserved_isr },
  3277. { "(DMA 3)", skd_reserved_isr },
  3278. { "(State Change)", skd_statec_isr },
  3279. { "(COMPL_Q)", skd_comp_q },
  3280. { "(MSG)", skd_msg_isr },
  3281. { "(Reserved)", skd_reserved_isr },
  3282. { "(Reserved)", skd_reserved_isr },
  3283. { "(Queue Full 0)", skd_qfull_isr },
  3284. { "(Queue Full 1)", skd_qfull_isr },
  3285. { "(Queue Full 2)", skd_qfull_isr },
  3286. { "(Queue Full 3)", skd_qfull_isr },
  3287. };
  3288. static void skd_release_msix(struct skd_device *skdev)
  3289. {
  3290. struct skd_msix_entry *qentry;
  3291. int i;
  3292. if (skdev->msix_entries == NULL)
  3293. return;
  3294. for (i = 0; i < skdev->msix_count; i++) {
  3295. qentry = &skdev->msix_entries[i];
  3296. skdev = qentry->rsp;
  3297. if (qentry->have_irq)
  3298. devm_free_irq(&skdev->pdev->dev,
  3299. qentry->vector, qentry->rsp);
  3300. }
  3301. pci_disable_msix(skdev->pdev);
  3302. kfree(skdev->msix_entries);
  3303. skdev->msix_count = 0;
  3304. skdev->msix_entries = NULL;
  3305. }
  3306. static int skd_acquire_msix(struct skd_device *skdev)
  3307. {
  3308. int i, rc;
  3309. struct pci_dev *pdev;
  3310. struct msix_entry *entries = NULL;
  3311. struct skd_msix_entry *qentry;
  3312. pdev = skdev->pdev;
  3313. skdev->msix_count = SKD_MAX_MSIX_COUNT;
  3314. entries = kzalloc(sizeof(struct msix_entry) * SKD_MAX_MSIX_COUNT,
  3315. GFP_KERNEL);
  3316. if (!entries)
  3317. return -ENOMEM;
  3318. for (i = 0; i < SKD_MAX_MSIX_COUNT; i++)
  3319. entries[i].entry = i;
  3320. rc = pci_enable_msix(pdev, entries, SKD_MAX_MSIX_COUNT);
  3321. if (rc < 0)
  3322. goto msix_out;
  3323. if (rc) {
  3324. if (rc < SKD_MIN_MSIX_COUNT) {
  3325. pr_err("(%s): failed to enable MSI-X %d\n",
  3326. skd_name(skdev), rc);
  3327. goto msix_out;
  3328. }
  3329. pr_debug("%s:%s:%d %s: <%s> allocated %d MSI-X vectors\n",
  3330. skdev->name, __func__, __LINE__,
  3331. pci_name(pdev), skdev->name, rc);
  3332. skdev->msix_count = rc;
  3333. rc = pci_enable_msix(pdev, entries, skdev->msix_count);
  3334. if (rc) {
  3335. pr_err("(%s): failed to enable MSI-X "
  3336. "support (%d) %d\n",
  3337. skd_name(skdev), skdev->msix_count, rc);
  3338. goto msix_out;
  3339. }
  3340. }
  3341. skdev->msix_entries = kzalloc(sizeof(struct skd_msix_entry) *
  3342. skdev->msix_count, GFP_KERNEL);
  3343. if (!skdev->msix_entries) {
  3344. rc = -ENOMEM;
  3345. skdev->msix_count = 0;
  3346. pr_err("(%s): msix table allocation error\n",
  3347. skd_name(skdev));
  3348. goto msix_out;
  3349. }
  3350. qentry = skdev->msix_entries;
  3351. for (i = 0; i < skdev->msix_count; i++) {
  3352. qentry->vector = entries[i].vector;
  3353. qentry->entry = entries[i].entry;
  3354. qentry->rsp = NULL;
  3355. qentry->have_irq = 0;
  3356. pr_debug("%s:%s:%d %s: <%s> msix (%d) vec %d, entry %x\n",
  3357. skdev->name, __func__, __LINE__,
  3358. pci_name(pdev), skdev->name,
  3359. i, qentry->vector, qentry->entry);
  3360. qentry++;
  3361. }
  3362. /* Enable MSI-X vectors for the base queue */
  3363. for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
  3364. qentry = &skdev->msix_entries[i];
  3365. snprintf(qentry->isr_name, sizeof(qentry->isr_name),
  3366. "%s%d-msix %s", DRV_NAME, skdev->devno,
  3367. msix_entries[i].name);
  3368. rc = devm_request_irq(&skdev->pdev->dev, qentry->vector,
  3369. msix_entries[i].handler, 0,
  3370. qentry->isr_name, skdev);
  3371. if (rc) {
  3372. pr_err("(%s): Unable to register(%d) MSI-X "
  3373. "handler %d: %s\n",
  3374. skd_name(skdev), rc, i, qentry->isr_name);
  3375. goto msix_out;
  3376. } else {
  3377. qentry->have_irq = 1;
  3378. qentry->rsp = skdev;
  3379. }
  3380. }
  3381. pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n",
  3382. skdev->name, __func__, __LINE__,
  3383. pci_name(pdev), skdev->name, skdev->msix_count);
  3384. return 0;
  3385. msix_out:
  3386. if (entries)
  3387. kfree(entries);
  3388. skd_release_msix(skdev);
  3389. return rc;
  3390. }
  3391. static int skd_acquire_irq(struct skd_device *skdev)
  3392. {
  3393. int rc;
  3394. struct pci_dev *pdev;
  3395. pdev = skdev->pdev;
  3396. skdev->msix_count = 0;
  3397. RETRY_IRQ_TYPE:
  3398. switch (skdev->irq_type) {
  3399. case SKD_IRQ_MSIX:
  3400. rc = skd_acquire_msix(skdev);
  3401. if (!rc)
  3402. pr_info("(%s): MSI-X %d irqs enabled\n",
  3403. skd_name(skdev), skdev->msix_count);
  3404. else {
  3405. pr_err(
  3406. "(%s): failed to enable MSI-X, re-trying with MSI %d\n",
  3407. skd_name(skdev), rc);
  3408. skdev->irq_type = SKD_IRQ_MSI;
  3409. goto RETRY_IRQ_TYPE;
  3410. }
  3411. break;
  3412. case SKD_IRQ_MSI:
  3413. snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d-msi",
  3414. DRV_NAME, skdev->devno);
  3415. rc = pci_enable_msi(pdev);
  3416. if (!rc) {
  3417. rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr, 0,
  3418. skdev->isr_name, skdev);
  3419. if (rc) {
  3420. pci_disable_msi(pdev);
  3421. pr_err(
  3422. "(%s): failed to allocate the MSI interrupt %d\n",
  3423. skd_name(skdev), rc);
  3424. goto RETRY_IRQ_LEGACY;
  3425. }
  3426. pr_info("(%s): MSI irq %d enabled\n",
  3427. skd_name(skdev), pdev->irq);
  3428. } else {
  3429. RETRY_IRQ_LEGACY:
  3430. pr_err(
  3431. "(%s): failed to enable MSI, re-trying with LEGACY %d\n",
  3432. skd_name(skdev), rc);
  3433. skdev->irq_type = SKD_IRQ_LEGACY;
  3434. goto RETRY_IRQ_TYPE;
  3435. }
  3436. break;
  3437. case SKD_IRQ_LEGACY:
  3438. snprintf(skdev->isr_name, sizeof(skdev->isr_name),
  3439. "%s%d-legacy", DRV_NAME, skdev->devno);
  3440. rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
  3441. IRQF_SHARED, skdev->isr_name, skdev);
  3442. if (!rc)
  3443. pr_info("(%s): LEGACY irq %d enabled\n",
  3444. skd_name(skdev), pdev->irq);
  3445. else
  3446. pr_err("(%s): request LEGACY irq error %d\n",
  3447. skd_name(skdev), rc);
  3448. break;
  3449. default:
  3450. pr_info("(%s): irq_type %d invalid, re-set to %d\n",
  3451. skd_name(skdev), skdev->irq_type, SKD_IRQ_DEFAULT);
  3452. skdev->irq_type = SKD_IRQ_LEGACY;
  3453. goto RETRY_IRQ_TYPE;
  3454. }
  3455. return rc;
  3456. }
  3457. static void skd_release_irq(struct skd_device *skdev)
  3458. {
  3459. switch (skdev->irq_type) {
  3460. case SKD_IRQ_MSIX:
  3461. skd_release_msix(skdev);
  3462. break;
  3463. case SKD_IRQ_MSI:
  3464. devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
  3465. pci_disable_msi(skdev->pdev);
  3466. break;
  3467. case SKD_IRQ_LEGACY:
  3468. devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
  3469. break;
  3470. default:
  3471. pr_err("(%s): wrong irq type %d!",
  3472. skd_name(skdev), skdev->irq_type);
  3473. break;
  3474. }
  3475. }
  3476. /*
  3477. *****************************************************************************
  3478. * CONSTRUCT
  3479. *****************************************************************************
  3480. */
  3481. static int skd_cons_skcomp(struct skd_device *skdev);
  3482. static int skd_cons_skmsg(struct skd_device *skdev);
  3483. static int skd_cons_skreq(struct skd_device *skdev);
  3484. static int skd_cons_skspcl(struct skd_device *skdev);
  3485. static int skd_cons_sksb(struct skd_device *skdev);
  3486. static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
  3487. u32 n_sg,
  3488. dma_addr_t *ret_dma_addr);
  3489. static int skd_cons_disk(struct skd_device *skdev);
  3490. #define SKD_N_DEV_TABLE 16u
  3491. static u32 skd_next_devno;
  3492. static struct skd_device *skd_construct(struct pci_dev *pdev)
  3493. {
  3494. struct skd_device *skdev;
  3495. int blk_major = skd_major;
  3496. int rc;
  3497. skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
  3498. if (!skdev) {
  3499. pr_err(PFX "(%s): memory alloc failure\n",
  3500. pci_name(pdev));
  3501. return NULL;
  3502. }
  3503. skdev->state = SKD_DRVR_STATE_LOAD;
  3504. skdev->pdev = pdev;
  3505. skdev->devno = skd_next_devno++;
  3506. skdev->major = blk_major;
  3507. skdev->irq_type = skd_isr_type;
  3508. sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
  3509. skdev->dev_max_queue_depth = 0;
  3510. skdev->num_req_context = skd_max_queue_depth;
  3511. skdev->num_fitmsg_context = skd_max_queue_depth;
  3512. skdev->n_special = skd_max_pass_thru;
  3513. skdev->cur_max_queue_depth = 1;
  3514. skdev->queue_low_water_mark = 1;
  3515. skdev->proto_ver = 99;
  3516. skdev->sgs_per_request = skd_sgs_per_request;
  3517. skdev->dbg_level = skd_dbg_level;
  3518. atomic_set(&skdev->device_count, 0);
  3519. spin_lock_init(&skdev->lock);
  3520. INIT_WORK(&skdev->completion_worker, skd_completion_worker);
  3521. pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
  3522. rc = skd_cons_skcomp(skdev);
  3523. if (rc < 0)
  3524. goto err_out;
  3525. pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
  3526. rc = skd_cons_skmsg(skdev);
  3527. if (rc < 0)
  3528. goto err_out;
  3529. pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
  3530. rc = skd_cons_skreq(skdev);
  3531. if (rc < 0)
  3532. goto err_out;
  3533. pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
  3534. rc = skd_cons_skspcl(skdev);
  3535. if (rc < 0)
  3536. goto err_out;
  3537. pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
  3538. rc = skd_cons_sksb(skdev);
  3539. if (rc < 0)
  3540. goto err_out;
  3541. pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
  3542. rc = skd_cons_disk(skdev);
  3543. if (rc < 0)
  3544. goto err_out;
  3545. pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__);
  3546. return skdev;
  3547. err_out:
  3548. pr_debug("%s:%s:%d construct failed\n",
  3549. skdev->name, __func__, __LINE__);
  3550. skd_destruct(skdev);
  3551. return NULL;
  3552. }
  3553. static int skd_cons_skcomp(struct skd_device *skdev)
  3554. {
  3555. int rc = 0;
  3556. struct fit_completion_entry_v1 *skcomp;
  3557. u32 nbytes;
  3558. nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
  3559. nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
  3560. pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n",
  3561. skdev->name, __func__, __LINE__,
  3562. nbytes, SKD_N_COMPLETION_ENTRY);
  3563. skcomp = pci_alloc_consistent(skdev->pdev, nbytes,
  3564. &skdev->cq_dma_address);
  3565. if (skcomp == NULL) {
  3566. rc = -ENOMEM;
  3567. goto err_out;
  3568. }
  3569. memset(skcomp, 0, nbytes);
  3570. skdev->skcomp_table = skcomp;
  3571. skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
  3572. sizeof(*skcomp) *
  3573. SKD_N_COMPLETION_ENTRY);
  3574. err_out:
  3575. return rc;
  3576. }
  3577. static int skd_cons_skmsg(struct skd_device *skdev)
  3578. {
  3579. int rc = 0;
  3580. u32 i;
  3581. pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n",
  3582. skdev->name, __func__, __LINE__,
  3583. sizeof(struct skd_fitmsg_context),
  3584. skdev->num_fitmsg_context,
  3585. sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
  3586. skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
  3587. *skdev->num_fitmsg_context, GFP_KERNEL);
  3588. if (skdev->skmsg_table == NULL) {
  3589. rc = -ENOMEM;
  3590. goto err_out;
  3591. }
  3592. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  3593. struct skd_fitmsg_context *skmsg;
  3594. skmsg = &skdev->skmsg_table[i];
  3595. skmsg->id = i + SKD_ID_FIT_MSG;
  3596. skmsg->state = SKD_MSG_STATE_IDLE;
  3597. skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
  3598. SKD_N_FITMSG_BYTES + 64,
  3599. &skmsg->mb_dma_address);
  3600. if (skmsg->msg_buf == NULL) {
  3601. rc = -ENOMEM;
  3602. goto err_out;
  3603. }
  3604. skmsg->offset = (u32)((u64)skmsg->msg_buf &
  3605. (~FIT_QCMD_BASE_ADDRESS_MASK));
  3606. skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
  3607. skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
  3608. FIT_QCMD_BASE_ADDRESS_MASK);
  3609. skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
  3610. skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
  3611. memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
  3612. skmsg->next = &skmsg[1];
  3613. }
  3614. /* Free list is in order starting with the 0th entry. */
  3615. skdev->skmsg_table[i - 1].next = NULL;
  3616. skdev->skmsg_free_list = skdev->skmsg_table;
  3617. err_out:
  3618. return rc;
  3619. }
  3620. static int skd_cons_skreq(struct skd_device *skdev)
  3621. {
  3622. int rc = 0;
  3623. u32 i;
  3624. pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n",
  3625. skdev->name, __func__, __LINE__,
  3626. sizeof(struct skd_request_context),
  3627. skdev->num_req_context,
  3628. sizeof(struct skd_request_context) * skdev->num_req_context);
  3629. skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
  3630. * skdev->num_req_context, GFP_KERNEL);
  3631. if (skdev->skreq_table == NULL) {
  3632. rc = -ENOMEM;
  3633. goto err_out;
  3634. }
  3635. pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
  3636. skdev->name, __func__, __LINE__,
  3637. skdev->sgs_per_request, sizeof(struct scatterlist),
  3638. skdev->sgs_per_request * sizeof(struct scatterlist));
  3639. for (i = 0; i < skdev->num_req_context; i++) {
  3640. struct skd_request_context *skreq;
  3641. skreq = &skdev->skreq_table[i];
  3642. skreq->id = i + SKD_ID_RW_REQUEST;
  3643. skreq->state = SKD_REQ_STATE_IDLE;
  3644. skreq->sg = kzalloc(sizeof(struct scatterlist) *
  3645. skdev->sgs_per_request, GFP_KERNEL);
  3646. if (skreq->sg == NULL) {
  3647. rc = -ENOMEM;
  3648. goto err_out;
  3649. }
  3650. sg_init_table(skreq->sg, skdev->sgs_per_request);
  3651. skreq->sksg_list = skd_cons_sg_list(skdev,
  3652. skdev->sgs_per_request,
  3653. &skreq->sksg_dma_address);
  3654. if (skreq->sksg_list == NULL) {
  3655. rc = -ENOMEM;
  3656. goto err_out;
  3657. }
  3658. skreq->next = &skreq[1];
  3659. }
  3660. /* Free list is in order starting with the 0th entry. */
  3661. skdev->skreq_table[i - 1].next = NULL;
  3662. skdev->skreq_free_list = skdev->skreq_table;
  3663. err_out:
  3664. return rc;
  3665. }
  3666. static int skd_cons_skspcl(struct skd_device *skdev)
  3667. {
  3668. int rc = 0;
  3669. u32 i, nbytes;
  3670. pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n",
  3671. skdev->name, __func__, __LINE__,
  3672. sizeof(struct skd_special_context),
  3673. skdev->n_special,
  3674. sizeof(struct skd_special_context) * skdev->n_special);
  3675. skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
  3676. * skdev->n_special, GFP_KERNEL);
  3677. if (skdev->skspcl_table == NULL) {
  3678. rc = -ENOMEM;
  3679. goto err_out;
  3680. }
  3681. for (i = 0; i < skdev->n_special; i++) {
  3682. struct skd_special_context *skspcl;
  3683. skspcl = &skdev->skspcl_table[i];
  3684. skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
  3685. skspcl->req.state = SKD_REQ_STATE_IDLE;
  3686. skspcl->req.next = &skspcl[1].req;
  3687. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3688. skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
  3689. &skspcl->mb_dma_address);
  3690. if (skspcl->msg_buf == NULL) {
  3691. rc = -ENOMEM;
  3692. goto err_out;
  3693. }
  3694. memset(skspcl->msg_buf, 0, nbytes);
  3695. skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
  3696. SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
  3697. if (skspcl->req.sg == NULL) {
  3698. rc = -ENOMEM;
  3699. goto err_out;
  3700. }
  3701. skspcl->req.sksg_list = skd_cons_sg_list(skdev,
  3702. SKD_N_SG_PER_SPECIAL,
  3703. &skspcl->req.
  3704. sksg_dma_address);
  3705. if (skspcl->req.sksg_list == NULL) {
  3706. rc = -ENOMEM;
  3707. goto err_out;
  3708. }
  3709. }
  3710. /* Free list is in order starting with the 0th entry. */
  3711. skdev->skspcl_table[i - 1].req.next = NULL;
  3712. skdev->skspcl_free_list = skdev->skspcl_table;
  3713. return rc;
  3714. err_out:
  3715. return rc;
  3716. }
  3717. static int skd_cons_sksb(struct skd_device *skdev)
  3718. {
  3719. int rc = 0;
  3720. struct skd_special_context *skspcl;
  3721. u32 nbytes;
  3722. skspcl = &skdev->internal_skspcl;
  3723. skspcl->req.id = 0 + SKD_ID_INTERNAL;
  3724. skspcl->req.state = SKD_REQ_STATE_IDLE;
  3725. nbytes = SKD_N_INTERNAL_BYTES;
  3726. skspcl->data_buf = pci_alloc_consistent(skdev->pdev, nbytes,
  3727. &skspcl->db_dma_address);
  3728. if (skspcl->data_buf == NULL) {
  3729. rc = -ENOMEM;
  3730. goto err_out;
  3731. }
  3732. memset(skspcl->data_buf, 0, nbytes);
  3733. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3734. skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
  3735. &skspcl->mb_dma_address);
  3736. if (skspcl->msg_buf == NULL) {
  3737. rc = -ENOMEM;
  3738. goto err_out;
  3739. }
  3740. memset(skspcl->msg_buf, 0, nbytes);
  3741. skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
  3742. &skspcl->req.sksg_dma_address);
  3743. if (skspcl->req.sksg_list == NULL) {
  3744. rc = -ENOMEM;
  3745. goto err_out;
  3746. }
  3747. if (!skd_format_internal_skspcl(skdev)) {
  3748. rc = -EINVAL;
  3749. goto err_out;
  3750. }
  3751. err_out:
  3752. return rc;
  3753. }
  3754. static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
  3755. u32 n_sg,
  3756. dma_addr_t *ret_dma_addr)
  3757. {
  3758. struct fit_sg_descriptor *sg_list;
  3759. u32 nbytes;
  3760. nbytes = sizeof(*sg_list) * n_sg;
  3761. sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
  3762. if (sg_list != NULL) {
  3763. uint64_t dma_address = *ret_dma_addr;
  3764. u32 i;
  3765. memset(sg_list, 0, nbytes);
  3766. for (i = 0; i < n_sg - 1; i++) {
  3767. uint64_t ndp_off;
  3768. ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
  3769. sg_list[i].next_desc_ptr = dma_address + ndp_off;
  3770. }
  3771. sg_list[i].next_desc_ptr = 0LL;
  3772. }
  3773. return sg_list;
  3774. }
  3775. static int skd_cons_disk(struct skd_device *skdev)
  3776. {
  3777. int rc = 0;
  3778. struct gendisk *disk;
  3779. struct request_queue *q;
  3780. unsigned long flags;
  3781. disk = alloc_disk(SKD_MINORS_PER_DEVICE);
  3782. if (!disk) {
  3783. rc = -ENOMEM;
  3784. goto err_out;
  3785. }
  3786. skdev->disk = disk;
  3787. sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
  3788. disk->major = skdev->major;
  3789. disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
  3790. disk->fops = &skd_blockdev_ops;
  3791. disk->private_data = skdev;
  3792. q = blk_init_queue(skd_request_fn, &skdev->lock);
  3793. if (!q) {
  3794. rc = -ENOMEM;
  3795. goto err_out;
  3796. }
  3797. skdev->queue = q;
  3798. disk->queue = q;
  3799. q->queuedata = skdev;
  3800. blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
  3801. blk_queue_max_segments(q, skdev->sgs_per_request);
  3802. blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
  3803. /* set sysfs ptimal_io_size to 8K */
  3804. blk_queue_io_opt(q, 8192);
  3805. /* DISCARD Flag initialization. */
  3806. q->limits.discard_granularity = 8192;
  3807. q->limits.discard_alignment = 0;
  3808. q->limits.max_discard_sectors = UINT_MAX >> 9;
  3809. q->limits.discard_zeroes_data = 1;
  3810. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
  3811. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
  3812. spin_lock_irqsave(&skdev->lock, flags);
  3813. pr_debug("%s:%s:%d stopping %s queue\n",
  3814. skdev->name, __func__, __LINE__, skdev->name);
  3815. blk_stop_queue(skdev->queue);
  3816. spin_unlock_irqrestore(&skdev->lock, flags);
  3817. err_out:
  3818. return rc;
  3819. }
  3820. /*
  3821. *****************************************************************************
  3822. * DESTRUCT (FREE)
  3823. *****************************************************************************
  3824. */
  3825. static void skd_free_skcomp(struct skd_device *skdev);
  3826. static void skd_free_skmsg(struct skd_device *skdev);
  3827. static void skd_free_skreq(struct skd_device *skdev);
  3828. static void skd_free_skspcl(struct skd_device *skdev);
  3829. static void skd_free_sksb(struct skd_device *skdev);
  3830. static void skd_free_sg_list(struct skd_device *skdev,
  3831. struct fit_sg_descriptor *sg_list,
  3832. u32 n_sg, dma_addr_t dma_addr);
  3833. static void skd_free_disk(struct skd_device *skdev);
  3834. static void skd_destruct(struct skd_device *skdev)
  3835. {
  3836. if (skdev == NULL)
  3837. return;
  3838. pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
  3839. skd_free_disk(skdev);
  3840. pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
  3841. skd_free_sksb(skdev);
  3842. pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
  3843. skd_free_skspcl(skdev);
  3844. pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
  3845. skd_free_skreq(skdev);
  3846. pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
  3847. skd_free_skmsg(skdev);
  3848. pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
  3849. skd_free_skcomp(skdev);
  3850. pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__);
  3851. kfree(skdev);
  3852. }
  3853. static void skd_free_skcomp(struct skd_device *skdev)
  3854. {
  3855. if (skdev->skcomp_table != NULL) {
  3856. u32 nbytes;
  3857. nbytes = sizeof(skdev->skcomp_table[0]) *
  3858. SKD_N_COMPLETION_ENTRY;
  3859. pci_free_consistent(skdev->pdev, nbytes,
  3860. skdev->skcomp_table, skdev->cq_dma_address);
  3861. }
  3862. skdev->skcomp_table = NULL;
  3863. skdev->cq_dma_address = 0;
  3864. }
  3865. static void skd_free_skmsg(struct skd_device *skdev)
  3866. {
  3867. u32 i;
  3868. if (skdev->skmsg_table == NULL)
  3869. return;
  3870. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  3871. struct skd_fitmsg_context *skmsg;
  3872. skmsg = &skdev->skmsg_table[i];
  3873. if (skmsg->msg_buf != NULL) {
  3874. skmsg->msg_buf += skmsg->offset;
  3875. skmsg->mb_dma_address += skmsg->offset;
  3876. pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
  3877. skmsg->msg_buf,
  3878. skmsg->mb_dma_address);
  3879. }
  3880. skmsg->msg_buf = NULL;
  3881. skmsg->mb_dma_address = 0;
  3882. }
  3883. kfree(skdev->skmsg_table);
  3884. skdev->skmsg_table = NULL;
  3885. }
  3886. static void skd_free_skreq(struct skd_device *skdev)
  3887. {
  3888. u32 i;
  3889. if (skdev->skreq_table == NULL)
  3890. return;
  3891. for (i = 0; i < skdev->num_req_context; i++) {
  3892. struct skd_request_context *skreq;
  3893. skreq = &skdev->skreq_table[i];
  3894. skd_free_sg_list(skdev, skreq->sksg_list,
  3895. skdev->sgs_per_request,
  3896. skreq->sksg_dma_address);
  3897. skreq->sksg_list = NULL;
  3898. skreq->sksg_dma_address = 0;
  3899. kfree(skreq->sg);
  3900. }
  3901. kfree(skdev->skreq_table);
  3902. skdev->skreq_table = NULL;
  3903. }
  3904. static void skd_free_skspcl(struct skd_device *skdev)
  3905. {
  3906. u32 i;
  3907. u32 nbytes;
  3908. if (skdev->skspcl_table == NULL)
  3909. return;
  3910. for (i = 0; i < skdev->n_special; i++) {
  3911. struct skd_special_context *skspcl;
  3912. skspcl = &skdev->skspcl_table[i];
  3913. if (skspcl->msg_buf != NULL) {
  3914. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3915. pci_free_consistent(skdev->pdev, nbytes,
  3916. skspcl->msg_buf,
  3917. skspcl->mb_dma_address);
  3918. }
  3919. skspcl->msg_buf = NULL;
  3920. skspcl->mb_dma_address = 0;
  3921. skd_free_sg_list(skdev, skspcl->req.sksg_list,
  3922. SKD_N_SG_PER_SPECIAL,
  3923. skspcl->req.sksg_dma_address);
  3924. skspcl->req.sksg_list = NULL;
  3925. skspcl->req.sksg_dma_address = 0;
  3926. kfree(skspcl->req.sg);
  3927. }
  3928. kfree(skdev->skspcl_table);
  3929. skdev->skspcl_table = NULL;
  3930. }
  3931. static void skd_free_sksb(struct skd_device *skdev)
  3932. {
  3933. struct skd_special_context *skspcl;
  3934. u32 nbytes;
  3935. skspcl = &skdev->internal_skspcl;
  3936. if (skspcl->data_buf != NULL) {
  3937. nbytes = SKD_N_INTERNAL_BYTES;
  3938. pci_free_consistent(skdev->pdev, nbytes,
  3939. skspcl->data_buf, skspcl->db_dma_address);
  3940. }
  3941. skspcl->data_buf = NULL;
  3942. skspcl->db_dma_address = 0;
  3943. if (skspcl->msg_buf != NULL) {
  3944. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  3945. pci_free_consistent(skdev->pdev, nbytes,
  3946. skspcl->msg_buf, skspcl->mb_dma_address);
  3947. }
  3948. skspcl->msg_buf = NULL;
  3949. skspcl->mb_dma_address = 0;
  3950. skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
  3951. skspcl->req.sksg_dma_address);
  3952. skspcl->req.sksg_list = NULL;
  3953. skspcl->req.sksg_dma_address = 0;
  3954. }
  3955. static void skd_free_sg_list(struct skd_device *skdev,
  3956. struct fit_sg_descriptor *sg_list,
  3957. u32 n_sg, dma_addr_t dma_addr)
  3958. {
  3959. if (sg_list != NULL) {
  3960. u32 nbytes;
  3961. nbytes = sizeof(*sg_list) * n_sg;
  3962. pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
  3963. }
  3964. }
  3965. static void skd_free_disk(struct skd_device *skdev)
  3966. {
  3967. struct gendisk *disk = skdev->disk;
  3968. if (disk != NULL) {
  3969. struct request_queue *q = disk->queue;
  3970. if (disk->flags & GENHD_FL_UP)
  3971. del_gendisk(disk);
  3972. if (q)
  3973. blk_cleanup_queue(q);
  3974. put_disk(disk);
  3975. }
  3976. skdev->disk = NULL;
  3977. }
  3978. /*
  3979. *****************************************************************************
  3980. * BLOCK DEVICE (BDEV) GLUE
  3981. *****************************************************************************
  3982. */
  3983. static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3984. {
  3985. struct skd_device *skdev;
  3986. u64 capacity;
  3987. skdev = bdev->bd_disk->private_data;
  3988. pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n",
  3989. skdev->name, __func__, __LINE__,
  3990. bdev->bd_disk->disk_name, current->comm);
  3991. if (skdev->read_cap_is_valid) {
  3992. capacity = get_capacity(skdev->disk);
  3993. geo->heads = 64;
  3994. geo->sectors = 255;
  3995. geo->cylinders = (capacity) / (255 * 64);
  3996. return 0;
  3997. }
  3998. return -EIO;
  3999. }
  4000. static int skd_bdev_attach(struct skd_device *skdev)
  4001. {
  4002. pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__);
  4003. add_disk(skdev->disk);
  4004. return 0;
  4005. }
  4006. static const struct block_device_operations skd_blockdev_ops = {
  4007. .owner = THIS_MODULE,
  4008. .ioctl = skd_bdev_ioctl,
  4009. .getgeo = skd_bdev_getgeo,
  4010. };
  4011. /*
  4012. *****************************************************************************
  4013. * PCIe DRIVER GLUE
  4014. *****************************************************************************
  4015. */
  4016. static DEFINE_PCI_DEVICE_TABLE(skd_pci_tbl) = {
  4017. { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
  4018. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  4019. { 0 } /* terminate list */
  4020. };
  4021. MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
  4022. static char *skd_pci_info(struct skd_device *skdev, char *str)
  4023. {
  4024. int pcie_reg;
  4025. strcpy(str, "PCIe (");
  4026. pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
  4027. if (pcie_reg) {
  4028. char lwstr[6];
  4029. uint16_t pcie_lstat, lspeed, lwidth;
  4030. pcie_reg += 0x12;
  4031. pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
  4032. lspeed = pcie_lstat & (0xF);
  4033. lwidth = (pcie_lstat & 0x3F0) >> 4;
  4034. if (lspeed == 1)
  4035. strcat(str, "2.5GT/s ");
  4036. else if (lspeed == 2)
  4037. strcat(str, "5.0GT/s ");
  4038. else
  4039. strcat(str, "<unknown> ");
  4040. snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
  4041. strcat(str, lwstr);
  4042. }
  4043. return str;
  4044. }
  4045. static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  4046. {
  4047. int i;
  4048. int rc = 0;
  4049. char pci_str[32];
  4050. struct skd_device *skdev;
  4051. pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
  4052. DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
  4053. pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
  4054. pci_name(pdev), pdev->vendor, pdev->device);
  4055. rc = pci_enable_device(pdev);
  4056. if (rc)
  4057. return rc;
  4058. rc = pci_request_regions(pdev, DRV_NAME);
  4059. if (rc)
  4060. goto err_out;
  4061. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  4062. if (!rc) {
  4063. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4064. pr_err("(%s): consistent DMA mask error %d\n",
  4065. pci_name(pdev), rc);
  4066. }
  4067. } else {
  4068. (rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
  4069. if (rc) {
  4070. pr_err("(%s): DMA mask error %d\n",
  4071. pci_name(pdev), rc);
  4072. goto err_out_regions;
  4073. }
  4074. }
  4075. skdev = skd_construct(pdev);
  4076. if (skdev == NULL) {
  4077. rc = -ENOMEM;
  4078. goto err_out_regions;
  4079. }
  4080. skd_pci_info(skdev, pci_str);
  4081. pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
  4082. pci_set_master(pdev);
  4083. rc = pci_enable_pcie_error_reporting(pdev);
  4084. if (rc) {
  4085. pr_err(
  4086. "(%s): bad enable of PCIe error reporting rc=%d\n",
  4087. skd_name(skdev), rc);
  4088. skdev->pcie_error_reporting_is_enabled = 0;
  4089. } else
  4090. skdev->pcie_error_reporting_is_enabled = 1;
  4091. pci_set_drvdata(pdev, skdev);
  4092. skdev->pdev = pdev;
  4093. skdev->disk->driverfs_dev = &pdev->dev;
  4094. for (i = 0; i < SKD_MAX_BARS; i++) {
  4095. skdev->mem_phys[i] = pci_resource_start(pdev, i);
  4096. skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
  4097. skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
  4098. skdev->mem_size[i]);
  4099. if (!skdev->mem_map[i]) {
  4100. pr_err("(%s): Unable to map adapter memory!\n",
  4101. skd_name(skdev));
  4102. rc = -ENODEV;
  4103. goto err_out_iounmap;
  4104. }
  4105. pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
  4106. skdev->name, __func__, __LINE__,
  4107. skdev->mem_map[i],
  4108. (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
  4109. }
  4110. rc = skd_acquire_irq(skdev);
  4111. if (rc) {
  4112. pr_err("(%s): interrupt resource error %d\n",
  4113. skd_name(skdev), rc);
  4114. goto err_out_iounmap;
  4115. }
  4116. rc = skd_start_timer(skdev);
  4117. if (rc)
  4118. goto err_out_timer;
  4119. init_waitqueue_head(&skdev->waitq);
  4120. skd_start_device(skdev);
  4121. rc = wait_event_interruptible_timeout(skdev->waitq,
  4122. (skdev->gendisk_on),
  4123. (SKD_START_WAIT_SECONDS * HZ));
  4124. if (skdev->gendisk_on > 0) {
  4125. /* device came on-line after reset */
  4126. skd_bdev_attach(skdev);
  4127. rc = 0;
  4128. } else {
  4129. /* we timed out, something is wrong with the device,
  4130. don't add the disk structure */
  4131. pr_err(
  4132. "(%s): error: waiting for s1120 timed out %d!\n",
  4133. skd_name(skdev), rc);
  4134. /* in case of no error; we timeout with ENXIO */
  4135. if (!rc)
  4136. rc = -ENXIO;
  4137. goto err_out_timer;
  4138. }
  4139. #ifdef SKD_VMK_POLL_HANDLER
  4140. if (skdev->irq_type == SKD_IRQ_MSIX) {
  4141. /* MSIX completion handler is being used for coredump */
  4142. vmklnx_scsi_register_poll_handler(skdev->scsi_host,
  4143. skdev->msix_entries[5].vector,
  4144. skd_comp_q, skdev);
  4145. } else {
  4146. vmklnx_scsi_register_poll_handler(skdev->scsi_host,
  4147. skdev->pdev->irq, skd_isr,
  4148. skdev);
  4149. }
  4150. #endif /* SKD_VMK_POLL_HANDLER */
  4151. return rc;
  4152. err_out_timer:
  4153. skd_stop_device(skdev);
  4154. skd_release_irq(skdev);
  4155. err_out_iounmap:
  4156. for (i = 0; i < SKD_MAX_BARS; i++)
  4157. if (skdev->mem_map[i])
  4158. iounmap(skdev->mem_map[i]);
  4159. if (skdev->pcie_error_reporting_is_enabled)
  4160. pci_disable_pcie_error_reporting(pdev);
  4161. skd_destruct(skdev);
  4162. err_out_regions:
  4163. pci_release_regions(pdev);
  4164. err_out:
  4165. pci_disable_device(pdev);
  4166. pci_set_drvdata(pdev, NULL);
  4167. return rc;
  4168. }
  4169. static void skd_pci_remove(struct pci_dev *pdev)
  4170. {
  4171. int i;
  4172. struct skd_device *skdev;
  4173. skdev = pci_get_drvdata(pdev);
  4174. if (!skdev) {
  4175. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4176. return;
  4177. }
  4178. skd_stop_device(skdev);
  4179. skd_release_irq(skdev);
  4180. for (i = 0; i < SKD_MAX_BARS; i++)
  4181. if (skdev->mem_map[i])
  4182. iounmap((u32 *)skdev->mem_map[i]);
  4183. if (skdev->pcie_error_reporting_is_enabled)
  4184. pci_disable_pcie_error_reporting(pdev);
  4185. skd_destruct(skdev);
  4186. pci_release_regions(pdev);
  4187. pci_disable_device(pdev);
  4188. pci_set_drvdata(pdev, NULL);
  4189. return;
  4190. }
  4191. static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  4192. {
  4193. int i;
  4194. struct skd_device *skdev;
  4195. skdev = pci_get_drvdata(pdev);
  4196. if (!skdev) {
  4197. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4198. return -EIO;
  4199. }
  4200. skd_stop_device(skdev);
  4201. skd_release_irq(skdev);
  4202. for (i = 0; i < SKD_MAX_BARS; i++)
  4203. if (skdev->mem_map[i])
  4204. iounmap((u32 *)skdev->mem_map[i]);
  4205. if (skdev->pcie_error_reporting_is_enabled)
  4206. pci_disable_pcie_error_reporting(pdev);
  4207. pci_release_regions(pdev);
  4208. pci_save_state(pdev);
  4209. pci_disable_device(pdev);
  4210. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4211. return 0;
  4212. }
  4213. static int skd_pci_resume(struct pci_dev *pdev)
  4214. {
  4215. int i;
  4216. int rc = 0;
  4217. struct skd_device *skdev;
  4218. skdev = pci_get_drvdata(pdev);
  4219. if (!skdev) {
  4220. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4221. return -1;
  4222. }
  4223. pci_set_power_state(pdev, PCI_D0);
  4224. pci_enable_wake(pdev, PCI_D0, 0);
  4225. pci_restore_state(pdev);
  4226. rc = pci_enable_device(pdev);
  4227. if (rc)
  4228. return rc;
  4229. rc = pci_request_regions(pdev, DRV_NAME);
  4230. if (rc)
  4231. goto err_out;
  4232. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  4233. if (!rc) {
  4234. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4235. pr_err("(%s): consistent DMA mask error %d\n",
  4236. pci_name(pdev), rc);
  4237. }
  4238. } else {
  4239. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4240. if (rc) {
  4241. pr_err("(%s): DMA mask error %d\n",
  4242. pci_name(pdev), rc);
  4243. goto err_out_regions;
  4244. }
  4245. }
  4246. pci_set_master(pdev);
  4247. rc = pci_enable_pcie_error_reporting(pdev);
  4248. if (rc) {
  4249. pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
  4250. skdev->name, rc);
  4251. skdev->pcie_error_reporting_is_enabled = 0;
  4252. } else
  4253. skdev->pcie_error_reporting_is_enabled = 1;
  4254. for (i = 0; i < SKD_MAX_BARS; i++) {
  4255. skdev->mem_phys[i] = pci_resource_start(pdev, i);
  4256. skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
  4257. skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
  4258. skdev->mem_size[i]);
  4259. if (!skdev->mem_map[i]) {
  4260. pr_err("(%s): Unable to map adapter memory!\n",
  4261. skd_name(skdev));
  4262. rc = -ENODEV;
  4263. goto err_out_iounmap;
  4264. }
  4265. pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
  4266. skdev->name, __func__, __LINE__,
  4267. skdev->mem_map[i],
  4268. (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
  4269. }
  4270. rc = skd_acquire_irq(skdev);
  4271. if (rc) {
  4272. pr_err("(%s): interrupt resource error %d\n",
  4273. pci_name(pdev), rc);
  4274. goto err_out_iounmap;
  4275. }
  4276. rc = skd_start_timer(skdev);
  4277. if (rc)
  4278. goto err_out_timer;
  4279. init_waitqueue_head(&skdev->waitq);
  4280. skd_start_device(skdev);
  4281. return rc;
  4282. err_out_timer:
  4283. skd_stop_device(skdev);
  4284. skd_release_irq(skdev);
  4285. err_out_iounmap:
  4286. for (i = 0; i < SKD_MAX_BARS; i++)
  4287. if (skdev->mem_map[i])
  4288. iounmap(skdev->mem_map[i]);
  4289. if (skdev->pcie_error_reporting_is_enabled)
  4290. pci_disable_pcie_error_reporting(pdev);
  4291. err_out_regions:
  4292. pci_release_regions(pdev);
  4293. err_out:
  4294. pci_disable_device(pdev);
  4295. return rc;
  4296. }
  4297. static void skd_pci_shutdown(struct pci_dev *pdev)
  4298. {
  4299. struct skd_device *skdev;
  4300. pr_err("skd_pci_shutdown called\n");
  4301. skdev = pci_get_drvdata(pdev);
  4302. if (!skdev) {
  4303. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4304. return;
  4305. }
  4306. pr_err("%s: calling stop\n", skd_name(skdev));
  4307. skd_stop_device(skdev);
  4308. }
  4309. static struct pci_driver skd_driver = {
  4310. .name = DRV_NAME,
  4311. .id_table = skd_pci_tbl,
  4312. .probe = skd_pci_probe,
  4313. .remove = skd_pci_remove,
  4314. .suspend = skd_pci_suspend,
  4315. .resume = skd_pci_resume,
  4316. .shutdown = skd_pci_shutdown,
  4317. };
  4318. /*
  4319. *****************************************************************************
  4320. * LOGGING SUPPORT
  4321. *****************************************************************************
  4322. */
  4323. static const char *skd_name(struct skd_device *skdev)
  4324. {
  4325. memset(skdev->id_str, 0, sizeof(skdev->id_str));
  4326. if (skdev->inquiry_is_valid)
  4327. snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
  4328. skdev->name, skdev->inq_serial_num,
  4329. pci_name(skdev->pdev));
  4330. else
  4331. snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
  4332. skdev->name, pci_name(skdev->pdev));
  4333. return skdev->id_str;
  4334. }
  4335. const char *skd_drive_state_to_str(int state)
  4336. {
  4337. switch (state) {
  4338. case FIT_SR_DRIVE_OFFLINE:
  4339. return "OFFLINE";
  4340. case FIT_SR_DRIVE_INIT:
  4341. return "INIT";
  4342. case FIT_SR_DRIVE_ONLINE:
  4343. return "ONLINE";
  4344. case FIT_SR_DRIVE_BUSY:
  4345. return "BUSY";
  4346. case FIT_SR_DRIVE_FAULT:
  4347. return "FAULT";
  4348. case FIT_SR_DRIVE_DEGRADED:
  4349. return "DEGRADED";
  4350. case FIT_SR_PCIE_LINK_DOWN:
  4351. return "INK_DOWN";
  4352. case FIT_SR_DRIVE_SOFT_RESET:
  4353. return "SOFT_RESET";
  4354. case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
  4355. return "NEED_FW";
  4356. case FIT_SR_DRIVE_INIT_FAULT:
  4357. return "INIT_FAULT";
  4358. case FIT_SR_DRIVE_BUSY_SANITIZE:
  4359. return "BUSY_SANITIZE";
  4360. case FIT_SR_DRIVE_BUSY_ERASE:
  4361. return "BUSY_ERASE";
  4362. case FIT_SR_DRIVE_FW_BOOTING:
  4363. return "FW_BOOTING";
  4364. default:
  4365. return "???";
  4366. }
  4367. }
  4368. const char *skd_skdev_state_to_str(enum skd_drvr_state state)
  4369. {
  4370. switch (state) {
  4371. case SKD_DRVR_STATE_LOAD:
  4372. return "LOAD";
  4373. case SKD_DRVR_STATE_IDLE:
  4374. return "IDLE";
  4375. case SKD_DRVR_STATE_BUSY:
  4376. return "BUSY";
  4377. case SKD_DRVR_STATE_STARTING:
  4378. return "STARTING";
  4379. case SKD_DRVR_STATE_ONLINE:
  4380. return "ONLINE";
  4381. case SKD_DRVR_STATE_PAUSING:
  4382. return "PAUSING";
  4383. case SKD_DRVR_STATE_PAUSED:
  4384. return "PAUSED";
  4385. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  4386. return "DRAINING_TIMEOUT";
  4387. case SKD_DRVR_STATE_RESTARTING:
  4388. return "RESTARTING";
  4389. case SKD_DRVR_STATE_RESUMING:
  4390. return "RESUMING";
  4391. case SKD_DRVR_STATE_STOPPING:
  4392. return "STOPPING";
  4393. case SKD_DRVR_STATE_SYNCING:
  4394. return "SYNCING";
  4395. case SKD_DRVR_STATE_FAULT:
  4396. return "FAULT";
  4397. case SKD_DRVR_STATE_DISAPPEARED:
  4398. return "DISAPPEARED";
  4399. case SKD_DRVR_STATE_BUSY_ERASE:
  4400. return "BUSY_ERASE";
  4401. case SKD_DRVR_STATE_BUSY_SANITIZE:
  4402. return "BUSY_SANITIZE";
  4403. case SKD_DRVR_STATE_BUSY_IMMINENT:
  4404. return "BUSY_IMMINENT";
  4405. case SKD_DRVR_STATE_WAIT_BOOT:
  4406. return "WAIT_BOOT";
  4407. default:
  4408. return "???";
  4409. }
  4410. }
  4411. const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
  4412. {
  4413. switch (state) {
  4414. case SKD_MSG_STATE_IDLE:
  4415. return "IDLE";
  4416. case SKD_MSG_STATE_BUSY:
  4417. return "BUSY";
  4418. default:
  4419. return "???";
  4420. }
  4421. }
  4422. const char *skd_skreq_state_to_str(enum skd_req_state state)
  4423. {
  4424. switch (state) {
  4425. case SKD_REQ_STATE_IDLE:
  4426. return "IDLE";
  4427. case SKD_REQ_STATE_SETUP:
  4428. return "SETUP";
  4429. case SKD_REQ_STATE_BUSY:
  4430. return "BUSY";
  4431. case SKD_REQ_STATE_COMPLETED:
  4432. return "COMPLETED";
  4433. case SKD_REQ_STATE_TIMEOUT:
  4434. return "TIMEOUT";
  4435. case SKD_REQ_STATE_ABORTED:
  4436. return "ABORTED";
  4437. default:
  4438. return "???";
  4439. }
  4440. }
  4441. static void skd_log_skdev(struct skd_device *skdev, const char *event)
  4442. {
  4443. pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n",
  4444. skdev->name, __func__, __LINE__, skdev->name, skdev, event);
  4445. pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n",
  4446. skdev->name, __func__, __LINE__,
  4447. skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
  4448. skd_skdev_state_to_str(skdev->state), skdev->state);
  4449. pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n",
  4450. skdev->name, __func__, __LINE__,
  4451. skdev->in_flight, skdev->cur_max_queue_depth,
  4452. skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
  4453. pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n",
  4454. skdev->name, __func__, __LINE__,
  4455. skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
  4456. }
  4457. static void skd_log_skmsg(struct skd_device *skdev,
  4458. struct skd_fitmsg_context *skmsg, const char *event)
  4459. {
  4460. pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n",
  4461. skdev->name, __func__, __LINE__, skdev->name, skmsg, event);
  4462. pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n",
  4463. skdev->name, __func__, __LINE__,
  4464. skd_skmsg_state_to_str(skmsg->state), skmsg->state,
  4465. skmsg->id, skmsg->length);
  4466. }
  4467. static void skd_log_skreq(struct skd_device *skdev,
  4468. struct skd_request_context *skreq, const char *event)
  4469. {
  4470. pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n",
  4471. skdev->name, __func__, __LINE__, skdev->name, skreq, event);
  4472. pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
  4473. skdev->name, __func__, __LINE__,
  4474. skd_skreq_state_to_str(skreq->state), skreq->state,
  4475. skreq->id, skreq->fitmsg_id);
  4476. pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n",
  4477. skdev->name, __func__, __LINE__,
  4478. skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
  4479. if (skreq->req != NULL) {
  4480. struct request *req = skreq->req;
  4481. u32 lba = (u32)blk_rq_pos(req);
  4482. u32 count = blk_rq_sectors(req);
  4483. pr_debug("%s:%s:%d "
  4484. "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
  4485. skdev->name, __func__, __LINE__,
  4486. req, lba, lba, count, count,
  4487. (int)rq_data_dir(req));
  4488. } else
  4489. pr_debug("%s:%s:%d req=NULL\n",
  4490. skdev->name, __func__, __LINE__);
  4491. }
  4492. /*
  4493. *****************************************************************************
  4494. * MODULE GLUE
  4495. *****************************************************************************
  4496. */
  4497. static int __init skd_init(void)
  4498. {
  4499. int rc = -ENOMEM;
  4500. pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
  4501. switch (skd_isr_type) {
  4502. case SKD_IRQ_LEGACY:
  4503. case SKD_IRQ_MSI:
  4504. case SKD_IRQ_MSIX:
  4505. break;
  4506. default:
  4507. pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
  4508. skd_isr_type, SKD_IRQ_DEFAULT);
  4509. skd_isr_type = SKD_IRQ_DEFAULT;
  4510. }
  4511. if (skd_max_queue_depth < 1 ||
  4512. skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
  4513. pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
  4514. skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
  4515. skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  4516. }
  4517. if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
  4518. pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
  4519. skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
  4520. skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  4521. }
  4522. if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
  4523. pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
  4524. skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
  4525. skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  4526. }
  4527. if (skd_dbg_level < 0 || skd_dbg_level > 2) {
  4528. pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
  4529. skd_dbg_level, 0);
  4530. skd_dbg_level = 0;
  4531. }
  4532. if (skd_isr_comp_limit < 0) {
  4533. pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
  4534. skd_isr_comp_limit, 0);
  4535. skd_isr_comp_limit = 0;
  4536. }
  4537. if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
  4538. pr_err(PFX "skd_max_pass_thru %d invalid, re-set to %d\n",
  4539. skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
  4540. skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
  4541. }
  4542. /* Obtain major device number. */
  4543. rc = register_blkdev(0, DRV_NAME);
  4544. if (rc < 0)
  4545. goto err_register_blkdev;
  4546. skd_major = rc;
  4547. rc = pci_register_driver(&skd_driver);
  4548. if (rc < 0)
  4549. goto err_pci_register_driver;
  4550. return rc;
  4551. err_pci_register_driver:
  4552. unregister_blkdev(skd_major, DRV_NAME);
  4553. err_register_blkdev:
  4554. return rc;
  4555. }
  4556. static void __exit skd_exit(void)
  4557. {
  4558. pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
  4559. pci_unregister_driver(&skd_driver);
  4560. unregister_blkdev(skd_major, DRV_NAME);
  4561. }
  4562. module_init(skd_init);
  4563. module_exit(skd_exit);