i915_gem.c 131 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int
  58. i915_gem_object_get_pages(struct drm_gem_object *obj,
  59. gfp_t gfpmask);
  60. static void
  61. i915_gem_object_put_pages(struct drm_gem_object *obj);
  62. static LIST_HEAD(shrink_list);
  63. static DEFINE_SPINLOCK(shrink_list_lock);
  64. /* some bookkeeping */
  65. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count++;
  69. dev_priv->mm.object_memory += size;
  70. }
  71. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  72. size_t size)
  73. {
  74. dev_priv->mm.object_count--;
  75. dev_priv->mm.object_memory -= size;
  76. }
  77. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  78. size_t size)
  79. {
  80. dev_priv->mm.gtt_count++;
  81. dev_priv->mm.gtt_memory += size;
  82. }
  83. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  84. size_t size)
  85. {
  86. dev_priv->mm.gtt_count--;
  87. dev_priv->mm.gtt_memory -= size;
  88. }
  89. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  90. size_t size)
  91. {
  92. dev_priv->mm.pin_count++;
  93. dev_priv->mm.pin_memory += size;
  94. }
  95. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  96. size_t size)
  97. {
  98. dev_priv->mm.pin_count--;
  99. dev_priv->mm.pin_memory -= size;
  100. }
  101. int
  102. i915_gem_check_is_wedged(struct drm_device *dev)
  103. {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct completion *x = &dev_priv->error_completion;
  106. unsigned long flags;
  107. int ret;
  108. if (!atomic_read(&dev_priv->mm.wedged))
  109. return 0;
  110. ret = wait_for_completion_interruptible(x);
  111. if (ret)
  112. return ret;
  113. /* Success, we reset the GPU! */
  114. if (!atomic_read(&dev_priv->mm.wedged))
  115. return 0;
  116. /* GPU is hung, bump the completion count to account for
  117. * the token we just consumed so that we never hit zero and
  118. * end up waiting upon a subsequent completion event that
  119. * will never happen.
  120. */
  121. spin_lock_irqsave(&x->wait.lock, flags);
  122. x->done++;
  123. spin_unlock_irqrestore(&x->wait.lock, flags);
  124. return -EIO;
  125. }
  126. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. int ret;
  130. ret = i915_gem_check_is_wedged(dev);
  131. if (ret)
  132. return ret;
  133. ret = mutex_lock_interruptible(&dev->struct_mutex);
  134. if (ret)
  135. return ret;
  136. if (atomic_read(&dev_priv->mm.wedged)) {
  137. mutex_unlock(&dev->struct_mutex);
  138. return -EAGAIN;
  139. }
  140. WARN_ON(i915_verify_lists(dev));
  141. return 0;
  142. }
  143. static inline bool
  144. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  145. {
  146. return obj_priv->gtt_space &&
  147. !obj_priv->active &&
  148. obj_priv->pin_count == 0;
  149. }
  150. int i915_gem_do_init(struct drm_device *dev,
  151. unsigned long start,
  152. unsigned long end)
  153. {
  154. drm_i915_private_t *dev_priv = dev->dev_private;
  155. if (start >= end ||
  156. (start & (PAGE_SIZE - 1)) != 0 ||
  157. (end & (PAGE_SIZE - 1)) != 0) {
  158. return -EINVAL;
  159. }
  160. drm_mm_init(&dev_priv->mm.gtt_space, start,
  161. end - start);
  162. dev_priv->mm.gtt_total = end - start;
  163. return 0;
  164. }
  165. int
  166. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  167. struct drm_file *file_priv)
  168. {
  169. struct drm_i915_gem_init *args = data;
  170. int ret;
  171. mutex_lock(&dev->struct_mutex);
  172. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  173. mutex_unlock(&dev->struct_mutex);
  174. return ret;
  175. }
  176. int
  177. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  178. struct drm_file *file_priv)
  179. {
  180. struct drm_i915_private *dev_priv = dev->dev_private;
  181. struct drm_i915_gem_get_aperture *args = data;
  182. if (!(dev->driver->driver_features & DRIVER_GEM))
  183. return -ENODEV;
  184. mutex_lock(&dev->struct_mutex);
  185. args->aper_size = dev_priv->mm.gtt_total;
  186. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  187. mutex_unlock(&dev->struct_mutex);
  188. return 0;
  189. }
  190. /**
  191. * Creates a new mm object and returns a handle to it.
  192. */
  193. int
  194. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  195. struct drm_file *file_priv)
  196. {
  197. struct drm_i915_gem_create *args = data;
  198. struct drm_gem_object *obj;
  199. int ret;
  200. u32 handle;
  201. args->size = roundup(args->size, PAGE_SIZE);
  202. /* Allocate the new object */
  203. obj = i915_gem_alloc_object(dev, args->size);
  204. if (obj == NULL)
  205. return -ENOMEM;
  206. ret = drm_gem_handle_create(file_priv, obj, &handle);
  207. if (ret) {
  208. drm_gem_object_release(obj);
  209. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  210. kfree(obj);
  211. return ret;
  212. }
  213. /* drop reference from allocate - handle holds it now */
  214. drm_gem_object_unreference(obj);
  215. trace_i915_gem_object_create(obj);
  216. args->handle = handle;
  217. return 0;
  218. }
  219. static inline int
  220. fast_shmem_read(struct page **pages,
  221. loff_t page_base, int page_offset,
  222. char __user *data,
  223. int length)
  224. {
  225. int unwritten;
  226. char *vaddr;
  227. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  228. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  229. kunmap_atomic(vaddr, KM_USER0);
  230. return unwritten ? -EFAULT : 0;
  231. }
  232. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  233. {
  234. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  236. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  237. obj_priv->tiling_mode != I915_TILING_NONE;
  238. }
  239. static inline void
  240. slow_shmem_copy(struct page *dst_page,
  241. int dst_offset,
  242. struct page *src_page,
  243. int src_offset,
  244. int length)
  245. {
  246. char *dst_vaddr, *src_vaddr;
  247. dst_vaddr = kmap(dst_page);
  248. src_vaddr = kmap(src_page);
  249. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  250. kunmap(src_page);
  251. kunmap(dst_page);
  252. }
  253. static inline void
  254. slow_shmem_bit17_copy(struct page *gpu_page,
  255. int gpu_offset,
  256. struct page *cpu_page,
  257. int cpu_offset,
  258. int length,
  259. int is_read)
  260. {
  261. char *gpu_vaddr, *cpu_vaddr;
  262. /* Use the unswizzled path if this page isn't affected. */
  263. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  264. if (is_read)
  265. return slow_shmem_copy(cpu_page, cpu_offset,
  266. gpu_page, gpu_offset, length);
  267. else
  268. return slow_shmem_copy(gpu_page, gpu_offset,
  269. cpu_page, cpu_offset, length);
  270. }
  271. gpu_vaddr = kmap(gpu_page);
  272. cpu_vaddr = kmap(cpu_page);
  273. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  274. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  275. */
  276. while (length > 0) {
  277. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  278. int this_length = min(cacheline_end - gpu_offset, length);
  279. int swizzled_gpu_offset = gpu_offset ^ 64;
  280. if (is_read) {
  281. memcpy(cpu_vaddr + cpu_offset,
  282. gpu_vaddr + swizzled_gpu_offset,
  283. this_length);
  284. } else {
  285. memcpy(gpu_vaddr + swizzled_gpu_offset,
  286. cpu_vaddr + cpu_offset,
  287. this_length);
  288. }
  289. cpu_offset += this_length;
  290. gpu_offset += this_length;
  291. length -= this_length;
  292. }
  293. kunmap(cpu_page);
  294. kunmap(gpu_page);
  295. }
  296. /**
  297. * This is the fast shmem pread path, which attempts to copy_from_user directly
  298. * from the backing pages of the object to the user's address space. On a
  299. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  300. */
  301. static int
  302. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  303. struct drm_i915_gem_pread *args,
  304. struct drm_file *file_priv)
  305. {
  306. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  307. ssize_t remain;
  308. loff_t offset, page_base;
  309. char __user *user_data;
  310. int page_offset, page_length;
  311. int ret;
  312. user_data = (char __user *) (uintptr_t) args->data_ptr;
  313. remain = args->size;
  314. ret = i915_mutex_lock_interruptible(dev);
  315. if (ret)
  316. return ret;
  317. ret = i915_gem_object_get_pages(obj, 0);
  318. if (ret != 0)
  319. goto fail_unlock;
  320. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  321. args->size);
  322. if (ret != 0)
  323. goto fail_put_pages;
  324. obj_priv = to_intel_bo(obj);
  325. offset = args->offset;
  326. while (remain > 0) {
  327. /* Operation in this page
  328. *
  329. * page_base = page offset within aperture
  330. * page_offset = offset within page
  331. * page_length = bytes to copy for this page
  332. */
  333. page_base = (offset & ~(PAGE_SIZE-1));
  334. page_offset = offset & (PAGE_SIZE-1);
  335. page_length = remain;
  336. if ((page_offset + remain) > PAGE_SIZE)
  337. page_length = PAGE_SIZE - page_offset;
  338. ret = fast_shmem_read(obj_priv->pages,
  339. page_base, page_offset,
  340. user_data, page_length);
  341. if (ret)
  342. goto fail_put_pages;
  343. remain -= page_length;
  344. user_data += page_length;
  345. offset += page_length;
  346. }
  347. fail_put_pages:
  348. i915_gem_object_put_pages(obj);
  349. fail_unlock:
  350. mutex_unlock(&dev->struct_mutex);
  351. return ret;
  352. }
  353. static int
  354. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  355. {
  356. int ret;
  357. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  358. /* If we've insufficient memory to map in the pages, attempt
  359. * to make some space by throwing out some old buffers.
  360. */
  361. if (ret == -ENOMEM) {
  362. struct drm_device *dev = obj->dev;
  363. ret = i915_gem_evict_something(dev, obj->size,
  364. i915_gem_get_gtt_alignment(obj));
  365. if (ret)
  366. return ret;
  367. ret = i915_gem_object_get_pages(obj, 0);
  368. }
  369. return ret;
  370. }
  371. /**
  372. * This is the fallback shmem pread path, which allocates temporary storage
  373. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  374. * can copy out of the object's backing pages while holding the struct mutex
  375. * and not take page faults.
  376. */
  377. static int
  378. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  379. struct drm_i915_gem_pread *args,
  380. struct drm_file *file_priv)
  381. {
  382. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  383. struct mm_struct *mm = current->mm;
  384. struct page **user_pages;
  385. ssize_t remain;
  386. loff_t offset, pinned_pages, i;
  387. loff_t first_data_page, last_data_page, num_pages;
  388. int shmem_page_index, shmem_page_offset;
  389. int data_page_index, data_page_offset;
  390. int page_length;
  391. int ret;
  392. uint64_t data_ptr = args->data_ptr;
  393. int do_bit17_swizzling;
  394. remain = args->size;
  395. /* Pin the user pages containing the data. We can't fault while
  396. * holding the struct mutex, yet we want to hold it while
  397. * dereferencing the user data.
  398. */
  399. first_data_page = data_ptr / PAGE_SIZE;
  400. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  401. num_pages = last_data_page - first_data_page + 1;
  402. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  403. if (user_pages == NULL)
  404. return -ENOMEM;
  405. down_read(&mm->mmap_sem);
  406. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  407. num_pages, 1, 0, user_pages, NULL);
  408. up_read(&mm->mmap_sem);
  409. if (pinned_pages < num_pages) {
  410. ret = -EFAULT;
  411. goto fail_put_user_pages;
  412. }
  413. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  414. ret = i915_mutex_lock_interruptible(dev);
  415. if (ret)
  416. goto fail_put_user_pages;
  417. ret = i915_gem_object_get_pages_or_evict(obj);
  418. if (ret)
  419. goto fail_unlock;
  420. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  421. args->size);
  422. if (ret != 0)
  423. goto fail_put_pages;
  424. obj_priv = to_intel_bo(obj);
  425. offset = args->offset;
  426. while (remain > 0) {
  427. /* Operation in this page
  428. *
  429. * shmem_page_index = page number within shmem file
  430. * shmem_page_offset = offset within page in shmem file
  431. * data_page_index = page number in get_user_pages return
  432. * data_page_offset = offset with data_page_index page.
  433. * page_length = bytes to copy for this page
  434. */
  435. shmem_page_index = offset / PAGE_SIZE;
  436. shmem_page_offset = offset & ~PAGE_MASK;
  437. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  438. data_page_offset = data_ptr & ~PAGE_MASK;
  439. page_length = remain;
  440. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  441. page_length = PAGE_SIZE - shmem_page_offset;
  442. if ((data_page_offset + page_length) > PAGE_SIZE)
  443. page_length = PAGE_SIZE - data_page_offset;
  444. if (do_bit17_swizzling) {
  445. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  446. shmem_page_offset,
  447. user_pages[data_page_index],
  448. data_page_offset,
  449. page_length,
  450. 1);
  451. } else {
  452. slow_shmem_copy(user_pages[data_page_index],
  453. data_page_offset,
  454. obj_priv->pages[shmem_page_index],
  455. shmem_page_offset,
  456. page_length);
  457. }
  458. remain -= page_length;
  459. data_ptr += page_length;
  460. offset += page_length;
  461. }
  462. fail_put_pages:
  463. i915_gem_object_put_pages(obj);
  464. fail_unlock:
  465. mutex_unlock(&dev->struct_mutex);
  466. fail_put_user_pages:
  467. for (i = 0; i < pinned_pages; i++) {
  468. SetPageDirty(user_pages[i]);
  469. page_cache_release(user_pages[i]);
  470. }
  471. drm_free_large(user_pages);
  472. return ret;
  473. }
  474. /**
  475. * Reads data from the object referenced by handle.
  476. *
  477. * On error, the contents of *data are undefined.
  478. */
  479. int
  480. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  481. struct drm_file *file_priv)
  482. {
  483. struct drm_i915_gem_pread *args = data;
  484. struct drm_gem_object *obj;
  485. struct drm_i915_gem_object *obj_priv;
  486. int ret = 0;
  487. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  488. if (obj == NULL)
  489. return -ENOENT;
  490. obj_priv = to_intel_bo(obj);
  491. /* Bounds check source. */
  492. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  493. ret = -EINVAL;
  494. goto out;
  495. }
  496. if (args->size == 0)
  497. goto out;
  498. if (!access_ok(VERIFY_WRITE,
  499. (char __user *)(uintptr_t)args->data_ptr,
  500. args->size)) {
  501. ret = -EFAULT;
  502. goto out;
  503. }
  504. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  505. args->size);
  506. if (ret) {
  507. ret = -EFAULT;
  508. goto out;
  509. }
  510. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  511. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  512. } else {
  513. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  514. if (ret != 0)
  515. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  516. file_priv);
  517. }
  518. out:
  519. drm_gem_object_unreference_unlocked(obj);
  520. return ret;
  521. }
  522. /* This is the fast write path which cannot handle
  523. * page faults in the source data
  524. */
  525. static inline int
  526. fast_user_write(struct io_mapping *mapping,
  527. loff_t page_base, int page_offset,
  528. char __user *user_data,
  529. int length)
  530. {
  531. char *vaddr_atomic;
  532. unsigned long unwritten;
  533. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  534. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  535. user_data, length);
  536. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  537. return unwritten;
  538. }
  539. /* Here's the write path which can sleep for
  540. * page faults
  541. */
  542. static inline void
  543. slow_kernel_write(struct io_mapping *mapping,
  544. loff_t gtt_base, int gtt_offset,
  545. struct page *user_page, int user_offset,
  546. int length)
  547. {
  548. char __iomem *dst_vaddr;
  549. char *src_vaddr;
  550. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  551. src_vaddr = kmap(user_page);
  552. memcpy_toio(dst_vaddr + gtt_offset,
  553. src_vaddr + user_offset,
  554. length);
  555. kunmap(user_page);
  556. io_mapping_unmap(dst_vaddr);
  557. }
  558. static inline int
  559. fast_shmem_write(struct page **pages,
  560. loff_t page_base, int page_offset,
  561. char __user *data,
  562. int length)
  563. {
  564. char *vaddr;
  565. int ret;
  566. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  567. ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  568. kunmap_atomic(vaddr, KM_USER0);
  569. return ret;
  570. }
  571. /**
  572. * This is the fast pwrite path, where we copy the data directly from the
  573. * user into the GTT, uncached.
  574. */
  575. static int
  576. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  577. struct drm_i915_gem_pwrite *args,
  578. struct drm_file *file_priv)
  579. {
  580. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  581. drm_i915_private_t *dev_priv = dev->dev_private;
  582. ssize_t remain;
  583. loff_t offset, page_base;
  584. char __user *user_data;
  585. int page_offset, page_length;
  586. user_data = (char __user *) (uintptr_t) args->data_ptr;
  587. remain = args->size;
  588. obj_priv = to_intel_bo(obj);
  589. offset = obj_priv->gtt_offset + args->offset;
  590. while (remain > 0) {
  591. /* Operation in this page
  592. *
  593. * page_base = page offset within aperture
  594. * page_offset = offset within page
  595. * page_length = bytes to copy for this page
  596. */
  597. page_base = (offset & ~(PAGE_SIZE-1));
  598. page_offset = offset & (PAGE_SIZE-1);
  599. page_length = remain;
  600. if ((page_offset + remain) > PAGE_SIZE)
  601. page_length = PAGE_SIZE - page_offset;
  602. /* If we get a fault while copying data, then (presumably) our
  603. * source page isn't available. Return the error and we'll
  604. * retry in the slow path.
  605. */
  606. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  607. page_offset, user_data, page_length))
  608. return -EFAULT;
  609. remain -= page_length;
  610. user_data += page_length;
  611. offset += page_length;
  612. }
  613. return 0;
  614. }
  615. /**
  616. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  617. * the memory and maps it using kmap_atomic for copying.
  618. *
  619. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  620. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  621. */
  622. static int
  623. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  624. struct drm_i915_gem_pwrite *args,
  625. struct drm_file *file_priv)
  626. {
  627. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  628. drm_i915_private_t *dev_priv = dev->dev_private;
  629. ssize_t remain;
  630. loff_t gtt_page_base, offset;
  631. loff_t first_data_page, last_data_page, num_pages;
  632. loff_t pinned_pages, i;
  633. struct page **user_pages;
  634. struct mm_struct *mm = current->mm;
  635. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  636. int ret;
  637. uint64_t data_ptr = args->data_ptr;
  638. remain = args->size;
  639. /* Pin the user pages containing the data. We can't fault while
  640. * holding the struct mutex, and all of the pwrite implementations
  641. * want to hold it while dereferencing the user data.
  642. */
  643. first_data_page = data_ptr / PAGE_SIZE;
  644. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  645. num_pages = last_data_page - first_data_page + 1;
  646. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  647. if (user_pages == NULL)
  648. return -ENOMEM;
  649. mutex_unlock(&dev->struct_mutex);
  650. down_read(&mm->mmap_sem);
  651. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  652. num_pages, 0, 0, user_pages, NULL);
  653. up_read(&mm->mmap_sem);
  654. mutex_lock(&dev->struct_mutex);
  655. if (pinned_pages < num_pages) {
  656. ret = -EFAULT;
  657. goto out_unpin_pages;
  658. }
  659. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  660. if (ret)
  661. goto out_unpin_pages;
  662. obj_priv = to_intel_bo(obj);
  663. offset = obj_priv->gtt_offset + args->offset;
  664. while (remain > 0) {
  665. /* Operation in this page
  666. *
  667. * gtt_page_base = page offset within aperture
  668. * gtt_page_offset = offset within page in aperture
  669. * data_page_index = page number in get_user_pages return
  670. * data_page_offset = offset with data_page_index page.
  671. * page_length = bytes to copy for this page
  672. */
  673. gtt_page_base = offset & PAGE_MASK;
  674. gtt_page_offset = offset & ~PAGE_MASK;
  675. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  676. data_page_offset = data_ptr & ~PAGE_MASK;
  677. page_length = remain;
  678. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  679. page_length = PAGE_SIZE - gtt_page_offset;
  680. if ((data_page_offset + page_length) > PAGE_SIZE)
  681. page_length = PAGE_SIZE - data_page_offset;
  682. slow_kernel_write(dev_priv->mm.gtt_mapping,
  683. gtt_page_base, gtt_page_offset,
  684. user_pages[data_page_index],
  685. data_page_offset,
  686. page_length);
  687. remain -= page_length;
  688. offset += page_length;
  689. data_ptr += page_length;
  690. }
  691. out_unpin_pages:
  692. for (i = 0; i < pinned_pages; i++)
  693. page_cache_release(user_pages[i]);
  694. drm_free_large(user_pages);
  695. return ret;
  696. }
  697. /**
  698. * This is the fast shmem pwrite path, which attempts to directly
  699. * copy_from_user into the kmapped pages backing the object.
  700. */
  701. static int
  702. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  703. struct drm_i915_gem_pwrite *args,
  704. struct drm_file *file_priv)
  705. {
  706. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  707. ssize_t remain;
  708. loff_t offset, page_base;
  709. char __user *user_data;
  710. int page_offset, page_length;
  711. user_data = (char __user *) (uintptr_t) args->data_ptr;
  712. remain = args->size;
  713. obj_priv = to_intel_bo(obj);
  714. offset = args->offset;
  715. obj_priv->dirty = 1;
  716. while (remain > 0) {
  717. /* Operation in this page
  718. *
  719. * page_base = page offset within aperture
  720. * page_offset = offset within page
  721. * page_length = bytes to copy for this page
  722. */
  723. page_base = (offset & ~(PAGE_SIZE-1));
  724. page_offset = offset & (PAGE_SIZE-1);
  725. page_length = remain;
  726. if ((page_offset + remain) > PAGE_SIZE)
  727. page_length = PAGE_SIZE - page_offset;
  728. if (fast_shmem_write(obj_priv->pages,
  729. page_base, page_offset,
  730. user_data, page_length))
  731. return -EFAULT;
  732. remain -= page_length;
  733. user_data += page_length;
  734. offset += page_length;
  735. }
  736. return 0;
  737. }
  738. /**
  739. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  740. * the memory and maps it using kmap_atomic for copying.
  741. *
  742. * This avoids taking mmap_sem for faulting on the user's address while the
  743. * struct_mutex is held.
  744. */
  745. static int
  746. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  747. struct drm_i915_gem_pwrite *args,
  748. struct drm_file *file_priv)
  749. {
  750. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  751. struct mm_struct *mm = current->mm;
  752. struct page **user_pages;
  753. ssize_t remain;
  754. loff_t offset, pinned_pages, i;
  755. loff_t first_data_page, last_data_page, num_pages;
  756. int shmem_page_index, shmem_page_offset;
  757. int data_page_index, data_page_offset;
  758. int page_length;
  759. int ret;
  760. uint64_t data_ptr = args->data_ptr;
  761. int do_bit17_swizzling;
  762. remain = args->size;
  763. /* Pin the user pages containing the data. We can't fault while
  764. * holding the struct mutex, and all of the pwrite implementations
  765. * want to hold it while dereferencing the user data.
  766. */
  767. first_data_page = data_ptr / PAGE_SIZE;
  768. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  769. num_pages = last_data_page - first_data_page + 1;
  770. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  771. if (user_pages == NULL)
  772. return -ENOMEM;
  773. mutex_unlock(&dev->struct_mutex);
  774. down_read(&mm->mmap_sem);
  775. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  776. num_pages, 0, 0, user_pages, NULL);
  777. up_read(&mm->mmap_sem);
  778. mutex_lock(&dev->struct_mutex);
  779. if (pinned_pages < num_pages) {
  780. ret = -EFAULT;
  781. goto out;
  782. }
  783. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  784. if (ret)
  785. goto out;
  786. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  787. obj_priv = to_intel_bo(obj);
  788. offset = args->offset;
  789. obj_priv->dirty = 1;
  790. while (remain > 0) {
  791. /* Operation in this page
  792. *
  793. * shmem_page_index = page number within shmem file
  794. * shmem_page_offset = offset within page in shmem file
  795. * data_page_index = page number in get_user_pages return
  796. * data_page_offset = offset with data_page_index page.
  797. * page_length = bytes to copy for this page
  798. */
  799. shmem_page_index = offset / PAGE_SIZE;
  800. shmem_page_offset = offset & ~PAGE_MASK;
  801. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  802. data_page_offset = data_ptr & ~PAGE_MASK;
  803. page_length = remain;
  804. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  805. page_length = PAGE_SIZE - shmem_page_offset;
  806. if ((data_page_offset + page_length) > PAGE_SIZE)
  807. page_length = PAGE_SIZE - data_page_offset;
  808. if (do_bit17_swizzling) {
  809. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  810. shmem_page_offset,
  811. user_pages[data_page_index],
  812. data_page_offset,
  813. page_length,
  814. 0);
  815. } else {
  816. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  817. shmem_page_offset,
  818. user_pages[data_page_index],
  819. data_page_offset,
  820. page_length);
  821. }
  822. remain -= page_length;
  823. data_ptr += page_length;
  824. offset += page_length;
  825. }
  826. out:
  827. for (i = 0; i < pinned_pages; i++)
  828. page_cache_release(user_pages[i]);
  829. drm_free_large(user_pages);
  830. return ret;
  831. }
  832. /**
  833. * Writes data to the object referenced by handle.
  834. *
  835. * On error, the contents of the buffer that were to be modified are undefined.
  836. */
  837. int
  838. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  839. struct drm_file *file)
  840. {
  841. struct drm_i915_gem_pwrite *args = data;
  842. struct drm_gem_object *obj;
  843. struct drm_i915_gem_object *obj_priv;
  844. int ret = 0;
  845. obj = drm_gem_object_lookup(dev, file, args->handle);
  846. if (obj == NULL)
  847. return -ENOENT;
  848. obj_priv = to_intel_bo(obj);
  849. ret = i915_mutex_lock_interruptible(dev);
  850. if (ret) {
  851. drm_gem_object_unreference_unlocked(obj);
  852. return ret;
  853. }
  854. /* Bounds check destination. */
  855. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  856. ret = -EINVAL;
  857. goto out;
  858. }
  859. if (args->size == 0)
  860. goto out;
  861. if (!access_ok(VERIFY_READ,
  862. (char __user *)(uintptr_t)args->data_ptr,
  863. args->size)) {
  864. ret = -EFAULT;
  865. goto out;
  866. }
  867. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  868. args->size);
  869. if (ret) {
  870. ret = -EFAULT;
  871. goto out;
  872. }
  873. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  874. * it would end up going through the fenced access, and we'll get
  875. * different detiling behavior between reading and writing.
  876. * pread/pwrite currently are reading and writing from the CPU
  877. * perspective, requiring manual detiling by the client.
  878. */
  879. if (obj_priv->phys_obj)
  880. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  881. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  882. obj_priv->gtt_space &&
  883. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  884. ret = i915_gem_object_pin(obj, 0);
  885. if (ret)
  886. goto out;
  887. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  888. if (ret)
  889. goto out_unpin;
  890. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  891. if (ret == -EFAULT)
  892. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  893. out_unpin:
  894. i915_gem_object_unpin(obj);
  895. } else {
  896. ret = i915_gem_object_get_pages_or_evict(obj);
  897. if (ret)
  898. goto out;
  899. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  900. if (ret)
  901. goto out_put;
  902. ret = -EFAULT;
  903. if (!i915_gem_object_needs_bit17_swizzle(obj))
  904. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  905. if (ret == -EFAULT)
  906. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  907. out_put:
  908. i915_gem_object_put_pages(obj);
  909. }
  910. out:
  911. drm_gem_object_unreference(obj);
  912. mutex_unlock(&dev->struct_mutex);
  913. return ret;
  914. }
  915. /**
  916. * Called when user space prepares to use an object with the CPU, either
  917. * through the mmap ioctl's mapping or a GTT mapping.
  918. */
  919. int
  920. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  921. struct drm_file *file_priv)
  922. {
  923. struct drm_i915_private *dev_priv = dev->dev_private;
  924. struct drm_i915_gem_set_domain *args = data;
  925. struct drm_gem_object *obj;
  926. struct drm_i915_gem_object *obj_priv;
  927. uint32_t read_domains = args->read_domains;
  928. uint32_t write_domain = args->write_domain;
  929. int ret;
  930. if (!(dev->driver->driver_features & DRIVER_GEM))
  931. return -ENODEV;
  932. /* Only handle setting domains to types used by the CPU. */
  933. if (write_domain & I915_GEM_GPU_DOMAINS)
  934. return -EINVAL;
  935. if (read_domains & I915_GEM_GPU_DOMAINS)
  936. return -EINVAL;
  937. /* Having something in the write domain implies it's in the read
  938. * domain, and only that read domain. Enforce that in the request.
  939. */
  940. if (write_domain != 0 && read_domains != write_domain)
  941. return -EINVAL;
  942. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  943. if (obj == NULL)
  944. return -ENOENT;
  945. obj_priv = to_intel_bo(obj);
  946. ret = i915_mutex_lock_interruptible(dev);
  947. if (ret) {
  948. drm_gem_object_unreference_unlocked(obj);
  949. return ret;
  950. }
  951. intel_mark_busy(dev, obj);
  952. if (read_domains & I915_GEM_DOMAIN_GTT) {
  953. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  954. /* Update the LRU on the fence for the CPU access that's
  955. * about to occur.
  956. */
  957. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  958. struct drm_i915_fence_reg *reg =
  959. &dev_priv->fence_regs[obj_priv->fence_reg];
  960. list_move_tail(&reg->lru_list,
  961. &dev_priv->mm.fence_list);
  962. }
  963. /* Silently promote "you're not bound, there was nothing to do"
  964. * to success, since the client was just asking us to
  965. * make sure everything was done.
  966. */
  967. if (ret == -EINVAL)
  968. ret = 0;
  969. } else {
  970. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  971. }
  972. /* Maintain LRU order of "inactive" objects */
  973. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  974. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  975. drm_gem_object_unreference(obj);
  976. mutex_unlock(&dev->struct_mutex);
  977. return ret;
  978. }
  979. /**
  980. * Called when user space has done writes to this buffer
  981. */
  982. int
  983. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  984. struct drm_file *file_priv)
  985. {
  986. struct drm_i915_gem_sw_finish *args = data;
  987. struct drm_gem_object *obj;
  988. int ret = 0;
  989. if (!(dev->driver->driver_features & DRIVER_GEM))
  990. return -ENODEV;
  991. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  992. if (obj == NULL)
  993. return -ENOENT;
  994. ret = i915_mutex_lock_interruptible(dev);
  995. if (ret) {
  996. drm_gem_object_unreference_unlocked(obj);
  997. return ret;
  998. }
  999. /* Pinned buffers may be scanout, so flush the cache */
  1000. if (to_intel_bo(obj)->pin_count)
  1001. i915_gem_object_flush_cpu_write_domain(obj);
  1002. drm_gem_object_unreference(obj);
  1003. mutex_unlock(&dev->struct_mutex);
  1004. return ret;
  1005. }
  1006. /**
  1007. * Maps the contents of an object, returning the address it is mapped
  1008. * into.
  1009. *
  1010. * While the mapping holds a reference on the contents of the object, it doesn't
  1011. * imply a ref on the object itself.
  1012. */
  1013. int
  1014. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1015. struct drm_file *file_priv)
  1016. {
  1017. struct drm_i915_gem_mmap *args = data;
  1018. struct drm_gem_object *obj;
  1019. loff_t offset;
  1020. unsigned long addr;
  1021. if (!(dev->driver->driver_features & DRIVER_GEM))
  1022. return -ENODEV;
  1023. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1024. if (obj == NULL)
  1025. return -ENOENT;
  1026. offset = args->offset;
  1027. down_write(&current->mm->mmap_sem);
  1028. addr = do_mmap(obj->filp, 0, args->size,
  1029. PROT_READ | PROT_WRITE, MAP_SHARED,
  1030. args->offset);
  1031. up_write(&current->mm->mmap_sem);
  1032. drm_gem_object_unreference_unlocked(obj);
  1033. if (IS_ERR((void *)addr))
  1034. return addr;
  1035. args->addr_ptr = (uint64_t) addr;
  1036. return 0;
  1037. }
  1038. /**
  1039. * i915_gem_fault - fault a page into the GTT
  1040. * vma: VMA in question
  1041. * vmf: fault info
  1042. *
  1043. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1044. * from userspace. The fault handler takes care of binding the object to
  1045. * the GTT (if needed), allocating and programming a fence register (again,
  1046. * only if needed based on whether the old reg is still valid or the object
  1047. * is tiled) and inserting a new PTE into the faulting process.
  1048. *
  1049. * Note that the faulting process may involve evicting existing objects
  1050. * from the GTT and/or fence registers to make room. So performance may
  1051. * suffer if the GTT working set is large or there are few fence registers
  1052. * left.
  1053. */
  1054. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1055. {
  1056. struct drm_gem_object *obj = vma->vm_private_data;
  1057. struct drm_device *dev = obj->dev;
  1058. drm_i915_private_t *dev_priv = dev->dev_private;
  1059. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1060. pgoff_t page_offset;
  1061. unsigned long pfn;
  1062. int ret = 0;
  1063. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1064. /* We don't use vmf->pgoff since that has the fake offset */
  1065. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1066. PAGE_SHIFT;
  1067. /* Now bind it into the GTT if needed */
  1068. mutex_lock(&dev->struct_mutex);
  1069. if (!obj_priv->gtt_space) {
  1070. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1071. if (ret)
  1072. goto unlock;
  1073. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1074. if (ret)
  1075. goto unlock;
  1076. }
  1077. /* Need a new fence register? */
  1078. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1079. ret = i915_gem_object_get_fence_reg(obj, true);
  1080. if (ret)
  1081. goto unlock;
  1082. }
  1083. if (i915_gem_object_is_inactive(obj_priv))
  1084. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1085. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1086. page_offset;
  1087. /* Finally, remap it using the new GTT offset */
  1088. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1089. unlock:
  1090. mutex_unlock(&dev->struct_mutex);
  1091. switch (ret) {
  1092. case 0:
  1093. case -ERESTARTSYS:
  1094. return VM_FAULT_NOPAGE;
  1095. case -ENOMEM:
  1096. case -EAGAIN:
  1097. return VM_FAULT_OOM;
  1098. default:
  1099. return VM_FAULT_SIGBUS;
  1100. }
  1101. }
  1102. /**
  1103. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1104. * @obj: obj in question
  1105. *
  1106. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1107. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1108. * up the object based on the offset and sets up the various memory mapping
  1109. * structures.
  1110. *
  1111. * This routine allocates and attaches a fake offset for @obj.
  1112. */
  1113. static int
  1114. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1115. {
  1116. struct drm_device *dev = obj->dev;
  1117. struct drm_gem_mm *mm = dev->mm_private;
  1118. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1119. struct drm_map_list *list;
  1120. struct drm_local_map *map;
  1121. int ret = 0;
  1122. /* Set the object up for mmap'ing */
  1123. list = &obj->map_list;
  1124. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1125. if (!list->map)
  1126. return -ENOMEM;
  1127. map = list->map;
  1128. map->type = _DRM_GEM;
  1129. map->size = obj->size;
  1130. map->handle = obj;
  1131. /* Get a DRM GEM mmap offset allocated... */
  1132. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1133. obj->size / PAGE_SIZE, 0, 0);
  1134. if (!list->file_offset_node) {
  1135. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1136. ret = -ENOSPC;
  1137. goto out_free_list;
  1138. }
  1139. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1140. obj->size / PAGE_SIZE, 0);
  1141. if (!list->file_offset_node) {
  1142. ret = -ENOMEM;
  1143. goto out_free_list;
  1144. }
  1145. list->hash.key = list->file_offset_node->start;
  1146. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1147. if (ret) {
  1148. DRM_ERROR("failed to add to map hash\n");
  1149. goto out_free_mm;
  1150. }
  1151. /* By now we should be all set, any drm_mmap request on the offset
  1152. * below will get to our mmap & fault handler */
  1153. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1154. return 0;
  1155. out_free_mm:
  1156. drm_mm_put_block(list->file_offset_node);
  1157. out_free_list:
  1158. kfree(list->map);
  1159. return ret;
  1160. }
  1161. /**
  1162. * i915_gem_release_mmap - remove physical page mappings
  1163. * @obj: obj in question
  1164. *
  1165. * Preserve the reservation of the mmapping with the DRM core code, but
  1166. * relinquish ownership of the pages back to the system.
  1167. *
  1168. * It is vital that we remove the page mapping if we have mapped a tiled
  1169. * object through the GTT and then lose the fence register due to
  1170. * resource pressure. Similarly if the object has been moved out of the
  1171. * aperture, than pages mapped into userspace must be revoked. Removing the
  1172. * mapping will then trigger a page fault on the next user access, allowing
  1173. * fixup by i915_gem_fault().
  1174. */
  1175. void
  1176. i915_gem_release_mmap(struct drm_gem_object *obj)
  1177. {
  1178. struct drm_device *dev = obj->dev;
  1179. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1180. if (dev->dev_mapping)
  1181. unmap_mapping_range(dev->dev_mapping,
  1182. obj_priv->mmap_offset, obj->size, 1);
  1183. }
  1184. static void
  1185. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1186. {
  1187. struct drm_device *dev = obj->dev;
  1188. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1189. struct drm_gem_mm *mm = dev->mm_private;
  1190. struct drm_map_list *list;
  1191. list = &obj->map_list;
  1192. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1193. if (list->file_offset_node) {
  1194. drm_mm_put_block(list->file_offset_node);
  1195. list->file_offset_node = NULL;
  1196. }
  1197. if (list->map) {
  1198. kfree(list->map);
  1199. list->map = NULL;
  1200. }
  1201. obj_priv->mmap_offset = 0;
  1202. }
  1203. /**
  1204. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1205. * @obj: object to check
  1206. *
  1207. * Return the required GTT alignment for an object, taking into account
  1208. * potential fence register mapping if needed.
  1209. */
  1210. static uint32_t
  1211. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1212. {
  1213. struct drm_device *dev = obj->dev;
  1214. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1215. int start, i;
  1216. /*
  1217. * Minimum alignment is 4k (GTT page size), but might be greater
  1218. * if a fence register is needed for the object.
  1219. */
  1220. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1221. return 4096;
  1222. /*
  1223. * Previous chips need to be aligned to the size of the smallest
  1224. * fence register that can contain the object.
  1225. */
  1226. if (INTEL_INFO(dev)->gen == 3)
  1227. start = 1024*1024;
  1228. else
  1229. start = 512*1024;
  1230. for (i = start; i < obj->size; i <<= 1)
  1231. ;
  1232. return i;
  1233. }
  1234. /**
  1235. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1236. * @dev: DRM device
  1237. * @data: GTT mapping ioctl data
  1238. * @file_priv: GEM object info
  1239. *
  1240. * Simply returns the fake offset to userspace so it can mmap it.
  1241. * The mmap call will end up in drm_gem_mmap(), which will set things
  1242. * up so we can get faults in the handler above.
  1243. *
  1244. * The fault handler will take care of binding the object into the GTT
  1245. * (since it may have been evicted to make room for something), allocating
  1246. * a fence register, and mapping the appropriate aperture address into
  1247. * userspace.
  1248. */
  1249. int
  1250. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1251. struct drm_file *file_priv)
  1252. {
  1253. struct drm_i915_gem_mmap_gtt *args = data;
  1254. struct drm_gem_object *obj;
  1255. struct drm_i915_gem_object *obj_priv;
  1256. int ret;
  1257. if (!(dev->driver->driver_features & DRIVER_GEM))
  1258. return -ENODEV;
  1259. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1260. if (obj == NULL)
  1261. return -ENOENT;
  1262. ret = i915_mutex_lock_interruptible(dev);
  1263. if (ret) {
  1264. drm_gem_object_unreference_unlocked(obj);
  1265. return ret;
  1266. }
  1267. obj_priv = to_intel_bo(obj);
  1268. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1269. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1270. drm_gem_object_unreference(obj);
  1271. mutex_unlock(&dev->struct_mutex);
  1272. return -EINVAL;
  1273. }
  1274. if (!obj_priv->mmap_offset) {
  1275. ret = i915_gem_create_mmap_offset(obj);
  1276. if (ret) {
  1277. drm_gem_object_unreference(obj);
  1278. mutex_unlock(&dev->struct_mutex);
  1279. return ret;
  1280. }
  1281. }
  1282. args->offset = obj_priv->mmap_offset;
  1283. /*
  1284. * Pull it into the GTT so that we have a page list (makes the
  1285. * initial fault faster and any subsequent flushing possible).
  1286. */
  1287. if (!obj_priv->agp_mem) {
  1288. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1289. if (ret) {
  1290. drm_gem_object_unreference(obj);
  1291. mutex_unlock(&dev->struct_mutex);
  1292. return ret;
  1293. }
  1294. }
  1295. drm_gem_object_unreference(obj);
  1296. mutex_unlock(&dev->struct_mutex);
  1297. return 0;
  1298. }
  1299. static void
  1300. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1301. {
  1302. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1303. int page_count = obj->size / PAGE_SIZE;
  1304. int i;
  1305. BUG_ON(obj_priv->pages_refcount == 0);
  1306. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1307. if (--obj_priv->pages_refcount != 0)
  1308. return;
  1309. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1310. i915_gem_object_save_bit_17_swizzle(obj);
  1311. if (obj_priv->madv == I915_MADV_DONTNEED)
  1312. obj_priv->dirty = 0;
  1313. for (i = 0; i < page_count; i++) {
  1314. if (obj_priv->dirty)
  1315. set_page_dirty(obj_priv->pages[i]);
  1316. if (obj_priv->madv == I915_MADV_WILLNEED)
  1317. mark_page_accessed(obj_priv->pages[i]);
  1318. page_cache_release(obj_priv->pages[i]);
  1319. }
  1320. obj_priv->dirty = 0;
  1321. drm_free_large(obj_priv->pages);
  1322. obj_priv->pages = NULL;
  1323. }
  1324. static uint32_t
  1325. i915_gem_next_request_seqno(struct drm_device *dev,
  1326. struct intel_ring_buffer *ring)
  1327. {
  1328. drm_i915_private_t *dev_priv = dev->dev_private;
  1329. ring->outstanding_lazy_request = true;
  1330. return dev_priv->next_seqno;
  1331. }
  1332. static void
  1333. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1334. struct intel_ring_buffer *ring)
  1335. {
  1336. struct drm_device *dev = obj->dev;
  1337. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1338. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1339. BUG_ON(ring == NULL);
  1340. obj_priv->ring = ring;
  1341. /* Add a reference if we're newly entering the active list. */
  1342. if (!obj_priv->active) {
  1343. drm_gem_object_reference(obj);
  1344. obj_priv->active = 1;
  1345. }
  1346. /* Move from whatever list we were on to the tail of execution. */
  1347. list_move_tail(&obj_priv->list, &ring->active_list);
  1348. obj_priv->last_rendering_seqno = seqno;
  1349. }
  1350. static void
  1351. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1352. {
  1353. struct drm_device *dev = obj->dev;
  1354. drm_i915_private_t *dev_priv = dev->dev_private;
  1355. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1356. BUG_ON(!obj_priv->active);
  1357. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1358. obj_priv->last_rendering_seqno = 0;
  1359. }
  1360. /* Immediately discard the backing storage */
  1361. static void
  1362. i915_gem_object_truncate(struct drm_gem_object *obj)
  1363. {
  1364. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1365. struct inode *inode;
  1366. /* Our goal here is to return as much of the memory as
  1367. * is possible back to the system as we are called from OOM.
  1368. * To do this we must instruct the shmfs to drop all of its
  1369. * backing pages, *now*. Here we mirror the actions taken
  1370. * when by shmem_delete_inode() to release the backing store.
  1371. */
  1372. inode = obj->filp->f_path.dentry->d_inode;
  1373. truncate_inode_pages(inode->i_mapping, 0);
  1374. if (inode->i_op->truncate_range)
  1375. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1376. obj_priv->madv = __I915_MADV_PURGED;
  1377. }
  1378. static inline int
  1379. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1380. {
  1381. return obj_priv->madv == I915_MADV_DONTNEED;
  1382. }
  1383. static void
  1384. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1385. {
  1386. struct drm_device *dev = obj->dev;
  1387. drm_i915_private_t *dev_priv = dev->dev_private;
  1388. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1389. if (obj_priv->pin_count != 0)
  1390. list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
  1391. else
  1392. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1393. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1394. obj_priv->last_rendering_seqno = 0;
  1395. obj_priv->ring = NULL;
  1396. if (obj_priv->active) {
  1397. obj_priv->active = 0;
  1398. drm_gem_object_unreference(obj);
  1399. }
  1400. WARN_ON(i915_verify_lists(dev));
  1401. }
  1402. static void
  1403. i915_gem_process_flushing_list(struct drm_device *dev,
  1404. uint32_t flush_domains,
  1405. struct intel_ring_buffer *ring)
  1406. {
  1407. drm_i915_private_t *dev_priv = dev->dev_private;
  1408. struct drm_i915_gem_object *obj_priv, *next;
  1409. list_for_each_entry_safe(obj_priv, next,
  1410. &dev_priv->mm.gpu_write_list,
  1411. gpu_write_list) {
  1412. struct drm_gem_object *obj = &obj_priv->base;
  1413. if (obj->write_domain & flush_domains &&
  1414. obj_priv->ring == ring) {
  1415. uint32_t old_write_domain = obj->write_domain;
  1416. obj->write_domain = 0;
  1417. list_del_init(&obj_priv->gpu_write_list);
  1418. i915_gem_object_move_to_active(obj, ring);
  1419. /* update the fence lru list */
  1420. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1421. struct drm_i915_fence_reg *reg =
  1422. &dev_priv->fence_regs[obj_priv->fence_reg];
  1423. list_move_tail(&reg->lru_list,
  1424. &dev_priv->mm.fence_list);
  1425. }
  1426. trace_i915_gem_object_change_domain(obj,
  1427. obj->read_domains,
  1428. old_write_domain);
  1429. }
  1430. }
  1431. }
  1432. uint32_t
  1433. i915_add_request(struct drm_device *dev,
  1434. struct drm_file *file,
  1435. struct drm_i915_gem_request *request,
  1436. struct intel_ring_buffer *ring)
  1437. {
  1438. drm_i915_private_t *dev_priv = dev->dev_private;
  1439. struct drm_i915_file_private *file_priv = NULL;
  1440. uint32_t seqno;
  1441. int was_empty;
  1442. if (file != NULL)
  1443. file_priv = file->driver_priv;
  1444. if (request == NULL) {
  1445. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1446. if (request == NULL)
  1447. return 0;
  1448. }
  1449. seqno = ring->add_request(dev, ring, 0);
  1450. ring->outstanding_lazy_request = false;
  1451. request->seqno = seqno;
  1452. request->ring = ring;
  1453. request->emitted_jiffies = jiffies;
  1454. was_empty = list_empty(&ring->request_list);
  1455. list_add_tail(&request->list, &ring->request_list);
  1456. if (file_priv) {
  1457. spin_lock(&file_priv->mm.lock);
  1458. request->file_priv = file_priv;
  1459. list_add_tail(&request->client_list,
  1460. &file_priv->mm.request_list);
  1461. spin_unlock(&file_priv->mm.lock);
  1462. }
  1463. if (!dev_priv->mm.suspended) {
  1464. mod_timer(&dev_priv->hangcheck_timer,
  1465. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1466. if (was_empty)
  1467. queue_delayed_work(dev_priv->wq,
  1468. &dev_priv->mm.retire_work, HZ);
  1469. }
  1470. return seqno;
  1471. }
  1472. /**
  1473. * Command execution barrier
  1474. *
  1475. * Ensures that all commands in the ring are finished
  1476. * before signalling the CPU
  1477. */
  1478. static void
  1479. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1480. {
  1481. uint32_t flush_domains = 0;
  1482. /* The sampler always gets flushed on i965 (sigh) */
  1483. if (INTEL_INFO(dev)->gen >= 4)
  1484. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1485. ring->flush(dev, ring,
  1486. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1487. }
  1488. static inline void
  1489. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1490. {
  1491. struct drm_i915_file_private *file_priv = request->file_priv;
  1492. if (!file_priv)
  1493. return;
  1494. spin_lock(&file_priv->mm.lock);
  1495. list_del(&request->client_list);
  1496. request->file_priv = NULL;
  1497. spin_unlock(&file_priv->mm.lock);
  1498. }
  1499. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1500. struct intel_ring_buffer *ring)
  1501. {
  1502. while (!list_empty(&ring->request_list)) {
  1503. struct drm_i915_gem_request *request;
  1504. request = list_first_entry(&ring->request_list,
  1505. struct drm_i915_gem_request,
  1506. list);
  1507. list_del(&request->list);
  1508. i915_gem_request_remove_from_client(request);
  1509. kfree(request);
  1510. }
  1511. while (!list_empty(&ring->active_list)) {
  1512. struct drm_i915_gem_object *obj_priv;
  1513. obj_priv = list_first_entry(&ring->active_list,
  1514. struct drm_i915_gem_object,
  1515. list);
  1516. obj_priv->base.write_domain = 0;
  1517. list_del_init(&obj_priv->gpu_write_list);
  1518. i915_gem_object_move_to_inactive(&obj_priv->base);
  1519. }
  1520. }
  1521. void i915_gem_reset(struct drm_device *dev)
  1522. {
  1523. struct drm_i915_private *dev_priv = dev->dev_private;
  1524. struct drm_i915_gem_object *obj_priv;
  1525. int i;
  1526. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1527. if (HAS_BSD(dev))
  1528. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1529. /* Remove anything from the flushing lists. The GPU cache is likely
  1530. * to be lost on reset along with the data, so simply move the
  1531. * lost bo to the inactive list.
  1532. */
  1533. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1534. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1535. struct drm_i915_gem_object,
  1536. list);
  1537. obj_priv->base.write_domain = 0;
  1538. list_del_init(&obj_priv->gpu_write_list);
  1539. i915_gem_object_move_to_inactive(&obj_priv->base);
  1540. }
  1541. /* Move everything out of the GPU domains to ensure we do any
  1542. * necessary invalidation upon reuse.
  1543. */
  1544. list_for_each_entry(obj_priv,
  1545. &dev_priv->mm.inactive_list,
  1546. list)
  1547. {
  1548. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1549. }
  1550. /* The fence registers are invalidated so clear them out */
  1551. for (i = 0; i < 16; i++) {
  1552. struct drm_i915_fence_reg *reg;
  1553. reg = &dev_priv->fence_regs[i];
  1554. if (!reg->obj)
  1555. continue;
  1556. i915_gem_clear_fence_reg(reg->obj);
  1557. }
  1558. }
  1559. /**
  1560. * This function clears the request list as sequence numbers are passed.
  1561. */
  1562. static void
  1563. i915_gem_retire_requests_ring(struct drm_device *dev,
  1564. struct intel_ring_buffer *ring)
  1565. {
  1566. drm_i915_private_t *dev_priv = dev->dev_private;
  1567. uint32_t seqno;
  1568. if (!ring->status_page.page_addr ||
  1569. list_empty(&ring->request_list))
  1570. return;
  1571. WARN_ON(i915_verify_lists(dev));
  1572. seqno = ring->get_seqno(dev, ring);
  1573. while (!list_empty(&ring->request_list)) {
  1574. struct drm_i915_gem_request *request;
  1575. request = list_first_entry(&ring->request_list,
  1576. struct drm_i915_gem_request,
  1577. list);
  1578. if (!i915_seqno_passed(seqno, request->seqno))
  1579. break;
  1580. trace_i915_gem_request_retire(dev, request->seqno);
  1581. list_del(&request->list);
  1582. i915_gem_request_remove_from_client(request);
  1583. kfree(request);
  1584. }
  1585. /* Move any buffers on the active list that are no longer referenced
  1586. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1587. */
  1588. while (!list_empty(&ring->active_list)) {
  1589. struct drm_gem_object *obj;
  1590. struct drm_i915_gem_object *obj_priv;
  1591. obj_priv = list_first_entry(&ring->active_list,
  1592. struct drm_i915_gem_object,
  1593. list);
  1594. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1595. break;
  1596. obj = &obj_priv->base;
  1597. if (obj->write_domain != 0)
  1598. i915_gem_object_move_to_flushing(obj);
  1599. else
  1600. i915_gem_object_move_to_inactive(obj);
  1601. }
  1602. if (unlikely (dev_priv->trace_irq_seqno &&
  1603. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1604. ring->user_irq_put(dev, ring);
  1605. dev_priv->trace_irq_seqno = 0;
  1606. }
  1607. WARN_ON(i915_verify_lists(dev));
  1608. }
  1609. void
  1610. i915_gem_retire_requests(struct drm_device *dev)
  1611. {
  1612. drm_i915_private_t *dev_priv = dev->dev_private;
  1613. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1614. struct drm_i915_gem_object *obj_priv, *tmp;
  1615. /* We must be careful that during unbind() we do not
  1616. * accidentally infinitely recurse into retire requests.
  1617. * Currently:
  1618. * retire -> free -> unbind -> wait -> retire_ring
  1619. */
  1620. list_for_each_entry_safe(obj_priv, tmp,
  1621. &dev_priv->mm.deferred_free_list,
  1622. list)
  1623. i915_gem_free_object_tail(&obj_priv->base);
  1624. }
  1625. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1626. if (HAS_BSD(dev))
  1627. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1628. }
  1629. static void
  1630. i915_gem_retire_work_handler(struct work_struct *work)
  1631. {
  1632. drm_i915_private_t *dev_priv;
  1633. struct drm_device *dev;
  1634. dev_priv = container_of(work, drm_i915_private_t,
  1635. mm.retire_work.work);
  1636. dev = dev_priv->dev;
  1637. /* Come back later if the device is busy... */
  1638. if (!mutex_trylock(&dev->struct_mutex)) {
  1639. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1640. return;
  1641. }
  1642. i915_gem_retire_requests(dev);
  1643. if (!dev_priv->mm.suspended &&
  1644. (!list_empty(&dev_priv->render_ring.request_list) ||
  1645. (HAS_BSD(dev) &&
  1646. !list_empty(&dev_priv->bsd_ring.request_list))))
  1647. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1648. mutex_unlock(&dev->struct_mutex);
  1649. }
  1650. int
  1651. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1652. bool interruptible, struct intel_ring_buffer *ring)
  1653. {
  1654. drm_i915_private_t *dev_priv = dev->dev_private;
  1655. u32 ier;
  1656. int ret = 0;
  1657. BUG_ON(seqno == 0);
  1658. if (atomic_read(&dev_priv->mm.wedged))
  1659. return -EAGAIN;
  1660. if (ring->outstanding_lazy_request) {
  1661. seqno = i915_add_request(dev, NULL, NULL, ring);
  1662. if (seqno == 0)
  1663. return -ENOMEM;
  1664. }
  1665. BUG_ON(seqno == dev_priv->next_seqno);
  1666. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1667. if (HAS_PCH_SPLIT(dev))
  1668. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1669. else
  1670. ier = I915_READ(IER);
  1671. if (!ier) {
  1672. DRM_ERROR("something (likely vbetool) disabled "
  1673. "interrupts, re-enabling\n");
  1674. i915_driver_irq_preinstall(dev);
  1675. i915_driver_irq_postinstall(dev);
  1676. }
  1677. trace_i915_gem_request_wait_begin(dev, seqno);
  1678. ring->waiting_gem_seqno = seqno;
  1679. ring->user_irq_get(dev, ring);
  1680. if (interruptible)
  1681. ret = wait_event_interruptible(ring->irq_queue,
  1682. i915_seqno_passed(
  1683. ring->get_seqno(dev, ring), seqno)
  1684. || atomic_read(&dev_priv->mm.wedged));
  1685. else
  1686. wait_event(ring->irq_queue,
  1687. i915_seqno_passed(
  1688. ring->get_seqno(dev, ring), seqno)
  1689. || atomic_read(&dev_priv->mm.wedged));
  1690. ring->user_irq_put(dev, ring);
  1691. ring->waiting_gem_seqno = 0;
  1692. trace_i915_gem_request_wait_end(dev, seqno);
  1693. }
  1694. if (atomic_read(&dev_priv->mm.wedged))
  1695. ret = -EAGAIN;
  1696. if (ret && ret != -ERESTARTSYS)
  1697. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1698. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1699. dev_priv->next_seqno);
  1700. /* Directly dispatch request retiring. While we have the work queue
  1701. * to handle this, the waiter on a request often wants an associated
  1702. * buffer to have made it to the inactive list, and we would need
  1703. * a separate wait queue to handle that.
  1704. */
  1705. if (ret == 0)
  1706. i915_gem_retire_requests_ring(dev, ring);
  1707. return ret;
  1708. }
  1709. /**
  1710. * Waits for a sequence number to be signaled, and cleans up the
  1711. * request and object lists appropriately for that event.
  1712. */
  1713. static int
  1714. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1715. struct intel_ring_buffer *ring)
  1716. {
  1717. return i915_do_wait_request(dev, seqno, 1, ring);
  1718. }
  1719. static void
  1720. i915_gem_flush_ring(struct drm_device *dev,
  1721. struct drm_file *file_priv,
  1722. struct intel_ring_buffer *ring,
  1723. uint32_t invalidate_domains,
  1724. uint32_t flush_domains)
  1725. {
  1726. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1727. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1728. }
  1729. static void
  1730. i915_gem_flush(struct drm_device *dev,
  1731. struct drm_file *file_priv,
  1732. uint32_t invalidate_domains,
  1733. uint32_t flush_domains,
  1734. uint32_t flush_rings)
  1735. {
  1736. drm_i915_private_t *dev_priv = dev->dev_private;
  1737. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1738. drm_agp_chipset_flush(dev);
  1739. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1740. if (flush_rings & RING_RENDER)
  1741. i915_gem_flush_ring(dev, file_priv,
  1742. &dev_priv->render_ring,
  1743. invalidate_domains, flush_domains);
  1744. if (flush_rings & RING_BSD)
  1745. i915_gem_flush_ring(dev, file_priv,
  1746. &dev_priv->bsd_ring,
  1747. invalidate_domains, flush_domains);
  1748. }
  1749. }
  1750. /**
  1751. * Ensures that all rendering to the object has completed and the object is
  1752. * safe to unbind from the GTT or access from the CPU.
  1753. */
  1754. static int
  1755. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1756. bool interruptible)
  1757. {
  1758. struct drm_device *dev = obj->dev;
  1759. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1760. int ret;
  1761. /* This function only exists to support waiting for existing rendering,
  1762. * not for emitting required flushes.
  1763. */
  1764. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1765. /* If there is rendering queued on the buffer being evicted, wait for
  1766. * it.
  1767. */
  1768. if (obj_priv->active) {
  1769. ret = i915_do_wait_request(dev,
  1770. obj_priv->last_rendering_seqno,
  1771. interruptible,
  1772. obj_priv->ring);
  1773. if (ret)
  1774. return ret;
  1775. }
  1776. return 0;
  1777. }
  1778. /**
  1779. * Unbinds an object from the GTT aperture.
  1780. */
  1781. int
  1782. i915_gem_object_unbind(struct drm_gem_object *obj)
  1783. {
  1784. struct drm_device *dev = obj->dev;
  1785. struct drm_i915_private *dev_priv = dev->dev_private;
  1786. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1787. int ret = 0;
  1788. if (obj_priv->gtt_space == NULL)
  1789. return 0;
  1790. if (obj_priv->pin_count != 0) {
  1791. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1792. return -EINVAL;
  1793. }
  1794. /* blow away mappings if mapped through GTT */
  1795. i915_gem_release_mmap(obj);
  1796. /* Move the object to the CPU domain to ensure that
  1797. * any possible CPU writes while it's not in the GTT
  1798. * are flushed when we go to remap it. This will
  1799. * also ensure that all pending GPU writes are finished
  1800. * before we unbind.
  1801. */
  1802. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1803. if (ret == -ERESTARTSYS)
  1804. return ret;
  1805. /* Continue on if we fail due to EIO, the GPU is hung so we
  1806. * should be safe and we need to cleanup or else we might
  1807. * cause memory corruption through use-after-free.
  1808. */
  1809. if (ret) {
  1810. i915_gem_clflush_object(obj);
  1811. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1812. }
  1813. /* release the fence reg _after_ flushing */
  1814. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1815. i915_gem_clear_fence_reg(obj);
  1816. drm_unbind_agp(obj_priv->agp_mem);
  1817. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1818. i915_gem_object_put_pages(obj);
  1819. BUG_ON(obj_priv->pages_refcount);
  1820. i915_gem_info_remove_gtt(dev_priv, obj->size);
  1821. list_del_init(&obj_priv->list);
  1822. drm_mm_put_block(obj_priv->gtt_space);
  1823. obj_priv->gtt_space = NULL;
  1824. if (i915_gem_object_is_purgeable(obj_priv))
  1825. i915_gem_object_truncate(obj);
  1826. trace_i915_gem_object_unbind(obj);
  1827. return ret;
  1828. }
  1829. static int i915_ring_idle(struct drm_device *dev,
  1830. struct intel_ring_buffer *ring)
  1831. {
  1832. i915_gem_flush_ring(dev, NULL, ring,
  1833. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1834. return i915_wait_request(dev,
  1835. i915_gem_next_request_seqno(dev, ring),
  1836. ring);
  1837. }
  1838. int
  1839. i915_gpu_idle(struct drm_device *dev)
  1840. {
  1841. drm_i915_private_t *dev_priv = dev->dev_private;
  1842. bool lists_empty;
  1843. int ret;
  1844. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1845. list_empty(&dev_priv->render_ring.active_list) &&
  1846. (!HAS_BSD(dev) ||
  1847. list_empty(&dev_priv->bsd_ring.active_list)));
  1848. if (lists_empty)
  1849. return 0;
  1850. /* Flush everything onto the inactive list. */
  1851. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1852. if (ret)
  1853. return ret;
  1854. if (HAS_BSD(dev)) {
  1855. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1856. if (ret)
  1857. return ret;
  1858. }
  1859. return 0;
  1860. }
  1861. static int
  1862. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1863. gfp_t gfpmask)
  1864. {
  1865. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1866. int page_count, i;
  1867. struct address_space *mapping;
  1868. struct inode *inode;
  1869. struct page *page;
  1870. BUG_ON(obj_priv->pages_refcount
  1871. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1872. if (obj_priv->pages_refcount++ != 0)
  1873. return 0;
  1874. /* Get the list of pages out of our struct file. They'll be pinned
  1875. * at this point until we release them.
  1876. */
  1877. page_count = obj->size / PAGE_SIZE;
  1878. BUG_ON(obj_priv->pages != NULL);
  1879. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1880. if (obj_priv->pages == NULL) {
  1881. obj_priv->pages_refcount--;
  1882. return -ENOMEM;
  1883. }
  1884. inode = obj->filp->f_path.dentry->d_inode;
  1885. mapping = inode->i_mapping;
  1886. for (i = 0; i < page_count; i++) {
  1887. page = read_cache_page_gfp(mapping, i,
  1888. GFP_HIGHUSER |
  1889. __GFP_COLD |
  1890. __GFP_RECLAIMABLE |
  1891. gfpmask);
  1892. if (IS_ERR(page))
  1893. goto err_pages;
  1894. obj_priv->pages[i] = page;
  1895. }
  1896. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1897. i915_gem_object_do_bit_17_swizzle(obj);
  1898. return 0;
  1899. err_pages:
  1900. while (i--)
  1901. page_cache_release(obj_priv->pages[i]);
  1902. drm_free_large(obj_priv->pages);
  1903. obj_priv->pages = NULL;
  1904. obj_priv->pages_refcount--;
  1905. return PTR_ERR(page);
  1906. }
  1907. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1908. {
  1909. struct drm_gem_object *obj = reg->obj;
  1910. struct drm_device *dev = obj->dev;
  1911. drm_i915_private_t *dev_priv = dev->dev_private;
  1912. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1913. int regnum = obj_priv->fence_reg;
  1914. uint64_t val;
  1915. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1916. 0xfffff000) << 32;
  1917. val |= obj_priv->gtt_offset & 0xfffff000;
  1918. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1919. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1920. if (obj_priv->tiling_mode == I915_TILING_Y)
  1921. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1922. val |= I965_FENCE_REG_VALID;
  1923. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1924. }
  1925. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1926. {
  1927. struct drm_gem_object *obj = reg->obj;
  1928. struct drm_device *dev = obj->dev;
  1929. drm_i915_private_t *dev_priv = dev->dev_private;
  1930. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1931. int regnum = obj_priv->fence_reg;
  1932. uint64_t val;
  1933. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1934. 0xfffff000) << 32;
  1935. val |= obj_priv->gtt_offset & 0xfffff000;
  1936. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1937. if (obj_priv->tiling_mode == I915_TILING_Y)
  1938. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1939. val |= I965_FENCE_REG_VALID;
  1940. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1941. }
  1942. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1943. {
  1944. struct drm_gem_object *obj = reg->obj;
  1945. struct drm_device *dev = obj->dev;
  1946. drm_i915_private_t *dev_priv = dev->dev_private;
  1947. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1948. int regnum = obj_priv->fence_reg;
  1949. int tile_width;
  1950. uint32_t fence_reg, val;
  1951. uint32_t pitch_val;
  1952. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1953. (obj_priv->gtt_offset & (obj->size - 1))) {
  1954. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1955. __func__, obj_priv->gtt_offset, obj->size);
  1956. return;
  1957. }
  1958. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1959. HAS_128_BYTE_Y_TILING(dev))
  1960. tile_width = 128;
  1961. else
  1962. tile_width = 512;
  1963. /* Note: pitch better be a power of two tile widths */
  1964. pitch_val = obj_priv->stride / tile_width;
  1965. pitch_val = ffs(pitch_val) - 1;
  1966. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1967. HAS_128_BYTE_Y_TILING(dev))
  1968. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1969. else
  1970. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1971. val = obj_priv->gtt_offset;
  1972. if (obj_priv->tiling_mode == I915_TILING_Y)
  1973. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1974. val |= I915_FENCE_SIZE_BITS(obj->size);
  1975. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1976. val |= I830_FENCE_REG_VALID;
  1977. if (regnum < 8)
  1978. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1979. else
  1980. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1981. I915_WRITE(fence_reg, val);
  1982. }
  1983. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1984. {
  1985. struct drm_gem_object *obj = reg->obj;
  1986. struct drm_device *dev = obj->dev;
  1987. drm_i915_private_t *dev_priv = dev->dev_private;
  1988. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1989. int regnum = obj_priv->fence_reg;
  1990. uint32_t val;
  1991. uint32_t pitch_val;
  1992. uint32_t fence_size_bits;
  1993. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1994. (obj_priv->gtt_offset & (obj->size - 1))) {
  1995. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1996. __func__, obj_priv->gtt_offset);
  1997. return;
  1998. }
  1999. pitch_val = obj_priv->stride / 128;
  2000. pitch_val = ffs(pitch_val) - 1;
  2001. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2002. val = obj_priv->gtt_offset;
  2003. if (obj_priv->tiling_mode == I915_TILING_Y)
  2004. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2005. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  2006. WARN_ON(fence_size_bits & ~0x00000f00);
  2007. val |= fence_size_bits;
  2008. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2009. val |= I830_FENCE_REG_VALID;
  2010. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2011. }
  2012. static int i915_find_fence_reg(struct drm_device *dev,
  2013. bool interruptible)
  2014. {
  2015. struct drm_i915_fence_reg *reg = NULL;
  2016. struct drm_i915_gem_object *obj_priv = NULL;
  2017. struct drm_i915_private *dev_priv = dev->dev_private;
  2018. struct drm_gem_object *obj = NULL;
  2019. int i, avail, ret;
  2020. /* First try to find a free reg */
  2021. avail = 0;
  2022. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2023. reg = &dev_priv->fence_regs[i];
  2024. if (!reg->obj)
  2025. return i;
  2026. obj_priv = to_intel_bo(reg->obj);
  2027. if (!obj_priv->pin_count)
  2028. avail++;
  2029. }
  2030. if (avail == 0)
  2031. return -ENOSPC;
  2032. /* None available, try to steal one or wait for a user to finish */
  2033. i = I915_FENCE_REG_NONE;
  2034. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2035. lru_list) {
  2036. obj = reg->obj;
  2037. obj_priv = to_intel_bo(obj);
  2038. if (obj_priv->pin_count)
  2039. continue;
  2040. /* found one! */
  2041. i = obj_priv->fence_reg;
  2042. break;
  2043. }
  2044. BUG_ON(i == I915_FENCE_REG_NONE);
  2045. /* We only have a reference on obj from the active list. put_fence_reg
  2046. * might drop that one, causing a use-after-free in it. So hold a
  2047. * private reference to obj like the other callers of put_fence_reg
  2048. * (set_tiling ioctl) do. */
  2049. drm_gem_object_reference(obj);
  2050. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2051. drm_gem_object_unreference(obj);
  2052. if (ret != 0)
  2053. return ret;
  2054. return i;
  2055. }
  2056. /**
  2057. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2058. * @obj: object to map through a fence reg
  2059. *
  2060. * When mapping objects through the GTT, userspace wants to be able to write
  2061. * to them without having to worry about swizzling if the object is tiled.
  2062. *
  2063. * This function walks the fence regs looking for a free one for @obj,
  2064. * stealing one if it can't find any.
  2065. *
  2066. * It then sets up the reg based on the object's properties: address, pitch
  2067. * and tiling format.
  2068. */
  2069. int
  2070. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2071. bool interruptible)
  2072. {
  2073. struct drm_device *dev = obj->dev;
  2074. struct drm_i915_private *dev_priv = dev->dev_private;
  2075. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2076. struct drm_i915_fence_reg *reg = NULL;
  2077. int ret;
  2078. /* Just update our place in the LRU if our fence is getting used. */
  2079. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2080. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2081. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2082. return 0;
  2083. }
  2084. switch (obj_priv->tiling_mode) {
  2085. case I915_TILING_NONE:
  2086. WARN(1, "allocating a fence for non-tiled object?\n");
  2087. break;
  2088. case I915_TILING_X:
  2089. if (!obj_priv->stride)
  2090. return -EINVAL;
  2091. WARN((obj_priv->stride & (512 - 1)),
  2092. "object 0x%08x is X tiled but has non-512B pitch\n",
  2093. obj_priv->gtt_offset);
  2094. break;
  2095. case I915_TILING_Y:
  2096. if (!obj_priv->stride)
  2097. return -EINVAL;
  2098. WARN((obj_priv->stride & (128 - 1)),
  2099. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2100. obj_priv->gtt_offset);
  2101. break;
  2102. }
  2103. ret = i915_find_fence_reg(dev, interruptible);
  2104. if (ret < 0)
  2105. return ret;
  2106. obj_priv->fence_reg = ret;
  2107. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2108. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2109. reg->obj = obj;
  2110. switch (INTEL_INFO(dev)->gen) {
  2111. case 6:
  2112. sandybridge_write_fence_reg(reg);
  2113. break;
  2114. case 5:
  2115. case 4:
  2116. i965_write_fence_reg(reg);
  2117. break;
  2118. case 3:
  2119. i915_write_fence_reg(reg);
  2120. break;
  2121. case 2:
  2122. i830_write_fence_reg(reg);
  2123. break;
  2124. }
  2125. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2126. obj_priv->tiling_mode);
  2127. return 0;
  2128. }
  2129. /**
  2130. * i915_gem_clear_fence_reg - clear out fence register info
  2131. * @obj: object to clear
  2132. *
  2133. * Zeroes out the fence register itself and clears out the associated
  2134. * data structures in dev_priv and obj_priv.
  2135. */
  2136. static void
  2137. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2138. {
  2139. struct drm_device *dev = obj->dev;
  2140. drm_i915_private_t *dev_priv = dev->dev_private;
  2141. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2142. struct drm_i915_fence_reg *reg =
  2143. &dev_priv->fence_regs[obj_priv->fence_reg];
  2144. uint32_t fence_reg;
  2145. switch (INTEL_INFO(dev)->gen) {
  2146. case 6:
  2147. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2148. (obj_priv->fence_reg * 8), 0);
  2149. break;
  2150. case 5:
  2151. case 4:
  2152. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2153. break;
  2154. case 3:
  2155. if (obj_priv->fence_reg >= 8)
  2156. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2157. else
  2158. case 2:
  2159. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2160. I915_WRITE(fence_reg, 0);
  2161. break;
  2162. }
  2163. reg->obj = NULL;
  2164. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2165. list_del_init(&reg->lru_list);
  2166. }
  2167. /**
  2168. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2169. * to the buffer to finish, and then resets the fence register.
  2170. * @obj: tiled object holding a fence register.
  2171. * @bool: whether the wait upon the fence is interruptible
  2172. *
  2173. * Zeroes out the fence register itself and clears out the associated
  2174. * data structures in dev_priv and obj_priv.
  2175. */
  2176. int
  2177. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2178. bool interruptible)
  2179. {
  2180. struct drm_device *dev = obj->dev;
  2181. struct drm_i915_private *dev_priv = dev->dev_private;
  2182. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2183. struct drm_i915_fence_reg *reg;
  2184. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2185. return 0;
  2186. /* If we've changed tiling, GTT-mappings of the object
  2187. * need to re-fault to ensure that the correct fence register
  2188. * setup is in place.
  2189. */
  2190. i915_gem_release_mmap(obj);
  2191. /* On the i915, GPU access to tiled buffers is via a fence,
  2192. * therefore we must wait for any outstanding access to complete
  2193. * before clearing the fence.
  2194. */
  2195. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2196. if (reg->gpu) {
  2197. int ret;
  2198. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2199. if (ret)
  2200. return ret;
  2201. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2202. if (ret)
  2203. return ret;
  2204. reg->gpu = false;
  2205. }
  2206. i915_gem_object_flush_gtt_write_domain(obj);
  2207. i915_gem_clear_fence_reg(obj);
  2208. return 0;
  2209. }
  2210. /**
  2211. * Finds free space in the GTT aperture and binds the object there.
  2212. */
  2213. static int
  2214. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2215. {
  2216. struct drm_device *dev = obj->dev;
  2217. drm_i915_private_t *dev_priv = dev->dev_private;
  2218. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2219. struct drm_mm_node *free_space;
  2220. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2221. int ret;
  2222. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2223. DRM_ERROR("Attempting to bind a purgeable object\n");
  2224. return -EINVAL;
  2225. }
  2226. if (alignment == 0)
  2227. alignment = i915_gem_get_gtt_alignment(obj);
  2228. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2229. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2230. return -EINVAL;
  2231. }
  2232. /* If the object is bigger than the entire aperture, reject it early
  2233. * before evicting everything in a vain attempt to find space.
  2234. */
  2235. if (obj->size > dev_priv->mm.gtt_total) {
  2236. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2237. return -E2BIG;
  2238. }
  2239. search_free:
  2240. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2241. obj->size, alignment, 0);
  2242. if (free_space != NULL) {
  2243. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2244. alignment);
  2245. if (obj_priv->gtt_space != NULL)
  2246. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2247. }
  2248. if (obj_priv->gtt_space == NULL) {
  2249. /* If the gtt is empty and we're still having trouble
  2250. * fitting our object in, we're out of memory.
  2251. */
  2252. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2253. if (ret)
  2254. return ret;
  2255. goto search_free;
  2256. }
  2257. ret = i915_gem_object_get_pages(obj, gfpmask);
  2258. if (ret) {
  2259. drm_mm_put_block(obj_priv->gtt_space);
  2260. obj_priv->gtt_space = NULL;
  2261. if (ret == -ENOMEM) {
  2262. /* first try to clear up some space from the GTT */
  2263. ret = i915_gem_evict_something(dev, obj->size,
  2264. alignment);
  2265. if (ret) {
  2266. /* now try to shrink everyone else */
  2267. if (gfpmask) {
  2268. gfpmask = 0;
  2269. goto search_free;
  2270. }
  2271. return ret;
  2272. }
  2273. goto search_free;
  2274. }
  2275. return ret;
  2276. }
  2277. /* Create an AGP memory structure pointing at our pages, and bind it
  2278. * into the GTT.
  2279. */
  2280. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2281. obj_priv->pages,
  2282. obj->size >> PAGE_SHIFT,
  2283. obj_priv->gtt_offset,
  2284. obj_priv->agp_type);
  2285. if (obj_priv->agp_mem == NULL) {
  2286. i915_gem_object_put_pages(obj);
  2287. drm_mm_put_block(obj_priv->gtt_space);
  2288. obj_priv->gtt_space = NULL;
  2289. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2290. if (ret)
  2291. return ret;
  2292. goto search_free;
  2293. }
  2294. /* keep track of bounds object by adding it to the inactive list */
  2295. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2296. i915_gem_info_add_gtt(dev_priv, obj->size);
  2297. /* Assert that the object is not currently in any GPU domain. As it
  2298. * wasn't in the GTT, there shouldn't be any way it could have been in
  2299. * a GPU cache
  2300. */
  2301. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2302. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2303. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2304. return 0;
  2305. }
  2306. void
  2307. i915_gem_clflush_object(struct drm_gem_object *obj)
  2308. {
  2309. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2310. /* If we don't have a page list set up, then we're not pinned
  2311. * to GPU, and we can ignore the cache flush because it'll happen
  2312. * again at bind time.
  2313. */
  2314. if (obj_priv->pages == NULL)
  2315. return;
  2316. trace_i915_gem_object_clflush(obj);
  2317. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2318. }
  2319. /** Flushes any GPU write domain for the object if it's dirty. */
  2320. static int
  2321. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2322. bool pipelined)
  2323. {
  2324. struct drm_device *dev = obj->dev;
  2325. uint32_t old_write_domain;
  2326. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2327. return 0;
  2328. /* Queue the GPU write cache flushing we need. */
  2329. old_write_domain = obj->write_domain;
  2330. i915_gem_flush_ring(dev, NULL,
  2331. to_intel_bo(obj)->ring,
  2332. 0, obj->write_domain);
  2333. BUG_ON(obj->write_domain);
  2334. trace_i915_gem_object_change_domain(obj,
  2335. obj->read_domains,
  2336. old_write_domain);
  2337. if (pipelined)
  2338. return 0;
  2339. return i915_gem_object_wait_rendering(obj, true);
  2340. }
  2341. /** Flushes the GTT write domain for the object if it's dirty. */
  2342. static void
  2343. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2344. {
  2345. uint32_t old_write_domain;
  2346. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2347. return;
  2348. /* No actual flushing is required for the GTT write domain. Writes
  2349. * to it immediately go to main memory as far as we know, so there's
  2350. * no chipset flush. It also doesn't land in render cache.
  2351. */
  2352. old_write_domain = obj->write_domain;
  2353. obj->write_domain = 0;
  2354. trace_i915_gem_object_change_domain(obj,
  2355. obj->read_domains,
  2356. old_write_domain);
  2357. }
  2358. /** Flushes the CPU write domain for the object if it's dirty. */
  2359. static void
  2360. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2361. {
  2362. struct drm_device *dev = obj->dev;
  2363. uint32_t old_write_domain;
  2364. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2365. return;
  2366. i915_gem_clflush_object(obj);
  2367. drm_agp_chipset_flush(dev);
  2368. old_write_domain = obj->write_domain;
  2369. obj->write_domain = 0;
  2370. trace_i915_gem_object_change_domain(obj,
  2371. obj->read_domains,
  2372. old_write_domain);
  2373. }
  2374. /**
  2375. * Moves a single object to the GTT read, and possibly write domain.
  2376. *
  2377. * This function returns when the move is complete, including waiting on
  2378. * flushes to occur.
  2379. */
  2380. int
  2381. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2382. {
  2383. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2384. uint32_t old_write_domain, old_read_domains;
  2385. int ret;
  2386. /* Not valid to be called on unbound objects. */
  2387. if (obj_priv->gtt_space == NULL)
  2388. return -EINVAL;
  2389. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2390. if (ret != 0)
  2391. return ret;
  2392. i915_gem_object_flush_cpu_write_domain(obj);
  2393. if (write) {
  2394. ret = i915_gem_object_wait_rendering(obj, true);
  2395. if (ret)
  2396. return ret;
  2397. }
  2398. old_write_domain = obj->write_domain;
  2399. old_read_domains = obj->read_domains;
  2400. /* It should now be out of any other write domains, and we can update
  2401. * the domain values for our changes.
  2402. */
  2403. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2404. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2405. if (write) {
  2406. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2407. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2408. obj_priv->dirty = 1;
  2409. }
  2410. trace_i915_gem_object_change_domain(obj,
  2411. old_read_domains,
  2412. old_write_domain);
  2413. return 0;
  2414. }
  2415. /*
  2416. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2417. * wait, as in modesetting process we're not supposed to be interrupted.
  2418. */
  2419. int
  2420. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2421. bool pipelined)
  2422. {
  2423. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2424. uint32_t old_read_domains;
  2425. int ret;
  2426. /* Not valid to be called on unbound objects. */
  2427. if (obj_priv->gtt_space == NULL)
  2428. return -EINVAL;
  2429. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2430. if (ret)
  2431. return ret;
  2432. /* Currently, we are always called from an non-interruptible context. */
  2433. if (!pipelined) {
  2434. ret = i915_gem_object_wait_rendering(obj, false);
  2435. if (ret)
  2436. return ret;
  2437. }
  2438. i915_gem_object_flush_cpu_write_domain(obj);
  2439. old_read_domains = obj->read_domains;
  2440. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2441. trace_i915_gem_object_change_domain(obj,
  2442. old_read_domains,
  2443. obj->write_domain);
  2444. return 0;
  2445. }
  2446. /**
  2447. * Moves a single object to the CPU read, and possibly write domain.
  2448. *
  2449. * This function returns when the move is complete, including waiting on
  2450. * flushes to occur.
  2451. */
  2452. static int
  2453. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2454. {
  2455. uint32_t old_write_domain, old_read_domains;
  2456. int ret;
  2457. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2458. if (ret != 0)
  2459. return ret;
  2460. i915_gem_object_flush_gtt_write_domain(obj);
  2461. /* If we have a partially-valid cache of the object in the CPU,
  2462. * finish invalidating it and free the per-page flags.
  2463. */
  2464. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2465. if (write) {
  2466. ret = i915_gem_object_wait_rendering(obj, true);
  2467. if (ret)
  2468. return ret;
  2469. }
  2470. old_write_domain = obj->write_domain;
  2471. old_read_domains = obj->read_domains;
  2472. /* Flush the CPU cache if it's still invalid. */
  2473. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2474. i915_gem_clflush_object(obj);
  2475. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2476. }
  2477. /* It should now be out of any other write domains, and we can update
  2478. * the domain values for our changes.
  2479. */
  2480. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2481. /* If we're writing through the CPU, then the GPU read domains will
  2482. * need to be invalidated at next use.
  2483. */
  2484. if (write) {
  2485. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2486. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2487. }
  2488. trace_i915_gem_object_change_domain(obj,
  2489. old_read_domains,
  2490. old_write_domain);
  2491. return 0;
  2492. }
  2493. /*
  2494. * Set the next domain for the specified object. This
  2495. * may not actually perform the necessary flushing/invaliding though,
  2496. * as that may want to be batched with other set_domain operations
  2497. *
  2498. * This is (we hope) the only really tricky part of gem. The goal
  2499. * is fairly simple -- track which caches hold bits of the object
  2500. * and make sure they remain coherent. A few concrete examples may
  2501. * help to explain how it works. For shorthand, we use the notation
  2502. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2503. * a pair of read and write domain masks.
  2504. *
  2505. * Case 1: the batch buffer
  2506. *
  2507. * 1. Allocated
  2508. * 2. Written by CPU
  2509. * 3. Mapped to GTT
  2510. * 4. Read by GPU
  2511. * 5. Unmapped from GTT
  2512. * 6. Freed
  2513. *
  2514. * Let's take these a step at a time
  2515. *
  2516. * 1. Allocated
  2517. * Pages allocated from the kernel may still have
  2518. * cache contents, so we set them to (CPU, CPU) always.
  2519. * 2. Written by CPU (using pwrite)
  2520. * The pwrite function calls set_domain (CPU, CPU) and
  2521. * this function does nothing (as nothing changes)
  2522. * 3. Mapped by GTT
  2523. * This function asserts that the object is not
  2524. * currently in any GPU-based read or write domains
  2525. * 4. Read by GPU
  2526. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2527. * As write_domain is zero, this function adds in the
  2528. * current read domains (CPU+COMMAND, 0).
  2529. * flush_domains is set to CPU.
  2530. * invalidate_domains is set to COMMAND
  2531. * clflush is run to get data out of the CPU caches
  2532. * then i915_dev_set_domain calls i915_gem_flush to
  2533. * emit an MI_FLUSH and drm_agp_chipset_flush
  2534. * 5. Unmapped from GTT
  2535. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2536. * flush_domains and invalidate_domains end up both zero
  2537. * so no flushing/invalidating happens
  2538. * 6. Freed
  2539. * yay, done
  2540. *
  2541. * Case 2: The shared render buffer
  2542. *
  2543. * 1. Allocated
  2544. * 2. Mapped to GTT
  2545. * 3. Read/written by GPU
  2546. * 4. set_domain to (CPU,CPU)
  2547. * 5. Read/written by CPU
  2548. * 6. Read/written by GPU
  2549. *
  2550. * 1. Allocated
  2551. * Same as last example, (CPU, CPU)
  2552. * 2. Mapped to GTT
  2553. * Nothing changes (assertions find that it is not in the GPU)
  2554. * 3. Read/written by GPU
  2555. * execbuffer calls set_domain (RENDER, RENDER)
  2556. * flush_domains gets CPU
  2557. * invalidate_domains gets GPU
  2558. * clflush (obj)
  2559. * MI_FLUSH and drm_agp_chipset_flush
  2560. * 4. set_domain (CPU, CPU)
  2561. * flush_domains gets GPU
  2562. * invalidate_domains gets CPU
  2563. * wait_rendering (obj) to make sure all drawing is complete.
  2564. * This will include an MI_FLUSH to get the data from GPU
  2565. * to memory
  2566. * clflush (obj) to invalidate the CPU cache
  2567. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2568. * 5. Read/written by CPU
  2569. * cache lines are loaded and dirtied
  2570. * 6. Read written by GPU
  2571. * Same as last GPU access
  2572. *
  2573. * Case 3: The constant buffer
  2574. *
  2575. * 1. Allocated
  2576. * 2. Written by CPU
  2577. * 3. Read by GPU
  2578. * 4. Updated (written) by CPU again
  2579. * 5. Read by GPU
  2580. *
  2581. * 1. Allocated
  2582. * (CPU, CPU)
  2583. * 2. Written by CPU
  2584. * (CPU, CPU)
  2585. * 3. Read by GPU
  2586. * (CPU+RENDER, 0)
  2587. * flush_domains = CPU
  2588. * invalidate_domains = RENDER
  2589. * clflush (obj)
  2590. * MI_FLUSH
  2591. * drm_agp_chipset_flush
  2592. * 4. Updated (written) by CPU again
  2593. * (CPU, CPU)
  2594. * flush_domains = 0 (no previous write domain)
  2595. * invalidate_domains = 0 (no new read domains)
  2596. * 5. Read by GPU
  2597. * (CPU+RENDER, 0)
  2598. * flush_domains = CPU
  2599. * invalidate_domains = RENDER
  2600. * clflush (obj)
  2601. * MI_FLUSH
  2602. * drm_agp_chipset_flush
  2603. */
  2604. static void
  2605. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2606. {
  2607. struct drm_device *dev = obj->dev;
  2608. struct drm_i915_private *dev_priv = dev->dev_private;
  2609. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2610. uint32_t invalidate_domains = 0;
  2611. uint32_t flush_domains = 0;
  2612. uint32_t old_read_domains;
  2613. intel_mark_busy(dev, obj);
  2614. /*
  2615. * If the object isn't moving to a new write domain,
  2616. * let the object stay in multiple read domains
  2617. */
  2618. if (obj->pending_write_domain == 0)
  2619. obj->pending_read_domains |= obj->read_domains;
  2620. else
  2621. obj_priv->dirty = 1;
  2622. /*
  2623. * Flush the current write domain if
  2624. * the new read domains don't match. Invalidate
  2625. * any read domains which differ from the old
  2626. * write domain
  2627. */
  2628. if (obj->write_domain &&
  2629. obj->write_domain != obj->pending_read_domains) {
  2630. flush_domains |= obj->write_domain;
  2631. invalidate_domains |=
  2632. obj->pending_read_domains & ~obj->write_domain;
  2633. }
  2634. /*
  2635. * Invalidate any read caches which may have
  2636. * stale data. That is, any new read domains.
  2637. */
  2638. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2639. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2640. i915_gem_clflush_object(obj);
  2641. old_read_domains = obj->read_domains;
  2642. /* The actual obj->write_domain will be updated with
  2643. * pending_write_domain after we emit the accumulated flush for all
  2644. * of our domain changes in execbuffers (which clears objects'
  2645. * write_domains). So if we have a current write domain that we
  2646. * aren't changing, set pending_write_domain to that.
  2647. */
  2648. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2649. obj->pending_write_domain = obj->write_domain;
  2650. obj->read_domains = obj->pending_read_domains;
  2651. dev->invalidate_domains |= invalidate_domains;
  2652. dev->flush_domains |= flush_domains;
  2653. if (obj_priv->ring)
  2654. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2655. trace_i915_gem_object_change_domain(obj,
  2656. old_read_domains,
  2657. obj->write_domain);
  2658. }
  2659. /**
  2660. * Moves the object from a partially CPU read to a full one.
  2661. *
  2662. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2663. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2664. */
  2665. static void
  2666. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2667. {
  2668. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2669. if (!obj_priv->page_cpu_valid)
  2670. return;
  2671. /* If we're partially in the CPU read domain, finish moving it in.
  2672. */
  2673. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2674. int i;
  2675. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2676. if (obj_priv->page_cpu_valid[i])
  2677. continue;
  2678. drm_clflush_pages(obj_priv->pages + i, 1);
  2679. }
  2680. }
  2681. /* Free the page_cpu_valid mappings which are now stale, whether
  2682. * or not we've got I915_GEM_DOMAIN_CPU.
  2683. */
  2684. kfree(obj_priv->page_cpu_valid);
  2685. obj_priv->page_cpu_valid = NULL;
  2686. }
  2687. /**
  2688. * Set the CPU read domain on a range of the object.
  2689. *
  2690. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2691. * not entirely valid. The page_cpu_valid member of the object flags which
  2692. * pages have been flushed, and will be respected by
  2693. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2694. * of the whole object.
  2695. *
  2696. * This function returns when the move is complete, including waiting on
  2697. * flushes to occur.
  2698. */
  2699. static int
  2700. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2701. uint64_t offset, uint64_t size)
  2702. {
  2703. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2704. uint32_t old_read_domains;
  2705. int i, ret;
  2706. if (offset == 0 && size == obj->size)
  2707. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2708. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2709. if (ret != 0)
  2710. return ret;
  2711. i915_gem_object_flush_gtt_write_domain(obj);
  2712. /* If we're already fully in the CPU read domain, we're done. */
  2713. if (obj_priv->page_cpu_valid == NULL &&
  2714. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2715. return 0;
  2716. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2717. * newly adding I915_GEM_DOMAIN_CPU
  2718. */
  2719. if (obj_priv->page_cpu_valid == NULL) {
  2720. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2721. GFP_KERNEL);
  2722. if (obj_priv->page_cpu_valid == NULL)
  2723. return -ENOMEM;
  2724. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2725. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2726. /* Flush the cache on any pages that are still invalid from the CPU's
  2727. * perspective.
  2728. */
  2729. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2730. i++) {
  2731. if (obj_priv->page_cpu_valid[i])
  2732. continue;
  2733. drm_clflush_pages(obj_priv->pages + i, 1);
  2734. obj_priv->page_cpu_valid[i] = 1;
  2735. }
  2736. /* It should now be out of any other write domains, and we can update
  2737. * the domain values for our changes.
  2738. */
  2739. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2740. old_read_domains = obj->read_domains;
  2741. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2742. trace_i915_gem_object_change_domain(obj,
  2743. old_read_domains,
  2744. obj->write_domain);
  2745. return 0;
  2746. }
  2747. /**
  2748. * Pin an object to the GTT and evaluate the relocations landing in it.
  2749. */
  2750. static int
  2751. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2752. struct drm_file *file_priv,
  2753. struct drm_i915_gem_exec_object2 *entry)
  2754. {
  2755. struct drm_device *dev = obj->dev;
  2756. drm_i915_private_t *dev_priv = dev->dev_private;
  2757. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2758. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2759. int i, ret;
  2760. bool need_fence;
  2761. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2762. obj_priv->tiling_mode != I915_TILING_NONE;
  2763. /* Check fence reg constraints and rebind if necessary */
  2764. if (need_fence &&
  2765. !i915_gem_object_fence_offset_ok(obj,
  2766. obj_priv->tiling_mode)) {
  2767. ret = i915_gem_object_unbind(obj);
  2768. if (ret)
  2769. return ret;
  2770. }
  2771. /* Choose the GTT offset for our buffer and put it there. */
  2772. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2773. if (ret)
  2774. return ret;
  2775. /*
  2776. * Pre-965 chips need a fence register set up in order to
  2777. * properly handle blits to/from tiled surfaces.
  2778. */
  2779. if (need_fence) {
  2780. ret = i915_gem_object_get_fence_reg(obj, true);
  2781. if (ret != 0) {
  2782. i915_gem_object_unpin(obj);
  2783. return ret;
  2784. }
  2785. dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
  2786. }
  2787. entry->offset = obj_priv->gtt_offset;
  2788. /* Apply the relocations, using the GTT aperture to avoid cache
  2789. * flushing requirements.
  2790. */
  2791. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2792. for (i = 0; i < entry->relocation_count; i++) {
  2793. struct drm_i915_gem_relocation_entry reloc;
  2794. struct drm_gem_object *target_obj;
  2795. struct drm_i915_gem_object *target_obj_priv;
  2796. ret = __copy_from_user_inatomic(&reloc,
  2797. user_relocs+i,
  2798. sizeof(reloc));
  2799. if (ret) {
  2800. i915_gem_object_unpin(obj);
  2801. return -EFAULT;
  2802. }
  2803. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2804. reloc.target_handle);
  2805. if (target_obj == NULL) {
  2806. i915_gem_object_unpin(obj);
  2807. return -ENOENT;
  2808. }
  2809. target_obj_priv = to_intel_bo(target_obj);
  2810. #if WATCH_RELOC
  2811. DRM_INFO("%s: obj %p offset %08x target %d "
  2812. "read %08x write %08x gtt %08x "
  2813. "presumed %08x delta %08x\n",
  2814. __func__,
  2815. obj,
  2816. (int) reloc.offset,
  2817. (int) reloc.target_handle,
  2818. (int) reloc.read_domains,
  2819. (int) reloc.write_domain,
  2820. (int) target_obj_priv->gtt_offset,
  2821. (int) reloc.presumed_offset,
  2822. reloc.delta);
  2823. #endif
  2824. /* The target buffer should have appeared before us in the
  2825. * exec_object list, so it should have a GTT space bound by now.
  2826. */
  2827. if (target_obj_priv->gtt_space == NULL) {
  2828. DRM_ERROR("No GTT space found for object %d\n",
  2829. reloc.target_handle);
  2830. drm_gem_object_unreference(target_obj);
  2831. i915_gem_object_unpin(obj);
  2832. return -EINVAL;
  2833. }
  2834. /* Validate that the target is in a valid r/w GPU domain */
  2835. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2836. DRM_ERROR("reloc with multiple write domains: "
  2837. "obj %p target %d offset %d "
  2838. "read %08x write %08x",
  2839. obj, reloc.target_handle,
  2840. (int) reloc.offset,
  2841. reloc.read_domains,
  2842. reloc.write_domain);
  2843. drm_gem_object_unreference(target_obj);
  2844. i915_gem_object_unpin(obj);
  2845. return -EINVAL;
  2846. }
  2847. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2848. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2849. DRM_ERROR("reloc with read/write CPU domains: "
  2850. "obj %p target %d offset %d "
  2851. "read %08x write %08x",
  2852. obj, reloc.target_handle,
  2853. (int) reloc.offset,
  2854. reloc.read_domains,
  2855. reloc.write_domain);
  2856. drm_gem_object_unreference(target_obj);
  2857. i915_gem_object_unpin(obj);
  2858. return -EINVAL;
  2859. }
  2860. if (reloc.write_domain && target_obj->pending_write_domain &&
  2861. reloc.write_domain != target_obj->pending_write_domain) {
  2862. DRM_ERROR("Write domain conflict: "
  2863. "obj %p target %d offset %d "
  2864. "new %08x old %08x\n",
  2865. obj, reloc.target_handle,
  2866. (int) reloc.offset,
  2867. reloc.write_domain,
  2868. target_obj->pending_write_domain);
  2869. drm_gem_object_unreference(target_obj);
  2870. i915_gem_object_unpin(obj);
  2871. return -EINVAL;
  2872. }
  2873. target_obj->pending_read_domains |= reloc.read_domains;
  2874. target_obj->pending_write_domain |= reloc.write_domain;
  2875. /* If the relocation already has the right value in it, no
  2876. * more work needs to be done.
  2877. */
  2878. if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
  2879. drm_gem_object_unreference(target_obj);
  2880. continue;
  2881. }
  2882. /* Check that the relocation address is valid... */
  2883. if (reloc.offset > obj->size - 4) {
  2884. DRM_ERROR("Relocation beyond object bounds: "
  2885. "obj %p target %d offset %d size %d.\n",
  2886. obj, reloc.target_handle,
  2887. (int) reloc.offset, (int) obj->size);
  2888. drm_gem_object_unreference(target_obj);
  2889. i915_gem_object_unpin(obj);
  2890. return -EINVAL;
  2891. }
  2892. if (reloc.offset & 3) {
  2893. DRM_ERROR("Relocation not 4-byte aligned: "
  2894. "obj %p target %d offset %d.\n",
  2895. obj, reloc.target_handle,
  2896. (int) reloc.offset);
  2897. drm_gem_object_unreference(target_obj);
  2898. i915_gem_object_unpin(obj);
  2899. return -EINVAL;
  2900. }
  2901. /* and points to somewhere within the target object. */
  2902. if (reloc.delta >= target_obj->size) {
  2903. DRM_ERROR("Relocation beyond target object bounds: "
  2904. "obj %p target %d delta %d size %d.\n",
  2905. obj, reloc.target_handle,
  2906. (int) reloc.delta, (int) target_obj->size);
  2907. drm_gem_object_unreference(target_obj);
  2908. i915_gem_object_unpin(obj);
  2909. return -EINVAL;
  2910. }
  2911. reloc.delta += target_obj_priv->gtt_offset;
  2912. if (obj->write_domain == I915_GEM_DOMAIN_CPU) {
  2913. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2914. char *vaddr;
  2915. vaddr = kmap_atomic(obj_priv->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
  2916. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2917. kunmap_atomic(vaddr, KM_USER0);
  2918. } else {
  2919. uint32_t __iomem *reloc_entry;
  2920. void __iomem *reloc_page;
  2921. int ret;
  2922. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2923. if (ret) {
  2924. drm_gem_object_unreference(target_obj);
  2925. i915_gem_object_unpin(obj);
  2926. return ret;
  2927. }
  2928. /* Map the page containing the relocation we're going to perform. */
  2929. reloc.offset += obj_priv->gtt_offset;
  2930. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2931. reloc.offset & PAGE_MASK,
  2932. KM_USER0);
  2933. reloc_entry = (uint32_t __iomem *)
  2934. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2935. iowrite32(reloc.delta, reloc_entry);
  2936. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2937. }
  2938. drm_gem_object_unreference(target_obj);
  2939. }
  2940. return 0;
  2941. }
  2942. /* Throttle our rendering by waiting until the ring has completed our requests
  2943. * emitted over 20 msec ago.
  2944. *
  2945. * Note that if we were to use the current jiffies each time around the loop,
  2946. * we wouldn't escape the function with any frames outstanding if the time to
  2947. * render a frame was over 20ms.
  2948. *
  2949. * This should get us reasonable parallelism between CPU and GPU but also
  2950. * relatively low latency when blocking on a particular request to finish.
  2951. */
  2952. static int
  2953. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2954. {
  2955. struct drm_i915_private *dev_priv = dev->dev_private;
  2956. struct drm_i915_file_private *file_priv = file->driver_priv;
  2957. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2958. struct drm_i915_gem_request *request;
  2959. struct intel_ring_buffer *ring = NULL;
  2960. u32 seqno = 0;
  2961. int ret;
  2962. spin_lock(&file_priv->mm.lock);
  2963. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2964. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2965. break;
  2966. ring = request->ring;
  2967. seqno = request->seqno;
  2968. }
  2969. spin_unlock(&file_priv->mm.lock);
  2970. if (seqno == 0)
  2971. return 0;
  2972. ret = 0;
  2973. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  2974. /* And wait for the seqno passing without holding any locks and
  2975. * causing extra latency for others. This is safe as the irq
  2976. * generation is designed to be run atomically and so is
  2977. * lockless.
  2978. */
  2979. ring->user_irq_get(dev, ring);
  2980. ret = wait_event_interruptible(ring->irq_queue,
  2981. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  2982. || atomic_read(&dev_priv->mm.wedged));
  2983. ring->user_irq_put(dev, ring);
  2984. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2985. ret = -EIO;
  2986. }
  2987. if (ret == 0)
  2988. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2989. return ret;
  2990. }
  2991. static int
  2992. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  2993. uint64_t exec_offset)
  2994. {
  2995. uint32_t exec_start, exec_len;
  2996. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2997. exec_len = (uint32_t) exec->batch_len;
  2998. if ((exec_start | exec_len) & 0x7)
  2999. return -EINVAL;
  3000. if (!exec_start)
  3001. return -EINVAL;
  3002. return 0;
  3003. }
  3004. static int
  3005. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3006. int count)
  3007. {
  3008. int i;
  3009. for (i = 0; i < count; i++) {
  3010. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3011. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3012. if (!access_ok(VERIFY_READ, ptr, length))
  3013. return -EFAULT;
  3014. if (fault_in_pages_readable(ptr, length))
  3015. return -EFAULT;
  3016. }
  3017. return 0;
  3018. }
  3019. static int
  3020. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3021. struct drm_file *file_priv,
  3022. struct drm_i915_gem_execbuffer2 *args,
  3023. struct drm_i915_gem_exec_object2 *exec_list)
  3024. {
  3025. drm_i915_private_t *dev_priv = dev->dev_private;
  3026. struct drm_gem_object **object_list = NULL;
  3027. struct drm_gem_object *batch_obj;
  3028. struct drm_i915_gem_object *obj_priv;
  3029. struct drm_clip_rect *cliprects = NULL;
  3030. struct drm_i915_gem_request *request = NULL;
  3031. int ret, i, pinned = 0;
  3032. uint64_t exec_offset;
  3033. int pin_tries, flips;
  3034. struct intel_ring_buffer *ring = NULL;
  3035. ret = i915_gem_check_is_wedged(dev);
  3036. if (ret)
  3037. return ret;
  3038. ret = validate_exec_list(exec_list, args->buffer_count);
  3039. if (ret)
  3040. return ret;
  3041. #if WATCH_EXEC
  3042. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3043. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3044. #endif
  3045. if (args->flags & I915_EXEC_BSD) {
  3046. if (!HAS_BSD(dev)) {
  3047. DRM_ERROR("execbuf with wrong flag\n");
  3048. return -EINVAL;
  3049. }
  3050. ring = &dev_priv->bsd_ring;
  3051. } else {
  3052. ring = &dev_priv->render_ring;
  3053. }
  3054. if (args->buffer_count < 1) {
  3055. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3056. return -EINVAL;
  3057. }
  3058. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3059. if (object_list == NULL) {
  3060. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3061. args->buffer_count);
  3062. ret = -ENOMEM;
  3063. goto pre_mutex_err;
  3064. }
  3065. if (args->num_cliprects != 0) {
  3066. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3067. GFP_KERNEL);
  3068. if (cliprects == NULL) {
  3069. ret = -ENOMEM;
  3070. goto pre_mutex_err;
  3071. }
  3072. ret = copy_from_user(cliprects,
  3073. (struct drm_clip_rect __user *)
  3074. (uintptr_t) args->cliprects_ptr,
  3075. sizeof(*cliprects) * args->num_cliprects);
  3076. if (ret != 0) {
  3077. DRM_ERROR("copy %d cliprects failed: %d\n",
  3078. args->num_cliprects, ret);
  3079. ret = -EFAULT;
  3080. goto pre_mutex_err;
  3081. }
  3082. }
  3083. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3084. if (request == NULL) {
  3085. ret = -ENOMEM;
  3086. goto pre_mutex_err;
  3087. }
  3088. ret = i915_mutex_lock_interruptible(dev);
  3089. if (ret)
  3090. goto pre_mutex_err;
  3091. if (dev_priv->mm.suspended) {
  3092. mutex_unlock(&dev->struct_mutex);
  3093. ret = -EBUSY;
  3094. goto pre_mutex_err;
  3095. }
  3096. /* Look up object handles */
  3097. for (i = 0; i < args->buffer_count; i++) {
  3098. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3099. exec_list[i].handle);
  3100. if (object_list[i] == NULL) {
  3101. DRM_ERROR("Invalid object handle %d at index %d\n",
  3102. exec_list[i].handle, i);
  3103. /* prevent error path from reading uninitialized data */
  3104. args->buffer_count = i + 1;
  3105. ret = -ENOENT;
  3106. goto err;
  3107. }
  3108. obj_priv = to_intel_bo(object_list[i]);
  3109. if (obj_priv->in_execbuffer) {
  3110. DRM_ERROR("Object %p appears more than once in object list\n",
  3111. object_list[i]);
  3112. /* prevent error path from reading uninitialized data */
  3113. args->buffer_count = i + 1;
  3114. ret = -EINVAL;
  3115. goto err;
  3116. }
  3117. obj_priv->in_execbuffer = true;
  3118. }
  3119. /* Pin and relocate */
  3120. for (pin_tries = 0; ; pin_tries++) {
  3121. ret = 0;
  3122. for (i = 0; i < args->buffer_count; i++) {
  3123. object_list[i]->pending_read_domains = 0;
  3124. object_list[i]->pending_write_domain = 0;
  3125. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3126. file_priv,
  3127. &exec_list[i]);
  3128. if (ret)
  3129. break;
  3130. pinned = i + 1;
  3131. }
  3132. /* success */
  3133. if (ret == 0)
  3134. break;
  3135. /* error other than GTT full, or we've already tried again */
  3136. if (ret != -ENOSPC || pin_tries >= 1) {
  3137. if (ret != -ERESTARTSYS) {
  3138. unsigned long long total_size = 0;
  3139. int num_fences = 0;
  3140. for (i = 0; i < args->buffer_count; i++) {
  3141. obj_priv = to_intel_bo(object_list[i]);
  3142. total_size += object_list[i]->size;
  3143. num_fences +=
  3144. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3145. obj_priv->tiling_mode != I915_TILING_NONE;
  3146. }
  3147. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3148. pinned+1, args->buffer_count,
  3149. total_size, num_fences,
  3150. ret);
  3151. DRM_ERROR("%u objects [%u pinned, %u GTT], "
  3152. "%zu object bytes [%zu pinned], "
  3153. "%zu /%zu gtt bytes\n",
  3154. dev_priv->mm.object_count,
  3155. dev_priv->mm.pin_count,
  3156. dev_priv->mm.gtt_count,
  3157. dev_priv->mm.object_memory,
  3158. dev_priv->mm.pin_memory,
  3159. dev_priv->mm.gtt_memory,
  3160. dev_priv->mm.gtt_total);
  3161. }
  3162. goto err;
  3163. }
  3164. /* unpin all of our buffers */
  3165. for (i = 0; i < pinned; i++)
  3166. i915_gem_object_unpin(object_list[i]);
  3167. pinned = 0;
  3168. /* evict everyone we can from the aperture */
  3169. ret = i915_gem_evict_everything(dev);
  3170. if (ret && ret != -ENOSPC)
  3171. goto err;
  3172. }
  3173. /* Set the pending read domains for the batch buffer to COMMAND */
  3174. batch_obj = object_list[args->buffer_count-1];
  3175. if (batch_obj->pending_write_domain) {
  3176. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3177. ret = -EINVAL;
  3178. goto err;
  3179. }
  3180. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3181. /* Sanity check the batch buffer, prior to moving objects */
  3182. exec_offset = exec_list[args->buffer_count - 1].offset;
  3183. ret = i915_gem_check_execbuffer (args, exec_offset);
  3184. if (ret != 0) {
  3185. DRM_ERROR("execbuf with invalid offset/length\n");
  3186. goto err;
  3187. }
  3188. /* Zero the global flush/invalidate flags. These
  3189. * will be modified as new domains are computed
  3190. * for each object
  3191. */
  3192. dev->invalidate_domains = 0;
  3193. dev->flush_domains = 0;
  3194. dev_priv->mm.flush_rings = 0;
  3195. for (i = 0; i < args->buffer_count; i++) {
  3196. struct drm_gem_object *obj = object_list[i];
  3197. /* Compute new gpu domains and update invalidate/flush */
  3198. i915_gem_object_set_to_gpu_domain(obj);
  3199. }
  3200. if (dev->invalidate_domains | dev->flush_domains) {
  3201. #if WATCH_EXEC
  3202. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3203. __func__,
  3204. dev->invalidate_domains,
  3205. dev->flush_domains);
  3206. #endif
  3207. i915_gem_flush(dev, file_priv,
  3208. dev->invalidate_domains,
  3209. dev->flush_domains,
  3210. dev_priv->mm.flush_rings);
  3211. }
  3212. for (i = 0; i < args->buffer_count; i++) {
  3213. struct drm_gem_object *obj = object_list[i];
  3214. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3215. uint32_t old_write_domain = obj->write_domain;
  3216. obj->write_domain = obj->pending_write_domain;
  3217. if (obj->write_domain)
  3218. list_move_tail(&obj_priv->gpu_write_list,
  3219. &dev_priv->mm.gpu_write_list);
  3220. trace_i915_gem_object_change_domain(obj,
  3221. obj->read_domains,
  3222. old_write_domain);
  3223. }
  3224. #if WATCH_COHERENCY
  3225. for (i = 0; i < args->buffer_count; i++) {
  3226. i915_gem_object_check_coherency(object_list[i],
  3227. exec_list[i].handle);
  3228. }
  3229. #endif
  3230. #if WATCH_EXEC
  3231. i915_gem_dump_object(batch_obj,
  3232. args->batch_len,
  3233. __func__,
  3234. ~0);
  3235. #endif
  3236. /* Check for any pending flips. As we only maintain a flip queue depth
  3237. * of 1, we can simply insert a WAIT for the next display flip prior
  3238. * to executing the batch and avoid stalling the CPU.
  3239. */
  3240. flips = 0;
  3241. for (i = 0; i < args->buffer_count; i++) {
  3242. if (object_list[i]->write_domain)
  3243. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3244. }
  3245. if (flips) {
  3246. int plane, flip_mask;
  3247. for (plane = 0; flips >> plane; plane++) {
  3248. if (((flips >> plane) & 1) == 0)
  3249. continue;
  3250. if (plane)
  3251. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3252. else
  3253. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3254. intel_ring_begin(dev, ring, 2);
  3255. intel_ring_emit(dev, ring,
  3256. MI_WAIT_FOR_EVENT | flip_mask);
  3257. intel_ring_emit(dev, ring, MI_NOOP);
  3258. intel_ring_advance(dev, ring);
  3259. }
  3260. }
  3261. /* Exec the batchbuffer */
  3262. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3263. cliprects, exec_offset);
  3264. if (ret) {
  3265. DRM_ERROR("dispatch failed %d\n", ret);
  3266. goto err;
  3267. }
  3268. /*
  3269. * Ensure that the commands in the batch buffer are
  3270. * finished before the interrupt fires
  3271. */
  3272. i915_retire_commands(dev, ring);
  3273. for (i = 0; i < args->buffer_count; i++) {
  3274. struct drm_gem_object *obj = object_list[i];
  3275. obj_priv = to_intel_bo(obj);
  3276. i915_gem_object_move_to_active(obj, ring);
  3277. }
  3278. i915_add_request(dev, file_priv, request, ring);
  3279. request = NULL;
  3280. err:
  3281. for (i = 0; i < pinned; i++)
  3282. i915_gem_object_unpin(object_list[i]);
  3283. for (i = 0; i < args->buffer_count; i++) {
  3284. if (object_list[i]) {
  3285. obj_priv = to_intel_bo(object_list[i]);
  3286. obj_priv->in_execbuffer = false;
  3287. }
  3288. drm_gem_object_unreference(object_list[i]);
  3289. }
  3290. mutex_unlock(&dev->struct_mutex);
  3291. pre_mutex_err:
  3292. drm_free_large(object_list);
  3293. kfree(cliprects);
  3294. kfree(request);
  3295. return ret;
  3296. }
  3297. /*
  3298. * Legacy execbuffer just creates an exec2 list from the original exec object
  3299. * list array and passes it to the real function.
  3300. */
  3301. int
  3302. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3303. struct drm_file *file_priv)
  3304. {
  3305. struct drm_i915_gem_execbuffer *args = data;
  3306. struct drm_i915_gem_execbuffer2 exec2;
  3307. struct drm_i915_gem_exec_object *exec_list = NULL;
  3308. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3309. int ret, i;
  3310. #if WATCH_EXEC
  3311. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3312. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3313. #endif
  3314. if (args->buffer_count < 1) {
  3315. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3316. return -EINVAL;
  3317. }
  3318. /* Copy in the exec list from userland */
  3319. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3320. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3321. if (exec_list == NULL || exec2_list == NULL) {
  3322. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3323. args->buffer_count);
  3324. drm_free_large(exec_list);
  3325. drm_free_large(exec2_list);
  3326. return -ENOMEM;
  3327. }
  3328. ret = copy_from_user(exec_list,
  3329. (struct drm_i915_relocation_entry __user *)
  3330. (uintptr_t) args->buffers_ptr,
  3331. sizeof(*exec_list) * args->buffer_count);
  3332. if (ret != 0) {
  3333. DRM_ERROR("copy %d exec entries failed %d\n",
  3334. args->buffer_count, ret);
  3335. drm_free_large(exec_list);
  3336. drm_free_large(exec2_list);
  3337. return -EFAULT;
  3338. }
  3339. for (i = 0; i < args->buffer_count; i++) {
  3340. exec2_list[i].handle = exec_list[i].handle;
  3341. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3342. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3343. exec2_list[i].alignment = exec_list[i].alignment;
  3344. exec2_list[i].offset = exec_list[i].offset;
  3345. if (INTEL_INFO(dev)->gen < 4)
  3346. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3347. else
  3348. exec2_list[i].flags = 0;
  3349. }
  3350. exec2.buffers_ptr = args->buffers_ptr;
  3351. exec2.buffer_count = args->buffer_count;
  3352. exec2.batch_start_offset = args->batch_start_offset;
  3353. exec2.batch_len = args->batch_len;
  3354. exec2.DR1 = args->DR1;
  3355. exec2.DR4 = args->DR4;
  3356. exec2.num_cliprects = args->num_cliprects;
  3357. exec2.cliprects_ptr = args->cliprects_ptr;
  3358. exec2.flags = I915_EXEC_RENDER;
  3359. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3360. if (!ret) {
  3361. /* Copy the new buffer offsets back to the user's exec list. */
  3362. for (i = 0; i < args->buffer_count; i++)
  3363. exec_list[i].offset = exec2_list[i].offset;
  3364. /* ... and back out to userspace */
  3365. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3366. (uintptr_t) args->buffers_ptr,
  3367. exec_list,
  3368. sizeof(*exec_list) * args->buffer_count);
  3369. if (ret) {
  3370. ret = -EFAULT;
  3371. DRM_ERROR("failed to copy %d exec entries "
  3372. "back to user (%d)\n",
  3373. args->buffer_count, ret);
  3374. }
  3375. }
  3376. drm_free_large(exec_list);
  3377. drm_free_large(exec2_list);
  3378. return ret;
  3379. }
  3380. int
  3381. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3382. struct drm_file *file_priv)
  3383. {
  3384. struct drm_i915_gem_execbuffer2 *args = data;
  3385. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3386. int ret;
  3387. #if WATCH_EXEC
  3388. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3389. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3390. #endif
  3391. if (args->buffer_count < 1) {
  3392. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3393. return -EINVAL;
  3394. }
  3395. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3396. if (exec2_list == NULL) {
  3397. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3398. args->buffer_count);
  3399. return -ENOMEM;
  3400. }
  3401. ret = copy_from_user(exec2_list,
  3402. (struct drm_i915_relocation_entry __user *)
  3403. (uintptr_t) args->buffers_ptr,
  3404. sizeof(*exec2_list) * args->buffer_count);
  3405. if (ret != 0) {
  3406. DRM_ERROR("copy %d exec entries failed %d\n",
  3407. args->buffer_count, ret);
  3408. drm_free_large(exec2_list);
  3409. return -EFAULT;
  3410. }
  3411. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3412. if (!ret) {
  3413. /* Copy the new buffer offsets back to the user's exec list. */
  3414. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3415. (uintptr_t) args->buffers_ptr,
  3416. exec2_list,
  3417. sizeof(*exec2_list) * args->buffer_count);
  3418. if (ret) {
  3419. ret = -EFAULT;
  3420. DRM_ERROR("failed to copy %d exec entries "
  3421. "back to user (%d)\n",
  3422. args->buffer_count, ret);
  3423. }
  3424. }
  3425. drm_free_large(exec2_list);
  3426. return ret;
  3427. }
  3428. int
  3429. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3430. {
  3431. struct drm_device *dev = obj->dev;
  3432. struct drm_i915_private *dev_priv = dev->dev_private;
  3433. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3434. int ret;
  3435. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3436. WARN_ON(i915_verify_lists(dev));
  3437. if (obj_priv->gtt_space != NULL) {
  3438. if (alignment == 0)
  3439. alignment = i915_gem_get_gtt_alignment(obj);
  3440. if (obj_priv->gtt_offset & (alignment - 1)) {
  3441. WARN(obj_priv->pin_count,
  3442. "bo is already pinned with incorrect alignment:"
  3443. " offset=%x, req.alignment=%x\n",
  3444. obj_priv->gtt_offset, alignment);
  3445. ret = i915_gem_object_unbind(obj);
  3446. if (ret)
  3447. return ret;
  3448. }
  3449. }
  3450. if (obj_priv->gtt_space == NULL) {
  3451. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3452. if (ret)
  3453. return ret;
  3454. }
  3455. obj_priv->pin_count++;
  3456. /* If the object is not active and not pending a flush,
  3457. * remove it from the inactive list
  3458. */
  3459. if (obj_priv->pin_count == 1) {
  3460. i915_gem_info_add_pin(dev_priv, obj->size);
  3461. if (!obj_priv->active)
  3462. list_move_tail(&obj_priv->list,
  3463. &dev_priv->mm.pinned_list);
  3464. }
  3465. WARN_ON(i915_verify_lists(dev));
  3466. return 0;
  3467. }
  3468. void
  3469. i915_gem_object_unpin(struct drm_gem_object *obj)
  3470. {
  3471. struct drm_device *dev = obj->dev;
  3472. drm_i915_private_t *dev_priv = dev->dev_private;
  3473. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3474. WARN_ON(i915_verify_lists(dev));
  3475. obj_priv->pin_count--;
  3476. BUG_ON(obj_priv->pin_count < 0);
  3477. BUG_ON(obj_priv->gtt_space == NULL);
  3478. /* If the object is no longer pinned, and is
  3479. * neither active nor being flushed, then stick it on
  3480. * the inactive list
  3481. */
  3482. if (obj_priv->pin_count == 0) {
  3483. if (!obj_priv->active)
  3484. list_move_tail(&obj_priv->list,
  3485. &dev_priv->mm.inactive_list);
  3486. i915_gem_info_remove_pin(dev_priv, obj->size);
  3487. }
  3488. WARN_ON(i915_verify_lists(dev));
  3489. }
  3490. int
  3491. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3492. struct drm_file *file_priv)
  3493. {
  3494. struct drm_i915_gem_pin *args = data;
  3495. struct drm_gem_object *obj;
  3496. struct drm_i915_gem_object *obj_priv;
  3497. int ret;
  3498. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3499. if (obj == NULL) {
  3500. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3501. args->handle);
  3502. return -ENOENT;
  3503. }
  3504. obj_priv = to_intel_bo(obj);
  3505. ret = i915_mutex_lock_interruptible(dev);
  3506. if (ret) {
  3507. drm_gem_object_unreference_unlocked(obj);
  3508. return ret;
  3509. }
  3510. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3511. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3512. drm_gem_object_unreference(obj);
  3513. mutex_unlock(&dev->struct_mutex);
  3514. return -EINVAL;
  3515. }
  3516. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3517. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3518. args->handle);
  3519. drm_gem_object_unreference(obj);
  3520. mutex_unlock(&dev->struct_mutex);
  3521. return -EINVAL;
  3522. }
  3523. obj_priv->user_pin_count++;
  3524. obj_priv->pin_filp = file_priv;
  3525. if (obj_priv->user_pin_count == 1) {
  3526. ret = i915_gem_object_pin(obj, args->alignment);
  3527. if (ret != 0) {
  3528. drm_gem_object_unreference(obj);
  3529. mutex_unlock(&dev->struct_mutex);
  3530. return ret;
  3531. }
  3532. }
  3533. /* XXX - flush the CPU caches for pinned objects
  3534. * as the X server doesn't manage domains yet
  3535. */
  3536. i915_gem_object_flush_cpu_write_domain(obj);
  3537. args->offset = obj_priv->gtt_offset;
  3538. drm_gem_object_unreference(obj);
  3539. mutex_unlock(&dev->struct_mutex);
  3540. return 0;
  3541. }
  3542. int
  3543. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3544. struct drm_file *file_priv)
  3545. {
  3546. struct drm_i915_gem_pin *args = data;
  3547. struct drm_gem_object *obj;
  3548. struct drm_i915_gem_object *obj_priv;
  3549. int ret;
  3550. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3551. if (obj == NULL) {
  3552. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3553. args->handle);
  3554. return -ENOENT;
  3555. }
  3556. obj_priv = to_intel_bo(obj);
  3557. ret = i915_mutex_lock_interruptible(dev);
  3558. if (ret) {
  3559. drm_gem_object_unreference_unlocked(obj);
  3560. return ret;
  3561. }
  3562. if (obj_priv->pin_filp != file_priv) {
  3563. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3564. args->handle);
  3565. drm_gem_object_unreference(obj);
  3566. mutex_unlock(&dev->struct_mutex);
  3567. return -EINVAL;
  3568. }
  3569. obj_priv->user_pin_count--;
  3570. if (obj_priv->user_pin_count == 0) {
  3571. obj_priv->pin_filp = NULL;
  3572. i915_gem_object_unpin(obj);
  3573. }
  3574. drm_gem_object_unreference(obj);
  3575. mutex_unlock(&dev->struct_mutex);
  3576. return 0;
  3577. }
  3578. int
  3579. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3580. struct drm_file *file_priv)
  3581. {
  3582. struct drm_i915_gem_busy *args = data;
  3583. struct drm_gem_object *obj;
  3584. struct drm_i915_gem_object *obj_priv;
  3585. int ret;
  3586. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3587. if (obj == NULL) {
  3588. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3589. args->handle);
  3590. return -ENOENT;
  3591. }
  3592. ret = i915_mutex_lock_interruptible(dev);
  3593. if (ret) {
  3594. drm_gem_object_unreference_unlocked(obj);
  3595. return ret;
  3596. }
  3597. /* Count all active objects as busy, even if they are currently not used
  3598. * by the gpu. Users of this interface expect objects to eventually
  3599. * become non-busy without any further actions, therefore emit any
  3600. * necessary flushes here.
  3601. */
  3602. obj_priv = to_intel_bo(obj);
  3603. args->busy = obj_priv->active;
  3604. if (args->busy) {
  3605. /* Unconditionally flush objects, even when the gpu still uses this
  3606. * object. Userspace calling this function indicates that it wants to
  3607. * use this buffer rather sooner than later, so issuing the required
  3608. * flush earlier is beneficial.
  3609. */
  3610. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3611. i915_gem_flush_ring(dev, file_priv,
  3612. obj_priv->ring,
  3613. 0, obj->write_domain);
  3614. /* Update the active list for the hardware's current position.
  3615. * Otherwise this only updates on a delayed timer or when irqs
  3616. * are actually unmasked, and our working set ends up being
  3617. * larger than required.
  3618. */
  3619. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3620. args->busy = obj_priv->active;
  3621. }
  3622. drm_gem_object_unreference(obj);
  3623. mutex_unlock(&dev->struct_mutex);
  3624. return 0;
  3625. }
  3626. int
  3627. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3628. struct drm_file *file_priv)
  3629. {
  3630. return i915_gem_ring_throttle(dev, file_priv);
  3631. }
  3632. int
  3633. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3634. struct drm_file *file_priv)
  3635. {
  3636. struct drm_i915_gem_madvise *args = data;
  3637. struct drm_gem_object *obj;
  3638. struct drm_i915_gem_object *obj_priv;
  3639. int ret;
  3640. switch (args->madv) {
  3641. case I915_MADV_DONTNEED:
  3642. case I915_MADV_WILLNEED:
  3643. break;
  3644. default:
  3645. return -EINVAL;
  3646. }
  3647. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3648. if (obj == NULL) {
  3649. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3650. args->handle);
  3651. return -ENOENT;
  3652. }
  3653. obj_priv = to_intel_bo(obj);
  3654. ret = i915_mutex_lock_interruptible(dev);
  3655. if (ret) {
  3656. drm_gem_object_unreference_unlocked(obj);
  3657. return ret;
  3658. }
  3659. if (obj_priv->pin_count) {
  3660. drm_gem_object_unreference(obj);
  3661. mutex_unlock(&dev->struct_mutex);
  3662. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3663. return -EINVAL;
  3664. }
  3665. if (obj_priv->madv != __I915_MADV_PURGED)
  3666. obj_priv->madv = args->madv;
  3667. /* if the object is no longer bound, discard its backing storage */
  3668. if (i915_gem_object_is_purgeable(obj_priv) &&
  3669. obj_priv->gtt_space == NULL)
  3670. i915_gem_object_truncate(obj);
  3671. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3672. drm_gem_object_unreference(obj);
  3673. mutex_unlock(&dev->struct_mutex);
  3674. return 0;
  3675. }
  3676. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3677. size_t size)
  3678. {
  3679. struct drm_i915_private *dev_priv = dev->dev_private;
  3680. struct drm_i915_gem_object *obj;
  3681. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3682. if (obj == NULL)
  3683. return NULL;
  3684. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3685. kfree(obj);
  3686. return NULL;
  3687. }
  3688. i915_gem_info_add_obj(dev_priv, size);
  3689. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3690. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3691. obj->agp_type = AGP_USER_MEMORY;
  3692. obj->base.driver_private = NULL;
  3693. obj->fence_reg = I915_FENCE_REG_NONE;
  3694. INIT_LIST_HEAD(&obj->list);
  3695. INIT_LIST_HEAD(&obj->gpu_write_list);
  3696. obj->madv = I915_MADV_WILLNEED;
  3697. return &obj->base;
  3698. }
  3699. int i915_gem_init_object(struct drm_gem_object *obj)
  3700. {
  3701. BUG();
  3702. return 0;
  3703. }
  3704. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3705. {
  3706. struct drm_device *dev = obj->dev;
  3707. drm_i915_private_t *dev_priv = dev->dev_private;
  3708. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3709. int ret;
  3710. ret = i915_gem_object_unbind(obj);
  3711. if (ret == -ERESTARTSYS) {
  3712. list_move(&obj_priv->list,
  3713. &dev_priv->mm.deferred_free_list);
  3714. return;
  3715. }
  3716. if (obj_priv->mmap_offset)
  3717. i915_gem_free_mmap_offset(obj);
  3718. drm_gem_object_release(obj);
  3719. i915_gem_info_remove_obj(dev_priv, obj->size);
  3720. kfree(obj_priv->page_cpu_valid);
  3721. kfree(obj_priv->bit_17);
  3722. kfree(obj_priv);
  3723. }
  3724. void i915_gem_free_object(struct drm_gem_object *obj)
  3725. {
  3726. struct drm_device *dev = obj->dev;
  3727. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3728. trace_i915_gem_object_destroy(obj);
  3729. while (obj_priv->pin_count > 0)
  3730. i915_gem_object_unpin(obj);
  3731. if (obj_priv->phys_obj)
  3732. i915_gem_detach_phys_object(dev, obj);
  3733. i915_gem_free_object_tail(obj);
  3734. }
  3735. int
  3736. i915_gem_idle(struct drm_device *dev)
  3737. {
  3738. drm_i915_private_t *dev_priv = dev->dev_private;
  3739. int ret;
  3740. mutex_lock(&dev->struct_mutex);
  3741. if (dev_priv->mm.suspended ||
  3742. (dev_priv->render_ring.gem_object == NULL) ||
  3743. (HAS_BSD(dev) &&
  3744. dev_priv->bsd_ring.gem_object == NULL)) {
  3745. mutex_unlock(&dev->struct_mutex);
  3746. return 0;
  3747. }
  3748. ret = i915_gpu_idle(dev);
  3749. if (ret) {
  3750. mutex_unlock(&dev->struct_mutex);
  3751. return ret;
  3752. }
  3753. /* Under UMS, be paranoid and evict. */
  3754. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3755. ret = i915_gem_evict_inactive(dev);
  3756. if (ret) {
  3757. mutex_unlock(&dev->struct_mutex);
  3758. return ret;
  3759. }
  3760. }
  3761. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3762. * We need to replace this with a semaphore, or something.
  3763. * And not confound mm.suspended!
  3764. */
  3765. dev_priv->mm.suspended = 1;
  3766. del_timer_sync(&dev_priv->hangcheck_timer);
  3767. i915_kernel_lost_context(dev);
  3768. i915_gem_cleanup_ringbuffer(dev);
  3769. mutex_unlock(&dev->struct_mutex);
  3770. /* Cancel the retire work handler, which should be idle now. */
  3771. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3772. return 0;
  3773. }
  3774. /*
  3775. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3776. * over cache flushing.
  3777. */
  3778. static int
  3779. i915_gem_init_pipe_control(struct drm_device *dev)
  3780. {
  3781. drm_i915_private_t *dev_priv = dev->dev_private;
  3782. struct drm_gem_object *obj;
  3783. struct drm_i915_gem_object *obj_priv;
  3784. int ret;
  3785. obj = i915_gem_alloc_object(dev, 4096);
  3786. if (obj == NULL) {
  3787. DRM_ERROR("Failed to allocate seqno page\n");
  3788. ret = -ENOMEM;
  3789. goto err;
  3790. }
  3791. obj_priv = to_intel_bo(obj);
  3792. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3793. ret = i915_gem_object_pin(obj, 4096);
  3794. if (ret)
  3795. goto err_unref;
  3796. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3797. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3798. if (dev_priv->seqno_page == NULL)
  3799. goto err_unpin;
  3800. dev_priv->seqno_obj = obj;
  3801. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3802. return 0;
  3803. err_unpin:
  3804. i915_gem_object_unpin(obj);
  3805. err_unref:
  3806. drm_gem_object_unreference(obj);
  3807. err:
  3808. return ret;
  3809. }
  3810. static void
  3811. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3812. {
  3813. drm_i915_private_t *dev_priv = dev->dev_private;
  3814. struct drm_gem_object *obj;
  3815. struct drm_i915_gem_object *obj_priv;
  3816. obj = dev_priv->seqno_obj;
  3817. obj_priv = to_intel_bo(obj);
  3818. kunmap(obj_priv->pages[0]);
  3819. i915_gem_object_unpin(obj);
  3820. drm_gem_object_unreference(obj);
  3821. dev_priv->seqno_obj = NULL;
  3822. dev_priv->seqno_page = NULL;
  3823. }
  3824. int
  3825. i915_gem_init_ringbuffer(struct drm_device *dev)
  3826. {
  3827. drm_i915_private_t *dev_priv = dev->dev_private;
  3828. int ret;
  3829. if (HAS_PIPE_CONTROL(dev)) {
  3830. ret = i915_gem_init_pipe_control(dev);
  3831. if (ret)
  3832. return ret;
  3833. }
  3834. ret = intel_init_render_ring_buffer(dev);
  3835. if (ret)
  3836. goto cleanup_pipe_control;
  3837. if (HAS_BSD(dev)) {
  3838. ret = intel_init_bsd_ring_buffer(dev);
  3839. if (ret)
  3840. goto cleanup_render_ring;
  3841. }
  3842. dev_priv->next_seqno = 1;
  3843. return 0;
  3844. cleanup_render_ring:
  3845. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3846. cleanup_pipe_control:
  3847. if (HAS_PIPE_CONTROL(dev))
  3848. i915_gem_cleanup_pipe_control(dev);
  3849. return ret;
  3850. }
  3851. void
  3852. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3853. {
  3854. drm_i915_private_t *dev_priv = dev->dev_private;
  3855. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3856. if (HAS_BSD(dev))
  3857. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3858. if (HAS_PIPE_CONTROL(dev))
  3859. i915_gem_cleanup_pipe_control(dev);
  3860. }
  3861. int
  3862. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3863. struct drm_file *file_priv)
  3864. {
  3865. drm_i915_private_t *dev_priv = dev->dev_private;
  3866. int ret;
  3867. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3868. return 0;
  3869. if (atomic_read(&dev_priv->mm.wedged)) {
  3870. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3871. atomic_set(&dev_priv->mm.wedged, 0);
  3872. }
  3873. mutex_lock(&dev->struct_mutex);
  3874. dev_priv->mm.suspended = 0;
  3875. ret = i915_gem_init_ringbuffer(dev);
  3876. if (ret != 0) {
  3877. mutex_unlock(&dev->struct_mutex);
  3878. return ret;
  3879. }
  3880. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3881. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3882. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3883. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3884. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3885. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3886. mutex_unlock(&dev->struct_mutex);
  3887. ret = drm_irq_install(dev);
  3888. if (ret)
  3889. goto cleanup_ringbuffer;
  3890. return 0;
  3891. cleanup_ringbuffer:
  3892. mutex_lock(&dev->struct_mutex);
  3893. i915_gem_cleanup_ringbuffer(dev);
  3894. dev_priv->mm.suspended = 1;
  3895. mutex_unlock(&dev->struct_mutex);
  3896. return ret;
  3897. }
  3898. int
  3899. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3900. struct drm_file *file_priv)
  3901. {
  3902. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3903. return 0;
  3904. drm_irq_uninstall(dev);
  3905. return i915_gem_idle(dev);
  3906. }
  3907. void
  3908. i915_gem_lastclose(struct drm_device *dev)
  3909. {
  3910. int ret;
  3911. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3912. return;
  3913. ret = i915_gem_idle(dev);
  3914. if (ret)
  3915. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3916. }
  3917. void
  3918. i915_gem_load(struct drm_device *dev)
  3919. {
  3920. int i;
  3921. drm_i915_private_t *dev_priv = dev->dev_private;
  3922. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3923. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3924. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3925. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3926. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3927. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3928. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3929. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3930. if (HAS_BSD(dev)) {
  3931. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3932. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3933. }
  3934. for (i = 0; i < 16; i++)
  3935. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3936. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3937. i915_gem_retire_work_handler);
  3938. init_completion(&dev_priv->error_completion);
  3939. spin_lock(&shrink_list_lock);
  3940. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3941. spin_unlock(&shrink_list_lock);
  3942. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3943. if (IS_GEN3(dev)) {
  3944. u32 tmp = I915_READ(MI_ARB_STATE);
  3945. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3946. /* arb state is a masked write, so set bit + bit in mask */
  3947. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3948. I915_WRITE(MI_ARB_STATE, tmp);
  3949. }
  3950. }
  3951. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3952. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3953. dev_priv->fence_reg_start = 3;
  3954. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3955. dev_priv->num_fence_regs = 16;
  3956. else
  3957. dev_priv->num_fence_regs = 8;
  3958. /* Initialize fence registers to zero */
  3959. switch (INTEL_INFO(dev)->gen) {
  3960. case 6:
  3961. for (i = 0; i < 16; i++)
  3962. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3963. break;
  3964. case 5:
  3965. case 4:
  3966. for (i = 0; i < 16; i++)
  3967. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3968. break;
  3969. case 3:
  3970. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3971. for (i = 0; i < 8; i++)
  3972. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3973. case 2:
  3974. for (i = 0; i < 8; i++)
  3975. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3976. break;
  3977. }
  3978. i915_gem_detect_bit_6_swizzle(dev);
  3979. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3980. }
  3981. /*
  3982. * Create a physically contiguous memory object for this object
  3983. * e.g. for cursor + overlay regs
  3984. */
  3985. static int i915_gem_init_phys_object(struct drm_device *dev,
  3986. int id, int size, int align)
  3987. {
  3988. drm_i915_private_t *dev_priv = dev->dev_private;
  3989. struct drm_i915_gem_phys_object *phys_obj;
  3990. int ret;
  3991. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3992. return 0;
  3993. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3994. if (!phys_obj)
  3995. return -ENOMEM;
  3996. phys_obj->id = id;
  3997. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3998. if (!phys_obj->handle) {
  3999. ret = -ENOMEM;
  4000. goto kfree_obj;
  4001. }
  4002. #ifdef CONFIG_X86
  4003. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4004. #endif
  4005. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4006. return 0;
  4007. kfree_obj:
  4008. kfree(phys_obj);
  4009. return ret;
  4010. }
  4011. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4012. {
  4013. drm_i915_private_t *dev_priv = dev->dev_private;
  4014. struct drm_i915_gem_phys_object *phys_obj;
  4015. if (!dev_priv->mm.phys_objs[id - 1])
  4016. return;
  4017. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4018. if (phys_obj->cur_obj) {
  4019. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4020. }
  4021. #ifdef CONFIG_X86
  4022. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4023. #endif
  4024. drm_pci_free(dev, phys_obj->handle);
  4025. kfree(phys_obj);
  4026. dev_priv->mm.phys_objs[id - 1] = NULL;
  4027. }
  4028. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4029. {
  4030. int i;
  4031. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4032. i915_gem_free_phys_object(dev, i);
  4033. }
  4034. void i915_gem_detach_phys_object(struct drm_device *dev,
  4035. struct drm_gem_object *obj)
  4036. {
  4037. struct drm_i915_gem_object *obj_priv;
  4038. int i;
  4039. int ret;
  4040. int page_count;
  4041. obj_priv = to_intel_bo(obj);
  4042. if (!obj_priv->phys_obj)
  4043. return;
  4044. ret = i915_gem_object_get_pages(obj, 0);
  4045. if (ret)
  4046. goto out;
  4047. page_count = obj->size / PAGE_SIZE;
  4048. for (i = 0; i < page_count; i++) {
  4049. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4050. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4051. memcpy(dst, src, PAGE_SIZE);
  4052. kunmap_atomic(dst, KM_USER0);
  4053. }
  4054. drm_clflush_pages(obj_priv->pages, page_count);
  4055. drm_agp_chipset_flush(dev);
  4056. i915_gem_object_put_pages(obj);
  4057. out:
  4058. obj_priv->phys_obj->cur_obj = NULL;
  4059. obj_priv->phys_obj = NULL;
  4060. }
  4061. int
  4062. i915_gem_attach_phys_object(struct drm_device *dev,
  4063. struct drm_gem_object *obj,
  4064. int id,
  4065. int align)
  4066. {
  4067. drm_i915_private_t *dev_priv = dev->dev_private;
  4068. struct drm_i915_gem_object *obj_priv;
  4069. int ret = 0;
  4070. int page_count;
  4071. int i;
  4072. if (id > I915_MAX_PHYS_OBJECT)
  4073. return -EINVAL;
  4074. obj_priv = to_intel_bo(obj);
  4075. if (obj_priv->phys_obj) {
  4076. if (obj_priv->phys_obj->id == id)
  4077. return 0;
  4078. i915_gem_detach_phys_object(dev, obj);
  4079. }
  4080. /* create a new object */
  4081. if (!dev_priv->mm.phys_objs[id - 1]) {
  4082. ret = i915_gem_init_phys_object(dev, id,
  4083. obj->size, align);
  4084. if (ret) {
  4085. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4086. goto out;
  4087. }
  4088. }
  4089. /* bind to the object */
  4090. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4091. obj_priv->phys_obj->cur_obj = obj;
  4092. ret = i915_gem_object_get_pages(obj, 0);
  4093. if (ret) {
  4094. DRM_ERROR("failed to get page list\n");
  4095. goto out;
  4096. }
  4097. page_count = obj->size / PAGE_SIZE;
  4098. for (i = 0; i < page_count; i++) {
  4099. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4100. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4101. memcpy(dst, src, PAGE_SIZE);
  4102. kunmap_atomic(src, KM_USER0);
  4103. }
  4104. i915_gem_object_put_pages(obj);
  4105. return 0;
  4106. out:
  4107. return ret;
  4108. }
  4109. static int
  4110. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4111. struct drm_i915_gem_pwrite *args,
  4112. struct drm_file *file_priv)
  4113. {
  4114. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4115. void *obj_addr;
  4116. int ret;
  4117. char __user *user_data;
  4118. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4119. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4120. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4121. ret = copy_from_user(obj_addr, user_data, args->size);
  4122. if (ret)
  4123. return -EFAULT;
  4124. drm_agp_chipset_flush(dev);
  4125. return 0;
  4126. }
  4127. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4128. {
  4129. struct drm_i915_file_private *file_priv = file->driver_priv;
  4130. /* Clean up our request list when the client is going away, so that
  4131. * later retire_requests won't dereference our soon-to-be-gone
  4132. * file_priv.
  4133. */
  4134. spin_lock(&file_priv->mm.lock);
  4135. while (!list_empty(&file_priv->mm.request_list)) {
  4136. struct drm_i915_gem_request *request;
  4137. request = list_first_entry(&file_priv->mm.request_list,
  4138. struct drm_i915_gem_request,
  4139. client_list);
  4140. list_del(&request->client_list);
  4141. request->file_priv = NULL;
  4142. }
  4143. spin_unlock(&file_priv->mm.lock);
  4144. }
  4145. static int
  4146. i915_gpu_is_active(struct drm_device *dev)
  4147. {
  4148. drm_i915_private_t *dev_priv = dev->dev_private;
  4149. int lists_empty;
  4150. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4151. list_empty(&dev_priv->render_ring.active_list);
  4152. if (HAS_BSD(dev))
  4153. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4154. return !lists_empty;
  4155. }
  4156. static int
  4157. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4158. {
  4159. drm_i915_private_t *dev_priv, *next_dev;
  4160. struct drm_i915_gem_object *obj_priv, *next_obj;
  4161. int cnt = 0;
  4162. int would_deadlock = 1;
  4163. /* "fast-path" to count number of available objects */
  4164. if (nr_to_scan == 0) {
  4165. spin_lock(&shrink_list_lock);
  4166. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4167. struct drm_device *dev = dev_priv->dev;
  4168. if (mutex_trylock(&dev->struct_mutex)) {
  4169. list_for_each_entry(obj_priv,
  4170. &dev_priv->mm.inactive_list,
  4171. list)
  4172. cnt++;
  4173. mutex_unlock(&dev->struct_mutex);
  4174. }
  4175. }
  4176. spin_unlock(&shrink_list_lock);
  4177. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4178. }
  4179. spin_lock(&shrink_list_lock);
  4180. rescan:
  4181. /* first scan for clean buffers */
  4182. list_for_each_entry_safe(dev_priv, next_dev,
  4183. &shrink_list, mm.shrink_list) {
  4184. struct drm_device *dev = dev_priv->dev;
  4185. if (! mutex_trylock(&dev->struct_mutex))
  4186. continue;
  4187. spin_unlock(&shrink_list_lock);
  4188. i915_gem_retire_requests(dev);
  4189. list_for_each_entry_safe(obj_priv, next_obj,
  4190. &dev_priv->mm.inactive_list,
  4191. list) {
  4192. if (i915_gem_object_is_purgeable(obj_priv)) {
  4193. i915_gem_object_unbind(&obj_priv->base);
  4194. if (--nr_to_scan <= 0)
  4195. break;
  4196. }
  4197. }
  4198. spin_lock(&shrink_list_lock);
  4199. mutex_unlock(&dev->struct_mutex);
  4200. would_deadlock = 0;
  4201. if (nr_to_scan <= 0)
  4202. break;
  4203. }
  4204. /* second pass, evict/count anything still on the inactive list */
  4205. list_for_each_entry_safe(dev_priv, next_dev,
  4206. &shrink_list, mm.shrink_list) {
  4207. struct drm_device *dev = dev_priv->dev;
  4208. if (! mutex_trylock(&dev->struct_mutex))
  4209. continue;
  4210. spin_unlock(&shrink_list_lock);
  4211. list_for_each_entry_safe(obj_priv, next_obj,
  4212. &dev_priv->mm.inactive_list,
  4213. list) {
  4214. if (nr_to_scan > 0) {
  4215. i915_gem_object_unbind(&obj_priv->base);
  4216. nr_to_scan--;
  4217. } else
  4218. cnt++;
  4219. }
  4220. spin_lock(&shrink_list_lock);
  4221. mutex_unlock(&dev->struct_mutex);
  4222. would_deadlock = 0;
  4223. }
  4224. if (nr_to_scan) {
  4225. int active = 0;
  4226. /*
  4227. * We are desperate for pages, so as a last resort, wait
  4228. * for the GPU to finish and discard whatever we can.
  4229. * This has a dramatic impact to reduce the number of
  4230. * OOM-killer events whilst running the GPU aggressively.
  4231. */
  4232. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4233. struct drm_device *dev = dev_priv->dev;
  4234. if (!mutex_trylock(&dev->struct_mutex))
  4235. continue;
  4236. spin_unlock(&shrink_list_lock);
  4237. if (i915_gpu_is_active(dev)) {
  4238. i915_gpu_idle(dev);
  4239. active++;
  4240. }
  4241. spin_lock(&shrink_list_lock);
  4242. mutex_unlock(&dev->struct_mutex);
  4243. }
  4244. if (active)
  4245. goto rescan;
  4246. }
  4247. spin_unlock(&shrink_list_lock);
  4248. if (would_deadlock)
  4249. return -1;
  4250. else if (cnt > 0)
  4251. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4252. else
  4253. return 0;
  4254. }
  4255. static struct shrinker shrinker = {
  4256. .shrink = i915_gem_shrink,
  4257. .seeks = DEFAULT_SEEKS,
  4258. };
  4259. __init void
  4260. i915_gem_shrinker_init(void)
  4261. {
  4262. register_shrinker(&shrinker);
  4263. }
  4264. __exit void
  4265. i915_gem_shrinker_exit(void)
  4266. {
  4267. unregister_shrinker(&shrinker);
  4268. }