mmu.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. char *audit_point_name[] = {
  57. "pre page fault",
  58. "post page fault",
  59. "pre pte write",
  60. "post pte write",
  61. "pre sync",
  62. "post sync"
  63. };
  64. #undef MMU_DEBUG
  65. #ifdef MMU_DEBUG
  66. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  67. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  68. #else
  69. #define pgprintk(x...) do { } while (0)
  70. #define rmap_printk(x...) do { } while (0)
  71. #endif
  72. #ifdef MMU_DEBUG
  73. static int dbg = 0;
  74. module_param(dbg, bool, 0644);
  75. #endif
  76. static int oos_shadow = 1;
  77. module_param(oos_shadow, bool, 0644);
  78. #ifndef MMU_DEBUG
  79. #define ASSERT(x) do { } while (0)
  80. #else
  81. #define ASSERT(x) \
  82. if (!(x)) { \
  83. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  84. __FILE__, __LINE__, #x); \
  85. }
  86. #endif
  87. #define PTE_PREFETCH_NUM 8
  88. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  89. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  90. #define PT64_LEVEL_BITS 9
  91. #define PT64_LEVEL_SHIFT(level) \
  92. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  93. #define PT64_INDEX(address, level)\
  94. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  95. #define PT32_LEVEL_BITS 10
  96. #define PT32_LEVEL_SHIFT(level) \
  97. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  98. #define PT32_LVL_OFFSET_MASK(level) \
  99. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT32_LEVEL_BITS))) - 1))
  101. #define PT32_INDEX(address, level)\
  102. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  103. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  104. #define PT64_DIR_BASE_ADDR_MASK \
  105. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  106. #define PT64_LVL_ADDR_MASK(level) \
  107. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  108. * PT64_LEVEL_BITS))) - 1))
  109. #define PT64_LVL_OFFSET_MASK(level) \
  110. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  111. * PT64_LEVEL_BITS))) - 1))
  112. #define PT32_BASE_ADDR_MASK PAGE_MASK
  113. #define PT32_DIR_BASE_ADDR_MASK \
  114. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  115. #define PT32_LVL_ADDR_MASK(level) \
  116. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  117. * PT32_LEVEL_BITS))) - 1))
  118. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  119. | PT64_NX_MASK)
  120. #define PTE_LIST_EXT 4
  121. #define ACC_EXEC_MASK 1
  122. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  123. #define ACC_USER_MASK PT_USER_MASK
  124. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  125. #include <trace/events/kvm.h>
  126. #define CREATE_TRACE_POINTS
  127. #include "mmutrace.h"
  128. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  129. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  130. struct pte_list_desc {
  131. u64 *sptes[PTE_LIST_EXT];
  132. struct pte_list_desc *more;
  133. };
  134. struct kvm_shadow_walk_iterator {
  135. u64 addr;
  136. hpa_t shadow_addr;
  137. u64 *sptep;
  138. int level;
  139. unsigned index;
  140. };
  141. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  142. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  143. shadow_walk_okay(&(_walker)); \
  144. shadow_walk_next(&(_walker)))
  145. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  146. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  147. shadow_walk_okay(&(_walker)) && \
  148. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  149. __shadow_walk_next(&(_walker), spte))
  150. static struct kmem_cache *pte_list_desc_cache;
  151. static struct kmem_cache *mmu_page_header_cache;
  152. static struct percpu_counter kvm_total_used_mmu_pages;
  153. static u64 __read_mostly shadow_nx_mask;
  154. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  155. static u64 __read_mostly shadow_user_mask;
  156. static u64 __read_mostly shadow_accessed_mask;
  157. static u64 __read_mostly shadow_dirty_mask;
  158. static u64 __read_mostly shadow_mmio_mask;
  159. static void mmu_spte_set(u64 *sptep, u64 spte);
  160. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  161. {
  162. shadow_mmio_mask = mmio_mask;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  165. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  166. {
  167. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  168. trace_mark_mmio_spte(sptep, gfn, access);
  169. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  170. }
  171. static bool is_mmio_spte(u64 spte)
  172. {
  173. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  174. }
  175. static gfn_t get_mmio_spte_gfn(u64 spte)
  176. {
  177. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  178. }
  179. static unsigned get_mmio_spte_access(u64 spte)
  180. {
  181. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  182. }
  183. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  184. {
  185. if (unlikely(is_noslot_pfn(pfn))) {
  186. mark_mmio_spte(sptep, gfn, access);
  187. return true;
  188. }
  189. return false;
  190. }
  191. static inline u64 rsvd_bits(int s, int e)
  192. {
  193. return ((1ULL << (e - s + 1)) - 1) << s;
  194. }
  195. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  196. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  197. {
  198. shadow_user_mask = user_mask;
  199. shadow_accessed_mask = accessed_mask;
  200. shadow_dirty_mask = dirty_mask;
  201. shadow_nx_mask = nx_mask;
  202. shadow_x_mask = x_mask;
  203. }
  204. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  205. static int is_cpuid_PSE36(void)
  206. {
  207. return 1;
  208. }
  209. static int is_nx(struct kvm_vcpu *vcpu)
  210. {
  211. return vcpu->arch.efer & EFER_NX;
  212. }
  213. static int is_shadow_present_pte(u64 pte)
  214. {
  215. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  216. }
  217. static int is_large_pte(u64 pte)
  218. {
  219. return pte & PT_PAGE_SIZE_MASK;
  220. }
  221. static int is_dirty_gpte(unsigned long pte)
  222. {
  223. return pte & PT_DIRTY_MASK;
  224. }
  225. static int is_rmap_spte(u64 pte)
  226. {
  227. return is_shadow_present_pte(pte);
  228. }
  229. static int is_last_spte(u64 pte, int level)
  230. {
  231. if (level == PT_PAGE_TABLE_LEVEL)
  232. return 1;
  233. if (is_large_pte(pte))
  234. return 1;
  235. return 0;
  236. }
  237. static pfn_t spte_to_pfn(u64 pte)
  238. {
  239. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  240. }
  241. static gfn_t pse36_gfn_delta(u32 gpte)
  242. {
  243. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  244. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  245. }
  246. #ifdef CONFIG_X86_64
  247. static void __set_spte(u64 *sptep, u64 spte)
  248. {
  249. *sptep = spte;
  250. }
  251. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  252. {
  253. *sptep = spte;
  254. }
  255. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  256. {
  257. return xchg(sptep, spte);
  258. }
  259. static u64 __get_spte_lockless(u64 *sptep)
  260. {
  261. return ACCESS_ONCE(*sptep);
  262. }
  263. static bool __check_direct_spte_mmio_pf(u64 spte)
  264. {
  265. /* It is valid if the spte is zapped. */
  266. return spte == 0ull;
  267. }
  268. #else
  269. union split_spte {
  270. struct {
  271. u32 spte_low;
  272. u32 spte_high;
  273. };
  274. u64 spte;
  275. };
  276. static void count_spte_clear(u64 *sptep, u64 spte)
  277. {
  278. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  279. if (is_shadow_present_pte(spte))
  280. return;
  281. /* Ensure the spte is completely set before we increase the count */
  282. smp_wmb();
  283. sp->clear_spte_count++;
  284. }
  285. static void __set_spte(u64 *sptep, u64 spte)
  286. {
  287. union split_spte *ssptep, sspte;
  288. ssptep = (union split_spte *)sptep;
  289. sspte = (union split_spte)spte;
  290. ssptep->spte_high = sspte.spte_high;
  291. /*
  292. * If we map the spte from nonpresent to present, We should store
  293. * the high bits firstly, then set present bit, so cpu can not
  294. * fetch this spte while we are setting the spte.
  295. */
  296. smp_wmb();
  297. ssptep->spte_low = sspte.spte_low;
  298. }
  299. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  300. {
  301. union split_spte *ssptep, sspte;
  302. ssptep = (union split_spte *)sptep;
  303. sspte = (union split_spte)spte;
  304. ssptep->spte_low = sspte.spte_low;
  305. /*
  306. * If we map the spte from present to nonpresent, we should clear
  307. * present bit firstly to avoid vcpu fetch the old high bits.
  308. */
  309. smp_wmb();
  310. ssptep->spte_high = sspte.spte_high;
  311. count_spte_clear(sptep, spte);
  312. }
  313. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  314. {
  315. union split_spte *ssptep, sspte, orig;
  316. ssptep = (union split_spte *)sptep;
  317. sspte = (union split_spte)spte;
  318. /* xchg acts as a barrier before the setting of the high bits */
  319. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  320. orig.spte_high = ssptep->spte_high;
  321. ssptep->spte_high = sspte.spte_high;
  322. count_spte_clear(sptep, spte);
  323. return orig.spte;
  324. }
  325. /*
  326. * The idea using the light way get the spte on x86_32 guest is from
  327. * gup_get_pte(arch/x86/mm/gup.c).
  328. * The difference is we can not catch the spte tlb flush if we leave
  329. * guest mode, so we emulate it by increase clear_spte_count when spte
  330. * is cleared.
  331. */
  332. static u64 __get_spte_lockless(u64 *sptep)
  333. {
  334. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  335. union split_spte spte, *orig = (union split_spte *)sptep;
  336. int count;
  337. retry:
  338. count = sp->clear_spte_count;
  339. smp_rmb();
  340. spte.spte_low = orig->spte_low;
  341. smp_rmb();
  342. spte.spte_high = orig->spte_high;
  343. smp_rmb();
  344. if (unlikely(spte.spte_low != orig->spte_low ||
  345. count != sp->clear_spte_count))
  346. goto retry;
  347. return spte.spte;
  348. }
  349. static bool __check_direct_spte_mmio_pf(u64 spte)
  350. {
  351. union split_spte sspte = (union split_spte)spte;
  352. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  353. /* It is valid if the spte is zapped. */
  354. if (spte == 0ull)
  355. return true;
  356. /* It is valid if the spte is being zapped. */
  357. if (sspte.spte_low == 0ull &&
  358. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  359. return true;
  360. return false;
  361. }
  362. #endif
  363. static bool spte_has_volatile_bits(u64 spte)
  364. {
  365. if (!shadow_accessed_mask)
  366. return false;
  367. if (!is_shadow_present_pte(spte))
  368. return false;
  369. if ((spte & shadow_accessed_mask) &&
  370. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  371. return false;
  372. return true;
  373. }
  374. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  375. {
  376. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  377. }
  378. /* Rules for using mmu_spte_set:
  379. * Set the sptep from nonpresent to present.
  380. * Note: the sptep being assigned *must* be either not present
  381. * or in a state where the hardware will not attempt to update
  382. * the spte.
  383. */
  384. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  385. {
  386. WARN_ON(is_shadow_present_pte(*sptep));
  387. __set_spte(sptep, new_spte);
  388. }
  389. /* Rules for using mmu_spte_update:
  390. * Update the state bits, it means the mapped pfn is not changged.
  391. */
  392. static void mmu_spte_update(u64 *sptep, u64 new_spte)
  393. {
  394. u64 mask, old_spte = *sptep;
  395. WARN_ON(!is_rmap_spte(new_spte));
  396. if (!is_shadow_present_pte(old_spte))
  397. return mmu_spte_set(sptep, new_spte);
  398. new_spte |= old_spte & shadow_dirty_mask;
  399. mask = shadow_accessed_mask;
  400. if (is_writable_pte(old_spte))
  401. mask |= shadow_dirty_mask;
  402. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  403. __update_clear_spte_fast(sptep, new_spte);
  404. else
  405. old_spte = __update_clear_spte_slow(sptep, new_spte);
  406. if (!shadow_accessed_mask)
  407. return;
  408. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  409. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  410. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  411. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  412. }
  413. /*
  414. * Rules for using mmu_spte_clear_track_bits:
  415. * It sets the sptep from present to nonpresent, and track the
  416. * state bits, it is used to clear the last level sptep.
  417. */
  418. static int mmu_spte_clear_track_bits(u64 *sptep)
  419. {
  420. pfn_t pfn;
  421. u64 old_spte = *sptep;
  422. if (!spte_has_volatile_bits(old_spte))
  423. __update_clear_spte_fast(sptep, 0ull);
  424. else
  425. old_spte = __update_clear_spte_slow(sptep, 0ull);
  426. if (!is_rmap_spte(old_spte))
  427. return 0;
  428. pfn = spte_to_pfn(old_spte);
  429. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  430. kvm_set_pfn_accessed(pfn);
  431. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  432. kvm_set_pfn_dirty(pfn);
  433. return 1;
  434. }
  435. /*
  436. * Rules for using mmu_spte_clear_no_track:
  437. * Directly clear spte without caring the state bits of sptep,
  438. * it is used to set the upper level spte.
  439. */
  440. static void mmu_spte_clear_no_track(u64 *sptep)
  441. {
  442. __update_clear_spte_fast(sptep, 0ull);
  443. }
  444. static u64 mmu_spte_get_lockless(u64 *sptep)
  445. {
  446. return __get_spte_lockless(sptep);
  447. }
  448. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  449. {
  450. rcu_read_lock();
  451. atomic_inc(&vcpu->kvm->arch.reader_counter);
  452. /* Increase the counter before walking shadow page table */
  453. smp_mb__after_atomic_inc();
  454. }
  455. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  456. {
  457. /* Decrease the counter after walking shadow page table finished */
  458. smp_mb__before_atomic_dec();
  459. atomic_dec(&vcpu->kvm->arch.reader_counter);
  460. rcu_read_unlock();
  461. }
  462. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  463. struct kmem_cache *base_cache, int min)
  464. {
  465. void *obj;
  466. if (cache->nobjs >= min)
  467. return 0;
  468. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  469. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  470. if (!obj)
  471. return -ENOMEM;
  472. cache->objects[cache->nobjs++] = obj;
  473. }
  474. return 0;
  475. }
  476. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  477. {
  478. return cache->nobjs;
  479. }
  480. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  481. struct kmem_cache *cache)
  482. {
  483. while (mc->nobjs)
  484. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  485. }
  486. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  487. int min)
  488. {
  489. void *page;
  490. if (cache->nobjs >= min)
  491. return 0;
  492. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  493. page = (void *)__get_free_page(GFP_KERNEL);
  494. if (!page)
  495. return -ENOMEM;
  496. cache->objects[cache->nobjs++] = page;
  497. }
  498. return 0;
  499. }
  500. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  501. {
  502. while (mc->nobjs)
  503. free_page((unsigned long)mc->objects[--mc->nobjs]);
  504. }
  505. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  506. {
  507. int r;
  508. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  509. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  510. if (r)
  511. goto out;
  512. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  513. if (r)
  514. goto out;
  515. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  516. mmu_page_header_cache, 4);
  517. out:
  518. return r;
  519. }
  520. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  521. {
  522. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  523. pte_list_desc_cache);
  524. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  525. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  526. mmu_page_header_cache);
  527. }
  528. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  529. size_t size)
  530. {
  531. void *p;
  532. BUG_ON(!mc->nobjs);
  533. p = mc->objects[--mc->nobjs];
  534. return p;
  535. }
  536. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  537. {
  538. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
  539. sizeof(struct pte_list_desc));
  540. }
  541. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  542. {
  543. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  544. }
  545. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  546. {
  547. if (!sp->role.direct)
  548. return sp->gfns[index];
  549. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  550. }
  551. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  552. {
  553. if (sp->role.direct)
  554. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  555. else
  556. sp->gfns[index] = gfn;
  557. }
  558. /*
  559. * Return the pointer to the large page information for a given gfn,
  560. * handling slots that are not large page aligned.
  561. */
  562. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  563. struct kvm_memory_slot *slot,
  564. int level)
  565. {
  566. unsigned long idx;
  567. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  568. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  569. return &slot->lpage_info[level - 2][idx];
  570. }
  571. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  572. {
  573. struct kvm_memory_slot *slot;
  574. struct kvm_lpage_info *linfo;
  575. int i;
  576. slot = gfn_to_memslot(kvm, gfn);
  577. for (i = PT_DIRECTORY_LEVEL;
  578. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  579. linfo = lpage_info_slot(gfn, slot, i);
  580. linfo->write_count += 1;
  581. }
  582. kvm->arch.indirect_shadow_pages++;
  583. }
  584. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  585. {
  586. struct kvm_memory_slot *slot;
  587. struct kvm_lpage_info *linfo;
  588. int i;
  589. slot = gfn_to_memslot(kvm, gfn);
  590. for (i = PT_DIRECTORY_LEVEL;
  591. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  592. linfo = lpage_info_slot(gfn, slot, i);
  593. linfo->write_count -= 1;
  594. WARN_ON(linfo->write_count < 0);
  595. }
  596. kvm->arch.indirect_shadow_pages--;
  597. }
  598. static int has_wrprotected_page(struct kvm *kvm,
  599. gfn_t gfn,
  600. int level)
  601. {
  602. struct kvm_memory_slot *slot;
  603. struct kvm_lpage_info *linfo;
  604. slot = gfn_to_memslot(kvm, gfn);
  605. if (slot) {
  606. linfo = lpage_info_slot(gfn, slot, level);
  607. return linfo->write_count;
  608. }
  609. return 1;
  610. }
  611. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  612. {
  613. unsigned long page_size;
  614. int i, ret = 0;
  615. page_size = kvm_host_page_size(kvm, gfn);
  616. for (i = PT_PAGE_TABLE_LEVEL;
  617. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  618. if (page_size >= KVM_HPAGE_SIZE(i))
  619. ret = i;
  620. else
  621. break;
  622. }
  623. return ret;
  624. }
  625. static struct kvm_memory_slot *
  626. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  627. bool no_dirty_log)
  628. {
  629. struct kvm_memory_slot *slot;
  630. slot = gfn_to_memslot(vcpu->kvm, gfn);
  631. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  632. (no_dirty_log && slot->dirty_bitmap))
  633. slot = NULL;
  634. return slot;
  635. }
  636. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  637. {
  638. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  639. }
  640. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  641. {
  642. int host_level, level, max_level;
  643. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  644. if (host_level == PT_PAGE_TABLE_LEVEL)
  645. return host_level;
  646. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  647. kvm_x86_ops->get_lpage_level() : host_level;
  648. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  649. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  650. break;
  651. return level - 1;
  652. }
  653. /*
  654. * Pte mapping structures:
  655. *
  656. * If pte_list bit zero is zero, then pte_list point to the spte.
  657. *
  658. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  659. * pte_list_desc containing more mappings.
  660. *
  661. * Returns the number of pte entries before the spte was added or zero if
  662. * the spte was not added.
  663. *
  664. */
  665. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  666. unsigned long *pte_list)
  667. {
  668. struct pte_list_desc *desc;
  669. int i, count = 0;
  670. if (!*pte_list) {
  671. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  672. *pte_list = (unsigned long)spte;
  673. } else if (!(*pte_list & 1)) {
  674. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  675. desc = mmu_alloc_pte_list_desc(vcpu);
  676. desc->sptes[0] = (u64 *)*pte_list;
  677. desc->sptes[1] = spte;
  678. *pte_list = (unsigned long)desc | 1;
  679. ++count;
  680. } else {
  681. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  682. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  683. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  684. desc = desc->more;
  685. count += PTE_LIST_EXT;
  686. }
  687. if (desc->sptes[PTE_LIST_EXT-1]) {
  688. desc->more = mmu_alloc_pte_list_desc(vcpu);
  689. desc = desc->more;
  690. }
  691. for (i = 0; desc->sptes[i]; ++i)
  692. ++count;
  693. desc->sptes[i] = spte;
  694. }
  695. return count;
  696. }
  697. static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
  698. {
  699. struct pte_list_desc *desc;
  700. u64 *prev_spte;
  701. int i;
  702. if (!*pte_list)
  703. return NULL;
  704. else if (!(*pte_list & 1)) {
  705. if (!spte)
  706. return (u64 *)*pte_list;
  707. return NULL;
  708. }
  709. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  710. prev_spte = NULL;
  711. while (desc) {
  712. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
  713. if (prev_spte == spte)
  714. return desc->sptes[i];
  715. prev_spte = desc->sptes[i];
  716. }
  717. desc = desc->more;
  718. }
  719. return NULL;
  720. }
  721. static void
  722. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  723. int i, struct pte_list_desc *prev_desc)
  724. {
  725. int j;
  726. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  727. ;
  728. desc->sptes[i] = desc->sptes[j];
  729. desc->sptes[j] = NULL;
  730. if (j != 0)
  731. return;
  732. if (!prev_desc && !desc->more)
  733. *pte_list = (unsigned long)desc->sptes[0];
  734. else
  735. if (prev_desc)
  736. prev_desc->more = desc->more;
  737. else
  738. *pte_list = (unsigned long)desc->more | 1;
  739. mmu_free_pte_list_desc(desc);
  740. }
  741. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  742. {
  743. struct pte_list_desc *desc;
  744. struct pte_list_desc *prev_desc;
  745. int i;
  746. if (!*pte_list) {
  747. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  748. BUG();
  749. } else if (!(*pte_list & 1)) {
  750. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  751. if ((u64 *)*pte_list != spte) {
  752. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  753. BUG();
  754. }
  755. *pte_list = 0;
  756. } else {
  757. rmap_printk("pte_list_remove: %p many->many\n", spte);
  758. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  759. prev_desc = NULL;
  760. while (desc) {
  761. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  762. if (desc->sptes[i] == spte) {
  763. pte_list_desc_remove_entry(pte_list,
  764. desc, i,
  765. prev_desc);
  766. return;
  767. }
  768. prev_desc = desc;
  769. desc = desc->more;
  770. }
  771. pr_err("pte_list_remove: %p many->many\n", spte);
  772. BUG();
  773. }
  774. }
  775. typedef void (*pte_list_walk_fn) (u64 *spte);
  776. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  777. {
  778. struct pte_list_desc *desc;
  779. int i;
  780. if (!*pte_list)
  781. return;
  782. if (!(*pte_list & 1))
  783. return fn((u64 *)*pte_list);
  784. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  785. while (desc) {
  786. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  787. fn(desc->sptes[i]);
  788. desc = desc->more;
  789. }
  790. }
  791. /*
  792. * Take gfn and return the reverse mapping to it.
  793. */
  794. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  795. {
  796. struct kvm_memory_slot *slot;
  797. struct kvm_lpage_info *linfo;
  798. slot = gfn_to_memslot(kvm, gfn);
  799. if (likely(level == PT_PAGE_TABLE_LEVEL))
  800. return &slot->rmap[gfn - slot->base_gfn];
  801. linfo = lpage_info_slot(gfn, slot, level);
  802. return &linfo->rmap_pde;
  803. }
  804. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  805. {
  806. struct kvm_mmu_memory_cache *cache;
  807. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  808. return mmu_memory_cache_free_objects(cache);
  809. }
  810. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  811. {
  812. struct kvm_mmu_page *sp;
  813. unsigned long *rmapp;
  814. sp = page_header(__pa(spte));
  815. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  816. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  817. return pte_list_add(vcpu, spte, rmapp);
  818. }
  819. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  820. {
  821. return pte_list_next(rmapp, spte);
  822. }
  823. static void rmap_remove(struct kvm *kvm, u64 *spte)
  824. {
  825. struct kvm_mmu_page *sp;
  826. gfn_t gfn;
  827. unsigned long *rmapp;
  828. sp = page_header(__pa(spte));
  829. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  830. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  831. pte_list_remove(spte, rmapp);
  832. }
  833. static void drop_spte(struct kvm *kvm, u64 *sptep)
  834. {
  835. if (mmu_spte_clear_track_bits(sptep))
  836. rmap_remove(kvm, sptep);
  837. }
  838. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  839. {
  840. unsigned long *rmapp;
  841. u64 *spte;
  842. int i, write_protected = 0;
  843. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  844. spte = rmap_next(kvm, rmapp, NULL);
  845. while (spte) {
  846. BUG_ON(!spte);
  847. BUG_ON(!(*spte & PT_PRESENT_MASK));
  848. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  849. if (is_writable_pte(*spte)) {
  850. mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
  851. write_protected = 1;
  852. }
  853. spte = rmap_next(kvm, rmapp, spte);
  854. }
  855. /* check for huge page mappings */
  856. for (i = PT_DIRECTORY_LEVEL;
  857. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  858. rmapp = gfn_to_rmap(kvm, gfn, i);
  859. spte = rmap_next(kvm, rmapp, NULL);
  860. while (spte) {
  861. BUG_ON(!spte);
  862. BUG_ON(!(*spte & PT_PRESENT_MASK));
  863. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  864. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  865. if (is_writable_pte(*spte)) {
  866. drop_spte(kvm, spte);
  867. --kvm->stat.lpages;
  868. spte = NULL;
  869. write_protected = 1;
  870. }
  871. spte = rmap_next(kvm, rmapp, spte);
  872. }
  873. }
  874. return write_protected;
  875. }
  876. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  877. unsigned long data)
  878. {
  879. u64 *spte;
  880. int need_tlb_flush = 0;
  881. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  882. BUG_ON(!(*spte & PT_PRESENT_MASK));
  883. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  884. drop_spte(kvm, spte);
  885. need_tlb_flush = 1;
  886. }
  887. return need_tlb_flush;
  888. }
  889. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  890. unsigned long data)
  891. {
  892. int need_flush = 0;
  893. u64 *spte, new_spte;
  894. pte_t *ptep = (pte_t *)data;
  895. pfn_t new_pfn;
  896. WARN_ON(pte_huge(*ptep));
  897. new_pfn = pte_pfn(*ptep);
  898. spte = rmap_next(kvm, rmapp, NULL);
  899. while (spte) {
  900. BUG_ON(!is_shadow_present_pte(*spte));
  901. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  902. need_flush = 1;
  903. if (pte_write(*ptep)) {
  904. drop_spte(kvm, spte);
  905. spte = rmap_next(kvm, rmapp, NULL);
  906. } else {
  907. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  908. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  909. new_spte &= ~PT_WRITABLE_MASK;
  910. new_spte &= ~SPTE_HOST_WRITEABLE;
  911. new_spte &= ~shadow_accessed_mask;
  912. mmu_spte_clear_track_bits(spte);
  913. mmu_spte_set(spte, new_spte);
  914. spte = rmap_next(kvm, rmapp, spte);
  915. }
  916. }
  917. if (need_flush)
  918. kvm_flush_remote_tlbs(kvm);
  919. return 0;
  920. }
  921. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  922. unsigned long data,
  923. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  924. unsigned long data))
  925. {
  926. int i, j;
  927. int ret;
  928. int retval = 0;
  929. struct kvm_memslots *slots;
  930. slots = kvm_memslots(kvm);
  931. for (i = 0; i < slots->nmemslots; i++) {
  932. struct kvm_memory_slot *memslot = &slots->memslots[i];
  933. unsigned long start = memslot->userspace_addr;
  934. unsigned long end;
  935. end = start + (memslot->npages << PAGE_SHIFT);
  936. if (hva >= start && hva < end) {
  937. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  938. gfn_t gfn = memslot->base_gfn + gfn_offset;
  939. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  940. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  941. struct kvm_lpage_info *linfo;
  942. linfo = lpage_info_slot(gfn, memslot,
  943. PT_DIRECTORY_LEVEL + j);
  944. ret |= handler(kvm, &linfo->rmap_pde, data);
  945. }
  946. trace_kvm_age_page(hva, memslot, ret);
  947. retval |= ret;
  948. }
  949. }
  950. return retval;
  951. }
  952. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  953. {
  954. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  955. }
  956. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  957. {
  958. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  959. }
  960. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  961. unsigned long data)
  962. {
  963. u64 *spte;
  964. int young = 0;
  965. /*
  966. * Emulate the accessed bit for EPT, by checking if this page has
  967. * an EPT mapping, and clearing it if it does. On the next access,
  968. * a new EPT mapping will be established.
  969. * This has some overhead, but not as much as the cost of swapping
  970. * out actively used pages or breaking up actively used hugepages.
  971. */
  972. if (!shadow_accessed_mask)
  973. return kvm_unmap_rmapp(kvm, rmapp, data);
  974. spte = rmap_next(kvm, rmapp, NULL);
  975. while (spte) {
  976. int _young;
  977. u64 _spte = *spte;
  978. BUG_ON(!(_spte & PT_PRESENT_MASK));
  979. _young = _spte & PT_ACCESSED_MASK;
  980. if (_young) {
  981. young = 1;
  982. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  983. }
  984. spte = rmap_next(kvm, rmapp, spte);
  985. }
  986. return young;
  987. }
  988. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  989. unsigned long data)
  990. {
  991. u64 *spte;
  992. int young = 0;
  993. /*
  994. * If there's no access bit in the secondary pte set by the
  995. * hardware it's up to gup-fast/gup to set the access bit in
  996. * the primary pte or in the page structure.
  997. */
  998. if (!shadow_accessed_mask)
  999. goto out;
  1000. spte = rmap_next(kvm, rmapp, NULL);
  1001. while (spte) {
  1002. u64 _spte = *spte;
  1003. BUG_ON(!(_spte & PT_PRESENT_MASK));
  1004. young = _spte & PT_ACCESSED_MASK;
  1005. if (young) {
  1006. young = 1;
  1007. break;
  1008. }
  1009. spte = rmap_next(kvm, rmapp, spte);
  1010. }
  1011. out:
  1012. return young;
  1013. }
  1014. #define RMAP_RECYCLE_THRESHOLD 1000
  1015. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1016. {
  1017. unsigned long *rmapp;
  1018. struct kvm_mmu_page *sp;
  1019. sp = page_header(__pa(spte));
  1020. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1021. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  1022. kvm_flush_remote_tlbs(vcpu->kvm);
  1023. }
  1024. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1025. {
  1026. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  1027. }
  1028. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1029. {
  1030. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1031. }
  1032. #ifdef MMU_DEBUG
  1033. static int is_empty_shadow_page(u64 *spt)
  1034. {
  1035. u64 *pos;
  1036. u64 *end;
  1037. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1038. if (is_shadow_present_pte(*pos)) {
  1039. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1040. pos, *pos);
  1041. return 0;
  1042. }
  1043. return 1;
  1044. }
  1045. #endif
  1046. /*
  1047. * This value is the sum of all of the kvm instances's
  1048. * kvm->arch.n_used_mmu_pages values. We need a global,
  1049. * aggregate version in order to make the slab shrinker
  1050. * faster
  1051. */
  1052. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1053. {
  1054. kvm->arch.n_used_mmu_pages += nr;
  1055. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1056. }
  1057. /*
  1058. * Remove the sp from shadow page cache, after call it,
  1059. * we can not find this sp from the cache, and the shadow
  1060. * page table is still valid.
  1061. * It should be under the protection of mmu lock.
  1062. */
  1063. static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
  1064. {
  1065. ASSERT(is_empty_shadow_page(sp->spt));
  1066. hlist_del(&sp->hash_link);
  1067. if (!sp->role.direct)
  1068. free_page((unsigned long)sp->gfns);
  1069. }
  1070. /*
  1071. * Free the shadow page table and the sp, we can do it
  1072. * out of the protection of mmu lock.
  1073. */
  1074. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1075. {
  1076. list_del(&sp->link);
  1077. free_page((unsigned long)sp->spt);
  1078. kmem_cache_free(mmu_page_header_cache, sp);
  1079. }
  1080. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1081. {
  1082. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1083. }
  1084. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1085. struct kvm_mmu_page *sp, u64 *parent_pte)
  1086. {
  1087. if (!parent_pte)
  1088. return;
  1089. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1090. }
  1091. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1092. u64 *parent_pte)
  1093. {
  1094. pte_list_remove(parent_pte, &sp->parent_ptes);
  1095. }
  1096. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1097. u64 *parent_pte)
  1098. {
  1099. mmu_page_remove_parent_pte(sp, parent_pte);
  1100. mmu_spte_clear_no_track(parent_pte);
  1101. }
  1102. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1103. u64 *parent_pte, int direct)
  1104. {
  1105. struct kvm_mmu_page *sp;
  1106. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
  1107. sizeof *sp);
  1108. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  1109. if (!direct)
  1110. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  1111. PAGE_SIZE);
  1112. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1113. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1114. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  1115. sp->parent_ptes = 0;
  1116. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1117. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1118. return sp;
  1119. }
  1120. static void mark_unsync(u64 *spte);
  1121. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1122. {
  1123. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1124. }
  1125. static void mark_unsync(u64 *spte)
  1126. {
  1127. struct kvm_mmu_page *sp;
  1128. unsigned int index;
  1129. sp = page_header(__pa(spte));
  1130. index = spte - sp->spt;
  1131. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1132. return;
  1133. if (sp->unsync_children++)
  1134. return;
  1135. kvm_mmu_mark_parents_unsync(sp);
  1136. }
  1137. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1138. struct kvm_mmu_page *sp)
  1139. {
  1140. return 1;
  1141. }
  1142. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1143. {
  1144. }
  1145. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1146. struct kvm_mmu_page *sp, u64 *spte,
  1147. const void *pte)
  1148. {
  1149. WARN_ON(1);
  1150. }
  1151. #define KVM_PAGE_ARRAY_NR 16
  1152. struct kvm_mmu_pages {
  1153. struct mmu_page_and_offset {
  1154. struct kvm_mmu_page *sp;
  1155. unsigned int idx;
  1156. } page[KVM_PAGE_ARRAY_NR];
  1157. unsigned int nr;
  1158. };
  1159. #define for_each_unsync_children(bitmap, idx) \
  1160. for (idx = find_first_bit(bitmap, 512); \
  1161. idx < 512; \
  1162. idx = find_next_bit(bitmap, 512, idx+1))
  1163. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1164. int idx)
  1165. {
  1166. int i;
  1167. if (sp->unsync)
  1168. for (i=0; i < pvec->nr; i++)
  1169. if (pvec->page[i].sp == sp)
  1170. return 0;
  1171. pvec->page[pvec->nr].sp = sp;
  1172. pvec->page[pvec->nr].idx = idx;
  1173. pvec->nr++;
  1174. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1175. }
  1176. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1177. struct kvm_mmu_pages *pvec)
  1178. {
  1179. int i, ret, nr_unsync_leaf = 0;
  1180. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  1181. struct kvm_mmu_page *child;
  1182. u64 ent = sp->spt[i];
  1183. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1184. goto clear_child_bitmap;
  1185. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1186. if (child->unsync_children) {
  1187. if (mmu_pages_add(pvec, child, i))
  1188. return -ENOSPC;
  1189. ret = __mmu_unsync_walk(child, pvec);
  1190. if (!ret)
  1191. goto clear_child_bitmap;
  1192. else if (ret > 0)
  1193. nr_unsync_leaf += ret;
  1194. else
  1195. return ret;
  1196. } else if (child->unsync) {
  1197. nr_unsync_leaf++;
  1198. if (mmu_pages_add(pvec, child, i))
  1199. return -ENOSPC;
  1200. } else
  1201. goto clear_child_bitmap;
  1202. continue;
  1203. clear_child_bitmap:
  1204. __clear_bit(i, sp->unsync_child_bitmap);
  1205. sp->unsync_children--;
  1206. WARN_ON((int)sp->unsync_children < 0);
  1207. }
  1208. return nr_unsync_leaf;
  1209. }
  1210. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1211. struct kvm_mmu_pages *pvec)
  1212. {
  1213. if (!sp->unsync_children)
  1214. return 0;
  1215. mmu_pages_add(pvec, sp, 0);
  1216. return __mmu_unsync_walk(sp, pvec);
  1217. }
  1218. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1219. {
  1220. WARN_ON(!sp->unsync);
  1221. trace_kvm_mmu_sync_page(sp);
  1222. sp->unsync = 0;
  1223. --kvm->stat.mmu_unsync;
  1224. }
  1225. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1226. struct list_head *invalid_list);
  1227. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1228. struct list_head *invalid_list);
  1229. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1230. hlist_for_each_entry(sp, pos, \
  1231. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1232. if ((sp)->gfn != (gfn)) {} else
  1233. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1234. hlist_for_each_entry(sp, pos, \
  1235. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1236. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1237. (sp)->role.invalid) {} else
  1238. /* @sp->gfn should be write-protected at the call site */
  1239. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1240. struct list_head *invalid_list, bool clear_unsync)
  1241. {
  1242. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1243. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1244. return 1;
  1245. }
  1246. if (clear_unsync)
  1247. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1248. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1249. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1250. return 1;
  1251. }
  1252. kvm_mmu_flush_tlb(vcpu);
  1253. return 0;
  1254. }
  1255. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1256. struct kvm_mmu_page *sp)
  1257. {
  1258. LIST_HEAD(invalid_list);
  1259. int ret;
  1260. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1261. if (ret)
  1262. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1263. return ret;
  1264. }
  1265. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1266. struct list_head *invalid_list)
  1267. {
  1268. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1269. }
  1270. /* @gfn should be write-protected at the call site */
  1271. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1272. {
  1273. struct kvm_mmu_page *s;
  1274. struct hlist_node *node;
  1275. LIST_HEAD(invalid_list);
  1276. bool flush = false;
  1277. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1278. if (!s->unsync)
  1279. continue;
  1280. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1281. kvm_unlink_unsync_page(vcpu->kvm, s);
  1282. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1283. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1284. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1285. continue;
  1286. }
  1287. flush = true;
  1288. }
  1289. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1290. if (flush)
  1291. kvm_mmu_flush_tlb(vcpu);
  1292. }
  1293. struct mmu_page_path {
  1294. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1295. unsigned int idx[PT64_ROOT_LEVEL-1];
  1296. };
  1297. #define for_each_sp(pvec, sp, parents, i) \
  1298. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1299. sp = pvec.page[i].sp; \
  1300. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1301. i = mmu_pages_next(&pvec, &parents, i))
  1302. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1303. struct mmu_page_path *parents,
  1304. int i)
  1305. {
  1306. int n;
  1307. for (n = i+1; n < pvec->nr; n++) {
  1308. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1309. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1310. parents->idx[0] = pvec->page[n].idx;
  1311. return n;
  1312. }
  1313. parents->parent[sp->role.level-2] = sp;
  1314. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1315. }
  1316. return n;
  1317. }
  1318. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1319. {
  1320. struct kvm_mmu_page *sp;
  1321. unsigned int level = 0;
  1322. do {
  1323. unsigned int idx = parents->idx[level];
  1324. sp = parents->parent[level];
  1325. if (!sp)
  1326. return;
  1327. --sp->unsync_children;
  1328. WARN_ON((int)sp->unsync_children < 0);
  1329. __clear_bit(idx, sp->unsync_child_bitmap);
  1330. level++;
  1331. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1332. }
  1333. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1334. struct mmu_page_path *parents,
  1335. struct kvm_mmu_pages *pvec)
  1336. {
  1337. parents->parent[parent->role.level-1] = NULL;
  1338. pvec->nr = 0;
  1339. }
  1340. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1341. struct kvm_mmu_page *parent)
  1342. {
  1343. int i;
  1344. struct kvm_mmu_page *sp;
  1345. struct mmu_page_path parents;
  1346. struct kvm_mmu_pages pages;
  1347. LIST_HEAD(invalid_list);
  1348. kvm_mmu_pages_init(parent, &parents, &pages);
  1349. while (mmu_unsync_walk(parent, &pages)) {
  1350. int protected = 0;
  1351. for_each_sp(pages, sp, parents, i)
  1352. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1353. if (protected)
  1354. kvm_flush_remote_tlbs(vcpu->kvm);
  1355. for_each_sp(pages, sp, parents, i) {
  1356. kvm_sync_page(vcpu, sp, &invalid_list);
  1357. mmu_pages_clear_parents(&parents);
  1358. }
  1359. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1360. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1361. kvm_mmu_pages_init(parent, &parents, &pages);
  1362. }
  1363. }
  1364. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1365. {
  1366. int i;
  1367. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1368. sp->spt[i] = 0ull;
  1369. }
  1370. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1371. {
  1372. sp->write_flooding_count = 0;
  1373. }
  1374. static void clear_sp_write_flooding_count(u64 *spte)
  1375. {
  1376. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1377. __clear_sp_write_flooding_count(sp);
  1378. }
  1379. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1380. gfn_t gfn,
  1381. gva_t gaddr,
  1382. unsigned level,
  1383. int direct,
  1384. unsigned access,
  1385. u64 *parent_pte)
  1386. {
  1387. union kvm_mmu_page_role role;
  1388. unsigned quadrant;
  1389. struct kvm_mmu_page *sp;
  1390. struct hlist_node *node;
  1391. bool need_sync = false;
  1392. role = vcpu->arch.mmu.base_role;
  1393. role.level = level;
  1394. role.direct = direct;
  1395. if (role.direct)
  1396. role.cr4_pae = 0;
  1397. role.access = access;
  1398. if (!vcpu->arch.mmu.direct_map
  1399. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1400. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1401. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1402. role.quadrant = quadrant;
  1403. }
  1404. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1405. if (!need_sync && sp->unsync)
  1406. need_sync = true;
  1407. if (sp->role.word != role.word)
  1408. continue;
  1409. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1410. break;
  1411. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1412. if (sp->unsync_children) {
  1413. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1414. kvm_mmu_mark_parents_unsync(sp);
  1415. } else if (sp->unsync)
  1416. kvm_mmu_mark_parents_unsync(sp);
  1417. __clear_sp_write_flooding_count(sp);
  1418. trace_kvm_mmu_get_page(sp, false);
  1419. return sp;
  1420. }
  1421. ++vcpu->kvm->stat.mmu_cache_miss;
  1422. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1423. if (!sp)
  1424. return sp;
  1425. sp->gfn = gfn;
  1426. sp->role = role;
  1427. hlist_add_head(&sp->hash_link,
  1428. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1429. if (!direct) {
  1430. if (rmap_write_protect(vcpu->kvm, gfn))
  1431. kvm_flush_remote_tlbs(vcpu->kvm);
  1432. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1433. kvm_sync_pages(vcpu, gfn);
  1434. account_shadowed(vcpu->kvm, gfn);
  1435. }
  1436. init_shadow_page_table(sp);
  1437. trace_kvm_mmu_get_page(sp, true);
  1438. return sp;
  1439. }
  1440. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1441. struct kvm_vcpu *vcpu, u64 addr)
  1442. {
  1443. iterator->addr = addr;
  1444. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1445. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1446. if (iterator->level == PT64_ROOT_LEVEL &&
  1447. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1448. !vcpu->arch.mmu.direct_map)
  1449. --iterator->level;
  1450. if (iterator->level == PT32E_ROOT_LEVEL) {
  1451. iterator->shadow_addr
  1452. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1453. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1454. --iterator->level;
  1455. if (!iterator->shadow_addr)
  1456. iterator->level = 0;
  1457. }
  1458. }
  1459. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1460. {
  1461. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1462. return false;
  1463. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1464. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1465. return true;
  1466. }
  1467. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1468. u64 spte)
  1469. {
  1470. if (is_last_spte(spte, iterator->level)) {
  1471. iterator->level = 0;
  1472. return;
  1473. }
  1474. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1475. --iterator->level;
  1476. }
  1477. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1478. {
  1479. return __shadow_walk_next(iterator, *iterator->sptep);
  1480. }
  1481. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1482. {
  1483. u64 spte;
  1484. spte = __pa(sp->spt)
  1485. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1486. | PT_WRITABLE_MASK | PT_USER_MASK;
  1487. mmu_spte_set(sptep, spte);
  1488. }
  1489. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1490. {
  1491. if (is_large_pte(*sptep)) {
  1492. drop_spte(vcpu->kvm, sptep);
  1493. kvm_flush_remote_tlbs(vcpu->kvm);
  1494. }
  1495. }
  1496. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1497. unsigned direct_access)
  1498. {
  1499. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1500. struct kvm_mmu_page *child;
  1501. /*
  1502. * For the direct sp, if the guest pte's dirty bit
  1503. * changed form clean to dirty, it will corrupt the
  1504. * sp's access: allow writable in the read-only sp,
  1505. * so we should update the spte at this point to get
  1506. * a new sp with the correct access.
  1507. */
  1508. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1509. if (child->role.access == direct_access)
  1510. return;
  1511. drop_parent_pte(child, sptep);
  1512. kvm_flush_remote_tlbs(vcpu->kvm);
  1513. }
  1514. }
  1515. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1516. u64 *spte)
  1517. {
  1518. u64 pte;
  1519. struct kvm_mmu_page *child;
  1520. pte = *spte;
  1521. if (is_shadow_present_pte(pte)) {
  1522. if (is_last_spte(pte, sp->role.level)) {
  1523. drop_spte(kvm, spte);
  1524. if (is_large_pte(pte))
  1525. --kvm->stat.lpages;
  1526. } else {
  1527. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1528. drop_parent_pte(child, spte);
  1529. }
  1530. return true;
  1531. }
  1532. if (is_mmio_spte(pte))
  1533. mmu_spte_clear_no_track(spte);
  1534. return false;
  1535. }
  1536. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1537. struct kvm_mmu_page *sp)
  1538. {
  1539. unsigned i;
  1540. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1541. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1542. }
  1543. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1544. {
  1545. mmu_page_remove_parent_pte(sp, parent_pte);
  1546. }
  1547. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1548. {
  1549. u64 *parent_pte;
  1550. while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
  1551. drop_parent_pte(sp, parent_pte);
  1552. }
  1553. static int mmu_zap_unsync_children(struct kvm *kvm,
  1554. struct kvm_mmu_page *parent,
  1555. struct list_head *invalid_list)
  1556. {
  1557. int i, zapped = 0;
  1558. struct mmu_page_path parents;
  1559. struct kvm_mmu_pages pages;
  1560. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1561. return 0;
  1562. kvm_mmu_pages_init(parent, &parents, &pages);
  1563. while (mmu_unsync_walk(parent, &pages)) {
  1564. struct kvm_mmu_page *sp;
  1565. for_each_sp(pages, sp, parents, i) {
  1566. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1567. mmu_pages_clear_parents(&parents);
  1568. zapped++;
  1569. }
  1570. kvm_mmu_pages_init(parent, &parents, &pages);
  1571. }
  1572. return zapped;
  1573. }
  1574. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1575. struct list_head *invalid_list)
  1576. {
  1577. int ret;
  1578. trace_kvm_mmu_prepare_zap_page(sp);
  1579. ++kvm->stat.mmu_shadow_zapped;
  1580. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1581. kvm_mmu_page_unlink_children(kvm, sp);
  1582. kvm_mmu_unlink_parents(kvm, sp);
  1583. if (!sp->role.invalid && !sp->role.direct)
  1584. unaccount_shadowed(kvm, sp->gfn);
  1585. if (sp->unsync)
  1586. kvm_unlink_unsync_page(kvm, sp);
  1587. if (!sp->root_count) {
  1588. /* Count self */
  1589. ret++;
  1590. list_move(&sp->link, invalid_list);
  1591. kvm_mod_used_mmu_pages(kvm, -1);
  1592. } else {
  1593. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1594. kvm_reload_remote_mmus(kvm);
  1595. }
  1596. sp->role.invalid = 1;
  1597. return ret;
  1598. }
  1599. static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
  1600. {
  1601. struct kvm_mmu_page *sp;
  1602. list_for_each_entry(sp, invalid_list, link)
  1603. kvm_mmu_isolate_page(sp);
  1604. }
  1605. static void free_pages_rcu(struct rcu_head *head)
  1606. {
  1607. struct kvm_mmu_page *next, *sp;
  1608. sp = container_of(head, struct kvm_mmu_page, rcu);
  1609. while (sp) {
  1610. if (!list_empty(&sp->link))
  1611. next = list_first_entry(&sp->link,
  1612. struct kvm_mmu_page, link);
  1613. else
  1614. next = NULL;
  1615. kvm_mmu_free_page(sp);
  1616. sp = next;
  1617. }
  1618. }
  1619. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1620. struct list_head *invalid_list)
  1621. {
  1622. struct kvm_mmu_page *sp;
  1623. if (list_empty(invalid_list))
  1624. return;
  1625. kvm_flush_remote_tlbs(kvm);
  1626. if (atomic_read(&kvm->arch.reader_counter)) {
  1627. kvm_mmu_isolate_pages(invalid_list);
  1628. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1629. list_del_init(invalid_list);
  1630. trace_kvm_mmu_delay_free_pages(sp);
  1631. call_rcu(&sp->rcu, free_pages_rcu);
  1632. return;
  1633. }
  1634. do {
  1635. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1636. WARN_ON(!sp->role.invalid || sp->root_count);
  1637. kvm_mmu_isolate_page(sp);
  1638. kvm_mmu_free_page(sp);
  1639. } while (!list_empty(invalid_list));
  1640. }
  1641. /*
  1642. * Changing the number of mmu pages allocated to the vm
  1643. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1644. */
  1645. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1646. {
  1647. LIST_HEAD(invalid_list);
  1648. /*
  1649. * If we set the number of mmu pages to be smaller be than the
  1650. * number of actived pages , we must to free some mmu pages before we
  1651. * change the value
  1652. */
  1653. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1654. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1655. !list_empty(&kvm->arch.active_mmu_pages)) {
  1656. struct kvm_mmu_page *page;
  1657. page = container_of(kvm->arch.active_mmu_pages.prev,
  1658. struct kvm_mmu_page, link);
  1659. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1660. }
  1661. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1662. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1663. }
  1664. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1665. }
  1666. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1667. {
  1668. struct kvm_mmu_page *sp;
  1669. struct hlist_node *node;
  1670. LIST_HEAD(invalid_list);
  1671. int r;
  1672. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1673. r = 0;
  1674. spin_lock(&kvm->mmu_lock);
  1675. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1676. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1677. sp->role.word);
  1678. r = 1;
  1679. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1680. }
  1681. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1682. spin_unlock(&kvm->mmu_lock);
  1683. return r;
  1684. }
  1685. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1686. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1687. {
  1688. int slot = memslot_id(kvm, gfn);
  1689. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1690. __set_bit(slot, sp->slot_bitmap);
  1691. }
  1692. /*
  1693. * The function is based on mtrr_type_lookup() in
  1694. * arch/x86/kernel/cpu/mtrr/generic.c
  1695. */
  1696. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1697. u64 start, u64 end)
  1698. {
  1699. int i;
  1700. u64 base, mask;
  1701. u8 prev_match, curr_match;
  1702. int num_var_ranges = KVM_NR_VAR_MTRR;
  1703. if (!mtrr_state->enabled)
  1704. return 0xFF;
  1705. /* Make end inclusive end, instead of exclusive */
  1706. end--;
  1707. /* Look in fixed ranges. Just return the type as per start */
  1708. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1709. int idx;
  1710. if (start < 0x80000) {
  1711. idx = 0;
  1712. idx += (start >> 16);
  1713. return mtrr_state->fixed_ranges[idx];
  1714. } else if (start < 0xC0000) {
  1715. idx = 1 * 8;
  1716. idx += ((start - 0x80000) >> 14);
  1717. return mtrr_state->fixed_ranges[idx];
  1718. } else if (start < 0x1000000) {
  1719. idx = 3 * 8;
  1720. idx += ((start - 0xC0000) >> 12);
  1721. return mtrr_state->fixed_ranges[idx];
  1722. }
  1723. }
  1724. /*
  1725. * Look in variable ranges
  1726. * Look of multiple ranges matching this address and pick type
  1727. * as per MTRR precedence
  1728. */
  1729. if (!(mtrr_state->enabled & 2))
  1730. return mtrr_state->def_type;
  1731. prev_match = 0xFF;
  1732. for (i = 0; i < num_var_ranges; ++i) {
  1733. unsigned short start_state, end_state;
  1734. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1735. continue;
  1736. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1737. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1738. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1739. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1740. start_state = ((start & mask) == (base & mask));
  1741. end_state = ((end & mask) == (base & mask));
  1742. if (start_state != end_state)
  1743. return 0xFE;
  1744. if ((start & mask) != (base & mask))
  1745. continue;
  1746. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1747. if (prev_match == 0xFF) {
  1748. prev_match = curr_match;
  1749. continue;
  1750. }
  1751. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1752. curr_match == MTRR_TYPE_UNCACHABLE)
  1753. return MTRR_TYPE_UNCACHABLE;
  1754. if ((prev_match == MTRR_TYPE_WRBACK &&
  1755. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1756. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1757. curr_match == MTRR_TYPE_WRBACK)) {
  1758. prev_match = MTRR_TYPE_WRTHROUGH;
  1759. curr_match = MTRR_TYPE_WRTHROUGH;
  1760. }
  1761. if (prev_match != curr_match)
  1762. return MTRR_TYPE_UNCACHABLE;
  1763. }
  1764. if (prev_match != 0xFF)
  1765. return prev_match;
  1766. return mtrr_state->def_type;
  1767. }
  1768. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1769. {
  1770. u8 mtrr;
  1771. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1772. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1773. if (mtrr == 0xfe || mtrr == 0xff)
  1774. mtrr = MTRR_TYPE_WRBACK;
  1775. return mtrr;
  1776. }
  1777. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1778. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1779. {
  1780. trace_kvm_mmu_unsync_page(sp);
  1781. ++vcpu->kvm->stat.mmu_unsync;
  1782. sp->unsync = 1;
  1783. kvm_mmu_mark_parents_unsync(sp);
  1784. }
  1785. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1786. {
  1787. struct kvm_mmu_page *s;
  1788. struct hlist_node *node;
  1789. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1790. if (s->unsync)
  1791. continue;
  1792. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1793. __kvm_unsync_page(vcpu, s);
  1794. }
  1795. }
  1796. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1797. bool can_unsync)
  1798. {
  1799. struct kvm_mmu_page *s;
  1800. struct hlist_node *node;
  1801. bool need_unsync = false;
  1802. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1803. if (!can_unsync)
  1804. return 1;
  1805. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1806. return 1;
  1807. if (!need_unsync && !s->unsync) {
  1808. if (!oos_shadow)
  1809. return 1;
  1810. need_unsync = true;
  1811. }
  1812. }
  1813. if (need_unsync)
  1814. kvm_unsync_pages(vcpu, gfn);
  1815. return 0;
  1816. }
  1817. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1818. unsigned pte_access, int user_fault,
  1819. int write_fault, int level,
  1820. gfn_t gfn, pfn_t pfn, bool speculative,
  1821. bool can_unsync, bool host_writable)
  1822. {
  1823. u64 spte, entry = *sptep;
  1824. int ret = 0;
  1825. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1826. return 0;
  1827. spte = PT_PRESENT_MASK;
  1828. if (!speculative)
  1829. spte |= shadow_accessed_mask;
  1830. if (pte_access & ACC_EXEC_MASK)
  1831. spte |= shadow_x_mask;
  1832. else
  1833. spte |= shadow_nx_mask;
  1834. if (pte_access & ACC_USER_MASK)
  1835. spte |= shadow_user_mask;
  1836. if (level > PT_PAGE_TABLE_LEVEL)
  1837. spte |= PT_PAGE_SIZE_MASK;
  1838. if (tdp_enabled)
  1839. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1840. kvm_is_mmio_pfn(pfn));
  1841. if (host_writable)
  1842. spte |= SPTE_HOST_WRITEABLE;
  1843. else
  1844. pte_access &= ~ACC_WRITE_MASK;
  1845. spte |= (u64)pfn << PAGE_SHIFT;
  1846. if ((pte_access & ACC_WRITE_MASK)
  1847. || (!vcpu->arch.mmu.direct_map && write_fault
  1848. && !is_write_protection(vcpu) && !user_fault)) {
  1849. if (level > PT_PAGE_TABLE_LEVEL &&
  1850. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1851. ret = 1;
  1852. drop_spte(vcpu->kvm, sptep);
  1853. goto done;
  1854. }
  1855. spte |= PT_WRITABLE_MASK;
  1856. if (!vcpu->arch.mmu.direct_map
  1857. && !(pte_access & ACC_WRITE_MASK)) {
  1858. spte &= ~PT_USER_MASK;
  1859. /*
  1860. * If we converted a user page to a kernel page,
  1861. * so that the kernel can write to it when cr0.wp=0,
  1862. * then we should prevent the kernel from executing it
  1863. * if SMEP is enabled.
  1864. */
  1865. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1866. spte |= PT64_NX_MASK;
  1867. }
  1868. /*
  1869. * Optimization: for pte sync, if spte was writable the hash
  1870. * lookup is unnecessary (and expensive). Write protection
  1871. * is responsibility of mmu_get_page / kvm_sync_page.
  1872. * Same reasoning can be applied to dirty page accounting.
  1873. */
  1874. if (!can_unsync && is_writable_pte(*sptep))
  1875. goto set_pte;
  1876. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1877. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1878. __func__, gfn);
  1879. ret = 1;
  1880. pte_access &= ~ACC_WRITE_MASK;
  1881. if (is_writable_pte(spte))
  1882. spte &= ~PT_WRITABLE_MASK;
  1883. }
  1884. }
  1885. if (pte_access & ACC_WRITE_MASK)
  1886. mark_page_dirty(vcpu->kvm, gfn);
  1887. set_pte:
  1888. mmu_spte_update(sptep, spte);
  1889. /*
  1890. * If we overwrite a writable spte with a read-only one we
  1891. * should flush remote TLBs. Otherwise rmap_write_protect
  1892. * will find a read-only spte, even though the writable spte
  1893. * might be cached on a CPU's TLB.
  1894. */
  1895. if (is_writable_pte(entry) && !is_writable_pte(*sptep))
  1896. kvm_flush_remote_tlbs(vcpu->kvm);
  1897. done:
  1898. return ret;
  1899. }
  1900. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1901. unsigned pt_access, unsigned pte_access,
  1902. int user_fault, int write_fault,
  1903. int *emulate, int level, gfn_t gfn,
  1904. pfn_t pfn, bool speculative,
  1905. bool host_writable)
  1906. {
  1907. int was_rmapped = 0;
  1908. int rmap_count;
  1909. pgprintk("%s: spte %llx access %x write_fault %d"
  1910. " user_fault %d gfn %llx\n",
  1911. __func__, *sptep, pt_access,
  1912. write_fault, user_fault, gfn);
  1913. if (is_rmap_spte(*sptep)) {
  1914. /*
  1915. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1916. * the parent of the now unreachable PTE.
  1917. */
  1918. if (level > PT_PAGE_TABLE_LEVEL &&
  1919. !is_large_pte(*sptep)) {
  1920. struct kvm_mmu_page *child;
  1921. u64 pte = *sptep;
  1922. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1923. drop_parent_pte(child, sptep);
  1924. kvm_flush_remote_tlbs(vcpu->kvm);
  1925. } else if (pfn != spte_to_pfn(*sptep)) {
  1926. pgprintk("hfn old %llx new %llx\n",
  1927. spte_to_pfn(*sptep), pfn);
  1928. drop_spte(vcpu->kvm, sptep);
  1929. kvm_flush_remote_tlbs(vcpu->kvm);
  1930. } else
  1931. was_rmapped = 1;
  1932. }
  1933. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1934. level, gfn, pfn, speculative, true,
  1935. host_writable)) {
  1936. if (write_fault)
  1937. *emulate = 1;
  1938. kvm_mmu_flush_tlb(vcpu);
  1939. }
  1940. if (unlikely(is_mmio_spte(*sptep) && emulate))
  1941. *emulate = 1;
  1942. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1943. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1944. is_large_pte(*sptep)? "2MB" : "4kB",
  1945. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1946. *sptep, sptep);
  1947. if (!was_rmapped && is_large_pte(*sptep))
  1948. ++vcpu->kvm->stat.lpages;
  1949. if (is_shadow_present_pte(*sptep)) {
  1950. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1951. if (!was_rmapped) {
  1952. rmap_count = rmap_add(vcpu, sptep, gfn);
  1953. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1954. rmap_recycle(vcpu, sptep, gfn);
  1955. }
  1956. }
  1957. kvm_release_pfn_clean(pfn);
  1958. }
  1959. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1960. {
  1961. }
  1962. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  1963. bool no_dirty_log)
  1964. {
  1965. struct kvm_memory_slot *slot;
  1966. unsigned long hva;
  1967. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  1968. if (!slot) {
  1969. get_page(fault_page);
  1970. return page_to_pfn(fault_page);
  1971. }
  1972. hva = gfn_to_hva_memslot(slot, gfn);
  1973. return hva_to_pfn_atomic(vcpu->kvm, hva);
  1974. }
  1975. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  1976. struct kvm_mmu_page *sp,
  1977. u64 *start, u64 *end)
  1978. {
  1979. struct page *pages[PTE_PREFETCH_NUM];
  1980. unsigned access = sp->role.access;
  1981. int i, ret;
  1982. gfn_t gfn;
  1983. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  1984. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  1985. return -1;
  1986. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  1987. if (ret <= 0)
  1988. return -1;
  1989. for (i = 0; i < ret; i++, gfn++, start++)
  1990. mmu_set_spte(vcpu, start, ACC_ALL,
  1991. access, 0, 0, NULL,
  1992. sp->role.level, gfn,
  1993. page_to_pfn(pages[i]), true, true);
  1994. return 0;
  1995. }
  1996. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  1997. struct kvm_mmu_page *sp, u64 *sptep)
  1998. {
  1999. u64 *spte, *start = NULL;
  2000. int i;
  2001. WARN_ON(!sp->role.direct);
  2002. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2003. spte = sp->spt + i;
  2004. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2005. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2006. if (!start)
  2007. continue;
  2008. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2009. break;
  2010. start = NULL;
  2011. } else if (!start)
  2012. start = spte;
  2013. }
  2014. }
  2015. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2016. {
  2017. struct kvm_mmu_page *sp;
  2018. /*
  2019. * Since it's no accessed bit on EPT, it's no way to
  2020. * distinguish between actually accessed translations
  2021. * and prefetched, so disable pte prefetch if EPT is
  2022. * enabled.
  2023. */
  2024. if (!shadow_accessed_mask)
  2025. return;
  2026. sp = page_header(__pa(sptep));
  2027. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2028. return;
  2029. __direct_pte_prefetch(vcpu, sp, sptep);
  2030. }
  2031. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2032. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2033. bool prefault)
  2034. {
  2035. struct kvm_shadow_walk_iterator iterator;
  2036. struct kvm_mmu_page *sp;
  2037. int emulate = 0;
  2038. gfn_t pseudo_gfn;
  2039. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2040. if (iterator.level == level) {
  2041. unsigned pte_access = ACC_ALL;
  2042. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2043. 0, write, &emulate,
  2044. level, gfn, pfn, prefault, map_writable);
  2045. direct_pte_prefetch(vcpu, iterator.sptep);
  2046. ++vcpu->stat.pf_fixed;
  2047. break;
  2048. }
  2049. if (!is_shadow_present_pte(*iterator.sptep)) {
  2050. u64 base_addr = iterator.addr;
  2051. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2052. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2053. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2054. iterator.level - 1,
  2055. 1, ACC_ALL, iterator.sptep);
  2056. if (!sp) {
  2057. pgprintk("nonpaging_map: ENOMEM\n");
  2058. kvm_release_pfn_clean(pfn);
  2059. return -ENOMEM;
  2060. }
  2061. mmu_spte_set(iterator.sptep,
  2062. __pa(sp->spt)
  2063. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2064. | shadow_user_mask | shadow_x_mask
  2065. | shadow_accessed_mask);
  2066. }
  2067. }
  2068. return emulate;
  2069. }
  2070. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2071. {
  2072. siginfo_t info;
  2073. info.si_signo = SIGBUS;
  2074. info.si_errno = 0;
  2075. info.si_code = BUS_MCEERR_AR;
  2076. info.si_addr = (void __user *)address;
  2077. info.si_addr_lsb = PAGE_SHIFT;
  2078. send_sig_info(SIGBUS, &info, tsk);
  2079. }
  2080. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2081. {
  2082. kvm_release_pfn_clean(pfn);
  2083. if (is_hwpoison_pfn(pfn)) {
  2084. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2085. return 0;
  2086. }
  2087. return -EFAULT;
  2088. }
  2089. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2090. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2091. {
  2092. pfn_t pfn = *pfnp;
  2093. gfn_t gfn = *gfnp;
  2094. int level = *levelp;
  2095. /*
  2096. * Check if it's a transparent hugepage. If this would be an
  2097. * hugetlbfs page, level wouldn't be set to
  2098. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2099. * here.
  2100. */
  2101. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2102. level == PT_PAGE_TABLE_LEVEL &&
  2103. PageTransCompound(pfn_to_page(pfn)) &&
  2104. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2105. unsigned long mask;
  2106. /*
  2107. * mmu_notifier_retry was successful and we hold the
  2108. * mmu_lock here, so the pmd can't become splitting
  2109. * from under us, and in turn
  2110. * __split_huge_page_refcount() can't run from under
  2111. * us and we can safely transfer the refcount from
  2112. * PG_tail to PG_head as we switch the pfn to tail to
  2113. * head.
  2114. */
  2115. *levelp = level = PT_DIRECTORY_LEVEL;
  2116. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2117. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2118. if (pfn & mask) {
  2119. gfn &= ~mask;
  2120. *gfnp = gfn;
  2121. kvm_release_pfn_clean(pfn);
  2122. pfn &= ~mask;
  2123. if (!get_page_unless_zero(pfn_to_page(pfn)))
  2124. BUG();
  2125. *pfnp = pfn;
  2126. }
  2127. }
  2128. }
  2129. static bool mmu_invalid_pfn(pfn_t pfn)
  2130. {
  2131. return unlikely(is_invalid_pfn(pfn));
  2132. }
  2133. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2134. pfn_t pfn, unsigned access, int *ret_val)
  2135. {
  2136. bool ret = true;
  2137. /* The pfn is invalid, report the error! */
  2138. if (unlikely(is_invalid_pfn(pfn))) {
  2139. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2140. goto exit;
  2141. }
  2142. if (unlikely(is_noslot_pfn(pfn)))
  2143. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2144. ret = false;
  2145. exit:
  2146. return ret;
  2147. }
  2148. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2149. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2150. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
  2151. bool prefault)
  2152. {
  2153. int r;
  2154. int level;
  2155. int force_pt_level;
  2156. pfn_t pfn;
  2157. unsigned long mmu_seq;
  2158. bool map_writable;
  2159. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2160. if (likely(!force_pt_level)) {
  2161. level = mapping_level(vcpu, gfn);
  2162. /*
  2163. * This path builds a PAE pagetable - so we can map
  2164. * 2mb pages at maximum. Therefore check if the level
  2165. * is larger than that.
  2166. */
  2167. if (level > PT_DIRECTORY_LEVEL)
  2168. level = PT_DIRECTORY_LEVEL;
  2169. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2170. } else
  2171. level = PT_PAGE_TABLE_LEVEL;
  2172. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2173. smp_rmb();
  2174. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2175. return 0;
  2176. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2177. return r;
  2178. spin_lock(&vcpu->kvm->mmu_lock);
  2179. if (mmu_notifier_retry(vcpu, mmu_seq))
  2180. goto out_unlock;
  2181. kvm_mmu_free_some_pages(vcpu);
  2182. if (likely(!force_pt_level))
  2183. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2184. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2185. prefault);
  2186. spin_unlock(&vcpu->kvm->mmu_lock);
  2187. return r;
  2188. out_unlock:
  2189. spin_unlock(&vcpu->kvm->mmu_lock);
  2190. kvm_release_pfn_clean(pfn);
  2191. return 0;
  2192. }
  2193. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2194. {
  2195. int i;
  2196. struct kvm_mmu_page *sp;
  2197. LIST_HEAD(invalid_list);
  2198. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2199. return;
  2200. spin_lock(&vcpu->kvm->mmu_lock);
  2201. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2202. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2203. vcpu->arch.mmu.direct_map)) {
  2204. hpa_t root = vcpu->arch.mmu.root_hpa;
  2205. sp = page_header(root);
  2206. --sp->root_count;
  2207. if (!sp->root_count && sp->role.invalid) {
  2208. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2209. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2210. }
  2211. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2212. spin_unlock(&vcpu->kvm->mmu_lock);
  2213. return;
  2214. }
  2215. for (i = 0; i < 4; ++i) {
  2216. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2217. if (root) {
  2218. root &= PT64_BASE_ADDR_MASK;
  2219. sp = page_header(root);
  2220. --sp->root_count;
  2221. if (!sp->root_count && sp->role.invalid)
  2222. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2223. &invalid_list);
  2224. }
  2225. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2226. }
  2227. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2228. spin_unlock(&vcpu->kvm->mmu_lock);
  2229. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2230. }
  2231. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2232. {
  2233. int ret = 0;
  2234. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2235. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2236. ret = 1;
  2237. }
  2238. return ret;
  2239. }
  2240. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2241. {
  2242. struct kvm_mmu_page *sp;
  2243. unsigned i;
  2244. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2245. spin_lock(&vcpu->kvm->mmu_lock);
  2246. kvm_mmu_free_some_pages(vcpu);
  2247. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2248. 1, ACC_ALL, NULL);
  2249. ++sp->root_count;
  2250. spin_unlock(&vcpu->kvm->mmu_lock);
  2251. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2252. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2253. for (i = 0; i < 4; ++i) {
  2254. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2255. ASSERT(!VALID_PAGE(root));
  2256. spin_lock(&vcpu->kvm->mmu_lock);
  2257. kvm_mmu_free_some_pages(vcpu);
  2258. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2259. i << 30,
  2260. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2261. NULL);
  2262. root = __pa(sp->spt);
  2263. ++sp->root_count;
  2264. spin_unlock(&vcpu->kvm->mmu_lock);
  2265. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2266. }
  2267. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2268. } else
  2269. BUG();
  2270. return 0;
  2271. }
  2272. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2273. {
  2274. struct kvm_mmu_page *sp;
  2275. u64 pdptr, pm_mask;
  2276. gfn_t root_gfn;
  2277. int i;
  2278. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2279. if (mmu_check_root(vcpu, root_gfn))
  2280. return 1;
  2281. /*
  2282. * Do we shadow a long mode page table? If so we need to
  2283. * write-protect the guests page table root.
  2284. */
  2285. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2286. hpa_t root = vcpu->arch.mmu.root_hpa;
  2287. ASSERT(!VALID_PAGE(root));
  2288. spin_lock(&vcpu->kvm->mmu_lock);
  2289. kvm_mmu_free_some_pages(vcpu);
  2290. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2291. 0, ACC_ALL, NULL);
  2292. root = __pa(sp->spt);
  2293. ++sp->root_count;
  2294. spin_unlock(&vcpu->kvm->mmu_lock);
  2295. vcpu->arch.mmu.root_hpa = root;
  2296. return 0;
  2297. }
  2298. /*
  2299. * We shadow a 32 bit page table. This may be a legacy 2-level
  2300. * or a PAE 3-level page table. In either case we need to be aware that
  2301. * the shadow page table may be a PAE or a long mode page table.
  2302. */
  2303. pm_mask = PT_PRESENT_MASK;
  2304. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2305. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2306. for (i = 0; i < 4; ++i) {
  2307. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2308. ASSERT(!VALID_PAGE(root));
  2309. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2310. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2311. if (!is_present_gpte(pdptr)) {
  2312. vcpu->arch.mmu.pae_root[i] = 0;
  2313. continue;
  2314. }
  2315. root_gfn = pdptr >> PAGE_SHIFT;
  2316. if (mmu_check_root(vcpu, root_gfn))
  2317. return 1;
  2318. }
  2319. spin_lock(&vcpu->kvm->mmu_lock);
  2320. kvm_mmu_free_some_pages(vcpu);
  2321. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2322. PT32_ROOT_LEVEL, 0,
  2323. ACC_ALL, NULL);
  2324. root = __pa(sp->spt);
  2325. ++sp->root_count;
  2326. spin_unlock(&vcpu->kvm->mmu_lock);
  2327. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2328. }
  2329. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2330. /*
  2331. * If we shadow a 32 bit page table with a long mode page
  2332. * table we enter this path.
  2333. */
  2334. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2335. if (vcpu->arch.mmu.lm_root == NULL) {
  2336. /*
  2337. * The additional page necessary for this is only
  2338. * allocated on demand.
  2339. */
  2340. u64 *lm_root;
  2341. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2342. if (lm_root == NULL)
  2343. return 1;
  2344. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2345. vcpu->arch.mmu.lm_root = lm_root;
  2346. }
  2347. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2348. }
  2349. return 0;
  2350. }
  2351. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2352. {
  2353. if (vcpu->arch.mmu.direct_map)
  2354. return mmu_alloc_direct_roots(vcpu);
  2355. else
  2356. return mmu_alloc_shadow_roots(vcpu);
  2357. }
  2358. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2359. {
  2360. int i;
  2361. struct kvm_mmu_page *sp;
  2362. if (vcpu->arch.mmu.direct_map)
  2363. return;
  2364. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2365. return;
  2366. vcpu_clear_mmio_info(vcpu, ~0ul);
  2367. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2368. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2369. hpa_t root = vcpu->arch.mmu.root_hpa;
  2370. sp = page_header(root);
  2371. mmu_sync_children(vcpu, sp);
  2372. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2373. return;
  2374. }
  2375. for (i = 0; i < 4; ++i) {
  2376. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2377. if (root && VALID_PAGE(root)) {
  2378. root &= PT64_BASE_ADDR_MASK;
  2379. sp = page_header(root);
  2380. mmu_sync_children(vcpu, sp);
  2381. }
  2382. }
  2383. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2384. }
  2385. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2386. {
  2387. spin_lock(&vcpu->kvm->mmu_lock);
  2388. mmu_sync_roots(vcpu);
  2389. spin_unlock(&vcpu->kvm->mmu_lock);
  2390. }
  2391. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2392. u32 access, struct x86_exception *exception)
  2393. {
  2394. if (exception)
  2395. exception->error_code = 0;
  2396. return vaddr;
  2397. }
  2398. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2399. u32 access,
  2400. struct x86_exception *exception)
  2401. {
  2402. if (exception)
  2403. exception->error_code = 0;
  2404. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2405. }
  2406. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2407. {
  2408. if (direct)
  2409. return vcpu_match_mmio_gpa(vcpu, addr);
  2410. return vcpu_match_mmio_gva(vcpu, addr);
  2411. }
  2412. /*
  2413. * On direct hosts, the last spte is only allows two states
  2414. * for mmio page fault:
  2415. * - It is the mmio spte
  2416. * - It is zapped or it is being zapped.
  2417. *
  2418. * This function completely checks the spte when the last spte
  2419. * is not the mmio spte.
  2420. */
  2421. static bool check_direct_spte_mmio_pf(u64 spte)
  2422. {
  2423. return __check_direct_spte_mmio_pf(spte);
  2424. }
  2425. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2426. {
  2427. struct kvm_shadow_walk_iterator iterator;
  2428. u64 spte = 0ull;
  2429. walk_shadow_page_lockless_begin(vcpu);
  2430. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2431. if (!is_shadow_present_pte(spte))
  2432. break;
  2433. walk_shadow_page_lockless_end(vcpu);
  2434. return spte;
  2435. }
  2436. /*
  2437. * If it is a real mmio page fault, return 1 and emulat the instruction
  2438. * directly, return 0 to let CPU fault again on the address, -1 is
  2439. * returned if bug is detected.
  2440. */
  2441. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2442. {
  2443. u64 spte;
  2444. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2445. return 1;
  2446. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2447. if (is_mmio_spte(spte)) {
  2448. gfn_t gfn = get_mmio_spte_gfn(spte);
  2449. unsigned access = get_mmio_spte_access(spte);
  2450. if (direct)
  2451. addr = 0;
  2452. trace_handle_mmio_page_fault(addr, gfn, access);
  2453. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2454. return 1;
  2455. }
  2456. /*
  2457. * It's ok if the gva is remapped by other cpus on shadow guest,
  2458. * it's a BUG if the gfn is not a mmio page.
  2459. */
  2460. if (direct && !check_direct_spte_mmio_pf(spte))
  2461. return -1;
  2462. /*
  2463. * If the page table is zapped by other cpus, let CPU fault again on
  2464. * the address.
  2465. */
  2466. return 0;
  2467. }
  2468. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2469. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2470. u32 error_code, bool direct)
  2471. {
  2472. int ret;
  2473. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2474. WARN_ON(ret < 0);
  2475. return ret;
  2476. }
  2477. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2478. u32 error_code, bool prefault)
  2479. {
  2480. gfn_t gfn;
  2481. int r;
  2482. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2483. if (unlikely(error_code & PFERR_RSVD_MASK))
  2484. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2485. r = mmu_topup_memory_caches(vcpu);
  2486. if (r)
  2487. return r;
  2488. ASSERT(vcpu);
  2489. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2490. gfn = gva >> PAGE_SHIFT;
  2491. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2492. error_code & PFERR_WRITE_MASK, gfn, prefault);
  2493. }
  2494. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2495. {
  2496. struct kvm_arch_async_pf arch;
  2497. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2498. arch.gfn = gfn;
  2499. arch.direct_map = vcpu->arch.mmu.direct_map;
  2500. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2501. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2502. }
  2503. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2504. {
  2505. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2506. kvm_event_needs_reinjection(vcpu)))
  2507. return false;
  2508. return kvm_x86_ops->interrupt_allowed(vcpu);
  2509. }
  2510. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2511. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2512. {
  2513. bool async;
  2514. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2515. if (!async)
  2516. return false; /* *pfn has correct page already */
  2517. put_page(pfn_to_page(*pfn));
  2518. if (!prefault && can_do_async_pf(vcpu)) {
  2519. trace_kvm_try_async_get_page(gva, gfn);
  2520. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2521. trace_kvm_async_pf_doublefault(gva, gfn);
  2522. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2523. return true;
  2524. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2525. return true;
  2526. }
  2527. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2528. return false;
  2529. }
  2530. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2531. bool prefault)
  2532. {
  2533. pfn_t pfn;
  2534. int r;
  2535. int level;
  2536. int force_pt_level;
  2537. gfn_t gfn = gpa >> PAGE_SHIFT;
  2538. unsigned long mmu_seq;
  2539. int write = error_code & PFERR_WRITE_MASK;
  2540. bool map_writable;
  2541. ASSERT(vcpu);
  2542. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2543. if (unlikely(error_code & PFERR_RSVD_MASK))
  2544. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2545. r = mmu_topup_memory_caches(vcpu);
  2546. if (r)
  2547. return r;
  2548. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2549. if (likely(!force_pt_level)) {
  2550. level = mapping_level(vcpu, gfn);
  2551. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2552. } else
  2553. level = PT_PAGE_TABLE_LEVEL;
  2554. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2555. smp_rmb();
  2556. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2557. return 0;
  2558. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2559. return r;
  2560. spin_lock(&vcpu->kvm->mmu_lock);
  2561. if (mmu_notifier_retry(vcpu, mmu_seq))
  2562. goto out_unlock;
  2563. kvm_mmu_free_some_pages(vcpu);
  2564. if (likely(!force_pt_level))
  2565. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2566. r = __direct_map(vcpu, gpa, write, map_writable,
  2567. level, gfn, pfn, prefault);
  2568. spin_unlock(&vcpu->kvm->mmu_lock);
  2569. return r;
  2570. out_unlock:
  2571. spin_unlock(&vcpu->kvm->mmu_lock);
  2572. kvm_release_pfn_clean(pfn);
  2573. return 0;
  2574. }
  2575. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2576. {
  2577. mmu_free_roots(vcpu);
  2578. }
  2579. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2580. struct kvm_mmu *context)
  2581. {
  2582. context->new_cr3 = nonpaging_new_cr3;
  2583. context->page_fault = nonpaging_page_fault;
  2584. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2585. context->free = nonpaging_free;
  2586. context->sync_page = nonpaging_sync_page;
  2587. context->invlpg = nonpaging_invlpg;
  2588. context->update_pte = nonpaging_update_pte;
  2589. context->root_level = 0;
  2590. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2591. context->root_hpa = INVALID_PAGE;
  2592. context->direct_map = true;
  2593. context->nx = false;
  2594. return 0;
  2595. }
  2596. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2597. {
  2598. ++vcpu->stat.tlb_flush;
  2599. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2600. }
  2601. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2602. {
  2603. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2604. mmu_free_roots(vcpu);
  2605. }
  2606. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2607. {
  2608. return kvm_read_cr3(vcpu);
  2609. }
  2610. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2611. struct x86_exception *fault)
  2612. {
  2613. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2614. }
  2615. static void paging_free(struct kvm_vcpu *vcpu)
  2616. {
  2617. nonpaging_free(vcpu);
  2618. }
  2619. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2620. {
  2621. int bit7;
  2622. bit7 = (gpte >> 7) & 1;
  2623. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2624. }
  2625. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2626. int *nr_present)
  2627. {
  2628. if (unlikely(is_mmio_spte(*sptep))) {
  2629. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2630. mmu_spte_clear_no_track(sptep);
  2631. return true;
  2632. }
  2633. (*nr_present)++;
  2634. mark_mmio_spte(sptep, gfn, access);
  2635. return true;
  2636. }
  2637. return false;
  2638. }
  2639. #define PTTYPE 64
  2640. #include "paging_tmpl.h"
  2641. #undef PTTYPE
  2642. #define PTTYPE 32
  2643. #include "paging_tmpl.h"
  2644. #undef PTTYPE
  2645. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2646. struct kvm_mmu *context,
  2647. int level)
  2648. {
  2649. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2650. u64 exb_bit_rsvd = 0;
  2651. if (!context->nx)
  2652. exb_bit_rsvd = rsvd_bits(63, 63);
  2653. switch (level) {
  2654. case PT32_ROOT_LEVEL:
  2655. /* no rsvd bits for 2 level 4K page table entries */
  2656. context->rsvd_bits_mask[0][1] = 0;
  2657. context->rsvd_bits_mask[0][0] = 0;
  2658. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2659. if (!is_pse(vcpu)) {
  2660. context->rsvd_bits_mask[1][1] = 0;
  2661. break;
  2662. }
  2663. if (is_cpuid_PSE36())
  2664. /* 36bits PSE 4MB page */
  2665. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2666. else
  2667. /* 32 bits PSE 4MB page */
  2668. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2669. break;
  2670. case PT32E_ROOT_LEVEL:
  2671. context->rsvd_bits_mask[0][2] =
  2672. rsvd_bits(maxphyaddr, 63) |
  2673. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2674. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2675. rsvd_bits(maxphyaddr, 62); /* PDE */
  2676. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2677. rsvd_bits(maxphyaddr, 62); /* PTE */
  2678. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2679. rsvd_bits(maxphyaddr, 62) |
  2680. rsvd_bits(13, 20); /* large page */
  2681. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2682. break;
  2683. case PT64_ROOT_LEVEL:
  2684. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2685. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2686. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2687. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2688. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2689. rsvd_bits(maxphyaddr, 51);
  2690. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2691. rsvd_bits(maxphyaddr, 51);
  2692. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2693. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2694. rsvd_bits(maxphyaddr, 51) |
  2695. rsvd_bits(13, 29);
  2696. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2697. rsvd_bits(maxphyaddr, 51) |
  2698. rsvd_bits(13, 20); /* large page */
  2699. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2700. break;
  2701. }
  2702. }
  2703. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2704. struct kvm_mmu *context,
  2705. int level)
  2706. {
  2707. context->nx = is_nx(vcpu);
  2708. reset_rsvds_bits_mask(vcpu, context, level);
  2709. ASSERT(is_pae(vcpu));
  2710. context->new_cr3 = paging_new_cr3;
  2711. context->page_fault = paging64_page_fault;
  2712. context->gva_to_gpa = paging64_gva_to_gpa;
  2713. context->sync_page = paging64_sync_page;
  2714. context->invlpg = paging64_invlpg;
  2715. context->update_pte = paging64_update_pte;
  2716. context->free = paging_free;
  2717. context->root_level = level;
  2718. context->shadow_root_level = level;
  2719. context->root_hpa = INVALID_PAGE;
  2720. context->direct_map = false;
  2721. return 0;
  2722. }
  2723. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2724. struct kvm_mmu *context)
  2725. {
  2726. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2727. }
  2728. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2729. struct kvm_mmu *context)
  2730. {
  2731. context->nx = false;
  2732. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2733. context->new_cr3 = paging_new_cr3;
  2734. context->page_fault = paging32_page_fault;
  2735. context->gva_to_gpa = paging32_gva_to_gpa;
  2736. context->free = paging_free;
  2737. context->sync_page = paging32_sync_page;
  2738. context->invlpg = paging32_invlpg;
  2739. context->update_pte = paging32_update_pte;
  2740. context->root_level = PT32_ROOT_LEVEL;
  2741. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2742. context->root_hpa = INVALID_PAGE;
  2743. context->direct_map = false;
  2744. return 0;
  2745. }
  2746. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2747. struct kvm_mmu *context)
  2748. {
  2749. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2750. }
  2751. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2752. {
  2753. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2754. context->base_role.word = 0;
  2755. context->new_cr3 = nonpaging_new_cr3;
  2756. context->page_fault = tdp_page_fault;
  2757. context->free = nonpaging_free;
  2758. context->sync_page = nonpaging_sync_page;
  2759. context->invlpg = nonpaging_invlpg;
  2760. context->update_pte = nonpaging_update_pte;
  2761. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2762. context->root_hpa = INVALID_PAGE;
  2763. context->direct_map = true;
  2764. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2765. context->get_cr3 = get_cr3;
  2766. context->get_pdptr = kvm_pdptr_read;
  2767. context->inject_page_fault = kvm_inject_page_fault;
  2768. context->nx = is_nx(vcpu);
  2769. if (!is_paging(vcpu)) {
  2770. context->nx = false;
  2771. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2772. context->root_level = 0;
  2773. } else if (is_long_mode(vcpu)) {
  2774. context->nx = is_nx(vcpu);
  2775. reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
  2776. context->gva_to_gpa = paging64_gva_to_gpa;
  2777. context->root_level = PT64_ROOT_LEVEL;
  2778. } else if (is_pae(vcpu)) {
  2779. context->nx = is_nx(vcpu);
  2780. reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
  2781. context->gva_to_gpa = paging64_gva_to_gpa;
  2782. context->root_level = PT32E_ROOT_LEVEL;
  2783. } else {
  2784. context->nx = false;
  2785. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2786. context->gva_to_gpa = paging32_gva_to_gpa;
  2787. context->root_level = PT32_ROOT_LEVEL;
  2788. }
  2789. return 0;
  2790. }
  2791. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2792. {
  2793. int r;
  2794. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2795. ASSERT(vcpu);
  2796. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2797. if (!is_paging(vcpu))
  2798. r = nonpaging_init_context(vcpu, context);
  2799. else if (is_long_mode(vcpu))
  2800. r = paging64_init_context(vcpu, context);
  2801. else if (is_pae(vcpu))
  2802. r = paging32E_init_context(vcpu, context);
  2803. else
  2804. r = paging32_init_context(vcpu, context);
  2805. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2806. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2807. vcpu->arch.mmu.base_role.smep_andnot_wp
  2808. = smep && !is_write_protection(vcpu);
  2809. return r;
  2810. }
  2811. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2812. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2813. {
  2814. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2815. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2816. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2817. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  2818. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2819. return r;
  2820. }
  2821. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2822. {
  2823. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2824. g_context->get_cr3 = get_cr3;
  2825. g_context->get_pdptr = kvm_pdptr_read;
  2826. g_context->inject_page_fault = kvm_inject_page_fault;
  2827. /*
  2828. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2829. * translation of l2_gpa to l1_gpa addresses is done using the
  2830. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2831. * functions between mmu and nested_mmu are swapped.
  2832. */
  2833. if (!is_paging(vcpu)) {
  2834. g_context->nx = false;
  2835. g_context->root_level = 0;
  2836. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  2837. } else if (is_long_mode(vcpu)) {
  2838. g_context->nx = is_nx(vcpu);
  2839. reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
  2840. g_context->root_level = PT64_ROOT_LEVEL;
  2841. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2842. } else if (is_pae(vcpu)) {
  2843. g_context->nx = is_nx(vcpu);
  2844. reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
  2845. g_context->root_level = PT32E_ROOT_LEVEL;
  2846. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2847. } else {
  2848. g_context->nx = false;
  2849. reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
  2850. g_context->root_level = PT32_ROOT_LEVEL;
  2851. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  2852. }
  2853. return 0;
  2854. }
  2855. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2856. {
  2857. if (mmu_is_nested(vcpu))
  2858. return init_kvm_nested_mmu(vcpu);
  2859. else if (tdp_enabled)
  2860. return init_kvm_tdp_mmu(vcpu);
  2861. else
  2862. return init_kvm_softmmu(vcpu);
  2863. }
  2864. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2865. {
  2866. ASSERT(vcpu);
  2867. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2868. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2869. vcpu->arch.mmu.free(vcpu);
  2870. }
  2871. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2872. {
  2873. destroy_kvm_mmu(vcpu);
  2874. return init_kvm_mmu(vcpu);
  2875. }
  2876. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2877. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2878. {
  2879. int r;
  2880. r = mmu_topup_memory_caches(vcpu);
  2881. if (r)
  2882. goto out;
  2883. r = mmu_alloc_roots(vcpu);
  2884. spin_lock(&vcpu->kvm->mmu_lock);
  2885. mmu_sync_roots(vcpu);
  2886. spin_unlock(&vcpu->kvm->mmu_lock);
  2887. if (r)
  2888. goto out;
  2889. /* set_cr3() should ensure TLB has been flushed */
  2890. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2891. out:
  2892. return r;
  2893. }
  2894. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2895. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2896. {
  2897. mmu_free_roots(vcpu);
  2898. }
  2899. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  2900. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2901. struct kvm_mmu_page *sp, u64 *spte,
  2902. const void *new)
  2903. {
  2904. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2905. ++vcpu->kvm->stat.mmu_pde_zapped;
  2906. return;
  2907. }
  2908. ++vcpu->kvm->stat.mmu_pte_updated;
  2909. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  2910. }
  2911. static bool need_remote_flush(u64 old, u64 new)
  2912. {
  2913. if (!is_shadow_present_pte(old))
  2914. return false;
  2915. if (!is_shadow_present_pte(new))
  2916. return true;
  2917. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2918. return true;
  2919. old ^= PT64_NX_MASK;
  2920. new ^= PT64_NX_MASK;
  2921. return (old & ~new & PT64_PERM_MASK) != 0;
  2922. }
  2923. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2924. bool remote_flush, bool local_flush)
  2925. {
  2926. if (zap_page)
  2927. return;
  2928. if (remote_flush)
  2929. kvm_flush_remote_tlbs(vcpu->kvm);
  2930. else if (local_flush)
  2931. kvm_mmu_flush_tlb(vcpu);
  2932. }
  2933. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  2934. const u8 *new, int *bytes)
  2935. {
  2936. u64 gentry;
  2937. int r;
  2938. /*
  2939. * Assume that the pte write on a page table of the same type
  2940. * as the current vcpu paging mode since we update the sptes only
  2941. * when they have the same mode.
  2942. */
  2943. if (is_pae(vcpu) && *bytes == 4) {
  2944. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2945. *gpa &= ~(gpa_t)7;
  2946. *bytes = 8;
  2947. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
  2948. if (r)
  2949. gentry = 0;
  2950. new = (const u8 *)&gentry;
  2951. }
  2952. switch (*bytes) {
  2953. case 4:
  2954. gentry = *(const u32 *)new;
  2955. break;
  2956. case 8:
  2957. gentry = *(const u64 *)new;
  2958. break;
  2959. default:
  2960. gentry = 0;
  2961. break;
  2962. }
  2963. return gentry;
  2964. }
  2965. /*
  2966. * If we're seeing too many writes to a page, it may no longer be a page table,
  2967. * or we may be forking, in which case it is better to unmap the page.
  2968. */
  2969. static bool detect_write_flooding(struct kvm_mmu_page *sp, u64 *spte)
  2970. {
  2971. /*
  2972. * Skip write-flooding detected for the sp whose level is 1, because
  2973. * it can become unsync, then the guest page is not write-protected.
  2974. */
  2975. if (sp->role.level == 1)
  2976. return false;
  2977. return ++sp->write_flooding_count >= 3;
  2978. }
  2979. /*
  2980. * Misaligned accesses are too much trouble to fix up; also, they usually
  2981. * indicate a page is not used as a page table.
  2982. */
  2983. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  2984. int bytes)
  2985. {
  2986. unsigned offset, pte_size, misaligned;
  2987. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2988. gpa, bytes, sp->role.word);
  2989. offset = offset_in_page(gpa);
  2990. pte_size = sp->role.cr4_pae ? 8 : 4;
  2991. /*
  2992. * Sometimes, the OS only writes the last one bytes to update status
  2993. * bits, for example, in linux, andb instruction is used in clear_bit().
  2994. */
  2995. if (!(offset & (pte_size - 1)) && bytes == 1)
  2996. return false;
  2997. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2998. misaligned |= bytes < 4;
  2999. return misaligned;
  3000. }
  3001. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3002. {
  3003. unsigned page_offset, quadrant;
  3004. u64 *spte;
  3005. int level;
  3006. page_offset = offset_in_page(gpa);
  3007. level = sp->role.level;
  3008. *nspte = 1;
  3009. if (!sp->role.cr4_pae) {
  3010. page_offset <<= 1; /* 32->64 */
  3011. /*
  3012. * A 32-bit pde maps 4MB while the shadow pdes map
  3013. * only 2MB. So we need to double the offset again
  3014. * and zap two pdes instead of one.
  3015. */
  3016. if (level == PT32_ROOT_LEVEL) {
  3017. page_offset &= ~7; /* kill rounding error */
  3018. page_offset <<= 1;
  3019. *nspte = 2;
  3020. }
  3021. quadrant = page_offset >> PAGE_SHIFT;
  3022. page_offset &= ~PAGE_MASK;
  3023. if (quadrant != sp->role.quadrant)
  3024. return NULL;
  3025. }
  3026. spte = &sp->spt[page_offset / sizeof(*spte)];
  3027. return spte;
  3028. }
  3029. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3030. const u8 *new, int bytes)
  3031. {
  3032. gfn_t gfn = gpa >> PAGE_SHIFT;
  3033. union kvm_mmu_page_role mask = { .word = 0 };
  3034. struct kvm_mmu_page *sp;
  3035. struct hlist_node *node;
  3036. LIST_HEAD(invalid_list);
  3037. u64 entry, gentry, *spte;
  3038. int npte;
  3039. bool remote_flush, local_flush, zap_page;
  3040. /*
  3041. * If we don't have indirect shadow pages, it means no page is
  3042. * write-protected, so we can exit simply.
  3043. */
  3044. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3045. return;
  3046. zap_page = remote_flush = local_flush = false;
  3047. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3048. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3049. /*
  3050. * No need to care whether allocation memory is successful
  3051. * or not since pte prefetch is skiped if it does not have
  3052. * enough objects in the cache.
  3053. */
  3054. mmu_topup_memory_caches(vcpu);
  3055. spin_lock(&vcpu->kvm->mmu_lock);
  3056. ++vcpu->kvm->stat.mmu_pte_write;
  3057. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3058. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3059. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3060. spte = get_written_sptes(sp, gpa, &npte);
  3061. if (detect_write_misaligned(sp, gpa, bytes) ||
  3062. detect_write_flooding(sp, spte)) {
  3063. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3064. &invalid_list);
  3065. ++vcpu->kvm->stat.mmu_flooded;
  3066. continue;
  3067. }
  3068. spte = get_written_sptes(sp, gpa, &npte);
  3069. if (!spte)
  3070. continue;
  3071. local_flush = true;
  3072. while (npte--) {
  3073. entry = *spte;
  3074. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3075. if (gentry &&
  3076. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3077. & mask.word) && rmap_can_add(vcpu))
  3078. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3079. if (!remote_flush && need_remote_flush(entry, *spte))
  3080. remote_flush = true;
  3081. ++spte;
  3082. }
  3083. }
  3084. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3085. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3086. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3087. spin_unlock(&vcpu->kvm->mmu_lock);
  3088. }
  3089. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3090. {
  3091. gpa_t gpa;
  3092. int r;
  3093. if (vcpu->arch.mmu.direct_map)
  3094. return 0;
  3095. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3096. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3097. return r;
  3098. }
  3099. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3100. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3101. {
  3102. LIST_HEAD(invalid_list);
  3103. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3104. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3105. struct kvm_mmu_page *sp;
  3106. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3107. struct kvm_mmu_page, link);
  3108. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3109. ++vcpu->kvm->stat.mmu_recycled;
  3110. }
  3111. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3112. }
  3113. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3114. {
  3115. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3116. return vcpu_match_mmio_gpa(vcpu, addr);
  3117. return vcpu_match_mmio_gva(vcpu, addr);
  3118. }
  3119. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3120. void *insn, int insn_len)
  3121. {
  3122. int r, emulation_type = EMULTYPE_RETRY;
  3123. enum emulation_result er;
  3124. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3125. if (r < 0)
  3126. goto out;
  3127. if (!r) {
  3128. r = 1;
  3129. goto out;
  3130. }
  3131. if (is_mmio_page_fault(vcpu, cr2))
  3132. emulation_type = 0;
  3133. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3134. switch (er) {
  3135. case EMULATE_DONE:
  3136. return 1;
  3137. case EMULATE_DO_MMIO:
  3138. ++vcpu->stat.mmio_exits;
  3139. /* fall through */
  3140. case EMULATE_FAIL:
  3141. return 0;
  3142. default:
  3143. BUG();
  3144. }
  3145. out:
  3146. return r;
  3147. }
  3148. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3149. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3150. {
  3151. vcpu->arch.mmu.invlpg(vcpu, gva);
  3152. kvm_mmu_flush_tlb(vcpu);
  3153. ++vcpu->stat.invlpg;
  3154. }
  3155. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3156. void kvm_enable_tdp(void)
  3157. {
  3158. tdp_enabled = true;
  3159. }
  3160. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3161. void kvm_disable_tdp(void)
  3162. {
  3163. tdp_enabled = false;
  3164. }
  3165. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3166. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3167. {
  3168. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3169. if (vcpu->arch.mmu.lm_root != NULL)
  3170. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3171. }
  3172. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3173. {
  3174. struct page *page;
  3175. int i;
  3176. ASSERT(vcpu);
  3177. /*
  3178. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3179. * Therefore we need to allocate shadow page tables in the first
  3180. * 4GB of memory, which happens to fit the DMA32 zone.
  3181. */
  3182. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3183. if (!page)
  3184. return -ENOMEM;
  3185. vcpu->arch.mmu.pae_root = page_address(page);
  3186. for (i = 0; i < 4; ++i)
  3187. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3188. return 0;
  3189. }
  3190. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3191. {
  3192. ASSERT(vcpu);
  3193. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3194. return alloc_mmu_pages(vcpu);
  3195. }
  3196. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3197. {
  3198. ASSERT(vcpu);
  3199. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3200. return init_kvm_mmu(vcpu);
  3201. }
  3202. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3203. {
  3204. struct kvm_mmu_page *sp;
  3205. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  3206. int i;
  3207. u64 *pt;
  3208. if (!test_bit(slot, sp->slot_bitmap))
  3209. continue;
  3210. pt = sp->spt;
  3211. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3212. if (!is_shadow_present_pte(pt[i]) ||
  3213. !is_last_spte(pt[i], sp->role.level))
  3214. continue;
  3215. if (is_large_pte(pt[i])) {
  3216. drop_spte(kvm, &pt[i]);
  3217. --kvm->stat.lpages;
  3218. continue;
  3219. }
  3220. /* avoid RMW */
  3221. if (is_writable_pte(pt[i]))
  3222. mmu_spte_update(&pt[i],
  3223. pt[i] & ~PT_WRITABLE_MASK);
  3224. }
  3225. }
  3226. kvm_flush_remote_tlbs(kvm);
  3227. }
  3228. void kvm_mmu_zap_all(struct kvm *kvm)
  3229. {
  3230. struct kvm_mmu_page *sp, *node;
  3231. LIST_HEAD(invalid_list);
  3232. spin_lock(&kvm->mmu_lock);
  3233. restart:
  3234. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3235. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3236. goto restart;
  3237. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3238. spin_unlock(&kvm->mmu_lock);
  3239. }
  3240. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3241. struct list_head *invalid_list)
  3242. {
  3243. struct kvm_mmu_page *page;
  3244. page = container_of(kvm->arch.active_mmu_pages.prev,
  3245. struct kvm_mmu_page, link);
  3246. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3247. }
  3248. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3249. {
  3250. struct kvm *kvm;
  3251. struct kvm *kvm_freed = NULL;
  3252. int nr_to_scan = sc->nr_to_scan;
  3253. if (nr_to_scan == 0)
  3254. goto out;
  3255. raw_spin_lock(&kvm_lock);
  3256. list_for_each_entry(kvm, &vm_list, vm_list) {
  3257. int idx, freed_pages;
  3258. LIST_HEAD(invalid_list);
  3259. idx = srcu_read_lock(&kvm->srcu);
  3260. spin_lock(&kvm->mmu_lock);
  3261. if (!kvm_freed && nr_to_scan > 0 &&
  3262. kvm->arch.n_used_mmu_pages > 0) {
  3263. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  3264. &invalid_list);
  3265. kvm_freed = kvm;
  3266. }
  3267. nr_to_scan--;
  3268. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3269. spin_unlock(&kvm->mmu_lock);
  3270. srcu_read_unlock(&kvm->srcu, idx);
  3271. }
  3272. if (kvm_freed)
  3273. list_move_tail(&kvm_freed->vm_list, &vm_list);
  3274. raw_spin_unlock(&kvm_lock);
  3275. out:
  3276. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3277. }
  3278. static struct shrinker mmu_shrinker = {
  3279. .shrink = mmu_shrink,
  3280. .seeks = DEFAULT_SEEKS * 10,
  3281. };
  3282. static void mmu_destroy_caches(void)
  3283. {
  3284. if (pte_list_desc_cache)
  3285. kmem_cache_destroy(pte_list_desc_cache);
  3286. if (mmu_page_header_cache)
  3287. kmem_cache_destroy(mmu_page_header_cache);
  3288. }
  3289. int kvm_mmu_module_init(void)
  3290. {
  3291. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3292. sizeof(struct pte_list_desc),
  3293. 0, 0, NULL);
  3294. if (!pte_list_desc_cache)
  3295. goto nomem;
  3296. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3297. sizeof(struct kvm_mmu_page),
  3298. 0, 0, NULL);
  3299. if (!mmu_page_header_cache)
  3300. goto nomem;
  3301. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3302. goto nomem;
  3303. register_shrinker(&mmu_shrinker);
  3304. return 0;
  3305. nomem:
  3306. mmu_destroy_caches();
  3307. return -ENOMEM;
  3308. }
  3309. /*
  3310. * Caculate mmu pages needed for kvm.
  3311. */
  3312. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3313. {
  3314. int i;
  3315. unsigned int nr_mmu_pages;
  3316. unsigned int nr_pages = 0;
  3317. struct kvm_memslots *slots;
  3318. slots = kvm_memslots(kvm);
  3319. for (i = 0; i < slots->nmemslots; i++)
  3320. nr_pages += slots->memslots[i].npages;
  3321. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3322. nr_mmu_pages = max(nr_mmu_pages,
  3323. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3324. return nr_mmu_pages;
  3325. }
  3326. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3327. {
  3328. struct kvm_shadow_walk_iterator iterator;
  3329. u64 spte;
  3330. int nr_sptes = 0;
  3331. walk_shadow_page_lockless_begin(vcpu);
  3332. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3333. sptes[iterator.level-1] = spte;
  3334. nr_sptes++;
  3335. if (!is_shadow_present_pte(spte))
  3336. break;
  3337. }
  3338. walk_shadow_page_lockless_end(vcpu);
  3339. return nr_sptes;
  3340. }
  3341. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3342. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3343. {
  3344. ASSERT(vcpu);
  3345. destroy_kvm_mmu(vcpu);
  3346. free_mmu_pages(vcpu);
  3347. mmu_free_memory_caches(vcpu);
  3348. }
  3349. #ifdef CONFIG_KVM_MMU_AUDIT
  3350. #include "mmu_audit.c"
  3351. #else
  3352. static void mmu_audit_disable(void) { }
  3353. #endif
  3354. void kvm_mmu_module_exit(void)
  3355. {
  3356. mmu_destroy_caches();
  3357. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3358. unregister_shrinker(&mmu_shrinker);
  3359. mmu_audit_disable();
  3360. }