i915_gem.c 133 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int
  58. i915_gem_object_get_pages(struct drm_gem_object *obj,
  59. gfp_t gfpmask);
  60. static void
  61. i915_gem_object_put_pages(struct drm_gem_object *obj);
  62. static LIST_HEAD(shrink_list);
  63. static DEFINE_SPINLOCK(shrink_list_lock);
  64. /* some bookkeeping */
  65. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count++;
  69. dev_priv->mm.object_memory += size;
  70. }
  71. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  72. size_t size)
  73. {
  74. dev_priv->mm.object_count--;
  75. dev_priv->mm.object_memory -= size;
  76. }
  77. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  78. size_t size)
  79. {
  80. dev_priv->mm.gtt_count++;
  81. dev_priv->mm.gtt_memory += size;
  82. }
  83. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  84. size_t size)
  85. {
  86. dev_priv->mm.gtt_count--;
  87. dev_priv->mm.gtt_memory -= size;
  88. }
  89. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  90. size_t size)
  91. {
  92. dev_priv->mm.pin_count++;
  93. dev_priv->mm.pin_memory += size;
  94. }
  95. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  96. size_t size)
  97. {
  98. dev_priv->mm.pin_count--;
  99. dev_priv->mm.pin_memory -= size;
  100. }
  101. int
  102. i915_gem_check_is_wedged(struct drm_device *dev)
  103. {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct completion *x = &dev_priv->error_completion;
  106. unsigned long flags;
  107. int ret;
  108. if (!atomic_read(&dev_priv->mm.wedged))
  109. return 0;
  110. ret = wait_for_completion_interruptible(x);
  111. if (ret)
  112. return ret;
  113. /* Success, we reset the GPU! */
  114. if (!atomic_read(&dev_priv->mm.wedged))
  115. return 0;
  116. /* GPU is hung, bump the completion count to account for
  117. * the token we just consumed so that we never hit zero and
  118. * end up waiting upon a subsequent completion event that
  119. * will never happen.
  120. */
  121. spin_lock_irqsave(&x->wait.lock, flags);
  122. x->done++;
  123. spin_unlock_irqrestore(&x->wait.lock, flags);
  124. return -EIO;
  125. }
  126. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. int ret;
  130. ret = i915_gem_check_is_wedged(dev);
  131. if (ret)
  132. return ret;
  133. ret = mutex_lock_interruptible(&dev->struct_mutex);
  134. if (ret)
  135. return ret;
  136. if (atomic_read(&dev_priv->mm.wedged)) {
  137. mutex_unlock(&dev->struct_mutex);
  138. return -EAGAIN;
  139. }
  140. WARN_ON(i915_verify_lists(dev));
  141. return 0;
  142. }
  143. static inline bool
  144. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  145. {
  146. return obj_priv->gtt_space &&
  147. !obj_priv->active &&
  148. obj_priv->pin_count == 0;
  149. }
  150. int i915_gem_do_init(struct drm_device *dev,
  151. unsigned long start,
  152. unsigned long end)
  153. {
  154. drm_i915_private_t *dev_priv = dev->dev_private;
  155. if (start >= end ||
  156. (start & (PAGE_SIZE - 1)) != 0 ||
  157. (end & (PAGE_SIZE - 1)) != 0) {
  158. return -EINVAL;
  159. }
  160. drm_mm_init(&dev_priv->mm.gtt_space, start,
  161. end - start);
  162. dev_priv->mm.gtt_total = end - start;
  163. return 0;
  164. }
  165. int
  166. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  167. struct drm_file *file_priv)
  168. {
  169. struct drm_i915_gem_init *args = data;
  170. int ret;
  171. mutex_lock(&dev->struct_mutex);
  172. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  173. mutex_unlock(&dev->struct_mutex);
  174. return ret;
  175. }
  176. int
  177. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  178. struct drm_file *file_priv)
  179. {
  180. struct drm_i915_private *dev_priv = dev->dev_private;
  181. struct drm_i915_gem_get_aperture *args = data;
  182. if (!(dev->driver->driver_features & DRIVER_GEM))
  183. return -ENODEV;
  184. mutex_lock(&dev->struct_mutex);
  185. args->aper_size = dev_priv->mm.gtt_total;
  186. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  187. mutex_unlock(&dev->struct_mutex);
  188. return 0;
  189. }
  190. /**
  191. * Creates a new mm object and returns a handle to it.
  192. */
  193. int
  194. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  195. struct drm_file *file_priv)
  196. {
  197. struct drm_i915_gem_create *args = data;
  198. struct drm_gem_object *obj;
  199. int ret;
  200. u32 handle;
  201. args->size = roundup(args->size, PAGE_SIZE);
  202. /* Allocate the new object */
  203. obj = i915_gem_alloc_object(dev, args->size);
  204. if (obj == NULL)
  205. return -ENOMEM;
  206. ret = drm_gem_handle_create(file_priv, obj, &handle);
  207. /* drop reference from allocate - handle holds it now */
  208. drm_gem_object_unreference_unlocked(obj);
  209. if (ret) {
  210. return ret;
  211. }
  212. args->handle = handle;
  213. return 0;
  214. }
  215. static inline int
  216. fast_shmem_read(struct page **pages,
  217. loff_t page_base, int page_offset,
  218. char __user *data,
  219. int length)
  220. {
  221. char __iomem *vaddr;
  222. int unwritten;
  223. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  224. if (vaddr == NULL)
  225. return -ENOMEM;
  226. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  227. kunmap_atomic(vaddr, KM_USER0);
  228. if (unwritten)
  229. return -EFAULT;
  230. return 0;
  231. }
  232. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  233. {
  234. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  236. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  237. obj_priv->tiling_mode != I915_TILING_NONE;
  238. }
  239. static inline void
  240. slow_shmem_copy(struct page *dst_page,
  241. int dst_offset,
  242. struct page *src_page,
  243. int src_offset,
  244. int length)
  245. {
  246. char *dst_vaddr, *src_vaddr;
  247. dst_vaddr = kmap(dst_page);
  248. src_vaddr = kmap(src_page);
  249. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  250. kunmap(src_page);
  251. kunmap(dst_page);
  252. }
  253. static inline void
  254. slow_shmem_bit17_copy(struct page *gpu_page,
  255. int gpu_offset,
  256. struct page *cpu_page,
  257. int cpu_offset,
  258. int length,
  259. int is_read)
  260. {
  261. char *gpu_vaddr, *cpu_vaddr;
  262. /* Use the unswizzled path if this page isn't affected. */
  263. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  264. if (is_read)
  265. return slow_shmem_copy(cpu_page, cpu_offset,
  266. gpu_page, gpu_offset, length);
  267. else
  268. return slow_shmem_copy(gpu_page, gpu_offset,
  269. cpu_page, cpu_offset, length);
  270. }
  271. gpu_vaddr = kmap(gpu_page);
  272. cpu_vaddr = kmap(cpu_page);
  273. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  274. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  275. */
  276. while (length > 0) {
  277. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  278. int this_length = min(cacheline_end - gpu_offset, length);
  279. int swizzled_gpu_offset = gpu_offset ^ 64;
  280. if (is_read) {
  281. memcpy(cpu_vaddr + cpu_offset,
  282. gpu_vaddr + swizzled_gpu_offset,
  283. this_length);
  284. } else {
  285. memcpy(gpu_vaddr + swizzled_gpu_offset,
  286. cpu_vaddr + cpu_offset,
  287. this_length);
  288. }
  289. cpu_offset += this_length;
  290. gpu_offset += this_length;
  291. length -= this_length;
  292. }
  293. kunmap(cpu_page);
  294. kunmap(gpu_page);
  295. }
  296. /**
  297. * This is the fast shmem pread path, which attempts to copy_from_user directly
  298. * from the backing pages of the object to the user's address space. On a
  299. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  300. */
  301. static int
  302. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  303. struct drm_i915_gem_pread *args,
  304. struct drm_file *file_priv)
  305. {
  306. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  307. ssize_t remain;
  308. loff_t offset, page_base;
  309. char __user *user_data;
  310. int page_offset, page_length;
  311. int ret;
  312. user_data = (char __user *) (uintptr_t) args->data_ptr;
  313. remain = args->size;
  314. ret = i915_mutex_lock_interruptible(dev);
  315. if (ret)
  316. return ret;
  317. ret = i915_gem_object_get_pages(obj, 0);
  318. if (ret != 0)
  319. goto fail_unlock;
  320. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  321. args->size);
  322. if (ret != 0)
  323. goto fail_put_pages;
  324. obj_priv = to_intel_bo(obj);
  325. offset = args->offset;
  326. while (remain > 0) {
  327. /* Operation in this page
  328. *
  329. * page_base = page offset within aperture
  330. * page_offset = offset within page
  331. * page_length = bytes to copy for this page
  332. */
  333. page_base = (offset & ~(PAGE_SIZE-1));
  334. page_offset = offset & (PAGE_SIZE-1);
  335. page_length = remain;
  336. if ((page_offset + remain) > PAGE_SIZE)
  337. page_length = PAGE_SIZE - page_offset;
  338. ret = fast_shmem_read(obj_priv->pages,
  339. page_base, page_offset,
  340. user_data, page_length);
  341. if (ret)
  342. goto fail_put_pages;
  343. remain -= page_length;
  344. user_data += page_length;
  345. offset += page_length;
  346. }
  347. fail_put_pages:
  348. i915_gem_object_put_pages(obj);
  349. fail_unlock:
  350. mutex_unlock(&dev->struct_mutex);
  351. return ret;
  352. }
  353. static int
  354. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  355. {
  356. int ret;
  357. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  358. /* If we've insufficient memory to map in the pages, attempt
  359. * to make some space by throwing out some old buffers.
  360. */
  361. if (ret == -ENOMEM) {
  362. struct drm_device *dev = obj->dev;
  363. ret = i915_gem_evict_something(dev, obj->size,
  364. i915_gem_get_gtt_alignment(obj));
  365. if (ret)
  366. return ret;
  367. ret = i915_gem_object_get_pages(obj, 0);
  368. }
  369. return ret;
  370. }
  371. /**
  372. * This is the fallback shmem pread path, which allocates temporary storage
  373. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  374. * can copy out of the object's backing pages while holding the struct mutex
  375. * and not take page faults.
  376. */
  377. static int
  378. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  379. struct drm_i915_gem_pread *args,
  380. struct drm_file *file_priv)
  381. {
  382. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  383. struct mm_struct *mm = current->mm;
  384. struct page **user_pages;
  385. ssize_t remain;
  386. loff_t offset, pinned_pages, i;
  387. loff_t first_data_page, last_data_page, num_pages;
  388. int shmem_page_index, shmem_page_offset;
  389. int data_page_index, data_page_offset;
  390. int page_length;
  391. int ret;
  392. uint64_t data_ptr = args->data_ptr;
  393. int do_bit17_swizzling;
  394. remain = args->size;
  395. /* Pin the user pages containing the data. We can't fault while
  396. * holding the struct mutex, yet we want to hold it while
  397. * dereferencing the user data.
  398. */
  399. first_data_page = data_ptr / PAGE_SIZE;
  400. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  401. num_pages = last_data_page - first_data_page + 1;
  402. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  403. if (user_pages == NULL)
  404. return -ENOMEM;
  405. down_read(&mm->mmap_sem);
  406. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  407. num_pages, 1, 0, user_pages, NULL);
  408. up_read(&mm->mmap_sem);
  409. if (pinned_pages < num_pages) {
  410. ret = -EFAULT;
  411. goto fail_put_user_pages;
  412. }
  413. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  414. ret = i915_mutex_lock_interruptible(dev);
  415. if (ret)
  416. goto fail_put_user_pages;
  417. ret = i915_gem_object_get_pages_or_evict(obj);
  418. if (ret)
  419. goto fail_unlock;
  420. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  421. args->size);
  422. if (ret != 0)
  423. goto fail_put_pages;
  424. obj_priv = to_intel_bo(obj);
  425. offset = args->offset;
  426. while (remain > 0) {
  427. /* Operation in this page
  428. *
  429. * shmem_page_index = page number within shmem file
  430. * shmem_page_offset = offset within page in shmem file
  431. * data_page_index = page number in get_user_pages return
  432. * data_page_offset = offset with data_page_index page.
  433. * page_length = bytes to copy for this page
  434. */
  435. shmem_page_index = offset / PAGE_SIZE;
  436. shmem_page_offset = offset & ~PAGE_MASK;
  437. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  438. data_page_offset = data_ptr & ~PAGE_MASK;
  439. page_length = remain;
  440. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  441. page_length = PAGE_SIZE - shmem_page_offset;
  442. if ((data_page_offset + page_length) > PAGE_SIZE)
  443. page_length = PAGE_SIZE - data_page_offset;
  444. if (do_bit17_swizzling) {
  445. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  446. shmem_page_offset,
  447. user_pages[data_page_index],
  448. data_page_offset,
  449. page_length,
  450. 1);
  451. } else {
  452. slow_shmem_copy(user_pages[data_page_index],
  453. data_page_offset,
  454. obj_priv->pages[shmem_page_index],
  455. shmem_page_offset,
  456. page_length);
  457. }
  458. remain -= page_length;
  459. data_ptr += page_length;
  460. offset += page_length;
  461. }
  462. fail_put_pages:
  463. i915_gem_object_put_pages(obj);
  464. fail_unlock:
  465. mutex_unlock(&dev->struct_mutex);
  466. fail_put_user_pages:
  467. for (i = 0; i < pinned_pages; i++) {
  468. SetPageDirty(user_pages[i]);
  469. page_cache_release(user_pages[i]);
  470. }
  471. drm_free_large(user_pages);
  472. return ret;
  473. }
  474. /**
  475. * Reads data from the object referenced by handle.
  476. *
  477. * On error, the contents of *data are undefined.
  478. */
  479. int
  480. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  481. struct drm_file *file_priv)
  482. {
  483. struct drm_i915_gem_pread *args = data;
  484. struct drm_gem_object *obj;
  485. struct drm_i915_gem_object *obj_priv;
  486. int ret = 0;
  487. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  488. if (obj == NULL)
  489. return -ENOENT;
  490. obj_priv = to_intel_bo(obj);
  491. /* Bounds check source. */
  492. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  493. ret = -EINVAL;
  494. goto out;
  495. }
  496. if (args->size == 0)
  497. goto out;
  498. if (!access_ok(VERIFY_WRITE,
  499. (char __user *)(uintptr_t)args->data_ptr,
  500. args->size)) {
  501. ret = -EFAULT;
  502. goto out;
  503. }
  504. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  505. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  506. } else {
  507. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  508. if (ret != 0)
  509. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  510. file_priv);
  511. }
  512. out:
  513. drm_gem_object_unreference_unlocked(obj);
  514. return ret;
  515. }
  516. /* This is the fast write path which cannot handle
  517. * page faults in the source data
  518. */
  519. static inline int
  520. fast_user_write(struct io_mapping *mapping,
  521. loff_t page_base, int page_offset,
  522. char __user *user_data,
  523. int length)
  524. {
  525. char *vaddr_atomic;
  526. unsigned long unwritten;
  527. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  528. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  529. user_data, length);
  530. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  531. if (unwritten)
  532. return -EFAULT;
  533. return 0;
  534. }
  535. /* Here's the write path which can sleep for
  536. * page faults
  537. */
  538. static inline void
  539. slow_kernel_write(struct io_mapping *mapping,
  540. loff_t gtt_base, int gtt_offset,
  541. struct page *user_page, int user_offset,
  542. int length)
  543. {
  544. char __iomem *dst_vaddr;
  545. char *src_vaddr;
  546. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  547. src_vaddr = kmap(user_page);
  548. memcpy_toio(dst_vaddr + gtt_offset,
  549. src_vaddr + user_offset,
  550. length);
  551. kunmap(user_page);
  552. io_mapping_unmap(dst_vaddr);
  553. }
  554. static inline int
  555. fast_shmem_write(struct page **pages,
  556. loff_t page_base, int page_offset,
  557. char __user *data,
  558. int length)
  559. {
  560. char __iomem *vaddr;
  561. unsigned long unwritten;
  562. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  563. if (vaddr == NULL)
  564. return -ENOMEM;
  565. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  566. kunmap_atomic(vaddr, KM_USER0);
  567. if (unwritten)
  568. return -EFAULT;
  569. return 0;
  570. }
  571. /**
  572. * This is the fast pwrite path, where we copy the data directly from the
  573. * user into the GTT, uncached.
  574. */
  575. static int
  576. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  577. struct drm_i915_gem_pwrite *args,
  578. struct drm_file *file_priv)
  579. {
  580. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  581. drm_i915_private_t *dev_priv = dev->dev_private;
  582. ssize_t remain;
  583. loff_t offset, page_base;
  584. char __user *user_data;
  585. int page_offset, page_length;
  586. int ret;
  587. user_data = (char __user *) (uintptr_t) args->data_ptr;
  588. remain = args->size;
  589. ret = i915_mutex_lock_interruptible(dev);
  590. if (ret)
  591. return ret;
  592. ret = i915_gem_object_pin(obj, 0);
  593. if (ret) {
  594. mutex_unlock(&dev->struct_mutex);
  595. return ret;
  596. }
  597. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  598. if (ret)
  599. goto fail;
  600. obj_priv = to_intel_bo(obj);
  601. offset = obj_priv->gtt_offset + args->offset;
  602. while (remain > 0) {
  603. /* Operation in this page
  604. *
  605. * page_base = page offset within aperture
  606. * page_offset = offset within page
  607. * page_length = bytes to copy for this page
  608. */
  609. page_base = (offset & ~(PAGE_SIZE-1));
  610. page_offset = offset & (PAGE_SIZE-1);
  611. page_length = remain;
  612. if ((page_offset + remain) > PAGE_SIZE)
  613. page_length = PAGE_SIZE - page_offset;
  614. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  615. page_offset, user_data, page_length);
  616. /* If we get a fault while copying data, then (presumably) our
  617. * source page isn't available. Return the error and we'll
  618. * retry in the slow path.
  619. */
  620. if (ret)
  621. goto fail;
  622. remain -= page_length;
  623. user_data += page_length;
  624. offset += page_length;
  625. }
  626. fail:
  627. i915_gem_object_unpin(obj);
  628. mutex_unlock(&dev->struct_mutex);
  629. return ret;
  630. }
  631. /**
  632. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  633. * the memory and maps it using kmap_atomic for copying.
  634. *
  635. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  636. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  637. */
  638. static int
  639. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  640. struct drm_i915_gem_pwrite *args,
  641. struct drm_file *file_priv)
  642. {
  643. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  644. drm_i915_private_t *dev_priv = dev->dev_private;
  645. ssize_t remain;
  646. loff_t gtt_page_base, offset;
  647. loff_t first_data_page, last_data_page, num_pages;
  648. loff_t pinned_pages, i;
  649. struct page **user_pages;
  650. struct mm_struct *mm = current->mm;
  651. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  652. int ret;
  653. uint64_t data_ptr = args->data_ptr;
  654. remain = args->size;
  655. /* Pin the user pages containing the data. We can't fault while
  656. * holding the struct mutex, and all of the pwrite implementations
  657. * want to hold it while dereferencing the user data.
  658. */
  659. first_data_page = data_ptr / PAGE_SIZE;
  660. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  661. num_pages = last_data_page - first_data_page + 1;
  662. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  663. if (user_pages == NULL)
  664. return -ENOMEM;
  665. down_read(&mm->mmap_sem);
  666. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  667. num_pages, 0, 0, user_pages, NULL);
  668. up_read(&mm->mmap_sem);
  669. if (pinned_pages < num_pages) {
  670. ret = -EFAULT;
  671. goto out_unpin_pages;
  672. }
  673. ret = i915_mutex_lock_interruptible(dev);
  674. if (ret)
  675. goto out_unpin_pages;
  676. ret = i915_gem_object_pin(obj, 0);
  677. if (ret)
  678. goto out_unlock;
  679. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  680. if (ret)
  681. goto out_unpin_object;
  682. obj_priv = to_intel_bo(obj);
  683. offset = obj_priv->gtt_offset + args->offset;
  684. while (remain > 0) {
  685. /* Operation in this page
  686. *
  687. * gtt_page_base = page offset within aperture
  688. * gtt_page_offset = offset within page in aperture
  689. * data_page_index = page number in get_user_pages return
  690. * data_page_offset = offset with data_page_index page.
  691. * page_length = bytes to copy for this page
  692. */
  693. gtt_page_base = offset & PAGE_MASK;
  694. gtt_page_offset = offset & ~PAGE_MASK;
  695. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  696. data_page_offset = data_ptr & ~PAGE_MASK;
  697. page_length = remain;
  698. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  699. page_length = PAGE_SIZE - gtt_page_offset;
  700. if ((data_page_offset + page_length) > PAGE_SIZE)
  701. page_length = PAGE_SIZE - data_page_offset;
  702. slow_kernel_write(dev_priv->mm.gtt_mapping,
  703. gtt_page_base, gtt_page_offset,
  704. user_pages[data_page_index],
  705. data_page_offset,
  706. page_length);
  707. remain -= page_length;
  708. offset += page_length;
  709. data_ptr += page_length;
  710. }
  711. out_unpin_object:
  712. i915_gem_object_unpin(obj);
  713. out_unlock:
  714. mutex_unlock(&dev->struct_mutex);
  715. out_unpin_pages:
  716. for (i = 0; i < pinned_pages; i++)
  717. page_cache_release(user_pages[i]);
  718. drm_free_large(user_pages);
  719. return ret;
  720. }
  721. /**
  722. * This is the fast shmem pwrite path, which attempts to directly
  723. * copy_from_user into the kmapped pages backing the object.
  724. */
  725. static int
  726. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  727. struct drm_i915_gem_pwrite *args,
  728. struct drm_file *file_priv)
  729. {
  730. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  731. ssize_t remain;
  732. loff_t offset, page_base;
  733. char __user *user_data;
  734. int page_offset, page_length;
  735. int ret;
  736. user_data = (char __user *) (uintptr_t) args->data_ptr;
  737. remain = args->size;
  738. ret = i915_mutex_lock_interruptible(dev);
  739. if (ret)
  740. return ret;
  741. ret = i915_gem_object_get_pages(obj, 0);
  742. if (ret != 0)
  743. goto fail_unlock;
  744. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  745. if (ret != 0)
  746. goto fail_put_pages;
  747. obj_priv = to_intel_bo(obj);
  748. offset = args->offset;
  749. obj_priv->dirty = 1;
  750. while (remain > 0) {
  751. /* Operation in this page
  752. *
  753. * page_base = page offset within aperture
  754. * page_offset = offset within page
  755. * page_length = bytes to copy for this page
  756. */
  757. page_base = (offset & ~(PAGE_SIZE-1));
  758. page_offset = offset & (PAGE_SIZE-1);
  759. page_length = remain;
  760. if ((page_offset + remain) > PAGE_SIZE)
  761. page_length = PAGE_SIZE - page_offset;
  762. ret = fast_shmem_write(obj_priv->pages,
  763. page_base, page_offset,
  764. user_data, page_length);
  765. if (ret)
  766. goto fail_put_pages;
  767. remain -= page_length;
  768. user_data += page_length;
  769. offset += page_length;
  770. }
  771. fail_put_pages:
  772. i915_gem_object_put_pages(obj);
  773. fail_unlock:
  774. mutex_unlock(&dev->struct_mutex);
  775. return ret;
  776. }
  777. /**
  778. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  779. * the memory and maps it using kmap_atomic for copying.
  780. *
  781. * This avoids taking mmap_sem for faulting on the user's address while the
  782. * struct_mutex is held.
  783. */
  784. static int
  785. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  786. struct drm_i915_gem_pwrite *args,
  787. struct drm_file *file_priv)
  788. {
  789. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  790. struct mm_struct *mm = current->mm;
  791. struct page **user_pages;
  792. ssize_t remain;
  793. loff_t offset, pinned_pages, i;
  794. loff_t first_data_page, last_data_page, num_pages;
  795. int shmem_page_index, shmem_page_offset;
  796. int data_page_index, data_page_offset;
  797. int page_length;
  798. int ret;
  799. uint64_t data_ptr = args->data_ptr;
  800. int do_bit17_swizzling;
  801. remain = args->size;
  802. /* Pin the user pages containing the data. We can't fault while
  803. * holding the struct mutex, and all of the pwrite implementations
  804. * want to hold it while dereferencing the user data.
  805. */
  806. first_data_page = data_ptr / PAGE_SIZE;
  807. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  808. num_pages = last_data_page - first_data_page + 1;
  809. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  810. if (user_pages == NULL)
  811. return -ENOMEM;
  812. down_read(&mm->mmap_sem);
  813. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  814. num_pages, 0, 0, user_pages, NULL);
  815. up_read(&mm->mmap_sem);
  816. if (pinned_pages < num_pages) {
  817. ret = -EFAULT;
  818. goto fail_put_user_pages;
  819. }
  820. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  821. ret = i915_mutex_lock_interruptible(dev);
  822. if (ret)
  823. goto fail_put_user_pages;
  824. ret = i915_gem_object_get_pages_or_evict(obj);
  825. if (ret)
  826. goto fail_unlock;
  827. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  828. if (ret != 0)
  829. goto fail_put_pages;
  830. obj_priv = to_intel_bo(obj);
  831. offset = args->offset;
  832. obj_priv->dirty = 1;
  833. while (remain > 0) {
  834. /* Operation in this page
  835. *
  836. * shmem_page_index = page number within shmem file
  837. * shmem_page_offset = offset within page in shmem file
  838. * data_page_index = page number in get_user_pages return
  839. * data_page_offset = offset with data_page_index page.
  840. * page_length = bytes to copy for this page
  841. */
  842. shmem_page_index = offset / PAGE_SIZE;
  843. shmem_page_offset = offset & ~PAGE_MASK;
  844. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  845. data_page_offset = data_ptr & ~PAGE_MASK;
  846. page_length = remain;
  847. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  848. page_length = PAGE_SIZE - shmem_page_offset;
  849. if ((data_page_offset + page_length) > PAGE_SIZE)
  850. page_length = PAGE_SIZE - data_page_offset;
  851. if (do_bit17_swizzling) {
  852. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  853. shmem_page_offset,
  854. user_pages[data_page_index],
  855. data_page_offset,
  856. page_length,
  857. 0);
  858. } else {
  859. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  860. shmem_page_offset,
  861. user_pages[data_page_index],
  862. data_page_offset,
  863. page_length);
  864. }
  865. remain -= page_length;
  866. data_ptr += page_length;
  867. offset += page_length;
  868. }
  869. fail_put_pages:
  870. i915_gem_object_put_pages(obj);
  871. fail_unlock:
  872. mutex_unlock(&dev->struct_mutex);
  873. fail_put_user_pages:
  874. for (i = 0; i < pinned_pages; i++)
  875. page_cache_release(user_pages[i]);
  876. drm_free_large(user_pages);
  877. return ret;
  878. }
  879. /**
  880. * Writes data to the object referenced by handle.
  881. *
  882. * On error, the contents of the buffer that were to be modified are undefined.
  883. */
  884. int
  885. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  886. struct drm_file *file_priv)
  887. {
  888. struct drm_i915_gem_pwrite *args = data;
  889. struct drm_gem_object *obj;
  890. struct drm_i915_gem_object *obj_priv;
  891. int ret = 0;
  892. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  893. if (obj == NULL)
  894. return -ENOENT;
  895. obj_priv = to_intel_bo(obj);
  896. /* Bounds check destination. */
  897. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  898. ret = -EINVAL;
  899. goto out;
  900. }
  901. if (args->size == 0)
  902. goto out;
  903. if (!access_ok(VERIFY_READ,
  904. (char __user *)(uintptr_t)args->data_ptr,
  905. args->size)) {
  906. ret = -EFAULT;
  907. goto out;
  908. }
  909. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  910. * it would end up going through the fenced access, and we'll get
  911. * different detiling behavior between reading and writing.
  912. * pread/pwrite currently are reading and writing from the CPU
  913. * perspective, requiring manual detiling by the client.
  914. */
  915. if (obj_priv->phys_obj)
  916. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  917. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  918. obj_priv->gtt_space &&
  919. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  920. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  921. if (ret == -EFAULT) {
  922. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  923. file_priv);
  924. }
  925. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  926. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  927. } else {
  928. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  929. if (ret == -EFAULT) {
  930. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  931. file_priv);
  932. }
  933. }
  934. #if WATCH_PWRITE
  935. if (ret)
  936. DRM_INFO("pwrite failed %d\n", ret);
  937. #endif
  938. out:
  939. drm_gem_object_unreference_unlocked(obj);
  940. return ret;
  941. }
  942. /**
  943. * Called when user space prepares to use an object with the CPU, either
  944. * through the mmap ioctl's mapping or a GTT mapping.
  945. */
  946. int
  947. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  948. struct drm_file *file_priv)
  949. {
  950. struct drm_i915_private *dev_priv = dev->dev_private;
  951. struct drm_i915_gem_set_domain *args = data;
  952. struct drm_gem_object *obj;
  953. struct drm_i915_gem_object *obj_priv;
  954. uint32_t read_domains = args->read_domains;
  955. uint32_t write_domain = args->write_domain;
  956. int ret;
  957. if (!(dev->driver->driver_features & DRIVER_GEM))
  958. return -ENODEV;
  959. /* Only handle setting domains to types used by the CPU. */
  960. if (write_domain & I915_GEM_GPU_DOMAINS)
  961. return -EINVAL;
  962. if (read_domains & I915_GEM_GPU_DOMAINS)
  963. return -EINVAL;
  964. /* Having something in the write domain implies it's in the read
  965. * domain, and only that read domain. Enforce that in the request.
  966. */
  967. if (write_domain != 0 && read_domains != write_domain)
  968. return -EINVAL;
  969. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  970. if (obj == NULL)
  971. return -ENOENT;
  972. obj_priv = to_intel_bo(obj);
  973. ret = i915_mutex_lock_interruptible(dev);
  974. if (ret) {
  975. drm_gem_object_unreference_unlocked(obj);
  976. return ret;
  977. }
  978. intel_mark_busy(dev, obj);
  979. if (read_domains & I915_GEM_DOMAIN_GTT) {
  980. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  981. /* Update the LRU on the fence for the CPU access that's
  982. * about to occur.
  983. */
  984. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  985. struct drm_i915_fence_reg *reg =
  986. &dev_priv->fence_regs[obj_priv->fence_reg];
  987. list_move_tail(&reg->lru_list,
  988. &dev_priv->mm.fence_list);
  989. }
  990. /* Silently promote "you're not bound, there was nothing to do"
  991. * to success, since the client was just asking us to
  992. * make sure everything was done.
  993. */
  994. if (ret == -EINVAL)
  995. ret = 0;
  996. } else {
  997. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  998. }
  999. /* Maintain LRU order of "inactive" objects */
  1000. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  1001. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1002. drm_gem_object_unreference(obj);
  1003. mutex_unlock(&dev->struct_mutex);
  1004. return ret;
  1005. }
  1006. /**
  1007. * Called when user space has done writes to this buffer
  1008. */
  1009. int
  1010. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1011. struct drm_file *file_priv)
  1012. {
  1013. struct drm_i915_gem_sw_finish *args = data;
  1014. struct drm_gem_object *obj;
  1015. int ret = 0;
  1016. if (!(dev->driver->driver_features & DRIVER_GEM))
  1017. return -ENODEV;
  1018. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1019. if (obj == NULL)
  1020. return -ENOENT;
  1021. ret = i915_mutex_lock_interruptible(dev);
  1022. if (ret) {
  1023. drm_gem_object_unreference_unlocked(obj);
  1024. return ret;
  1025. }
  1026. /* Pinned buffers may be scanout, so flush the cache */
  1027. if (to_intel_bo(obj)->pin_count)
  1028. i915_gem_object_flush_cpu_write_domain(obj);
  1029. drm_gem_object_unreference(obj);
  1030. mutex_unlock(&dev->struct_mutex);
  1031. return ret;
  1032. }
  1033. /**
  1034. * Maps the contents of an object, returning the address it is mapped
  1035. * into.
  1036. *
  1037. * While the mapping holds a reference on the contents of the object, it doesn't
  1038. * imply a ref on the object itself.
  1039. */
  1040. int
  1041. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1042. struct drm_file *file_priv)
  1043. {
  1044. struct drm_i915_gem_mmap *args = data;
  1045. struct drm_gem_object *obj;
  1046. loff_t offset;
  1047. unsigned long addr;
  1048. if (!(dev->driver->driver_features & DRIVER_GEM))
  1049. return -ENODEV;
  1050. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1051. if (obj == NULL)
  1052. return -ENOENT;
  1053. offset = args->offset;
  1054. down_write(&current->mm->mmap_sem);
  1055. addr = do_mmap(obj->filp, 0, args->size,
  1056. PROT_READ | PROT_WRITE, MAP_SHARED,
  1057. args->offset);
  1058. up_write(&current->mm->mmap_sem);
  1059. drm_gem_object_unreference_unlocked(obj);
  1060. if (IS_ERR((void *)addr))
  1061. return addr;
  1062. args->addr_ptr = (uint64_t) addr;
  1063. return 0;
  1064. }
  1065. /**
  1066. * i915_gem_fault - fault a page into the GTT
  1067. * vma: VMA in question
  1068. * vmf: fault info
  1069. *
  1070. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1071. * from userspace. The fault handler takes care of binding the object to
  1072. * the GTT (if needed), allocating and programming a fence register (again,
  1073. * only if needed based on whether the old reg is still valid or the object
  1074. * is tiled) and inserting a new PTE into the faulting process.
  1075. *
  1076. * Note that the faulting process may involve evicting existing objects
  1077. * from the GTT and/or fence registers to make room. So performance may
  1078. * suffer if the GTT working set is large or there are few fence registers
  1079. * left.
  1080. */
  1081. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1082. {
  1083. struct drm_gem_object *obj = vma->vm_private_data;
  1084. struct drm_device *dev = obj->dev;
  1085. drm_i915_private_t *dev_priv = dev->dev_private;
  1086. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1087. pgoff_t page_offset;
  1088. unsigned long pfn;
  1089. int ret = 0;
  1090. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1091. /* We don't use vmf->pgoff since that has the fake offset */
  1092. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1093. PAGE_SHIFT;
  1094. /* Now bind it into the GTT if needed */
  1095. mutex_lock(&dev->struct_mutex);
  1096. if (!obj_priv->gtt_space) {
  1097. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1098. if (ret)
  1099. goto unlock;
  1100. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1101. if (ret)
  1102. goto unlock;
  1103. }
  1104. /* Need a new fence register? */
  1105. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1106. ret = i915_gem_object_get_fence_reg(obj, true);
  1107. if (ret)
  1108. goto unlock;
  1109. }
  1110. if (i915_gem_object_is_inactive(obj_priv))
  1111. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1112. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1113. page_offset;
  1114. /* Finally, remap it using the new GTT offset */
  1115. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1116. unlock:
  1117. mutex_unlock(&dev->struct_mutex);
  1118. switch (ret) {
  1119. case 0:
  1120. case -ERESTARTSYS:
  1121. return VM_FAULT_NOPAGE;
  1122. case -ENOMEM:
  1123. case -EAGAIN:
  1124. return VM_FAULT_OOM;
  1125. default:
  1126. return VM_FAULT_SIGBUS;
  1127. }
  1128. }
  1129. /**
  1130. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1131. * @obj: obj in question
  1132. *
  1133. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1134. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1135. * up the object based on the offset and sets up the various memory mapping
  1136. * structures.
  1137. *
  1138. * This routine allocates and attaches a fake offset for @obj.
  1139. */
  1140. static int
  1141. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1142. {
  1143. struct drm_device *dev = obj->dev;
  1144. struct drm_gem_mm *mm = dev->mm_private;
  1145. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1146. struct drm_map_list *list;
  1147. struct drm_local_map *map;
  1148. int ret = 0;
  1149. /* Set the object up for mmap'ing */
  1150. list = &obj->map_list;
  1151. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1152. if (!list->map)
  1153. return -ENOMEM;
  1154. map = list->map;
  1155. map->type = _DRM_GEM;
  1156. map->size = obj->size;
  1157. map->handle = obj;
  1158. /* Get a DRM GEM mmap offset allocated... */
  1159. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1160. obj->size / PAGE_SIZE, 0, 0);
  1161. if (!list->file_offset_node) {
  1162. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1163. ret = -ENOSPC;
  1164. goto out_free_list;
  1165. }
  1166. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1167. obj->size / PAGE_SIZE, 0);
  1168. if (!list->file_offset_node) {
  1169. ret = -ENOMEM;
  1170. goto out_free_list;
  1171. }
  1172. list->hash.key = list->file_offset_node->start;
  1173. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1174. if (ret) {
  1175. DRM_ERROR("failed to add to map hash\n");
  1176. goto out_free_mm;
  1177. }
  1178. /* By now we should be all set, any drm_mmap request on the offset
  1179. * below will get to our mmap & fault handler */
  1180. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1181. return 0;
  1182. out_free_mm:
  1183. drm_mm_put_block(list->file_offset_node);
  1184. out_free_list:
  1185. kfree(list->map);
  1186. return ret;
  1187. }
  1188. /**
  1189. * i915_gem_release_mmap - remove physical page mappings
  1190. * @obj: obj in question
  1191. *
  1192. * Preserve the reservation of the mmapping with the DRM core code, but
  1193. * relinquish ownership of the pages back to the system.
  1194. *
  1195. * It is vital that we remove the page mapping if we have mapped a tiled
  1196. * object through the GTT and then lose the fence register due to
  1197. * resource pressure. Similarly if the object has been moved out of the
  1198. * aperture, than pages mapped into userspace must be revoked. Removing the
  1199. * mapping will then trigger a page fault on the next user access, allowing
  1200. * fixup by i915_gem_fault().
  1201. */
  1202. void
  1203. i915_gem_release_mmap(struct drm_gem_object *obj)
  1204. {
  1205. struct drm_device *dev = obj->dev;
  1206. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1207. if (dev->dev_mapping)
  1208. unmap_mapping_range(dev->dev_mapping,
  1209. obj_priv->mmap_offset, obj->size, 1);
  1210. }
  1211. static void
  1212. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1213. {
  1214. struct drm_device *dev = obj->dev;
  1215. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1216. struct drm_gem_mm *mm = dev->mm_private;
  1217. struct drm_map_list *list;
  1218. list = &obj->map_list;
  1219. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1220. if (list->file_offset_node) {
  1221. drm_mm_put_block(list->file_offset_node);
  1222. list->file_offset_node = NULL;
  1223. }
  1224. if (list->map) {
  1225. kfree(list->map);
  1226. list->map = NULL;
  1227. }
  1228. obj_priv->mmap_offset = 0;
  1229. }
  1230. /**
  1231. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1232. * @obj: object to check
  1233. *
  1234. * Return the required GTT alignment for an object, taking into account
  1235. * potential fence register mapping if needed.
  1236. */
  1237. static uint32_t
  1238. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1239. {
  1240. struct drm_device *dev = obj->dev;
  1241. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1242. int start, i;
  1243. /*
  1244. * Minimum alignment is 4k (GTT page size), but might be greater
  1245. * if a fence register is needed for the object.
  1246. */
  1247. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1248. return 4096;
  1249. /*
  1250. * Previous chips need to be aligned to the size of the smallest
  1251. * fence register that can contain the object.
  1252. */
  1253. if (INTEL_INFO(dev)->gen == 3)
  1254. start = 1024*1024;
  1255. else
  1256. start = 512*1024;
  1257. for (i = start; i < obj->size; i <<= 1)
  1258. ;
  1259. return i;
  1260. }
  1261. /**
  1262. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1263. * @dev: DRM device
  1264. * @data: GTT mapping ioctl data
  1265. * @file_priv: GEM object info
  1266. *
  1267. * Simply returns the fake offset to userspace so it can mmap it.
  1268. * The mmap call will end up in drm_gem_mmap(), which will set things
  1269. * up so we can get faults in the handler above.
  1270. *
  1271. * The fault handler will take care of binding the object into the GTT
  1272. * (since it may have been evicted to make room for something), allocating
  1273. * a fence register, and mapping the appropriate aperture address into
  1274. * userspace.
  1275. */
  1276. int
  1277. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1278. struct drm_file *file_priv)
  1279. {
  1280. struct drm_i915_gem_mmap_gtt *args = data;
  1281. struct drm_gem_object *obj;
  1282. struct drm_i915_gem_object *obj_priv;
  1283. int ret;
  1284. if (!(dev->driver->driver_features & DRIVER_GEM))
  1285. return -ENODEV;
  1286. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1287. if (obj == NULL)
  1288. return -ENOENT;
  1289. ret = i915_mutex_lock_interruptible(dev);
  1290. if (ret) {
  1291. drm_gem_object_unreference_unlocked(obj);
  1292. return ret;
  1293. }
  1294. obj_priv = to_intel_bo(obj);
  1295. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1296. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1297. drm_gem_object_unreference(obj);
  1298. mutex_unlock(&dev->struct_mutex);
  1299. return -EINVAL;
  1300. }
  1301. if (!obj_priv->mmap_offset) {
  1302. ret = i915_gem_create_mmap_offset(obj);
  1303. if (ret) {
  1304. drm_gem_object_unreference(obj);
  1305. mutex_unlock(&dev->struct_mutex);
  1306. return ret;
  1307. }
  1308. }
  1309. args->offset = obj_priv->mmap_offset;
  1310. /*
  1311. * Pull it into the GTT so that we have a page list (makes the
  1312. * initial fault faster and any subsequent flushing possible).
  1313. */
  1314. if (!obj_priv->agp_mem) {
  1315. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1316. if (ret) {
  1317. drm_gem_object_unreference(obj);
  1318. mutex_unlock(&dev->struct_mutex);
  1319. return ret;
  1320. }
  1321. }
  1322. drm_gem_object_unreference(obj);
  1323. mutex_unlock(&dev->struct_mutex);
  1324. return 0;
  1325. }
  1326. static void
  1327. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1328. {
  1329. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1330. int page_count = obj->size / PAGE_SIZE;
  1331. int i;
  1332. BUG_ON(obj_priv->pages_refcount == 0);
  1333. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1334. if (--obj_priv->pages_refcount != 0)
  1335. return;
  1336. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1337. i915_gem_object_save_bit_17_swizzle(obj);
  1338. if (obj_priv->madv == I915_MADV_DONTNEED)
  1339. obj_priv->dirty = 0;
  1340. for (i = 0; i < page_count; i++) {
  1341. if (obj_priv->dirty)
  1342. set_page_dirty(obj_priv->pages[i]);
  1343. if (obj_priv->madv == I915_MADV_WILLNEED)
  1344. mark_page_accessed(obj_priv->pages[i]);
  1345. page_cache_release(obj_priv->pages[i]);
  1346. }
  1347. obj_priv->dirty = 0;
  1348. drm_free_large(obj_priv->pages);
  1349. obj_priv->pages = NULL;
  1350. }
  1351. static uint32_t
  1352. i915_gem_next_request_seqno(struct drm_device *dev,
  1353. struct intel_ring_buffer *ring)
  1354. {
  1355. drm_i915_private_t *dev_priv = dev->dev_private;
  1356. ring->outstanding_lazy_request = true;
  1357. return dev_priv->next_seqno;
  1358. }
  1359. static void
  1360. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1361. struct intel_ring_buffer *ring)
  1362. {
  1363. struct drm_device *dev = obj->dev;
  1364. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1365. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1366. BUG_ON(ring == NULL);
  1367. obj_priv->ring = ring;
  1368. /* Add a reference if we're newly entering the active list. */
  1369. if (!obj_priv->active) {
  1370. drm_gem_object_reference(obj);
  1371. obj_priv->active = 1;
  1372. }
  1373. /* Move from whatever list we were on to the tail of execution. */
  1374. list_move_tail(&obj_priv->list, &ring->active_list);
  1375. obj_priv->last_rendering_seqno = seqno;
  1376. }
  1377. static void
  1378. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1379. {
  1380. struct drm_device *dev = obj->dev;
  1381. drm_i915_private_t *dev_priv = dev->dev_private;
  1382. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1383. BUG_ON(!obj_priv->active);
  1384. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1385. obj_priv->last_rendering_seqno = 0;
  1386. }
  1387. /* Immediately discard the backing storage */
  1388. static void
  1389. i915_gem_object_truncate(struct drm_gem_object *obj)
  1390. {
  1391. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1392. struct inode *inode;
  1393. /* Our goal here is to return as much of the memory as
  1394. * is possible back to the system as we are called from OOM.
  1395. * To do this we must instruct the shmfs to drop all of its
  1396. * backing pages, *now*. Here we mirror the actions taken
  1397. * when by shmem_delete_inode() to release the backing store.
  1398. */
  1399. inode = obj->filp->f_path.dentry->d_inode;
  1400. truncate_inode_pages(inode->i_mapping, 0);
  1401. if (inode->i_op->truncate_range)
  1402. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1403. obj_priv->madv = __I915_MADV_PURGED;
  1404. }
  1405. static inline int
  1406. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1407. {
  1408. return obj_priv->madv == I915_MADV_DONTNEED;
  1409. }
  1410. static void
  1411. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1412. {
  1413. struct drm_device *dev = obj->dev;
  1414. drm_i915_private_t *dev_priv = dev->dev_private;
  1415. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1416. if (obj_priv->pin_count != 0)
  1417. list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
  1418. else
  1419. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1420. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1421. obj_priv->last_rendering_seqno = 0;
  1422. obj_priv->ring = NULL;
  1423. if (obj_priv->active) {
  1424. obj_priv->active = 0;
  1425. drm_gem_object_unreference(obj);
  1426. }
  1427. WARN_ON(i915_verify_lists(dev));
  1428. }
  1429. static void
  1430. i915_gem_process_flushing_list(struct drm_device *dev,
  1431. uint32_t flush_domains,
  1432. struct intel_ring_buffer *ring)
  1433. {
  1434. drm_i915_private_t *dev_priv = dev->dev_private;
  1435. struct drm_i915_gem_object *obj_priv, *next;
  1436. list_for_each_entry_safe(obj_priv, next,
  1437. &dev_priv->mm.gpu_write_list,
  1438. gpu_write_list) {
  1439. struct drm_gem_object *obj = &obj_priv->base;
  1440. if (obj->write_domain & flush_domains &&
  1441. obj_priv->ring == ring) {
  1442. uint32_t old_write_domain = obj->write_domain;
  1443. obj->write_domain = 0;
  1444. list_del_init(&obj_priv->gpu_write_list);
  1445. i915_gem_object_move_to_active(obj, ring);
  1446. /* update the fence lru list */
  1447. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1448. struct drm_i915_fence_reg *reg =
  1449. &dev_priv->fence_regs[obj_priv->fence_reg];
  1450. list_move_tail(&reg->lru_list,
  1451. &dev_priv->mm.fence_list);
  1452. }
  1453. trace_i915_gem_object_change_domain(obj,
  1454. obj->read_domains,
  1455. old_write_domain);
  1456. }
  1457. }
  1458. }
  1459. uint32_t
  1460. i915_add_request(struct drm_device *dev,
  1461. struct drm_file *file,
  1462. struct drm_i915_gem_request *request,
  1463. struct intel_ring_buffer *ring)
  1464. {
  1465. drm_i915_private_t *dev_priv = dev->dev_private;
  1466. struct drm_i915_file_private *file_priv = NULL;
  1467. uint32_t seqno;
  1468. int was_empty;
  1469. if (file != NULL)
  1470. file_priv = file->driver_priv;
  1471. if (request == NULL) {
  1472. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1473. if (request == NULL)
  1474. return 0;
  1475. }
  1476. seqno = ring->add_request(dev, ring, 0);
  1477. ring->outstanding_lazy_request = false;
  1478. request->seqno = seqno;
  1479. request->ring = ring;
  1480. request->emitted_jiffies = jiffies;
  1481. was_empty = list_empty(&ring->request_list);
  1482. list_add_tail(&request->list, &ring->request_list);
  1483. if (file_priv) {
  1484. spin_lock(&file_priv->mm.lock);
  1485. request->file_priv = file_priv;
  1486. list_add_tail(&request->client_list,
  1487. &file_priv->mm.request_list);
  1488. spin_unlock(&file_priv->mm.lock);
  1489. }
  1490. if (!dev_priv->mm.suspended) {
  1491. mod_timer(&dev_priv->hangcheck_timer,
  1492. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1493. if (was_empty)
  1494. queue_delayed_work(dev_priv->wq,
  1495. &dev_priv->mm.retire_work, HZ);
  1496. }
  1497. return seqno;
  1498. }
  1499. /**
  1500. * Command execution barrier
  1501. *
  1502. * Ensures that all commands in the ring are finished
  1503. * before signalling the CPU
  1504. */
  1505. static void
  1506. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1507. {
  1508. uint32_t flush_domains = 0;
  1509. /* The sampler always gets flushed on i965 (sigh) */
  1510. if (INTEL_INFO(dev)->gen >= 4)
  1511. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1512. ring->flush(dev, ring,
  1513. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1514. }
  1515. static inline void
  1516. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1517. {
  1518. struct drm_i915_file_private *file_priv = request->file_priv;
  1519. if (!file_priv)
  1520. return;
  1521. spin_lock(&file_priv->mm.lock);
  1522. list_del(&request->client_list);
  1523. request->file_priv = NULL;
  1524. spin_unlock(&file_priv->mm.lock);
  1525. }
  1526. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1527. struct intel_ring_buffer *ring)
  1528. {
  1529. while (!list_empty(&ring->request_list)) {
  1530. struct drm_i915_gem_request *request;
  1531. request = list_first_entry(&ring->request_list,
  1532. struct drm_i915_gem_request,
  1533. list);
  1534. list_del(&request->list);
  1535. i915_gem_request_remove_from_client(request);
  1536. kfree(request);
  1537. }
  1538. while (!list_empty(&ring->active_list)) {
  1539. struct drm_i915_gem_object *obj_priv;
  1540. obj_priv = list_first_entry(&ring->active_list,
  1541. struct drm_i915_gem_object,
  1542. list);
  1543. obj_priv->base.write_domain = 0;
  1544. list_del_init(&obj_priv->gpu_write_list);
  1545. i915_gem_object_move_to_inactive(&obj_priv->base);
  1546. }
  1547. }
  1548. void i915_gem_reset(struct drm_device *dev)
  1549. {
  1550. struct drm_i915_private *dev_priv = dev->dev_private;
  1551. struct drm_i915_gem_object *obj_priv;
  1552. int i;
  1553. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1554. if (HAS_BSD(dev))
  1555. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1556. /* Remove anything from the flushing lists. The GPU cache is likely
  1557. * to be lost on reset along with the data, so simply move the
  1558. * lost bo to the inactive list.
  1559. */
  1560. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1561. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1562. struct drm_i915_gem_object,
  1563. list);
  1564. obj_priv->base.write_domain = 0;
  1565. list_del_init(&obj_priv->gpu_write_list);
  1566. i915_gem_object_move_to_inactive(&obj_priv->base);
  1567. }
  1568. /* Move everything out of the GPU domains to ensure we do any
  1569. * necessary invalidation upon reuse.
  1570. */
  1571. list_for_each_entry(obj_priv,
  1572. &dev_priv->mm.inactive_list,
  1573. list)
  1574. {
  1575. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1576. }
  1577. /* The fence registers are invalidated so clear them out */
  1578. for (i = 0; i < 16; i++) {
  1579. struct drm_i915_fence_reg *reg;
  1580. reg = &dev_priv->fence_regs[i];
  1581. if (!reg->obj)
  1582. continue;
  1583. i915_gem_clear_fence_reg(reg->obj);
  1584. }
  1585. }
  1586. /**
  1587. * This function clears the request list as sequence numbers are passed.
  1588. */
  1589. static void
  1590. i915_gem_retire_requests_ring(struct drm_device *dev,
  1591. struct intel_ring_buffer *ring)
  1592. {
  1593. drm_i915_private_t *dev_priv = dev->dev_private;
  1594. uint32_t seqno;
  1595. if (!ring->status_page.page_addr ||
  1596. list_empty(&ring->request_list))
  1597. return;
  1598. WARN_ON(i915_verify_lists(dev));
  1599. seqno = ring->get_seqno(dev, ring);
  1600. while (!list_empty(&ring->request_list)) {
  1601. struct drm_i915_gem_request *request;
  1602. request = list_first_entry(&ring->request_list,
  1603. struct drm_i915_gem_request,
  1604. list);
  1605. if (!i915_seqno_passed(seqno, request->seqno))
  1606. break;
  1607. trace_i915_gem_request_retire(dev, request->seqno);
  1608. list_del(&request->list);
  1609. i915_gem_request_remove_from_client(request);
  1610. kfree(request);
  1611. }
  1612. /* Move any buffers on the active list that are no longer referenced
  1613. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1614. */
  1615. while (!list_empty(&ring->active_list)) {
  1616. struct drm_gem_object *obj;
  1617. struct drm_i915_gem_object *obj_priv;
  1618. obj_priv = list_first_entry(&ring->active_list,
  1619. struct drm_i915_gem_object,
  1620. list);
  1621. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1622. break;
  1623. obj = &obj_priv->base;
  1624. if (obj->write_domain != 0)
  1625. i915_gem_object_move_to_flushing(obj);
  1626. else
  1627. i915_gem_object_move_to_inactive(obj);
  1628. }
  1629. if (unlikely (dev_priv->trace_irq_seqno &&
  1630. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1631. ring->user_irq_put(dev, ring);
  1632. dev_priv->trace_irq_seqno = 0;
  1633. }
  1634. WARN_ON(i915_verify_lists(dev));
  1635. }
  1636. void
  1637. i915_gem_retire_requests(struct drm_device *dev)
  1638. {
  1639. drm_i915_private_t *dev_priv = dev->dev_private;
  1640. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1641. struct drm_i915_gem_object *obj_priv, *tmp;
  1642. /* We must be careful that during unbind() we do not
  1643. * accidentally infinitely recurse into retire requests.
  1644. * Currently:
  1645. * retire -> free -> unbind -> wait -> retire_ring
  1646. */
  1647. list_for_each_entry_safe(obj_priv, tmp,
  1648. &dev_priv->mm.deferred_free_list,
  1649. list)
  1650. i915_gem_free_object_tail(&obj_priv->base);
  1651. }
  1652. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1653. if (HAS_BSD(dev))
  1654. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1655. }
  1656. static void
  1657. i915_gem_retire_work_handler(struct work_struct *work)
  1658. {
  1659. drm_i915_private_t *dev_priv;
  1660. struct drm_device *dev;
  1661. dev_priv = container_of(work, drm_i915_private_t,
  1662. mm.retire_work.work);
  1663. dev = dev_priv->dev;
  1664. /* Come back later if the device is busy... */
  1665. if (!mutex_trylock(&dev->struct_mutex)) {
  1666. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1667. return;
  1668. }
  1669. i915_gem_retire_requests(dev);
  1670. if (!dev_priv->mm.suspended &&
  1671. (!list_empty(&dev_priv->render_ring.request_list) ||
  1672. (HAS_BSD(dev) &&
  1673. !list_empty(&dev_priv->bsd_ring.request_list))))
  1674. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1675. mutex_unlock(&dev->struct_mutex);
  1676. }
  1677. int
  1678. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1679. bool interruptible, struct intel_ring_buffer *ring)
  1680. {
  1681. drm_i915_private_t *dev_priv = dev->dev_private;
  1682. u32 ier;
  1683. int ret = 0;
  1684. BUG_ON(seqno == 0);
  1685. if (atomic_read(&dev_priv->mm.wedged))
  1686. return -EAGAIN;
  1687. if (ring->outstanding_lazy_request) {
  1688. seqno = i915_add_request(dev, NULL, NULL, ring);
  1689. if (seqno == 0)
  1690. return -ENOMEM;
  1691. }
  1692. BUG_ON(seqno == dev_priv->next_seqno);
  1693. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1694. if (HAS_PCH_SPLIT(dev))
  1695. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1696. else
  1697. ier = I915_READ(IER);
  1698. if (!ier) {
  1699. DRM_ERROR("something (likely vbetool) disabled "
  1700. "interrupts, re-enabling\n");
  1701. i915_driver_irq_preinstall(dev);
  1702. i915_driver_irq_postinstall(dev);
  1703. }
  1704. trace_i915_gem_request_wait_begin(dev, seqno);
  1705. ring->waiting_gem_seqno = seqno;
  1706. ring->user_irq_get(dev, ring);
  1707. if (interruptible)
  1708. ret = wait_event_interruptible(ring->irq_queue,
  1709. i915_seqno_passed(
  1710. ring->get_seqno(dev, ring), seqno)
  1711. || atomic_read(&dev_priv->mm.wedged));
  1712. else
  1713. wait_event(ring->irq_queue,
  1714. i915_seqno_passed(
  1715. ring->get_seqno(dev, ring), seqno)
  1716. || atomic_read(&dev_priv->mm.wedged));
  1717. ring->user_irq_put(dev, ring);
  1718. ring->waiting_gem_seqno = 0;
  1719. trace_i915_gem_request_wait_end(dev, seqno);
  1720. }
  1721. if (atomic_read(&dev_priv->mm.wedged))
  1722. ret = -EAGAIN;
  1723. if (ret && ret != -ERESTARTSYS)
  1724. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1725. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1726. dev_priv->next_seqno);
  1727. /* Directly dispatch request retiring. While we have the work queue
  1728. * to handle this, the waiter on a request often wants an associated
  1729. * buffer to have made it to the inactive list, and we would need
  1730. * a separate wait queue to handle that.
  1731. */
  1732. if (ret == 0)
  1733. i915_gem_retire_requests_ring(dev, ring);
  1734. return ret;
  1735. }
  1736. /**
  1737. * Waits for a sequence number to be signaled, and cleans up the
  1738. * request and object lists appropriately for that event.
  1739. */
  1740. static int
  1741. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1742. struct intel_ring_buffer *ring)
  1743. {
  1744. return i915_do_wait_request(dev, seqno, 1, ring);
  1745. }
  1746. static void
  1747. i915_gem_flush_ring(struct drm_device *dev,
  1748. struct drm_file *file_priv,
  1749. struct intel_ring_buffer *ring,
  1750. uint32_t invalidate_domains,
  1751. uint32_t flush_domains)
  1752. {
  1753. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1754. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1755. }
  1756. static void
  1757. i915_gem_flush(struct drm_device *dev,
  1758. struct drm_file *file_priv,
  1759. uint32_t invalidate_domains,
  1760. uint32_t flush_domains,
  1761. uint32_t flush_rings)
  1762. {
  1763. drm_i915_private_t *dev_priv = dev->dev_private;
  1764. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1765. drm_agp_chipset_flush(dev);
  1766. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1767. if (flush_rings & RING_RENDER)
  1768. i915_gem_flush_ring(dev, file_priv,
  1769. &dev_priv->render_ring,
  1770. invalidate_domains, flush_domains);
  1771. if (flush_rings & RING_BSD)
  1772. i915_gem_flush_ring(dev, file_priv,
  1773. &dev_priv->bsd_ring,
  1774. invalidate_domains, flush_domains);
  1775. }
  1776. }
  1777. /**
  1778. * Ensures that all rendering to the object has completed and the object is
  1779. * safe to unbind from the GTT or access from the CPU.
  1780. */
  1781. static int
  1782. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1783. bool interruptible)
  1784. {
  1785. struct drm_device *dev = obj->dev;
  1786. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1787. int ret;
  1788. /* This function only exists to support waiting for existing rendering,
  1789. * not for emitting required flushes.
  1790. */
  1791. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1792. /* If there is rendering queued on the buffer being evicted, wait for
  1793. * it.
  1794. */
  1795. if (obj_priv->active) {
  1796. ret = i915_do_wait_request(dev,
  1797. obj_priv->last_rendering_seqno,
  1798. interruptible,
  1799. obj_priv->ring);
  1800. if (ret)
  1801. return ret;
  1802. }
  1803. return 0;
  1804. }
  1805. /**
  1806. * Unbinds an object from the GTT aperture.
  1807. */
  1808. int
  1809. i915_gem_object_unbind(struct drm_gem_object *obj)
  1810. {
  1811. struct drm_device *dev = obj->dev;
  1812. struct drm_i915_private *dev_priv = dev->dev_private;
  1813. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1814. int ret = 0;
  1815. if (obj_priv->gtt_space == NULL)
  1816. return 0;
  1817. if (obj_priv->pin_count != 0) {
  1818. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1819. return -EINVAL;
  1820. }
  1821. /* blow away mappings if mapped through GTT */
  1822. i915_gem_release_mmap(obj);
  1823. /* Move the object to the CPU domain to ensure that
  1824. * any possible CPU writes while it's not in the GTT
  1825. * are flushed when we go to remap it. This will
  1826. * also ensure that all pending GPU writes are finished
  1827. * before we unbind.
  1828. */
  1829. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1830. if (ret == -ERESTARTSYS)
  1831. return ret;
  1832. /* Continue on if we fail due to EIO, the GPU is hung so we
  1833. * should be safe and we need to cleanup or else we might
  1834. * cause memory corruption through use-after-free.
  1835. */
  1836. if (ret) {
  1837. i915_gem_clflush_object(obj);
  1838. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1839. }
  1840. /* release the fence reg _after_ flushing */
  1841. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1842. i915_gem_clear_fence_reg(obj);
  1843. drm_unbind_agp(obj_priv->agp_mem);
  1844. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1845. i915_gem_object_put_pages(obj);
  1846. BUG_ON(obj_priv->pages_refcount);
  1847. i915_gem_info_remove_gtt(dev_priv, obj->size);
  1848. list_del_init(&obj_priv->list);
  1849. drm_mm_put_block(obj_priv->gtt_space);
  1850. obj_priv->gtt_space = NULL;
  1851. if (i915_gem_object_is_purgeable(obj_priv))
  1852. i915_gem_object_truncate(obj);
  1853. trace_i915_gem_object_unbind(obj);
  1854. return ret;
  1855. }
  1856. static int i915_ring_idle(struct drm_device *dev,
  1857. struct intel_ring_buffer *ring)
  1858. {
  1859. i915_gem_flush_ring(dev, NULL, ring,
  1860. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1861. return i915_wait_request(dev,
  1862. i915_gem_next_request_seqno(dev, ring),
  1863. ring);
  1864. }
  1865. int
  1866. i915_gpu_idle(struct drm_device *dev)
  1867. {
  1868. drm_i915_private_t *dev_priv = dev->dev_private;
  1869. bool lists_empty;
  1870. int ret;
  1871. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1872. list_empty(&dev_priv->render_ring.active_list) &&
  1873. (!HAS_BSD(dev) ||
  1874. list_empty(&dev_priv->bsd_ring.active_list)));
  1875. if (lists_empty)
  1876. return 0;
  1877. /* Flush everything onto the inactive list. */
  1878. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1879. if (ret)
  1880. return ret;
  1881. if (HAS_BSD(dev)) {
  1882. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1883. if (ret)
  1884. return ret;
  1885. }
  1886. return 0;
  1887. }
  1888. static int
  1889. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1890. gfp_t gfpmask)
  1891. {
  1892. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1893. int page_count, i;
  1894. struct address_space *mapping;
  1895. struct inode *inode;
  1896. struct page *page;
  1897. BUG_ON(obj_priv->pages_refcount
  1898. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1899. if (obj_priv->pages_refcount++ != 0)
  1900. return 0;
  1901. /* Get the list of pages out of our struct file. They'll be pinned
  1902. * at this point until we release them.
  1903. */
  1904. page_count = obj->size / PAGE_SIZE;
  1905. BUG_ON(obj_priv->pages != NULL);
  1906. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1907. if (obj_priv->pages == NULL) {
  1908. obj_priv->pages_refcount--;
  1909. return -ENOMEM;
  1910. }
  1911. inode = obj->filp->f_path.dentry->d_inode;
  1912. mapping = inode->i_mapping;
  1913. for (i = 0; i < page_count; i++) {
  1914. page = read_cache_page_gfp(mapping, i,
  1915. GFP_HIGHUSER |
  1916. __GFP_COLD |
  1917. __GFP_RECLAIMABLE |
  1918. gfpmask);
  1919. if (IS_ERR(page))
  1920. goto err_pages;
  1921. obj_priv->pages[i] = page;
  1922. }
  1923. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1924. i915_gem_object_do_bit_17_swizzle(obj);
  1925. return 0;
  1926. err_pages:
  1927. while (i--)
  1928. page_cache_release(obj_priv->pages[i]);
  1929. drm_free_large(obj_priv->pages);
  1930. obj_priv->pages = NULL;
  1931. obj_priv->pages_refcount--;
  1932. return PTR_ERR(page);
  1933. }
  1934. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1935. {
  1936. struct drm_gem_object *obj = reg->obj;
  1937. struct drm_device *dev = obj->dev;
  1938. drm_i915_private_t *dev_priv = dev->dev_private;
  1939. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1940. int regnum = obj_priv->fence_reg;
  1941. uint64_t val;
  1942. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1943. 0xfffff000) << 32;
  1944. val |= obj_priv->gtt_offset & 0xfffff000;
  1945. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1946. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1947. if (obj_priv->tiling_mode == I915_TILING_Y)
  1948. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1949. val |= I965_FENCE_REG_VALID;
  1950. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1951. }
  1952. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1953. {
  1954. struct drm_gem_object *obj = reg->obj;
  1955. struct drm_device *dev = obj->dev;
  1956. drm_i915_private_t *dev_priv = dev->dev_private;
  1957. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1958. int regnum = obj_priv->fence_reg;
  1959. uint64_t val;
  1960. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1961. 0xfffff000) << 32;
  1962. val |= obj_priv->gtt_offset & 0xfffff000;
  1963. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1964. if (obj_priv->tiling_mode == I915_TILING_Y)
  1965. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1966. val |= I965_FENCE_REG_VALID;
  1967. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1968. }
  1969. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1970. {
  1971. struct drm_gem_object *obj = reg->obj;
  1972. struct drm_device *dev = obj->dev;
  1973. drm_i915_private_t *dev_priv = dev->dev_private;
  1974. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1975. int regnum = obj_priv->fence_reg;
  1976. int tile_width;
  1977. uint32_t fence_reg, val;
  1978. uint32_t pitch_val;
  1979. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1980. (obj_priv->gtt_offset & (obj->size - 1))) {
  1981. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1982. __func__, obj_priv->gtt_offset, obj->size);
  1983. return;
  1984. }
  1985. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1986. HAS_128_BYTE_Y_TILING(dev))
  1987. tile_width = 128;
  1988. else
  1989. tile_width = 512;
  1990. /* Note: pitch better be a power of two tile widths */
  1991. pitch_val = obj_priv->stride / tile_width;
  1992. pitch_val = ffs(pitch_val) - 1;
  1993. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1994. HAS_128_BYTE_Y_TILING(dev))
  1995. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1996. else
  1997. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1998. val = obj_priv->gtt_offset;
  1999. if (obj_priv->tiling_mode == I915_TILING_Y)
  2000. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2001. val |= I915_FENCE_SIZE_BITS(obj->size);
  2002. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2003. val |= I830_FENCE_REG_VALID;
  2004. if (regnum < 8)
  2005. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  2006. else
  2007. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  2008. I915_WRITE(fence_reg, val);
  2009. }
  2010. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  2011. {
  2012. struct drm_gem_object *obj = reg->obj;
  2013. struct drm_device *dev = obj->dev;
  2014. drm_i915_private_t *dev_priv = dev->dev_private;
  2015. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2016. int regnum = obj_priv->fence_reg;
  2017. uint32_t val;
  2018. uint32_t pitch_val;
  2019. uint32_t fence_size_bits;
  2020. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2021. (obj_priv->gtt_offset & (obj->size - 1))) {
  2022. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2023. __func__, obj_priv->gtt_offset);
  2024. return;
  2025. }
  2026. pitch_val = obj_priv->stride / 128;
  2027. pitch_val = ffs(pitch_val) - 1;
  2028. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2029. val = obj_priv->gtt_offset;
  2030. if (obj_priv->tiling_mode == I915_TILING_Y)
  2031. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2032. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  2033. WARN_ON(fence_size_bits & ~0x00000f00);
  2034. val |= fence_size_bits;
  2035. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2036. val |= I830_FENCE_REG_VALID;
  2037. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2038. }
  2039. static int i915_find_fence_reg(struct drm_device *dev,
  2040. bool interruptible)
  2041. {
  2042. struct drm_i915_fence_reg *reg = NULL;
  2043. struct drm_i915_gem_object *obj_priv = NULL;
  2044. struct drm_i915_private *dev_priv = dev->dev_private;
  2045. struct drm_gem_object *obj = NULL;
  2046. int i, avail, ret;
  2047. /* First try to find a free reg */
  2048. avail = 0;
  2049. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2050. reg = &dev_priv->fence_regs[i];
  2051. if (!reg->obj)
  2052. return i;
  2053. obj_priv = to_intel_bo(reg->obj);
  2054. if (!obj_priv->pin_count)
  2055. avail++;
  2056. }
  2057. if (avail == 0)
  2058. return -ENOSPC;
  2059. /* None available, try to steal one or wait for a user to finish */
  2060. i = I915_FENCE_REG_NONE;
  2061. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2062. lru_list) {
  2063. obj = reg->obj;
  2064. obj_priv = to_intel_bo(obj);
  2065. if (obj_priv->pin_count)
  2066. continue;
  2067. /* found one! */
  2068. i = obj_priv->fence_reg;
  2069. break;
  2070. }
  2071. BUG_ON(i == I915_FENCE_REG_NONE);
  2072. /* We only have a reference on obj from the active list. put_fence_reg
  2073. * might drop that one, causing a use-after-free in it. So hold a
  2074. * private reference to obj like the other callers of put_fence_reg
  2075. * (set_tiling ioctl) do. */
  2076. drm_gem_object_reference(obj);
  2077. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2078. drm_gem_object_unreference(obj);
  2079. if (ret != 0)
  2080. return ret;
  2081. return i;
  2082. }
  2083. /**
  2084. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2085. * @obj: object to map through a fence reg
  2086. *
  2087. * When mapping objects through the GTT, userspace wants to be able to write
  2088. * to them without having to worry about swizzling if the object is tiled.
  2089. *
  2090. * This function walks the fence regs looking for a free one for @obj,
  2091. * stealing one if it can't find any.
  2092. *
  2093. * It then sets up the reg based on the object's properties: address, pitch
  2094. * and tiling format.
  2095. */
  2096. int
  2097. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2098. bool interruptible)
  2099. {
  2100. struct drm_device *dev = obj->dev;
  2101. struct drm_i915_private *dev_priv = dev->dev_private;
  2102. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2103. struct drm_i915_fence_reg *reg = NULL;
  2104. int ret;
  2105. /* Just update our place in the LRU if our fence is getting used. */
  2106. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2107. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2108. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2109. return 0;
  2110. }
  2111. switch (obj_priv->tiling_mode) {
  2112. case I915_TILING_NONE:
  2113. WARN(1, "allocating a fence for non-tiled object?\n");
  2114. break;
  2115. case I915_TILING_X:
  2116. if (!obj_priv->stride)
  2117. return -EINVAL;
  2118. WARN((obj_priv->stride & (512 - 1)),
  2119. "object 0x%08x is X tiled but has non-512B pitch\n",
  2120. obj_priv->gtt_offset);
  2121. break;
  2122. case I915_TILING_Y:
  2123. if (!obj_priv->stride)
  2124. return -EINVAL;
  2125. WARN((obj_priv->stride & (128 - 1)),
  2126. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2127. obj_priv->gtt_offset);
  2128. break;
  2129. }
  2130. ret = i915_find_fence_reg(dev, interruptible);
  2131. if (ret < 0)
  2132. return ret;
  2133. obj_priv->fence_reg = ret;
  2134. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2135. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2136. reg->obj = obj;
  2137. switch (INTEL_INFO(dev)->gen) {
  2138. case 6:
  2139. sandybridge_write_fence_reg(reg);
  2140. break;
  2141. case 5:
  2142. case 4:
  2143. i965_write_fence_reg(reg);
  2144. break;
  2145. case 3:
  2146. i915_write_fence_reg(reg);
  2147. break;
  2148. case 2:
  2149. i830_write_fence_reg(reg);
  2150. break;
  2151. }
  2152. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2153. obj_priv->tiling_mode);
  2154. return 0;
  2155. }
  2156. /**
  2157. * i915_gem_clear_fence_reg - clear out fence register info
  2158. * @obj: object to clear
  2159. *
  2160. * Zeroes out the fence register itself and clears out the associated
  2161. * data structures in dev_priv and obj_priv.
  2162. */
  2163. static void
  2164. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2165. {
  2166. struct drm_device *dev = obj->dev;
  2167. drm_i915_private_t *dev_priv = dev->dev_private;
  2168. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2169. struct drm_i915_fence_reg *reg =
  2170. &dev_priv->fence_regs[obj_priv->fence_reg];
  2171. uint32_t fence_reg;
  2172. switch (INTEL_INFO(dev)->gen) {
  2173. case 6:
  2174. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2175. (obj_priv->fence_reg * 8), 0);
  2176. break;
  2177. case 5:
  2178. case 4:
  2179. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2180. break;
  2181. case 3:
  2182. if (obj_priv->fence_reg >= 8)
  2183. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2184. else
  2185. case 2:
  2186. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2187. I915_WRITE(fence_reg, 0);
  2188. break;
  2189. }
  2190. reg->obj = NULL;
  2191. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2192. list_del_init(&reg->lru_list);
  2193. }
  2194. /**
  2195. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2196. * to the buffer to finish, and then resets the fence register.
  2197. * @obj: tiled object holding a fence register.
  2198. * @bool: whether the wait upon the fence is interruptible
  2199. *
  2200. * Zeroes out the fence register itself and clears out the associated
  2201. * data structures in dev_priv and obj_priv.
  2202. */
  2203. int
  2204. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2205. bool interruptible)
  2206. {
  2207. struct drm_device *dev = obj->dev;
  2208. struct drm_i915_private *dev_priv = dev->dev_private;
  2209. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2210. struct drm_i915_fence_reg *reg;
  2211. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2212. return 0;
  2213. /* If we've changed tiling, GTT-mappings of the object
  2214. * need to re-fault to ensure that the correct fence register
  2215. * setup is in place.
  2216. */
  2217. i915_gem_release_mmap(obj);
  2218. /* On the i915, GPU access to tiled buffers is via a fence,
  2219. * therefore we must wait for any outstanding access to complete
  2220. * before clearing the fence.
  2221. */
  2222. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2223. if (reg->gpu) {
  2224. int ret;
  2225. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2226. if (ret)
  2227. return ret;
  2228. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2229. if (ret)
  2230. return ret;
  2231. reg->gpu = false;
  2232. }
  2233. i915_gem_object_flush_gtt_write_domain(obj);
  2234. i915_gem_clear_fence_reg(obj);
  2235. return 0;
  2236. }
  2237. /**
  2238. * Finds free space in the GTT aperture and binds the object there.
  2239. */
  2240. static int
  2241. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2242. {
  2243. struct drm_device *dev = obj->dev;
  2244. drm_i915_private_t *dev_priv = dev->dev_private;
  2245. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2246. struct drm_mm_node *free_space;
  2247. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2248. int ret;
  2249. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2250. DRM_ERROR("Attempting to bind a purgeable object\n");
  2251. return -EINVAL;
  2252. }
  2253. if (alignment == 0)
  2254. alignment = i915_gem_get_gtt_alignment(obj);
  2255. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2256. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2257. return -EINVAL;
  2258. }
  2259. /* If the object is bigger than the entire aperture, reject it early
  2260. * before evicting everything in a vain attempt to find space.
  2261. */
  2262. if (obj->size > dev_priv->mm.gtt_total) {
  2263. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2264. return -E2BIG;
  2265. }
  2266. search_free:
  2267. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2268. obj->size, alignment, 0);
  2269. if (free_space != NULL) {
  2270. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2271. alignment);
  2272. if (obj_priv->gtt_space != NULL)
  2273. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2274. }
  2275. if (obj_priv->gtt_space == NULL) {
  2276. /* If the gtt is empty and we're still having trouble
  2277. * fitting our object in, we're out of memory.
  2278. */
  2279. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2280. if (ret)
  2281. return ret;
  2282. goto search_free;
  2283. }
  2284. ret = i915_gem_object_get_pages(obj, gfpmask);
  2285. if (ret) {
  2286. drm_mm_put_block(obj_priv->gtt_space);
  2287. obj_priv->gtt_space = NULL;
  2288. if (ret == -ENOMEM) {
  2289. /* first try to clear up some space from the GTT */
  2290. ret = i915_gem_evict_something(dev, obj->size,
  2291. alignment);
  2292. if (ret) {
  2293. /* now try to shrink everyone else */
  2294. if (gfpmask) {
  2295. gfpmask = 0;
  2296. goto search_free;
  2297. }
  2298. return ret;
  2299. }
  2300. goto search_free;
  2301. }
  2302. return ret;
  2303. }
  2304. /* Create an AGP memory structure pointing at our pages, and bind it
  2305. * into the GTT.
  2306. */
  2307. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2308. obj_priv->pages,
  2309. obj->size >> PAGE_SHIFT,
  2310. obj_priv->gtt_offset,
  2311. obj_priv->agp_type);
  2312. if (obj_priv->agp_mem == NULL) {
  2313. i915_gem_object_put_pages(obj);
  2314. drm_mm_put_block(obj_priv->gtt_space);
  2315. obj_priv->gtt_space = NULL;
  2316. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2317. if (ret)
  2318. return ret;
  2319. goto search_free;
  2320. }
  2321. /* keep track of bounds object by adding it to the inactive list */
  2322. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2323. i915_gem_info_add_gtt(dev_priv, obj->size);
  2324. /* Assert that the object is not currently in any GPU domain. As it
  2325. * wasn't in the GTT, there shouldn't be any way it could have been in
  2326. * a GPU cache
  2327. */
  2328. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2329. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2330. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2331. return 0;
  2332. }
  2333. void
  2334. i915_gem_clflush_object(struct drm_gem_object *obj)
  2335. {
  2336. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2337. /* If we don't have a page list set up, then we're not pinned
  2338. * to GPU, and we can ignore the cache flush because it'll happen
  2339. * again at bind time.
  2340. */
  2341. if (obj_priv->pages == NULL)
  2342. return;
  2343. trace_i915_gem_object_clflush(obj);
  2344. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2345. }
  2346. /** Flushes any GPU write domain for the object if it's dirty. */
  2347. static int
  2348. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2349. bool pipelined)
  2350. {
  2351. struct drm_device *dev = obj->dev;
  2352. uint32_t old_write_domain;
  2353. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2354. return 0;
  2355. /* Queue the GPU write cache flushing we need. */
  2356. old_write_domain = obj->write_domain;
  2357. i915_gem_flush_ring(dev, NULL,
  2358. to_intel_bo(obj)->ring,
  2359. 0, obj->write_domain);
  2360. BUG_ON(obj->write_domain);
  2361. trace_i915_gem_object_change_domain(obj,
  2362. obj->read_domains,
  2363. old_write_domain);
  2364. if (pipelined)
  2365. return 0;
  2366. return i915_gem_object_wait_rendering(obj, true);
  2367. }
  2368. /** Flushes the GTT write domain for the object if it's dirty. */
  2369. static void
  2370. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2371. {
  2372. uint32_t old_write_domain;
  2373. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2374. return;
  2375. /* No actual flushing is required for the GTT write domain. Writes
  2376. * to it immediately go to main memory as far as we know, so there's
  2377. * no chipset flush. It also doesn't land in render cache.
  2378. */
  2379. old_write_domain = obj->write_domain;
  2380. obj->write_domain = 0;
  2381. trace_i915_gem_object_change_domain(obj,
  2382. obj->read_domains,
  2383. old_write_domain);
  2384. }
  2385. /** Flushes the CPU write domain for the object if it's dirty. */
  2386. static void
  2387. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2388. {
  2389. struct drm_device *dev = obj->dev;
  2390. uint32_t old_write_domain;
  2391. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2392. return;
  2393. i915_gem_clflush_object(obj);
  2394. drm_agp_chipset_flush(dev);
  2395. old_write_domain = obj->write_domain;
  2396. obj->write_domain = 0;
  2397. trace_i915_gem_object_change_domain(obj,
  2398. obj->read_domains,
  2399. old_write_domain);
  2400. }
  2401. /**
  2402. * Moves a single object to the GTT read, and possibly write domain.
  2403. *
  2404. * This function returns when the move is complete, including waiting on
  2405. * flushes to occur.
  2406. */
  2407. int
  2408. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2409. {
  2410. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2411. uint32_t old_write_domain, old_read_domains;
  2412. int ret;
  2413. /* Not valid to be called on unbound objects. */
  2414. if (obj_priv->gtt_space == NULL)
  2415. return -EINVAL;
  2416. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2417. if (ret != 0)
  2418. return ret;
  2419. i915_gem_object_flush_cpu_write_domain(obj);
  2420. if (write) {
  2421. ret = i915_gem_object_wait_rendering(obj, true);
  2422. if (ret)
  2423. return ret;
  2424. }
  2425. old_write_domain = obj->write_domain;
  2426. old_read_domains = obj->read_domains;
  2427. /* It should now be out of any other write domains, and we can update
  2428. * the domain values for our changes.
  2429. */
  2430. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2431. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2432. if (write) {
  2433. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2434. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2435. obj_priv->dirty = 1;
  2436. }
  2437. trace_i915_gem_object_change_domain(obj,
  2438. old_read_domains,
  2439. old_write_domain);
  2440. return 0;
  2441. }
  2442. /*
  2443. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2444. * wait, as in modesetting process we're not supposed to be interrupted.
  2445. */
  2446. int
  2447. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2448. bool pipelined)
  2449. {
  2450. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2451. uint32_t old_read_domains;
  2452. int ret;
  2453. /* Not valid to be called on unbound objects. */
  2454. if (obj_priv->gtt_space == NULL)
  2455. return -EINVAL;
  2456. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2457. if (ret)
  2458. return ret;
  2459. /* Currently, we are always called from an non-interruptible context. */
  2460. if (!pipelined) {
  2461. ret = i915_gem_object_wait_rendering(obj, false);
  2462. if (ret)
  2463. return ret;
  2464. }
  2465. i915_gem_object_flush_cpu_write_domain(obj);
  2466. old_read_domains = obj->read_domains;
  2467. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2468. trace_i915_gem_object_change_domain(obj,
  2469. old_read_domains,
  2470. obj->write_domain);
  2471. return 0;
  2472. }
  2473. /**
  2474. * Moves a single object to the CPU read, and possibly write domain.
  2475. *
  2476. * This function returns when the move is complete, including waiting on
  2477. * flushes to occur.
  2478. */
  2479. static int
  2480. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2481. {
  2482. uint32_t old_write_domain, old_read_domains;
  2483. int ret;
  2484. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2485. if (ret != 0)
  2486. return ret;
  2487. i915_gem_object_flush_gtt_write_domain(obj);
  2488. /* If we have a partially-valid cache of the object in the CPU,
  2489. * finish invalidating it and free the per-page flags.
  2490. */
  2491. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2492. if (write) {
  2493. ret = i915_gem_object_wait_rendering(obj, true);
  2494. if (ret)
  2495. return ret;
  2496. }
  2497. old_write_domain = obj->write_domain;
  2498. old_read_domains = obj->read_domains;
  2499. /* Flush the CPU cache if it's still invalid. */
  2500. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2501. i915_gem_clflush_object(obj);
  2502. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2503. }
  2504. /* It should now be out of any other write domains, and we can update
  2505. * the domain values for our changes.
  2506. */
  2507. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2508. /* If we're writing through the CPU, then the GPU read domains will
  2509. * need to be invalidated at next use.
  2510. */
  2511. if (write) {
  2512. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2513. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2514. }
  2515. trace_i915_gem_object_change_domain(obj,
  2516. old_read_domains,
  2517. old_write_domain);
  2518. return 0;
  2519. }
  2520. /*
  2521. * Set the next domain for the specified object. This
  2522. * may not actually perform the necessary flushing/invaliding though,
  2523. * as that may want to be batched with other set_domain operations
  2524. *
  2525. * This is (we hope) the only really tricky part of gem. The goal
  2526. * is fairly simple -- track which caches hold bits of the object
  2527. * and make sure they remain coherent. A few concrete examples may
  2528. * help to explain how it works. For shorthand, we use the notation
  2529. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2530. * a pair of read and write domain masks.
  2531. *
  2532. * Case 1: the batch buffer
  2533. *
  2534. * 1. Allocated
  2535. * 2. Written by CPU
  2536. * 3. Mapped to GTT
  2537. * 4. Read by GPU
  2538. * 5. Unmapped from GTT
  2539. * 6. Freed
  2540. *
  2541. * Let's take these a step at a time
  2542. *
  2543. * 1. Allocated
  2544. * Pages allocated from the kernel may still have
  2545. * cache contents, so we set them to (CPU, CPU) always.
  2546. * 2. Written by CPU (using pwrite)
  2547. * The pwrite function calls set_domain (CPU, CPU) and
  2548. * this function does nothing (as nothing changes)
  2549. * 3. Mapped by GTT
  2550. * This function asserts that the object is not
  2551. * currently in any GPU-based read or write domains
  2552. * 4. Read by GPU
  2553. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2554. * As write_domain is zero, this function adds in the
  2555. * current read domains (CPU+COMMAND, 0).
  2556. * flush_domains is set to CPU.
  2557. * invalidate_domains is set to COMMAND
  2558. * clflush is run to get data out of the CPU caches
  2559. * then i915_dev_set_domain calls i915_gem_flush to
  2560. * emit an MI_FLUSH and drm_agp_chipset_flush
  2561. * 5. Unmapped from GTT
  2562. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2563. * flush_domains and invalidate_domains end up both zero
  2564. * so no flushing/invalidating happens
  2565. * 6. Freed
  2566. * yay, done
  2567. *
  2568. * Case 2: The shared render buffer
  2569. *
  2570. * 1. Allocated
  2571. * 2. Mapped to GTT
  2572. * 3. Read/written by GPU
  2573. * 4. set_domain to (CPU,CPU)
  2574. * 5. Read/written by CPU
  2575. * 6. Read/written by GPU
  2576. *
  2577. * 1. Allocated
  2578. * Same as last example, (CPU, CPU)
  2579. * 2. Mapped to GTT
  2580. * Nothing changes (assertions find that it is not in the GPU)
  2581. * 3. Read/written by GPU
  2582. * execbuffer calls set_domain (RENDER, RENDER)
  2583. * flush_domains gets CPU
  2584. * invalidate_domains gets GPU
  2585. * clflush (obj)
  2586. * MI_FLUSH and drm_agp_chipset_flush
  2587. * 4. set_domain (CPU, CPU)
  2588. * flush_domains gets GPU
  2589. * invalidate_domains gets CPU
  2590. * wait_rendering (obj) to make sure all drawing is complete.
  2591. * This will include an MI_FLUSH to get the data from GPU
  2592. * to memory
  2593. * clflush (obj) to invalidate the CPU cache
  2594. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2595. * 5. Read/written by CPU
  2596. * cache lines are loaded and dirtied
  2597. * 6. Read written by GPU
  2598. * Same as last GPU access
  2599. *
  2600. * Case 3: The constant buffer
  2601. *
  2602. * 1. Allocated
  2603. * 2. Written by CPU
  2604. * 3. Read by GPU
  2605. * 4. Updated (written) by CPU again
  2606. * 5. Read by GPU
  2607. *
  2608. * 1. Allocated
  2609. * (CPU, CPU)
  2610. * 2. Written by CPU
  2611. * (CPU, CPU)
  2612. * 3. Read by GPU
  2613. * (CPU+RENDER, 0)
  2614. * flush_domains = CPU
  2615. * invalidate_domains = RENDER
  2616. * clflush (obj)
  2617. * MI_FLUSH
  2618. * drm_agp_chipset_flush
  2619. * 4. Updated (written) by CPU again
  2620. * (CPU, CPU)
  2621. * flush_domains = 0 (no previous write domain)
  2622. * invalidate_domains = 0 (no new read domains)
  2623. * 5. Read by GPU
  2624. * (CPU+RENDER, 0)
  2625. * flush_domains = CPU
  2626. * invalidate_domains = RENDER
  2627. * clflush (obj)
  2628. * MI_FLUSH
  2629. * drm_agp_chipset_flush
  2630. */
  2631. static void
  2632. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2633. {
  2634. struct drm_device *dev = obj->dev;
  2635. struct drm_i915_private *dev_priv = dev->dev_private;
  2636. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2637. uint32_t invalidate_domains = 0;
  2638. uint32_t flush_domains = 0;
  2639. uint32_t old_read_domains;
  2640. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2641. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2642. intel_mark_busy(dev, obj);
  2643. /*
  2644. * If the object isn't moving to a new write domain,
  2645. * let the object stay in multiple read domains
  2646. */
  2647. if (obj->pending_write_domain == 0)
  2648. obj->pending_read_domains |= obj->read_domains;
  2649. else
  2650. obj_priv->dirty = 1;
  2651. /*
  2652. * Flush the current write domain if
  2653. * the new read domains don't match. Invalidate
  2654. * any read domains which differ from the old
  2655. * write domain
  2656. */
  2657. if (obj->write_domain &&
  2658. obj->write_domain != obj->pending_read_domains) {
  2659. flush_domains |= obj->write_domain;
  2660. invalidate_domains |=
  2661. obj->pending_read_domains & ~obj->write_domain;
  2662. }
  2663. /*
  2664. * Invalidate any read caches which may have
  2665. * stale data. That is, any new read domains.
  2666. */
  2667. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2668. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2669. i915_gem_clflush_object(obj);
  2670. old_read_domains = obj->read_domains;
  2671. /* The actual obj->write_domain will be updated with
  2672. * pending_write_domain after we emit the accumulated flush for all
  2673. * of our domain changes in execbuffers (which clears objects'
  2674. * write_domains). So if we have a current write domain that we
  2675. * aren't changing, set pending_write_domain to that.
  2676. */
  2677. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2678. obj->pending_write_domain = obj->write_domain;
  2679. obj->read_domains = obj->pending_read_domains;
  2680. dev->invalidate_domains |= invalidate_domains;
  2681. dev->flush_domains |= flush_domains;
  2682. if (obj_priv->ring)
  2683. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2684. trace_i915_gem_object_change_domain(obj,
  2685. old_read_domains,
  2686. obj->write_domain);
  2687. }
  2688. /**
  2689. * Moves the object from a partially CPU read to a full one.
  2690. *
  2691. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2692. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2693. */
  2694. static void
  2695. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2696. {
  2697. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2698. if (!obj_priv->page_cpu_valid)
  2699. return;
  2700. /* If we're partially in the CPU read domain, finish moving it in.
  2701. */
  2702. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2703. int i;
  2704. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2705. if (obj_priv->page_cpu_valid[i])
  2706. continue;
  2707. drm_clflush_pages(obj_priv->pages + i, 1);
  2708. }
  2709. }
  2710. /* Free the page_cpu_valid mappings which are now stale, whether
  2711. * or not we've got I915_GEM_DOMAIN_CPU.
  2712. */
  2713. kfree(obj_priv->page_cpu_valid);
  2714. obj_priv->page_cpu_valid = NULL;
  2715. }
  2716. /**
  2717. * Set the CPU read domain on a range of the object.
  2718. *
  2719. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2720. * not entirely valid. The page_cpu_valid member of the object flags which
  2721. * pages have been flushed, and will be respected by
  2722. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2723. * of the whole object.
  2724. *
  2725. * This function returns when the move is complete, including waiting on
  2726. * flushes to occur.
  2727. */
  2728. static int
  2729. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2730. uint64_t offset, uint64_t size)
  2731. {
  2732. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2733. uint32_t old_read_domains;
  2734. int i, ret;
  2735. if (offset == 0 && size == obj->size)
  2736. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2737. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2738. if (ret != 0)
  2739. return ret;
  2740. i915_gem_object_flush_gtt_write_domain(obj);
  2741. /* If we're already fully in the CPU read domain, we're done. */
  2742. if (obj_priv->page_cpu_valid == NULL &&
  2743. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2744. return 0;
  2745. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2746. * newly adding I915_GEM_DOMAIN_CPU
  2747. */
  2748. if (obj_priv->page_cpu_valid == NULL) {
  2749. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2750. GFP_KERNEL);
  2751. if (obj_priv->page_cpu_valid == NULL)
  2752. return -ENOMEM;
  2753. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2754. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2755. /* Flush the cache on any pages that are still invalid from the CPU's
  2756. * perspective.
  2757. */
  2758. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2759. i++) {
  2760. if (obj_priv->page_cpu_valid[i])
  2761. continue;
  2762. drm_clflush_pages(obj_priv->pages + i, 1);
  2763. obj_priv->page_cpu_valid[i] = 1;
  2764. }
  2765. /* It should now be out of any other write domains, and we can update
  2766. * the domain values for our changes.
  2767. */
  2768. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2769. old_read_domains = obj->read_domains;
  2770. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2771. trace_i915_gem_object_change_domain(obj,
  2772. old_read_domains,
  2773. obj->write_domain);
  2774. return 0;
  2775. }
  2776. /**
  2777. * Pin an object to the GTT and evaluate the relocations landing in it.
  2778. */
  2779. static int
  2780. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2781. struct drm_file *file_priv,
  2782. struct drm_i915_gem_exec_object2 *entry,
  2783. struct drm_i915_gem_relocation_entry *relocs)
  2784. {
  2785. struct drm_device *dev = obj->dev;
  2786. drm_i915_private_t *dev_priv = dev->dev_private;
  2787. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2788. int i, ret;
  2789. void __iomem *reloc_page;
  2790. bool need_fence;
  2791. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2792. obj_priv->tiling_mode != I915_TILING_NONE;
  2793. /* Check fence reg constraints and rebind if necessary */
  2794. if (need_fence &&
  2795. !i915_gem_object_fence_offset_ok(obj,
  2796. obj_priv->tiling_mode)) {
  2797. ret = i915_gem_object_unbind(obj);
  2798. if (ret)
  2799. return ret;
  2800. }
  2801. /* Choose the GTT offset for our buffer and put it there. */
  2802. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2803. if (ret)
  2804. return ret;
  2805. /*
  2806. * Pre-965 chips need a fence register set up in order to
  2807. * properly handle blits to/from tiled surfaces.
  2808. */
  2809. if (need_fence) {
  2810. ret = i915_gem_object_get_fence_reg(obj, true);
  2811. if (ret != 0) {
  2812. i915_gem_object_unpin(obj);
  2813. return ret;
  2814. }
  2815. dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
  2816. }
  2817. entry->offset = obj_priv->gtt_offset;
  2818. /* Apply the relocations, using the GTT aperture to avoid cache
  2819. * flushing requirements.
  2820. */
  2821. for (i = 0; i < entry->relocation_count; i++) {
  2822. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2823. struct drm_gem_object *target_obj;
  2824. struct drm_i915_gem_object *target_obj_priv;
  2825. uint32_t reloc_val, reloc_offset;
  2826. uint32_t __iomem *reloc_entry;
  2827. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2828. reloc->target_handle);
  2829. if (target_obj == NULL) {
  2830. i915_gem_object_unpin(obj);
  2831. return -ENOENT;
  2832. }
  2833. target_obj_priv = to_intel_bo(target_obj);
  2834. #if WATCH_RELOC
  2835. DRM_INFO("%s: obj %p offset %08x target %d "
  2836. "read %08x write %08x gtt %08x "
  2837. "presumed %08x delta %08x\n",
  2838. __func__,
  2839. obj,
  2840. (int) reloc->offset,
  2841. (int) reloc->target_handle,
  2842. (int) reloc->read_domains,
  2843. (int) reloc->write_domain,
  2844. (int) target_obj_priv->gtt_offset,
  2845. (int) reloc->presumed_offset,
  2846. reloc->delta);
  2847. #endif
  2848. /* The target buffer should have appeared before us in the
  2849. * exec_object list, so it should have a GTT space bound by now.
  2850. */
  2851. if (target_obj_priv->gtt_space == NULL) {
  2852. DRM_ERROR("No GTT space found for object %d\n",
  2853. reloc->target_handle);
  2854. drm_gem_object_unreference(target_obj);
  2855. i915_gem_object_unpin(obj);
  2856. return -EINVAL;
  2857. }
  2858. /* Validate that the target is in a valid r/w GPU domain */
  2859. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2860. DRM_ERROR("reloc with multiple write domains: "
  2861. "obj %p target %d offset %d "
  2862. "read %08x write %08x",
  2863. obj, reloc->target_handle,
  2864. (int) reloc->offset,
  2865. reloc->read_domains,
  2866. reloc->write_domain);
  2867. drm_gem_object_unreference(target_obj);
  2868. i915_gem_object_unpin(obj);
  2869. return -EINVAL;
  2870. }
  2871. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2872. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2873. DRM_ERROR("reloc with read/write CPU domains: "
  2874. "obj %p target %d offset %d "
  2875. "read %08x write %08x",
  2876. obj, reloc->target_handle,
  2877. (int) reloc->offset,
  2878. reloc->read_domains,
  2879. reloc->write_domain);
  2880. drm_gem_object_unreference(target_obj);
  2881. i915_gem_object_unpin(obj);
  2882. return -EINVAL;
  2883. }
  2884. if (reloc->write_domain && target_obj->pending_write_domain &&
  2885. reloc->write_domain != target_obj->pending_write_domain) {
  2886. DRM_ERROR("Write domain conflict: "
  2887. "obj %p target %d offset %d "
  2888. "new %08x old %08x\n",
  2889. obj, reloc->target_handle,
  2890. (int) reloc->offset,
  2891. reloc->write_domain,
  2892. target_obj->pending_write_domain);
  2893. drm_gem_object_unreference(target_obj);
  2894. i915_gem_object_unpin(obj);
  2895. return -EINVAL;
  2896. }
  2897. target_obj->pending_read_domains |= reloc->read_domains;
  2898. target_obj->pending_write_domain |= reloc->write_domain;
  2899. /* If the relocation already has the right value in it, no
  2900. * more work needs to be done.
  2901. */
  2902. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2903. drm_gem_object_unreference(target_obj);
  2904. continue;
  2905. }
  2906. /* Check that the relocation address is valid... */
  2907. if (reloc->offset > obj->size - 4) {
  2908. DRM_ERROR("Relocation beyond object bounds: "
  2909. "obj %p target %d offset %d size %d.\n",
  2910. obj, reloc->target_handle,
  2911. (int) reloc->offset, (int) obj->size);
  2912. drm_gem_object_unreference(target_obj);
  2913. i915_gem_object_unpin(obj);
  2914. return -EINVAL;
  2915. }
  2916. if (reloc->offset & 3) {
  2917. DRM_ERROR("Relocation not 4-byte aligned: "
  2918. "obj %p target %d offset %d.\n",
  2919. obj, reloc->target_handle,
  2920. (int) reloc->offset);
  2921. drm_gem_object_unreference(target_obj);
  2922. i915_gem_object_unpin(obj);
  2923. return -EINVAL;
  2924. }
  2925. /* and points to somewhere within the target object. */
  2926. if (reloc->delta >= target_obj->size) {
  2927. DRM_ERROR("Relocation beyond target object bounds: "
  2928. "obj %p target %d delta %d size %d.\n",
  2929. obj, reloc->target_handle,
  2930. (int) reloc->delta, (int) target_obj->size);
  2931. drm_gem_object_unreference(target_obj);
  2932. i915_gem_object_unpin(obj);
  2933. return -EINVAL;
  2934. }
  2935. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2936. if (ret != 0) {
  2937. drm_gem_object_unreference(target_obj);
  2938. i915_gem_object_unpin(obj);
  2939. return ret;
  2940. }
  2941. /* Map the page containing the relocation we're going to
  2942. * perform.
  2943. */
  2944. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2945. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2946. (reloc_offset &
  2947. ~(PAGE_SIZE - 1)),
  2948. KM_USER0);
  2949. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2950. (reloc_offset & (PAGE_SIZE - 1)));
  2951. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2952. writel(reloc_val, reloc_entry);
  2953. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2954. /* The updated presumed offset for this entry will be
  2955. * copied back out to the user.
  2956. */
  2957. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2958. drm_gem_object_unreference(target_obj);
  2959. }
  2960. return 0;
  2961. }
  2962. /* Throttle our rendering by waiting until the ring has completed our requests
  2963. * emitted over 20 msec ago.
  2964. *
  2965. * Note that if we were to use the current jiffies each time around the loop,
  2966. * we wouldn't escape the function with any frames outstanding if the time to
  2967. * render a frame was over 20ms.
  2968. *
  2969. * This should get us reasonable parallelism between CPU and GPU but also
  2970. * relatively low latency when blocking on a particular request to finish.
  2971. */
  2972. static int
  2973. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2974. {
  2975. struct drm_i915_private *dev_priv = dev->dev_private;
  2976. struct drm_i915_file_private *file_priv = file->driver_priv;
  2977. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2978. struct drm_i915_gem_request *request;
  2979. struct intel_ring_buffer *ring = NULL;
  2980. u32 seqno = 0;
  2981. int ret;
  2982. spin_lock(&file_priv->mm.lock);
  2983. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2984. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2985. break;
  2986. ring = request->ring;
  2987. seqno = request->seqno;
  2988. }
  2989. spin_unlock(&file_priv->mm.lock);
  2990. if (seqno == 0)
  2991. return 0;
  2992. ret = 0;
  2993. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  2994. /* And wait for the seqno passing without holding any locks and
  2995. * causing extra latency for others. This is safe as the irq
  2996. * generation is designed to be run atomically and so is
  2997. * lockless.
  2998. */
  2999. ring->user_irq_get(dev, ring);
  3000. ret = wait_event_interruptible(ring->irq_queue,
  3001. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  3002. || atomic_read(&dev_priv->mm.wedged));
  3003. ring->user_irq_put(dev, ring);
  3004. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3005. ret = -EIO;
  3006. }
  3007. if (ret == 0)
  3008. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3009. return ret;
  3010. }
  3011. static int
  3012. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  3013. uint32_t buffer_count,
  3014. struct drm_i915_gem_relocation_entry **relocs)
  3015. {
  3016. uint32_t reloc_count = 0, reloc_index = 0, i;
  3017. int ret;
  3018. *relocs = NULL;
  3019. for (i = 0; i < buffer_count; i++) {
  3020. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  3021. return -EINVAL;
  3022. reloc_count += exec_list[i].relocation_count;
  3023. }
  3024. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  3025. if (*relocs == NULL) {
  3026. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  3027. return -ENOMEM;
  3028. }
  3029. for (i = 0; i < buffer_count; i++) {
  3030. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3031. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3032. ret = copy_from_user(&(*relocs)[reloc_index],
  3033. user_relocs,
  3034. exec_list[i].relocation_count *
  3035. sizeof(**relocs));
  3036. if (ret != 0) {
  3037. drm_free_large(*relocs);
  3038. *relocs = NULL;
  3039. return -EFAULT;
  3040. }
  3041. reloc_index += exec_list[i].relocation_count;
  3042. }
  3043. return 0;
  3044. }
  3045. static int
  3046. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  3047. uint32_t buffer_count,
  3048. struct drm_i915_gem_relocation_entry *relocs)
  3049. {
  3050. uint32_t reloc_count = 0, i;
  3051. int ret = 0;
  3052. if (relocs == NULL)
  3053. return 0;
  3054. for (i = 0; i < buffer_count; i++) {
  3055. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3056. int unwritten;
  3057. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3058. unwritten = copy_to_user(user_relocs,
  3059. &relocs[reloc_count],
  3060. exec_list[i].relocation_count *
  3061. sizeof(*relocs));
  3062. if (unwritten) {
  3063. ret = -EFAULT;
  3064. goto err;
  3065. }
  3066. reloc_count += exec_list[i].relocation_count;
  3067. }
  3068. err:
  3069. drm_free_large(relocs);
  3070. return ret;
  3071. }
  3072. static int
  3073. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  3074. uint64_t exec_offset)
  3075. {
  3076. uint32_t exec_start, exec_len;
  3077. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3078. exec_len = (uint32_t) exec->batch_len;
  3079. if ((exec_start | exec_len) & 0x7)
  3080. return -EINVAL;
  3081. if (!exec_start)
  3082. return -EINVAL;
  3083. return 0;
  3084. }
  3085. static int
  3086. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  3087. struct drm_gem_object **object_list,
  3088. int count)
  3089. {
  3090. drm_i915_private_t *dev_priv = dev->dev_private;
  3091. struct drm_i915_gem_object *obj_priv;
  3092. DEFINE_WAIT(wait);
  3093. int i, ret = 0;
  3094. for (;;) {
  3095. prepare_to_wait(&dev_priv->pending_flip_queue,
  3096. &wait, TASK_INTERRUPTIBLE);
  3097. for (i = 0; i < count; i++) {
  3098. obj_priv = to_intel_bo(object_list[i]);
  3099. if (atomic_read(&obj_priv->pending_flip) > 0)
  3100. break;
  3101. }
  3102. if (i == count)
  3103. break;
  3104. if (!signal_pending(current)) {
  3105. mutex_unlock(&dev->struct_mutex);
  3106. schedule();
  3107. mutex_lock(&dev->struct_mutex);
  3108. continue;
  3109. }
  3110. ret = -ERESTARTSYS;
  3111. break;
  3112. }
  3113. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3114. return ret;
  3115. }
  3116. static int
  3117. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3118. struct drm_file *file_priv,
  3119. struct drm_i915_gem_execbuffer2 *args,
  3120. struct drm_i915_gem_exec_object2 *exec_list)
  3121. {
  3122. drm_i915_private_t *dev_priv = dev->dev_private;
  3123. struct drm_gem_object **object_list = NULL;
  3124. struct drm_gem_object *batch_obj;
  3125. struct drm_i915_gem_object *obj_priv;
  3126. struct drm_clip_rect *cliprects = NULL;
  3127. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3128. struct drm_i915_gem_request *request = NULL;
  3129. int ret, ret2, i, pinned = 0;
  3130. uint64_t exec_offset;
  3131. uint32_t reloc_index;
  3132. int pin_tries, flips;
  3133. struct intel_ring_buffer *ring = NULL;
  3134. ret = i915_gem_check_is_wedged(dev);
  3135. if (ret)
  3136. return ret;
  3137. #if WATCH_EXEC
  3138. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3139. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3140. #endif
  3141. if (args->flags & I915_EXEC_BSD) {
  3142. if (!HAS_BSD(dev)) {
  3143. DRM_ERROR("execbuf with wrong flag\n");
  3144. return -EINVAL;
  3145. }
  3146. ring = &dev_priv->bsd_ring;
  3147. } else {
  3148. ring = &dev_priv->render_ring;
  3149. }
  3150. if (args->buffer_count < 1) {
  3151. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3152. return -EINVAL;
  3153. }
  3154. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3155. if (object_list == NULL) {
  3156. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3157. args->buffer_count);
  3158. ret = -ENOMEM;
  3159. goto pre_mutex_err;
  3160. }
  3161. if (args->num_cliprects != 0) {
  3162. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3163. GFP_KERNEL);
  3164. if (cliprects == NULL) {
  3165. ret = -ENOMEM;
  3166. goto pre_mutex_err;
  3167. }
  3168. ret = copy_from_user(cliprects,
  3169. (struct drm_clip_rect __user *)
  3170. (uintptr_t) args->cliprects_ptr,
  3171. sizeof(*cliprects) * args->num_cliprects);
  3172. if (ret != 0) {
  3173. DRM_ERROR("copy %d cliprects failed: %d\n",
  3174. args->num_cliprects, ret);
  3175. ret = -EFAULT;
  3176. goto pre_mutex_err;
  3177. }
  3178. }
  3179. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3180. if (request == NULL) {
  3181. ret = -ENOMEM;
  3182. goto pre_mutex_err;
  3183. }
  3184. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3185. &relocs);
  3186. if (ret != 0)
  3187. goto pre_mutex_err;
  3188. ret = i915_mutex_lock_interruptible(dev);
  3189. if (ret)
  3190. goto pre_mutex_err;
  3191. if (dev_priv->mm.suspended) {
  3192. mutex_unlock(&dev->struct_mutex);
  3193. ret = -EBUSY;
  3194. goto pre_mutex_err;
  3195. }
  3196. /* Look up object handles */
  3197. flips = 0;
  3198. for (i = 0; i < args->buffer_count; i++) {
  3199. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3200. exec_list[i].handle);
  3201. if (object_list[i] == NULL) {
  3202. DRM_ERROR("Invalid object handle %d at index %d\n",
  3203. exec_list[i].handle, i);
  3204. /* prevent error path from reading uninitialized data */
  3205. args->buffer_count = i + 1;
  3206. ret = -ENOENT;
  3207. goto err;
  3208. }
  3209. obj_priv = to_intel_bo(object_list[i]);
  3210. if (obj_priv->in_execbuffer) {
  3211. DRM_ERROR("Object %p appears more than once in object list\n",
  3212. object_list[i]);
  3213. /* prevent error path from reading uninitialized data */
  3214. args->buffer_count = i + 1;
  3215. ret = -EINVAL;
  3216. goto err;
  3217. }
  3218. obj_priv->in_execbuffer = true;
  3219. flips += atomic_read(&obj_priv->pending_flip);
  3220. }
  3221. if (flips > 0) {
  3222. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3223. args->buffer_count);
  3224. if (ret)
  3225. goto err;
  3226. }
  3227. /* Pin and relocate */
  3228. for (pin_tries = 0; ; pin_tries++) {
  3229. ret = 0;
  3230. reloc_index = 0;
  3231. for (i = 0; i < args->buffer_count; i++) {
  3232. object_list[i]->pending_read_domains = 0;
  3233. object_list[i]->pending_write_domain = 0;
  3234. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3235. file_priv,
  3236. &exec_list[i],
  3237. &relocs[reloc_index]);
  3238. if (ret)
  3239. break;
  3240. pinned = i + 1;
  3241. reloc_index += exec_list[i].relocation_count;
  3242. }
  3243. /* success */
  3244. if (ret == 0)
  3245. break;
  3246. /* error other than GTT full, or we've already tried again */
  3247. if (ret != -ENOSPC || pin_tries >= 1) {
  3248. if (ret != -ERESTARTSYS) {
  3249. unsigned long long total_size = 0;
  3250. int num_fences = 0;
  3251. for (i = 0; i < args->buffer_count; i++) {
  3252. obj_priv = to_intel_bo(object_list[i]);
  3253. total_size += object_list[i]->size;
  3254. num_fences +=
  3255. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3256. obj_priv->tiling_mode != I915_TILING_NONE;
  3257. }
  3258. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3259. pinned+1, args->buffer_count,
  3260. total_size, num_fences,
  3261. ret);
  3262. DRM_ERROR("%u objects [%u pinned, %u GTT], "
  3263. "%zu object bytes [%zu pinned], "
  3264. "%zu /%zu gtt bytes\n",
  3265. dev_priv->mm.object_count,
  3266. dev_priv->mm.pin_count,
  3267. dev_priv->mm.gtt_count,
  3268. dev_priv->mm.object_memory,
  3269. dev_priv->mm.pin_memory,
  3270. dev_priv->mm.gtt_memory,
  3271. dev_priv->mm.gtt_total);
  3272. }
  3273. goto err;
  3274. }
  3275. /* unpin all of our buffers */
  3276. for (i = 0; i < pinned; i++)
  3277. i915_gem_object_unpin(object_list[i]);
  3278. pinned = 0;
  3279. /* evict everyone we can from the aperture */
  3280. ret = i915_gem_evict_everything(dev);
  3281. if (ret && ret != -ENOSPC)
  3282. goto err;
  3283. }
  3284. /* Set the pending read domains for the batch buffer to COMMAND */
  3285. batch_obj = object_list[args->buffer_count-1];
  3286. if (batch_obj->pending_write_domain) {
  3287. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3288. ret = -EINVAL;
  3289. goto err;
  3290. }
  3291. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3292. /* Sanity check the batch buffer, prior to moving objects */
  3293. exec_offset = exec_list[args->buffer_count - 1].offset;
  3294. ret = i915_gem_check_execbuffer (args, exec_offset);
  3295. if (ret != 0) {
  3296. DRM_ERROR("execbuf with invalid offset/length\n");
  3297. goto err;
  3298. }
  3299. /* Zero the global flush/invalidate flags. These
  3300. * will be modified as new domains are computed
  3301. * for each object
  3302. */
  3303. dev->invalidate_domains = 0;
  3304. dev->flush_domains = 0;
  3305. dev_priv->mm.flush_rings = 0;
  3306. for (i = 0; i < args->buffer_count; i++) {
  3307. struct drm_gem_object *obj = object_list[i];
  3308. /* Compute new gpu domains and update invalidate/flush */
  3309. i915_gem_object_set_to_gpu_domain(obj);
  3310. }
  3311. if (dev->invalidate_domains | dev->flush_domains) {
  3312. #if WATCH_EXEC
  3313. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3314. __func__,
  3315. dev->invalidate_domains,
  3316. dev->flush_domains);
  3317. #endif
  3318. i915_gem_flush(dev, file_priv,
  3319. dev->invalidate_domains,
  3320. dev->flush_domains,
  3321. dev_priv->mm.flush_rings);
  3322. }
  3323. for (i = 0; i < args->buffer_count; i++) {
  3324. struct drm_gem_object *obj = object_list[i];
  3325. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3326. uint32_t old_write_domain = obj->write_domain;
  3327. obj->write_domain = obj->pending_write_domain;
  3328. if (obj->write_domain)
  3329. list_move_tail(&obj_priv->gpu_write_list,
  3330. &dev_priv->mm.gpu_write_list);
  3331. trace_i915_gem_object_change_domain(obj,
  3332. obj->read_domains,
  3333. old_write_domain);
  3334. }
  3335. #if WATCH_COHERENCY
  3336. for (i = 0; i < args->buffer_count; i++) {
  3337. i915_gem_object_check_coherency(object_list[i],
  3338. exec_list[i].handle);
  3339. }
  3340. #endif
  3341. #if WATCH_EXEC
  3342. i915_gem_dump_object(batch_obj,
  3343. args->batch_len,
  3344. __func__,
  3345. ~0);
  3346. #endif
  3347. /* Exec the batchbuffer */
  3348. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3349. cliprects, exec_offset);
  3350. if (ret) {
  3351. DRM_ERROR("dispatch failed %d\n", ret);
  3352. goto err;
  3353. }
  3354. /*
  3355. * Ensure that the commands in the batch buffer are
  3356. * finished before the interrupt fires
  3357. */
  3358. i915_retire_commands(dev, ring);
  3359. for (i = 0; i < args->buffer_count; i++) {
  3360. struct drm_gem_object *obj = object_list[i];
  3361. obj_priv = to_intel_bo(obj);
  3362. i915_gem_object_move_to_active(obj, ring);
  3363. }
  3364. i915_add_request(dev, file_priv, request, ring);
  3365. request = NULL;
  3366. err:
  3367. for (i = 0; i < pinned; i++)
  3368. i915_gem_object_unpin(object_list[i]);
  3369. for (i = 0; i < args->buffer_count; i++) {
  3370. if (object_list[i]) {
  3371. obj_priv = to_intel_bo(object_list[i]);
  3372. obj_priv->in_execbuffer = false;
  3373. }
  3374. drm_gem_object_unreference(object_list[i]);
  3375. }
  3376. mutex_unlock(&dev->struct_mutex);
  3377. pre_mutex_err:
  3378. /* Copy the updated relocations out regardless of current error
  3379. * state. Failure to update the relocs would mean that the next
  3380. * time userland calls execbuf, it would do so with presumed offset
  3381. * state that didn't match the actual object state.
  3382. */
  3383. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3384. relocs);
  3385. if (ret2 != 0) {
  3386. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3387. if (ret == 0)
  3388. ret = ret2;
  3389. }
  3390. drm_free_large(object_list);
  3391. kfree(cliprects);
  3392. kfree(request);
  3393. return ret;
  3394. }
  3395. /*
  3396. * Legacy execbuffer just creates an exec2 list from the original exec object
  3397. * list array and passes it to the real function.
  3398. */
  3399. int
  3400. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3401. struct drm_file *file_priv)
  3402. {
  3403. struct drm_i915_gem_execbuffer *args = data;
  3404. struct drm_i915_gem_execbuffer2 exec2;
  3405. struct drm_i915_gem_exec_object *exec_list = NULL;
  3406. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3407. int ret, i;
  3408. #if WATCH_EXEC
  3409. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3410. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3411. #endif
  3412. if (args->buffer_count < 1) {
  3413. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3414. return -EINVAL;
  3415. }
  3416. /* Copy in the exec list from userland */
  3417. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3418. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3419. if (exec_list == NULL || exec2_list == NULL) {
  3420. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3421. args->buffer_count);
  3422. drm_free_large(exec_list);
  3423. drm_free_large(exec2_list);
  3424. return -ENOMEM;
  3425. }
  3426. ret = copy_from_user(exec_list,
  3427. (struct drm_i915_relocation_entry __user *)
  3428. (uintptr_t) args->buffers_ptr,
  3429. sizeof(*exec_list) * args->buffer_count);
  3430. if (ret != 0) {
  3431. DRM_ERROR("copy %d exec entries failed %d\n",
  3432. args->buffer_count, ret);
  3433. drm_free_large(exec_list);
  3434. drm_free_large(exec2_list);
  3435. return -EFAULT;
  3436. }
  3437. for (i = 0; i < args->buffer_count; i++) {
  3438. exec2_list[i].handle = exec_list[i].handle;
  3439. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3440. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3441. exec2_list[i].alignment = exec_list[i].alignment;
  3442. exec2_list[i].offset = exec_list[i].offset;
  3443. if (INTEL_INFO(dev)->gen < 4)
  3444. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3445. else
  3446. exec2_list[i].flags = 0;
  3447. }
  3448. exec2.buffers_ptr = args->buffers_ptr;
  3449. exec2.buffer_count = args->buffer_count;
  3450. exec2.batch_start_offset = args->batch_start_offset;
  3451. exec2.batch_len = args->batch_len;
  3452. exec2.DR1 = args->DR1;
  3453. exec2.DR4 = args->DR4;
  3454. exec2.num_cliprects = args->num_cliprects;
  3455. exec2.cliprects_ptr = args->cliprects_ptr;
  3456. exec2.flags = I915_EXEC_RENDER;
  3457. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3458. if (!ret) {
  3459. /* Copy the new buffer offsets back to the user's exec list. */
  3460. for (i = 0; i < args->buffer_count; i++)
  3461. exec_list[i].offset = exec2_list[i].offset;
  3462. /* ... and back out to userspace */
  3463. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3464. (uintptr_t) args->buffers_ptr,
  3465. exec_list,
  3466. sizeof(*exec_list) * args->buffer_count);
  3467. if (ret) {
  3468. ret = -EFAULT;
  3469. DRM_ERROR("failed to copy %d exec entries "
  3470. "back to user (%d)\n",
  3471. args->buffer_count, ret);
  3472. }
  3473. }
  3474. drm_free_large(exec_list);
  3475. drm_free_large(exec2_list);
  3476. return ret;
  3477. }
  3478. int
  3479. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3480. struct drm_file *file_priv)
  3481. {
  3482. struct drm_i915_gem_execbuffer2 *args = data;
  3483. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3484. int ret;
  3485. #if WATCH_EXEC
  3486. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3487. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3488. #endif
  3489. if (args->buffer_count < 1) {
  3490. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3491. return -EINVAL;
  3492. }
  3493. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3494. if (exec2_list == NULL) {
  3495. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3496. args->buffer_count);
  3497. return -ENOMEM;
  3498. }
  3499. ret = copy_from_user(exec2_list,
  3500. (struct drm_i915_relocation_entry __user *)
  3501. (uintptr_t) args->buffers_ptr,
  3502. sizeof(*exec2_list) * args->buffer_count);
  3503. if (ret != 0) {
  3504. DRM_ERROR("copy %d exec entries failed %d\n",
  3505. args->buffer_count, ret);
  3506. drm_free_large(exec2_list);
  3507. return -EFAULT;
  3508. }
  3509. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3510. if (!ret) {
  3511. /* Copy the new buffer offsets back to the user's exec list. */
  3512. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3513. (uintptr_t) args->buffers_ptr,
  3514. exec2_list,
  3515. sizeof(*exec2_list) * args->buffer_count);
  3516. if (ret) {
  3517. ret = -EFAULT;
  3518. DRM_ERROR("failed to copy %d exec entries "
  3519. "back to user (%d)\n",
  3520. args->buffer_count, ret);
  3521. }
  3522. }
  3523. drm_free_large(exec2_list);
  3524. return ret;
  3525. }
  3526. int
  3527. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3528. {
  3529. struct drm_device *dev = obj->dev;
  3530. struct drm_i915_private *dev_priv = dev->dev_private;
  3531. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3532. int ret;
  3533. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3534. WARN_ON(i915_verify_lists(dev));
  3535. if (obj_priv->gtt_space != NULL) {
  3536. if (alignment == 0)
  3537. alignment = i915_gem_get_gtt_alignment(obj);
  3538. if (obj_priv->gtt_offset & (alignment - 1)) {
  3539. WARN(obj_priv->pin_count,
  3540. "bo is already pinned with incorrect alignment:"
  3541. " offset=%x, req.alignment=%x\n",
  3542. obj_priv->gtt_offset, alignment);
  3543. ret = i915_gem_object_unbind(obj);
  3544. if (ret)
  3545. return ret;
  3546. }
  3547. }
  3548. if (obj_priv->gtt_space == NULL) {
  3549. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3550. if (ret)
  3551. return ret;
  3552. }
  3553. obj_priv->pin_count++;
  3554. /* If the object is not active and not pending a flush,
  3555. * remove it from the inactive list
  3556. */
  3557. if (obj_priv->pin_count == 1) {
  3558. i915_gem_info_add_pin(dev_priv, obj->size);
  3559. if (!obj_priv->active)
  3560. list_move_tail(&obj_priv->list,
  3561. &dev_priv->mm.pinned_list);
  3562. }
  3563. WARN_ON(i915_verify_lists(dev));
  3564. return 0;
  3565. }
  3566. void
  3567. i915_gem_object_unpin(struct drm_gem_object *obj)
  3568. {
  3569. struct drm_device *dev = obj->dev;
  3570. drm_i915_private_t *dev_priv = dev->dev_private;
  3571. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3572. WARN_ON(i915_verify_lists(dev));
  3573. obj_priv->pin_count--;
  3574. BUG_ON(obj_priv->pin_count < 0);
  3575. BUG_ON(obj_priv->gtt_space == NULL);
  3576. /* If the object is no longer pinned, and is
  3577. * neither active nor being flushed, then stick it on
  3578. * the inactive list
  3579. */
  3580. if (obj_priv->pin_count == 0) {
  3581. if (!obj_priv->active)
  3582. list_move_tail(&obj_priv->list,
  3583. &dev_priv->mm.inactive_list);
  3584. i915_gem_info_remove_pin(dev_priv, obj->size);
  3585. }
  3586. WARN_ON(i915_verify_lists(dev));
  3587. }
  3588. int
  3589. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3590. struct drm_file *file_priv)
  3591. {
  3592. struct drm_i915_gem_pin *args = data;
  3593. struct drm_gem_object *obj;
  3594. struct drm_i915_gem_object *obj_priv;
  3595. int ret;
  3596. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3597. if (obj == NULL) {
  3598. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3599. args->handle);
  3600. return -ENOENT;
  3601. }
  3602. obj_priv = to_intel_bo(obj);
  3603. ret = i915_mutex_lock_interruptible(dev);
  3604. if (ret) {
  3605. drm_gem_object_unreference_unlocked(obj);
  3606. return ret;
  3607. }
  3608. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3609. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3610. drm_gem_object_unreference(obj);
  3611. mutex_unlock(&dev->struct_mutex);
  3612. return -EINVAL;
  3613. }
  3614. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3615. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3616. args->handle);
  3617. drm_gem_object_unreference(obj);
  3618. mutex_unlock(&dev->struct_mutex);
  3619. return -EINVAL;
  3620. }
  3621. obj_priv->user_pin_count++;
  3622. obj_priv->pin_filp = file_priv;
  3623. if (obj_priv->user_pin_count == 1) {
  3624. ret = i915_gem_object_pin(obj, args->alignment);
  3625. if (ret != 0) {
  3626. drm_gem_object_unreference(obj);
  3627. mutex_unlock(&dev->struct_mutex);
  3628. return ret;
  3629. }
  3630. }
  3631. /* XXX - flush the CPU caches for pinned objects
  3632. * as the X server doesn't manage domains yet
  3633. */
  3634. i915_gem_object_flush_cpu_write_domain(obj);
  3635. args->offset = obj_priv->gtt_offset;
  3636. drm_gem_object_unreference(obj);
  3637. mutex_unlock(&dev->struct_mutex);
  3638. return 0;
  3639. }
  3640. int
  3641. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3642. struct drm_file *file_priv)
  3643. {
  3644. struct drm_i915_gem_pin *args = data;
  3645. struct drm_gem_object *obj;
  3646. struct drm_i915_gem_object *obj_priv;
  3647. int ret;
  3648. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3649. if (obj == NULL) {
  3650. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3651. args->handle);
  3652. return -ENOENT;
  3653. }
  3654. obj_priv = to_intel_bo(obj);
  3655. ret = i915_mutex_lock_interruptible(dev);
  3656. if (ret) {
  3657. drm_gem_object_unreference_unlocked(obj);
  3658. return ret;
  3659. }
  3660. if (obj_priv->pin_filp != file_priv) {
  3661. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3662. args->handle);
  3663. drm_gem_object_unreference(obj);
  3664. mutex_unlock(&dev->struct_mutex);
  3665. return -EINVAL;
  3666. }
  3667. obj_priv->user_pin_count--;
  3668. if (obj_priv->user_pin_count == 0) {
  3669. obj_priv->pin_filp = NULL;
  3670. i915_gem_object_unpin(obj);
  3671. }
  3672. drm_gem_object_unreference(obj);
  3673. mutex_unlock(&dev->struct_mutex);
  3674. return 0;
  3675. }
  3676. int
  3677. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3678. struct drm_file *file_priv)
  3679. {
  3680. struct drm_i915_gem_busy *args = data;
  3681. struct drm_gem_object *obj;
  3682. struct drm_i915_gem_object *obj_priv;
  3683. int ret;
  3684. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3685. if (obj == NULL) {
  3686. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3687. args->handle);
  3688. return -ENOENT;
  3689. }
  3690. ret = i915_mutex_lock_interruptible(dev);
  3691. if (ret) {
  3692. drm_gem_object_unreference_unlocked(obj);
  3693. return ret;
  3694. }
  3695. /* Count all active objects as busy, even if they are currently not used
  3696. * by the gpu. Users of this interface expect objects to eventually
  3697. * become non-busy without any further actions, therefore emit any
  3698. * necessary flushes here.
  3699. */
  3700. obj_priv = to_intel_bo(obj);
  3701. args->busy = obj_priv->active;
  3702. if (args->busy) {
  3703. /* Unconditionally flush objects, even when the gpu still uses this
  3704. * object. Userspace calling this function indicates that it wants to
  3705. * use this buffer rather sooner than later, so issuing the required
  3706. * flush earlier is beneficial.
  3707. */
  3708. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3709. i915_gem_flush_ring(dev, file_priv,
  3710. obj_priv->ring,
  3711. 0, obj->write_domain);
  3712. /* Update the active list for the hardware's current position.
  3713. * Otherwise this only updates on a delayed timer or when irqs
  3714. * are actually unmasked, and our working set ends up being
  3715. * larger than required.
  3716. */
  3717. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3718. args->busy = obj_priv->active;
  3719. }
  3720. drm_gem_object_unreference(obj);
  3721. mutex_unlock(&dev->struct_mutex);
  3722. return 0;
  3723. }
  3724. int
  3725. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3726. struct drm_file *file_priv)
  3727. {
  3728. return i915_gem_ring_throttle(dev, file_priv);
  3729. }
  3730. int
  3731. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3732. struct drm_file *file_priv)
  3733. {
  3734. struct drm_i915_gem_madvise *args = data;
  3735. struct drm_gem_object *obj;
  3736. struct drm_i915_gem_object *obj_priv;
  3737. int ret;
  3738. switch (args->madv) {
  3739. case I915_MADV_DONTNEED:
  3740. case I915_MADV_WILLNEED:
  3741. break;
  3742. default:
  3743. return -EINVAL;
  3744. }
  3745. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3746. if (obj == NULL) {
  3747. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3748. args->handle);
  3749. return -ENOENT;
  3750. }
  3751. obj_priv = to_intel_bo(obj);
  3752. ret = i915_mutex_lock_interruptible(dev);
  3753. if (ret) {
  3754. drm_gem_object_unreference_unlocked(obj);
  3755. return ret;
  3756. }
  3757. if (obj_priv->pin_count) {
  3758. drm_gem_object_unreference(obj);
  3759. mutex_unlock(&dev->struct_mutex);
  3760. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3761. return -EINVAL;
  3762. }
  3763. if (obj_priv->madv != __I915_MADV_PURGED)
  3764. obj_priv->madv = args->madv;
  3765. /* if the object is no longer bound, discard its backing storage */
  3766. if (i915_gem_object_is_purgeable(obj_priv) &&
  3767. obj_priv->gtt_space == NULL)
  3768. i915_gem_object_truncate(obj);
  3769. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3770. drm_gem_object_unreference(obj);
  3771. mutex_unlock(&dev->struct_mutex);
  3772. return 0;
  3773. }
  3774. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3775. size_t size)
  3776. {
  3777. struct drm_i915_private *dev_priv = dev->dev_private;
  3778. struct drm_i915_gem_object *obj;
  3779. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3780. if (obj == NULL)
  3781. return NULL;
  3782. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3783. kfree(obj);
  3784. return NULL;
  3785. }
  3786. i915_gem_info_add_obj(dev_priv, size);
  3787. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3788. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3789. obj->agp_type = AGP_USER_MEMORY;
  3790. obj->base.driver_private = NULL;
  3791. obj->fence_reg = I915_FENCE_REG_NONE;
  3792. INIT_LIST_HEAD(&obj->list);
  3793. INIT_LIST_HEAD(&obj->gpu_write_list);
  3794. obj->madv = I915_MADV_WILLNEED;
  3795. trace_i915_gem_object_create(&obj->base);
  3796. return &obj->base;
  3797. }
  3798. int i915_gem_init_object(struct drm_gem_object *obj)
  3799. {
  3800. BUG();
  3801. return 0;
  3802. }
  3803. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3804. {
  3805. struct drm_device *dev = obj->dev;
  3806. drm_i915_private_t *dev_priv = dev->dev_private;
  3807. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3808. int ret;
  3809. ret = i915_gem_object_unbind(obj);
  3810. if (ret == -ERESTARTSYS) {
  3811. list_move(&obj_priv->list,
  3812. &dev_priv->mm.deferred_free_list);
  3813. return;
  3814. }
  3815. if (obj_priv->mmap_offset)
  3816. i915_gem_free_mmap_offset(obj);
  3817. drm_gem_object_release(obj);
  3818. i915_gem_info_remove_obj(dev_priv, obj->size);
  3819. kfree(obj_priv->page_cpu_valid);
  3820. kfree(obj_priv->bit_17);
  3821. kfree(obj_priv);
  3822. }
  3823. void i915_gem_free_object(struct drm_gem_object *obj)
  3824. {
  3825. struct drm_device *dev = obj->dev;
  3826. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3827. trace_i915_gem_object_destroy(obj);
  3828. while (obj_priv->pin_count > 0)
  3829. i915_gem_object_unpin(obj);
  3830. if (obj_priv->phys_obj)
  3831. i915_gem_detach_phys_object(dev, obj);
  3832. i915_gem_free_object_tail(obj);
  3833. }
  3834. int
  3835. i915_gem_idle(struct drm_device *dev)
  3836. {
  3837. drm_i915_private_t *dev_priv = dev->dev_private;
  3838. int ret;
  3839. mutex_lock(&dev->struct_mutex);
  3840. if (dev_priv->mm.suspended ||
  3841. (dev_priv->render_ring.gem_object == NULL) ||
  3842. (HAS_BSD(dev) &&
  3843. dev_priv->bsd_ring.gem_object == NULL)) {
  3844. mutex_unlock(&dev->struct_mutex);
  3845. return 0;
  3846. }
  3847. ret = i915_gpu_idle(dev);
  3848. if (ret) {
  3849. mutex_unlock(&dev->struct_mutex);
  3850. return ret;
  3851. }
  3852. /* Under UMS, be paranoid and evict. */
  3853. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3854. ret = i915_gem_evict_inactive(dev);
  3855. if (ret) {
  3856. mutex_unlock(&dev->struct_mutex);
  3857. return ret;
  3858. }
  3859. }
  3860. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3861. * We need to replace this with a semaphore, or something.
  3862. * And not confound mm.suspended!
  3863. */
  3864. dev_priv->mm.suspended = 1;
  3865. del_timer_sync(&dev_priv->hangcheck_timer);
  3866. i915_kernel_lost_context(dev);
  3867. i915_gem_cleanup_ringbuffer(dev);
  3868. mutex_unlock(&dev->struct_mutex);
  3869. /* Cancel the retire work handler, which should be idle now. */
  3870. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3871. return 0;
  3872. }
  3873. /*
  3874. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3875. * over cache flushing.
  3876. */
  3877. static int
  3878. i915_gem_init_pipe_control(struct drm_device *dev)
  3879. {
  3880. drm_i915_private_t *dev_priv = dev->dev_private;
  3881. struct drm_gem_object *obj;
  3882. struct drm_i915_gem_object *obj_priv;
  3883. int ret;
  3884. obj = i915_gem_alloc_object(dev, 4096);
  3885. if (obj == NULL) {
  3886. DRM_ERROR("Failed to allocate seqno page\n");
  3887. ret = -ENOMEM;
  3888. goto err;
  3889. }
  3890. obj_priv = to_intel_bo(obj);
  3891. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3892. ret = i915_gem_object_pin(obj, 4096);
  3893. if (ret)
  3894. goto err_unref;
  3895. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3896. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3897. if (dev_priv->seqno_page == NULL)
  3898. goto err_unpin;
  3899. dev_priv->seqno_obj = obj;
  3900. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3901. return 0;
  3902. err_unpin:
  3903. i915_gem_object_unpin(obj);
  3904. err_unref:
  3905. drm_gem_object_unreference(obj);
  3906. err:
  3907. return ret;
  3908. }
  3909. static void
  3910. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3911. {
  3912. drm_i915_private_t *dev_priv = dev->dev_private;
  3913. struct drm_gem_object *obj;
  3914. struct drm_i915_gem_object *obj_priv;
  3915. obj = dev_priv->seqno_obj;
  3916. obj_priv = to_intel_bo(obj);
  3917. kunmap(obj_priv->pages[0]);
  3918. i915_gem_object_unpin(obj);
  3919. drm_gem_object_unreference(obj);
  3920. dev_priv->seqno_obj = NULL;
  3921. dev_priv->seqno_page = NULL;
  3922. }
  3923. int
  3924. i915_gem_init_ringbuffer(struct drm_device *dev)
  3925. {
  3926. drm_i915_private_t *dev_priv = dev->dev_private;
  3927. int ret;
  3928. if (HAS_PIPE_CONTROL(dev)) {
  3929. ret = i915_gem_init_pipe_control(dev);
  3930. if (ret)
  3931. return ret;
  3932. }
  3933. ret = intel_init_render_ring_buffer(dev);
  3934. if (ret)
  3935. goto cleanup_pipe_control;
  3936. if (HAS_BSD(dev)) {
  3937. ret = intel_init_bsd_ring_buffer(dev);
  3938. if (ret)
  3939. goto cleanup_render_ring;
  3940. }
  3941. dev_priv->next_seqno = 1;
  3942. return 0;
  3943. cleanup_render_ring:
  3944. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3945. cleanup_pipe_control:
  3946. if (HAS_PIPE_CONTROL(dev))
  3947. i915_gem_cleanup_pipe_control(dev);
  3948. return ret;
  3949. }
  3950. void
  3951. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3952. {
  3953. drm_i915_private_t *dev_priv = dev->dev_private;
  3954. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3955. if (HAS_BSD(dev))
  3956. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3957. if (HAS_PIPE_CONTROL(dev))
  3958. i915_gem_cleanup_pipe_control(dev);
  3959. }
  3960. int
  3961. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3962. struct drm_file *file_priv)
  3963. {
  3964. drm_i915_private_t *dev_priv = dev->dev_private;
  3965. int ret;
  3966. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3967. return 0;
  3968. if (atomic_read(&dev_priv->mm.wedged)) {
  3969. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3970. atomic_set(&dev_priv->mm.wedged, 0);
  3971. }
  3972. mutex_lock(&dev->struct_mutex);
  3973. dev_priv->mm.suspended = 0;
  3974. ret = i915_gem_init_ringbuffer(dev);
  3975. if (ret != 0) {
  3976. mutex_unlock(&dev->struct_mutex);
  3977. return ret;
  3978. }
  3979. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3980. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3981. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3982. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3983. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3984. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3985. mutex_unlock(&dev->struct_mutex);
  3986. ret = drm_irq_install(dev);
  3987. if (ret)
  3988. goto cleanup_ringbuffer;
  3989. return 0;
  3990. cleanup_ringbuffer:
  3991. mutex_lock(&dev->struct_mutex);
  3992. i915_gem_cleanup_ringbuffer(dev);
  3993. dev_priv->mm.suspended = 1;
  3994. mutex_unlock(&dev->struct_mutex);
  3995. return ret;
  3996. }
  3997. int
  3998. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3999. struct drm_file *file_priv)
  4000. {
  4001. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4002. return 0;
  4003. drm_irq_uninstall(dev);
  4004. return i915_gem_idle(dev);
  4005. }
  4006. void
  4007. i915_gem_lastclose(struct drm_device *dev)
  4008. {
  4009. int ret;
  4010. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4011. return;
  4012. ret = i915_gem_idle(dev);
  4013. if (ret)
  4014. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4015. }
  4016. void
  4017. i915_gem_load(struct drm_device *dev)
  4018. {
  4019. int i;
  4020. drm_i915_private_t *dev_priv = dev->dev_private;
  4021. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4022. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  4023. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4024. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4025. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4026. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4027. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  4028. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  4029. if (HAS_BSD(dev)) {
  4030. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  4031. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  4032. }
  4033. for (i = 0; i < 16; i++)
  4034. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4035. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4036. i915_gem_retire_work_handler);
  4037. init_completion(&dev_priv->error_completion);
  4038. spin_lock(&shrink_list_lock);
  4039. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  4040. spin_unlock(&shrink_list_lock);
  4041. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4042. if (IS_GEN3(dev)) {
  4043. u32 tmp = I915_READ(MI_ARB_STATE);
  4044. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4045. /* arb state is a masked write, so set bit + bit in mask */
  4046. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4047. I915_WRITE(MI_ARB_STATE, tmp);
  4048. }
  4049. }
  4050. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4051. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4052. dev_priv->fence_reg_start = 3;
  4053. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4054. dev_priv->num_fence_regs = 16;
  4055. else
  4056. dev_priv->num_fence_regs = 8;
  4057. /* Initialize fence registers to zero */
  4058. switch (INTEL_INFO(dev)->gen) {
  4059. case 6:
  4060. for (i = 0; i < 16; i++)
  4061. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4062. break;
  4063. case 5:
  4064. case 4:
  4065. for (i = 0; i < 16; i++)
  4066. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4067. break;
  4068. case 3:
  4069. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4070. for (i = 0; i < 8; i++)
  4071. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4072. case 2:
  4073. for (i = 0; i < 8; i++)
  4074. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4075. break;
  4076. }
  4077. i915_gem_detect_bit_6_swizzle(dev);
  4078. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4079. }
  4080. /*
  4081. * Create a physically contiguous memory object for this object
  4082. * e.g. for cursor + overlay regs
  4083. */
  4084. static int i915_gem_init_phys_object(struct drm_device *dev,
  4085. int id, int size, int align)
  4086. {
  4087. drm_i915_private_t *dev_priv = dev->dev_private;
  4088. struct drm_i915_gem_phys_object *phys_obj;
  4089. int ret;
  4090. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4091. return 0;
  4092. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4093. if (!phys_obj)
  4094. return -ENOMEM;
  4095. phys_obj->id = id;
  4096. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4097. if (!phys_obj->handle) {
  4098. ret = -ENOMEM;
  4099. goto kfree_obj;
  4100. }
  4101. #ifdef CONFIG_X86
  4102. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4103. #endif
  4104. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4105. return 0;
  4106. kfree_obj:
  4107. kfree(phys_obj);
  4108. return ret;
  4109. }
  4110. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4111. {
  4112. drm_i915_private_t *dev_priv = dev->dev_private;
  4113. struct drm_i915_gem_phys_object *phys_obj;
  4114. if (!dev_priv->mm.phys_objs[id - 1])
  4115. return;
  4116. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4117. if (phys_obj->cur_obj) {
  4118. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4119. }
  4120. #ifdef CONFIG_X86
  4121. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4122. #endif
  4123. drm_pci_free(dev, phys_obj->handle);
  4124. kfree(phys_obj);
  4125. dev_priv->mm.phys_objs[id - 1] = NULL;
  4126. }
  4127. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4128. {
  4129. int i;
  4130. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4131. i915_gem_free_phys_object(dev, i);
  4132. }
  4133. void i915_gem_detach_phys_object(struct drm_device *dev,
  4134. struct drm_gem_object *obj)
  4135. {
  4136. struct drm_i915_gem_object *obj_priv;
  4137. int i;
  4138. int ret;
  4139. int page_count;
  4140. obj_priv = to_intel_bo(obj);
  4141. if (!obj_priv->phys_obj)
  4142. return;
  4143. ret = i915_gem_object_get_pages(obj, 0);
  4144. if (ret)
  4145. goto out;
  4146. page_count = obj->size / PAGE_SIZE;
  4147. for (i = 0; i < page_count; i++) {
  4148. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4149. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4150. memcpy(dst, src, PAGE_SIZE);
  4151. kunmap_atomic(dst, KM_USER0);
  4152. }
  4153. drm_clflush_pages(obj_priv->pages, page_count);
  4154. drm_agp_chipset_flush(dev);
  4155. i915_gem_object_put_pages(obj);
  4156. out:
  4157. obj_priv->phys_obj->cur_obj = NULL;
  4158. obj_priv->phys_obj = NULL;
  4159. }
  4160. int
  4161. i915_gem_attach_phys_object(struct drm_device *dev,
  4162. struct drm_gem_object *obj,
  4163. int id,
  4164. int align)
  4165. {
  4166. drm_i915_private_t *dev_priv = dev->dev_private;
  4167. struct drm_i915_gem_object *obj_priv;
  4168. int ret = 0;
  4169. int page_count;
  4170. int i;
  4171. if (id > I915_MAX_PHYS_OBJECT)
  4172. return -EINVAL;
  4173. obj_priv = to_intel_bo(obj);
  4174. if (obj_priv->phys_obj) {
  4175. if (obj_priv->phys_obj->id == id)
  4176. return 0;
  4177. i915_gem_detach_phys_object(dev, obj);
  4178. }
  4179. /* create a new object */
  4180. if (!dev_priv->mm.phys_objs[id - 1]) {
  4181. ret = i915_gem_init_phys_object(dev, id,
  4182. obj->size, align);
  4183. if (ret) {
  4184. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4185. goto out;
  4186. }
  4187. }
  4188. /* bind to the object */
  4189. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4190. obj_priv->phys_obj->cur_obj = obj;
  4191. ret = i915_gem_object_get_pages(obj, 0);
  4192. if (ret) {
  4193. DRM_ERROR("failed to get page list\n");
  4194. goto out;
  4195. }
  4196. page_count = obj->size / PAGE_SIZE;
  4197. for (i = 0; i < page_count; i++) {
  4198. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4199. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4200. memcpy(dst, src, PAGE_SIZE);
  4201. kunmap_atomic(src, KM_USER0);
  4202. }
  4203. i915_gem_object_put_pages(obj);
  4204. return 0;
  4205. out:
  4206. return ret;
  4207. }
  4208. static int
  4209. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4210. struct drm_i915_gem_pwrite *args,
  4211. struct drm_file *file_priv)
  4212. {
  4213. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4214. void *obj_addr;
  4215. int ret;
  4216. char __user *user_data;
  4217. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4218. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4219. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4220. ret = copy_from_user(obj_addr, user_data, args->size);
  4221. if (ret)
  4222. return -EFAULT;
  4223. drm_agp_chipset_flush(dev);
  4224. return 0;
  4225. }
  4226. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4227. {
  4228. struct drm_i915_file_private *file_priv = file->driver_priv;
  4229. /* Clean up our request list when the client is going away, so that
  4230. * later retire_requests won't dereference our soon-to-be-gone
  4231. * file_priv.
  4232. */
  4233. spin_lock(&file_priv->mm.lock);
  4234. while (!list_empty(&file_priv->mm.request_list)) {
  4235. struct drm_i915_gem_request *request;
  4236. request = list_first_entry(&file_priv->mm.request_list,
  4237. struct drm_i915_gem_request,
  4238. client_list);
  4239. list_del(&request->client_list);
  4240. request->file_priv = NULL;
  4241. }
  4242. spin_unlock(&file_priv->mm.lock);
  4243. }
  4244. static int
  4245. i915_gpu_is_active(struct drm_device *dev)
  4246. {
  4247. drm_i915_private_t *dev_priv = dev->dev_private;
  4248. int lists_empty;
  4249. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4250. list_empty(&dev_priv->render_ring.active_list);
  4251. if (HAS_BSD(dev))
  4252. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4253. return !lists_empty;
  4254. }
  4255. static int
  4256. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4257. {
  4258. drm_i915_private_t *dev_priv, *next_dev;
  4259. struct drm_i915_gem_object *obj_priv, *next_obj;
  4260. int cnt = 0;
  4261. int would_deadlock = 1;
  4262. /* "fast-path" to count number of available objects */
  4263. if (nr_to_scan == 0) {
  4264. spin_lock(&shrink_list_lock);
  4265. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4266. struct drm_device *dev = dev_priv->dev;
  4267. if (mutex_trylock(&dev->struct_mutex)) {
  4268. list_for_each_entry(obj_priv,
  4269. &dev_priv->mm.inactive_list,
  4270. list)
  4271. cnt++;
  4272. mutex_unlock(&dev->struct_mutex);
  4273. }
  4274. }
  4275. spin_unlock(&shrink_list_lock);
  4276. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4277. }
  4278. spin_lock(&shrink_list_lock);
  4279. rescan:
  4280. /* first scan for clean buffers */
  4281. list_for_each_entry_safe(dev_priv, next_dev,
  4282. &shrink_list, mm.shrink_list) {
  4283. struct drm_device *dev = dev_priv->dev;
  4284. if (! mutex_trylock(&dev->struct_mutex))
  4285. continue;
  4286. spin_unlock(&shrink_list_lock);
  4287. i915_gem_retire_requests(dev);
  4288. list_for_each_entry_safe(obj_priv, next_obj,
  4289. &dev_priv->mm.inactive_list,
  4290. list) {
  4291. if (i915_gem_object_is_purgeable(obj_priv)) {
  4292. i915_gem_object_unbind(&obj_priv->base);
  4293. if (--nr_to_scan <= 0)
  4294. break;
  4295. }
  4296. }
  4297. spin_lock(&shrink_list_lock);
  4298. mutex_unlock(&dev->struct_mutex);
  4299. would_deadlock = 0;
  4300. if (nr_to_scan <= 0)
  4301. break;
  4302. }
  4303. /* second pass, evict/count anything still on the inactive list */
  4304. list_for_each_entry_safe(dev_priv, next_dev,
  4305. &shrink_list, mm.shrink_list) {
  4306. struct drm_device *dev = dev_priv->dev;
  4307. if (! mutex_trylock(&dev->struct_mutex))
  4308. continue;
  4309. spin_unlock(&shrink_list_lock);
  4310. list_for_each_entry_safe(obj_priv, next_obj,
  4311. &dev_priv->mm.inactive_list,
  4312. list) {
  4313. if (nr_to_scan > 0) {
  4314. i915_gem_object_unbind(&obj_priv->base);
  4315. nr_to_scan--;
  4316. } else
  4317. cnt++;
  4318. }
  4319. spin_lock(&shrink_list_lock);
  4320. mutex_unlock(&dev->struct_mutex);
  4321. would_deadlock = 0;
  4322. }
  4323. if (nr_to_scan) {
  4324. int active = 0;
  4325. /*
  4326. * We are desperate for pages, so as a last resort, wait
  4327. * for the GPU to finish and discard whatever we can.
  4328. * This has a dramatic impact to reduce the number of
  4329. * OOM-killer events whilst running the GPU aggressively.
  4330. */
  4331. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4332. struct drm_device *dev = dev_priv->dev;
  4333. if (!mutex_trylock(&dev->struct_mutex))
  4334. continue;
  4335. spin_unlock(&shrink_list_lock);
  4336. if (i915_gpu_is_active(dev)) {
  4337. i915_gpu_idle(dev);
  4338. active++;
  4339. }
  4340. spin_lock(&shrink_list_lock);
  4341. mutex_unlock(&dev->struct_mutex);
  4342. }
  4343. if (active)
  4344. goto rescan;
  4345. }
  4346. spin_unlock(&shrink_list_lock);
  4347. if (would_deadlock)
  4348. return -1;
  4349. else if (cnt > 0)
  4350. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4351. else
  4352. return 0;
  4353. }
  4354. static struct shrinker shrinker = {
  4355. .shrink = i915_gem_shrink,
  4356. .seeks = DEFAULT_SEEKS,
  4357. };
  4358. __init void
  4359. i915_gem_shrinker_init(void)
  4360. {
  4361. register_shrinker(&shrinker);
  4362. }
  4363. __exit void
  4364. i915_gem_shrinker_exit(void)
  4365. {
  4366. unregister_shrinker(&shrinker);
  4367. }