intel_sdvo.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128
  1. /*
  2. * Copyright 2006 Dave Airlie <airlied@linux.ie>
  3. * Copyright © 2006-2007 Intel Corporation
  4. * Jesse Barnes <jesse.barnes@intel.com>
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the "Software"),
  8. * to deal in the Software without restriction, including without limitation
  9. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10. * and/or sell copies of the Software, and to permit persons to whom the
  11. * Software is furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice (including the next
  14. * paragraph) shall be included in all copies or substantial portions of the
  15. * Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  22. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  23. * DEALINGS IN THE SOFTWARE.
  24. *
  25. * Authors:
  26. * Eric Anholt <eric@anholt.net>
  27. */
  28. #include <linux/i2c.h>
  29. #include <linux/delay.h>
  30. #include "drmP.h"
  31. #include "drm.h"
  32. #include "drm_crtc.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "intel_sdvo_regs.h"
  37. #undef SDVO_DEBUG
  38. #define I915_SDVO "i915_sdvo"
  39. struct intel_sdvo_priv {
  40. u8 slave_addr;
  41. /* Register for the SDVO device: SDVOB or SDVOC */
  42. int output_device;
  43. /* Active outputs controlled by this SDVO output */
  44. uint16_t controlled_output;
  45. /*
  46. * Capabilities of the SDVO device returned by
  47. * i830_sdvo_get_capabilities()
  48. */
  49. struct intel_sdvo_caps caps;
  50. /* Pixel clock limitations reported by the SDVO device, in kHz */
  51. int pixel_clock_min, pixel_clock_max;
  52. /*
  53. * For multiple function SDVO device,
  54. * this is for current attached outputs.
  55. */
  56. uint16_t attached_output;
  57. /**
  58. * This is set if we're going to treat the device as TV-out.
  59. *
  60. * While we have these nice friendly flags for output types that ought
  61. * to decide this for us, the S-Video output on our HDMI+S-Video card
  62. * shows up as RGB1 (VGA).
  63. */
  64. bool is_tv;
  65. /**
  66. * This is set if we treat the device as HDMI, instead of DVI.
  67. */
  68. bool is_hdmi;
  69. /**
  70. * This is set if we detect output of sdvo device as LVDS.
  71. */
  72. bool is_lvds;
  73. /**
  74. * This is sdvo flags for input timing.
  75. */
  76. uint8_t sdvo_flags;
  77. /**
  78. * This is sdvo fixed pannel mode pointer
  79. */
  80. struct drm_display_mode *sdvo_lvds_fixed_mode;
  81. /**
  82. * Returned SDTV resolutions allowed for the current format, if the
  83. * device reported it.
  84. */
  85. struct intel_sdvo_sdtv_resolution_reply sdtv_resolutions;
  86. /**
  87. * Current selected TV format.
  88. *
  89. * This is stored in the same structure that's passed to the device, for
  90. * convenience.
  91. */
  92. struct intel_sdvo_tv_format tv_format;
  93. /*
  94. * supported encoding mode, used to determine whether HDMI is
  95. * supported
  96. */
  97. struct intel_sdvo_encode encode;
  98. /* DDC bus used by this SDVO output */
  99. uint8_t ddc_bus;
  100. int save_sdvo_mult;
  101. u16 save_active_outputs;
  102. struct intel_sdvo_dtd save_input_dtd_1, save_input_dtd_2;
  103. struct intel_sdvo_dtd save_output_dtd[16];
  104. u32 save_SDVOX;
  105. };
  106. static bool
  107. intel_sdvo_output_setup(struct intel_output *intel_output, uint16_t flags);
  108. /**
  109. * Writes the SDVOB or SDVOC with the given value, but always writes both
  110. * SDVOB and SDVOC to work around apparent hardware issues (according to
  111. * comments in the BIOS).
  112. */
  113. static void intel_sdvo_write_sdvox(struct intel_output *intel_output, u32 val)
  114. {
  115. struct drm_device *dev = intel_output->base.dev;
  116. struct drm_i915_private *dev_priv = dev->dev_private;
  117. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  118. u32 bval = val, cval = val;
  119. int i;
  120. if (sdvo_priv->output_device == SDVOB) {
  121. cval = I915_READ(SDVOC);
  122. } else {
  123. bval = I915_READ(SDVOB);
  124. }
  125. /*
  126. * Write the registers twice for luck. Sometimes,
  127. * writing them only once doesn't appear to 'stick'.
  128. * The BIOS does this too. Yay, magic
  129. */
  130. for (i = 0; i < 2; i++)
  131. {
  132. I915_WRITE(SDVOB, bval);
  133. I915_READ(SDVOB);
  134. I915_WRITE(SDVOC, cval);
  135. I915_READ(SDVOC);
  136. }
  137. }
  138. static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr,
  139. u8 *ch)
  140. {
  141. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  142. u8 out_buf[2];
  143. u8 buf[2];
  144. int ret;
  145. struct i2c_msg msgs[] = {
  146. {
  147. .addr = sdvo_priv->slave_addr >> 1,
  148. .flags = 0,
  149. .len = 1,
  150. .buf = out_buf,
  151. },
  152. {
  153. .addr = sdvo_priv->slave_addr >> 1,
  154. .flags = I2C_M_RD,
  155. .len = 1,
  156. .buf = buf,
  157. }
  158. };
  159. out_buf[0] = addr;
  160. out_buf[1] = 0;
  161. if ((ret = i2c_transfer(intel_output->i2c_bus, msgs, 2)) == 2)
  162. {
  163. *ch = buf[0];
  164. return true;
  165. }
  166. DRM_DEBUG("i2c transfer returned %d\n", ret);
  167. return false;
  168. }
  169. static bool intel_sdvo_write_byte(struct intel_output *intel_output, int addr,
  170. u8 ch)
  171. {
  172. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  173. u8 out_buf[2];
  174. struct i2c_msg msgs[] = {
  175. {
  176. .addr = sdvo_priv->slave_addr >> 1,
  177. .flags = 0,
  178. .len = 2,
  179. .buf = out_buf,
  180. }
  181. };
  182. out_buf[0] = addr;
  183. out_buf[1] = ch;
  184. if (i2c_transfer(intel_output->i2c_bus, msgs, 1) == 1)
  185. {
  186. return true;
  187. }
  188. return false;
  189. }
  190. #define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd}
  191. /** Mapping of command numbers to names, for debug output */
  192. static const struct _sdvo_cmd_name {
  193. u8 cmd;
  194. char *name;
  195. } sdvo_cmd_names[] = {
  196. SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET),
  197. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS),
  198. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV),
  199. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS),
  200. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS),
  201. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS),
  202. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP),
  203. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP),
  204. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS),
  205. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT),
  206. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG),
  207. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG),
  208. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE),
  209. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT),
  210. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT),
  211. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1),
  212. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2),
  213. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
  214. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2),
  215. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
  216. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1),
  217. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2),
  218. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1),
  219. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2),
  220. SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING),
  221. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1),
  222. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2),
  223. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE),
  224. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE),
  225. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS),
  226. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT),
  227. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT),
  228. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS),
  229. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT),
  230. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT),
  231. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_POWER_STATES),
  232. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_POWER_STATE),
  233. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODER_POWER_STATE),
  234. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DISPLAY_POWER_STATE),
  235. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH),
  236. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT),
  237. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SCALED_HDTV_RESOLUTION_SUPPORT),
  238. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS),
  239. /* HDMI op code */
  240. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPP_ENCODE),
  241. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ENCODE),
  242. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODE),
  243. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_PIXEL_REPLI),
  244. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PIXEL_REPLI),
  245. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY_CAP),
  246. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_COLORIMETRY),
  247. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY),
  248. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_ENCRYPT_PREFER),
  249. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_AUDIO_STAT),
  250. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_STAT),
  251. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INDEX),
  252. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_INDEX),
  253. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INFO),
  254. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_AV_SPLIT),
  255. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_AV_SPLIT),
  256. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_TXRATE),
  257. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_TXRATE),
  258. SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_DATA),
  259. SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_DATA),
  260. };
  261. #define SDVO_NAME(dev_priv) ((dev_priv)->output_device == SDVOB ? "SDVOB" : "SDVOC")
  262. #define SDVO_PRIV(output) ((struct intel_sdvo_priv *) (output)->dev_priv)
  263. #ifdef SDVO_DEBUG
  264. static void intel_sdvo_debug_write(struct intel_output *intel_output, u8 cmd,
  265. void *args, int args_len)
  266. {
  267. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  268. int i;
  269. DRM_DEBUG_KMS(I915_SDVO, "%s: W: %02X ",
  270. SDVO_NAME(sdvo_priv), cmd);
  271. for (i = 0; i < args_len; i++)
  272. DRM_LOG_KMS("%02X ", ((u8 *)args)[i]);
  273. for (; i < 8; i++)
  274. DRM_LOG_KMS(" ");
  275. for (i = 0; i < sizeof(sdvo_cmd_names) / sizeof(sdvo_cmd_names[0]); i++) {
  276. if (cmd == sdvo_cmd_names[i].cmd) {
  277. DRM_LOG_KMS("(%s)", sdvo_cmd_names[i].name);
  278. break;
  279. }
  280. }
  281. if (i == sizeof(sdvo_cmd_names)/ sizeof(sdvo_cmd_names[0]))
  282. DRM_LOG_KMS("(%02X)", cmd);
  283. DRM_LOG_KMS("\n");
  284. }
  285. #else
  286. #define intel_sdvo_debug_write(o, c, a, l)
  287. #endif
  288. static void intel_sdvo_write_cmd(struct intel_output *intel_output, u8 cmd,
  289. void *args, int args_len)
  290. {
  291. int i;
  292. intel_sdvo_debug_write(intel_output, cmd, args, args_len);
  293. for (i = 0; i < args_len; i++) {
  294. intel_sdvo_write_byte(intel_output, SDVO_I2C_ARG_0 - i,
  295. ((u8*)args)[i]);
  296. }
  297. intel_sdvo_write_byte(intel_output, SDVO_I2C_OPCODE, cmd);
  298. }
  299. #ifdef SDVO_DEBUG
  300. static const char *cmd_status_names[] = {
  301. "Power on",
  302. "Success",
  303. "Not supported",
  304. "Invalid arg",
  305. "Pending",
  306. "Target not specified",
  307. "Scaling not supported"
  308. };
  309. static void intel_sdvo_debug_response(struct intel_output *intel_output,
  310. void *response, int response_len,
  311. u8 status)
  312. {
  313. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  314. int i;
  315. DRM_DEBUG_KMS(I915_SDVO, "%s: R: ", SDVO_NAME(sdvo_priv));
  316. for (i = 0; i < response_len; i++)
  317. DRM_LOG_KMS("%02X ", ((u8 *)response)[i]);
  318. for (; i < 8; i++)
  319. DRM_LOG_KMS(" ");
  320. if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP)
  321. DRM_LOG_KMS("(%s)", cmd_status_names[status]);
  322. else
  323. DRM_LOG_KMS("(??? %d)", status);
  324. DRM_LOG_KMS("\n");
  325. }
  326. #else
  327. #define intel_sdvo_debug_response(o, r, l, s)
  328. #endif
  329. static u8 intel_sdvo_read_response(struct intel_output *intel_output,
  330. void *response, int response_len)
  331. {
  332. int i;
  333. u8 status;
  334. u8 retry = 50;
  335. while (retry--) {
  336. /* Read the command response */
  337. for (i = 0; i < response_len; i++) {
  338. intel_sdvo_read_byte(intel_output,
  339. SDVO_I2C_RETURN_0 + i,
  340. &((u8 *)response)[i]);
  341. }
  342. /* read the return status */
  343. intel_sdvo_read_byte(intel_output, SDVO_I2C_CMD_STATUS,
  344. &status);
  345. intel_sdvo_debug_response(intel_output, response, response_len,
  346. status);
  347. if (status != SDVO_CMD_STATUS_PENDING)
  348. return status;
  349. mdelay(50);
  350. }
  351. return status;
  352. }
  353. static int intel_sdvo_get_pixel_multiplier(struct drm_display_mode *mode)
  354. {
  355. if (mode->clock >= 100000)
  356. return 1;
  357. else if (mode->clock >= 50000)
  358. return 2;
  359. else
  360. return 4;
  361. }
  362. /**
  363. * Don't check status code from this as it switches the bus back to the
  364. * SDVO chips which defeats the purpose of doing a bus switch in the first
  365. * place.
  366. */
  367. static void intel_sdvo_set_control_bus_switch(struct intel_output *intel_output,
  368. u8 target)
  369. {
  370. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_CONTROL_BUS_SWITCH, &target, 1);
  371. }
  372. static bool intel_sdvo_set_target_input(struct intel_output *intel_output, bool target_0, bool target_1)
  373. {
  374. struct intel_sdvo_set_target_input_args targets = {0};
  375. u8 status;
  376. if (target_0 && target_1)
  377. return SDVO_CMD_STATUS_NOTSUPP;
  378. if (target_1)
  379. targets.target_1 = 1;
  380. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_TARGET_INPUT, &targets,
  381. sizeof(targets));
  382. status = intel_sdvo_read_response(intel_output, NULL, 0);
  383. return (status == SDVO_CMD_STATUS_SUCCESS);
  384. }
  385. /**
  386. * Return whether each input is trained.
  387. *
  388. * This function is making an assumption about the layout of the response,
  389. * which should be checked against the docs.
  390. */
  391. static bool intel_sdvo_get_trained_inputs(struct intel_output *intel_output, bool *input_1, bool *input_2)
  392. {
  393. struct intel_sdvo_get_trained_inputs_response response;
  394. u8 status;
  395. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_TRAINED_INPUTS, NULL, 0);
  396. status = intel_sdvo_read_response(intel_output, &response, sizeof(response));
  397. if (status != SDVO_CMD_STATUS_SUCCESS)
  398. return false;
  399. *input_1 = response.input0_trained;
  400. *input_2 = response.input1_trained;
  401. return true;
  402. }
  403. static bool intel_sdvo_get_active_outputs(struct intel_output *intel_output,
  404. u16 *outputs)
  405. {
  406. u8 status;
  407. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_OUTPUTS, NULL, 0);
  408. status = intel_sdvo_read_response(intel_output, outputs, sizeof(*outputs));
  409. return (status == SDVO_CMD_STATUS_SUCCESS);
  410. }
  411. static bool intel_sdvo_set_active_outputs(struct intel_output *intel_output,
  412. u16 outputs)
  413. {
  414. u8 status;
  415. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_OUTPUTS, &outputs,
  416. sizeof(outputs));
  417. status = intel_sdvo_read_response(intel_output, NULL, 0);
  418. return (status == SDVO_CMD_STATUS_SUCCESS);
  419. }
  420. static bool intel_sdvo_set_encoder_power_state(struct intel_output *intel_output,
  421. int mode)
  422. {
  423. u8 status, state = SDVO_ENCODER_STATE_ON;
  424. switch (mode) {
  425. case DRM_MODE_DPMS_ON:
  426. state = SDVO_ENCODER_STATE_ON;
  427. break;
  428. case DRM_MODE_DPMS_STANDBY:
  429. state = SDVO_ENCODER_STATE_STANDBY;
  430. break;
  431. case DRM_MODE_DPMS_SUSPEND:
  432. state = SDVO_ENCODER_STATE_SUSPEND;
  433. break;
  434. case DRM_MODE_DPMS_OFF:
  435. state = SDVO_ENCODER_STATE_OFF;
  436. break;
  437. }
  438. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ENCODER_POWER_STATE, &state,
  439. sizeof(state));
  440. status = intel_sdvo_read_response(intel_output, NULL, 0);
  441. return (status == SDVO_CMD_STATUS_SUCCESS);
  442. }
  443. static bool intel_sdvo_get_input_pixel_clock_range(struct intel_output *intel_output,
  444. int *clock_min,
  445. int *clock_max)
  446. {
  447. struct intel_sdvo_pixel_clock_range clocks;
  448. u8 status;
  449. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE,
  450. NULL, 0);
  451. status = intel_sdvo_read_response(intel_output, &clocks, sizeof(clocks));
  452. if (status != SDVO_CMD_STATUS_SUCCESS)
  453. return false;
  454. /* Convert the values from units of 10 kHz to kHz. */
  455. *clock_min = clocks.min * 10;
  456. *clock_max = clocks.max * 10;
  457. return true;
  458. }
  459. static bool intel_sdvo_set_target_output(struct intel_output *intel_output,
  460. u16 outputs)
  461. {
  462. u8 status;
  463. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_TARGET_OUTPUT, &outputs,
  464. sizeof(outputs));
  465. status = intel_sdvo_read_response(intel_output, NULL, 0);
  466. return (status == SDVO_CMD_STATUS_SUCCESS);
  467. }
  468. static bool intel_sdvo_get_timing(struct intel_output *intel_output, u8 cmd,
  469. struct intel_sdvo_dtd *dtd)
  470. {
  471. u8 status;
  472. intel_sdvo_write_cmd(intel_output, cmd, NULL, 0);
  473. status = intel_sdvo_read_response(intel_output, &dtd->part1,
  474. sizeof(dtd->part1));
  475. if (status != SDVO_CMD_STATUS_SUCCESS)
  476. return false;
  477. intel_sdvo_write_cmd(intel_output, cmd + 1, NULL, 0);
  478. status = intel_sdvo_read_response(intel_output, &dtd->part2,
  479. sizeof(dtd->part2));
  480. if (status != SDVO_CMD_STATUS_SUCCESS)
  481. return false;
  482. return true;
  483. }
  484. static bool intel_sdvo_get_input_timing(struct intel_output *intel_output,
  485. struct intel_sdvo_dtd *dtd)
  486. {
  487. return intel_sdvo_get_timing(intel_output,
  488. SDVO_CMD_GET_INPUT_TIMINGS_PART1, dtd);
  489. }
  490. static bool intel_sdvo_get_output_timing(struct intel_output *intel_output,
  491. struct intel_sdvo_dtd *dtd)
  492. {
  493. return intel_sdvo_get_timing(intel_output,
  494. SDVO_CMD_GET_OUTPUT_TIMINGS_PART1, dtd);
  495. }
  496. static bool intel_sdvo_set_timing(struct intel_output *intel_output, u8 cmd,
  497. struct intel_sdvo_dtd *dtd)
  498. {
  499. u8 status;
  500. intel_sdvo_write_cmd(intel_output, cmd, &dtd->part1, sizeof(dtd->part1));
  501. status = intel_sdvo_read_response(intel_output, NULL, 0);
  502. if (status != SDVO_CMD_STATUS_SUCCESS)
  503. return false;
  504. intel_sdvo_write_cmd(intel_output, cmd + 1, &dtd->part2, sizeof(dtd->part2));
  505. status = intel_sdvo_read_response(intel_output, NULL, 0);
  506. if (status != SDVO_CMD_STATUS_SUCCESS)
  507. return false;
  508. return true;
  509. }
  510. static bool intel_sdvo_set_input_timing(struct intel_output *intel_output,
  511. struct intel_sdvo_dtd *dtd)
  512. {
  513. return intel_sdvo_set_timing(intel_output,
  514. SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd);
  515. }
  516. static bool intel_sdvo_set_output_timing(struct intel_output *intel_output,
  517. struct intel_sdvo_dtd *dtd)
  518. {
  519. return intel_sdvo_set_timing(intel_output,
  520. SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd);
  521. }
  522. static bool
  523. intel_sdvo_create_preferred_input_timing(struct intel_output *output,
  524. uint16_t clock,
  525. uint16_t width,
  526. uint16_t height)
  527. {
  528. struct intel_sdvo_preferred_input_timing_args args;
  529. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  530. uint8_t status;
  531. memset(&args, 0, sizeof(args));
  532. args.clock = clock;
  533. args.width = width;
  534. args.height = height;
  535. args.interlace = 0;
  536. if (sdvo_priv->is_lvds &&
  537. (sdvo_priv->sdvo_lvds_fixed_mode->hdisplay != width ||
  538. sdvo_priv->sdvo_lvds_fixed_mode->vdisplay != height))
  539. args.scaled = 1;
  540. intel_sdvo_write_cmd(output, SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING,
  541. &args, sizeof(args));
  542. status = intel_sdvo_read_response(output, NULL, 0);
  543. if (status != SDVO_CMD_STATUS_SUCCESS)
  544. return false;
  545. return true;
  546. }
  547. static bool intel_sdvo_get_preferred_input_timing(struct intel_output *output,
  548. struct intel_sdvo_dtd *dtd)
  549. {
  550. bool status;
  551. intel_sdvo_write_cmd(output, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1,
  552. NULL, 0);
  553. status = intel_sdvo_read_response(output, &dtd->part1,
  554. sizeof(dtd->part1));
  555. if (status != SDVO_CMD_STATUS_SUCCESS)
  556. return false;
  557. intel_sdvo_write_cmd(output, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2,
  558. NULL, 0);
  559. status = intel_sdvo_read_response(output, &dtd->part2,
  560. sizeof(dtd->part2));
  561. if (status != SDVO_CMD_STATUS_SUCCESS)
  562. return false;
  563. return false;
  564. }
  565. static int intel_sdvo_get_clock_rate_mult(struct intel_output *intel_output)
  566. {
  567. u8 response, status;
  568. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_CLOCK_RATE_MULT, NULL, 0);
  569. status = intel_sdvo_read_response(intel_output, &response, 1);
  570. if (status != SDVO_CMD_STATUS_SUCCESS) {
  571. DRM_DEBUG("Couldn't get SDVO clock rate multiplier\n");
  572. return SDVO_CLOCK_RATE_MULT_1X;
  573. } else {
  574. DRM_DEBUG("Current clock rate multiplier: %d\n", response);
  575. }
  576. return response;
  577. }
  578. static bool intel_sdvo_set_clock_rate_mult(struct intel_output *intel_output, u8 val)
  579. {
  580. u8 status;
  581. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1);
  582. status = intel_sdvo_read_response(intel_output, NULL, 0);
  583. if (status != SDVO_CMD_STATUS_SUCCESS)
  584. return false;
  585. return true;
  586. }
  587. static void intel_sdvo_get_dtd_from_mode(struct intel_sdvo_dtd *dtd,
  588. struct drm_display_mode *mode)
  589. {
  590. uint16_t width, height;
  591. uint16_t h_blank_len, h_sync_len, v_blank_len, v_sync_len;
  592. uint16_t h_sync_offset, v_sync_offset;
  593. width = mode->crtc_hdisplay;
  594. height = mode->crtc_vdisplay;
  595. /* do some mode translations */
  596. h_blank_len = mode->crtc_hblank_end - mode->crtc_hblank_start;
  597. h_sync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
  598. v_blank_len = mode->crtc_vblank_end - mode->crtc_vblank_start;
  599. v_sync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
  600. h_sync_offset = mode->crtc_hsync_start - mode->crtc_hblank_start;
  601. v_sync_offset = mode->crtc_vsync_start - mode->crtc_vblank_start;
  602. dtd->part1.clock = mode->clock / 10;
  603. dtd->part1.h_active = width & 0xff;
  604. dtd->part1.h_blank = h_blank_len & 0xff;
  605. dtd->part1.h_high = (((width >> 8) & 0xf) << 4) |
  606. ((h_blank_len >> 8) & 0xf);
  607. dtd->part1.v_active = height & 0xff;
  608. dtd->part1.v_blank = v_blank_len & 0xff;
  609. dtd->part1.v_high = (((height >> 8) & 0xf) << 4) |
  610. ((v_blank_len >> 8) & 0xf);
  611. dtd->part2.h_sync_off = h_sync_offset & 0xff;
  612. dtd->part2.h_sync_width = h_sync_len & 0xff;
  613. dtd->part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 |
  614. (v_sync_len & 0xf);
  615. dtd->part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) |
  616. ((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) |
  617. ((v_sync_len & 0x30) >> 4);
  618. dtd->part2.dtd_flags = 0x18;
  619. if (mode->flags & DRM_MODE_FLAG_PHSYNC)
  620. dtd->part2.dtd_flags |= 0x2;
  621. if (mode->flags & DRM_MODE_FLAG_PVSYNC)
  622. dtd->part2.dtd_flags |= 0x4;
  623. dtd->part2.sdvo_flags = 0;
  624. dtd->part2.v_sync_off_high = v_sync_offset & 0xc0;
  625. dtd->part2.reserved = 0;
  626. }
  627. static void intel_sdvo_get_mode_from_dtd(struct drm_display_mode * mode,
  628. struct intel_sdvo_dtd *dtd)
  629. {
  630. mode->hdisplay = dtd->part1.h_active;
  631. mode->hdisplay += ((dtd->part1.h_high >> 4) & 0x0f) << 8;
  632. mode->hsync_start = mode->hdisplay + dtd->part2.h_sync_off;
  633. mode->hsync_start += (dtd->part2.sync_off_width_high & 0xc0) << 2;
  634. mode->hsync_end = mode->hsync_start + dtd->part2.h_sync_width;
  635. mode->hsync_end += (dtd->part2.sync_off_width_high & 0x30) << 4;
  636. mode->htotal = mode->hdisplay + dtd->part1.h_blank;
  637. mode->htotal += (dtd->part1.h_high & 0xf) << 8;
  638. mode->vdisplay = dtd->part1.v_active;
  639. mode->vdisplay += ((dtd->part1.v_high >> 4) & 0x0f) << 8;
  640. mode->vsync_start = mode->vdisplay;
  641. mode->vsync_start += (dtd->part2.v_sync_off_width >> 4) & 0xf;
  642. mode->vsync_start += (dtd->part2.sync_off_width_high & 0x0c) << 2;
  643. mode->vsync_start += dtd->part2.v_sync_off_high & 0xc0;
  644. mode->vsync_end = mode->vsync_start +
  645. (dtd->part2.v_sync_off_width & 0xf);
  646. mode->vsync_end += (dtd->part2.sync_off_width_high & 0x3) << 4;
  647. mode->vtotal = mode->vdisplay + dtd->part1.v_blank;
  648. mode->vtotal += (dtd->part1.v_high & 0xf) << 8;
  649. mode->clock = dtd->part1.clock * 10;
  650. mode->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
  651. if (dtd->part2.dtd_flags & 0x2)
  652. mode->flags |= DRM_MODE_FLAG_PHSYNC;
  653. if (dtd->part2.dtd_flags & 0x4)
  654. mode->flags |= DRM_MODE_FLAG_PVSYNC;
  655. }
  656. static bool intel_sdvo_get_supp_encode(struct intel_output *output,
  657. struct intel_sdvo_encode *encode)
  658. {
  659. uint8_t status;
  660. intel_sdvo_write_cmd(output, SDVO_CMD_GET_SUPP_ENCODE, NULL, 0);
  661. status = intel_sdvo_read_response(output, encode, sizeof(*encode));
  662. if (status != SDVO_CMD_STATUS_SUCCESS) { /* non-support means DVI */
  663. memset(encode, 0, sizeof(*encode));
  664. return false;
  665. }
  666. return true;
  667. }
  668. static bool intel_sdvo_set_encode(struct intel_output *output, uint8_t mode)
  669. {
  670. uint8_t status;
  671. intel_sdvo_write_cmd(output, SDVO_CMD_SET_ENCODE, &mode, 1);
  672. status = intel_sdvo_read_response(output, NULL, 0);
  673. return (status == SDVO_CMD_STATUS_SUCCESS);
  674. }
  675. static bool intel_sdvo_set_colorimetry(struct intel_output *output,
  676. uint8_t mode)
  677. {
  678. uint8_t status;
  679. intel_sdvo_write_cmd(output, SDVO_CMD_SET_COLORIMETRY, &mode, 1);
  680. status = intel_sdvo_read_response(output, NULL, 0);
  681. return (status == SDVO_CMD_STATUS_SUCCESS);
  682. }
  683. #if 0
  684. static void intel_sdvo_dump_hdmi_buf(struct intel_output *output)
  685. {
  686. int i, j;
  687. uint8_t set_buf_index[2];
  688. uint8_t av_split;
  689. uint8_t buf_size;
  690. uint8_t buf[48];
  691. uint8_t *pos;
  692. intel_sdvo_write_cmd(output, SDVO_CMD_GET_HBUF_AV_SPLIT, NULL, 0);
  693. intel_sdvo_read_response(output, &av_split, 1);
  694. for (i = 0; i <= av_split; i++) {
  695. set_buf_index[0] = i; set_buf_index[1] = 0;
  696. intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_INDEX,
  697. set_buf_index, 2);
  698. intel_sdvo_write_cmd(output, SDVO_CMD_GET_HBUF_INFO, NULL, 0);
  699. intel_sdvo_read_response(output, &buf_size, 1);
  700. pos = buf;
  701. for (j = 0; j <= buf_size; j += 8) {
  702. intel_sdvo_write_cmd(output, SDVO_CMD_GET_HBUF_DATA,
  703. NULL, 0);
  704. intel_sdvo_read_response(output, pos, 8);
  705. pos += 8;
  706. }
  707. }
  708. }
  709. #endif
  710. static void intel_sdvo_set_hdmi_buf(struct intel_output *output, int index,
  711. uint8_t *data, int8_t size, uint8_t tx_rate)
  712. {
  713. uint8_t set_buf_index[2];
  714. set_buf_index[0] = index;
  715. set_buf_index[1] = 0;
  716. intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_INDEX, set_buf_index, 2);
  717. for (; size > 0; size -= 8) {
  718. intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_DATA, data, 8);
  719. data += 8;
  720. }
  721. intel_sdvo_write_cmd(output, SDVO_CMD_SET_HBUF_TXRATE, &tx_rate, 1);
  722. }
  723. static uint8_t intel_sdvo_calc_hbuf_csum(uint8_t *data, uint8_t size)
  724. {
  725. uint8_t csum = 0;
  726. int i;
  727. for (i = 0; i < size; i++)
  728. csum += data[i];
  729. return 0x100 - csum;
  730. }
  731. #define DIP_TYPE_AVI 0x82
  732. #define DIP_VERSION_AVI 0x2
  733. #define DIP_LEN_AVI 13
  734. struct dip_infoframe {
  735. uint8_t type;
  736. uint8_t version;
  737. uint8_t len;
  738. uint8_t checksum;
  739. union {
  740. struct {
  741. /* Packet Byte #1 */
  742. uint8_t S:2;
  743. uint8_t B:2;
  744. uint8_t A:1;
  745. uint8_t Y:2;
  746. uint8_t rsvd1:1;
  747. /* Packet Byte #2 */
  748. uint8_t R:4;
  749. uint8_t M:2;
  750. uint8_t C:2;
  751. /* Packet Byte #3 */
  752. uint8_t SC:2;
  753. uint8_t Q:2;
  754. uint8_t EC:3;
  755. uint8_t ITC:1;
  756. /* Packet Byte #4 */
  757. uint8_t VIC:7;
  758. uint8_t rsvd2:1;
  759. /* Packet Byte #5 */
  760. uint8_t PR:4;
  761. uint8_t rsvd3:4;
  762. /* Packet Byte #6~13 */
  763. uint16_t top_bar_end;
  764. uint16_t bottom_bar_start;
  765. uint16_t left_bar_end;
  766. uint16_t right_bar_start;
  767. } avi;
  768. struct {
  769. /* Packet Byte #1 */
  770. uint8_t channel_count:3;
  771. uint8_t rsvd1:1;
  772. uint8_t coding_type:4;
  773. /* Packet Byte #2 */
  774. uint8_t sample_size:2; /* SS0, SS1 */
  775. uint8_t sample_frequency:3;
  776. uint8_t rsvd2:3;
  777. /* Packet Byte #3 */
  778. uint8_t coding_type_private:5;
  779. uint8_t rsvd3:3;
  780. /* Packet Byte #4 */
  781. uint8_t channel_allocation;
  782. /* Packet Byte #5 */
  783. uint8_t rsvd4:3;
  784. uint8_t level_shift:4;
  785. uint8_t downmix_inhibit:1;
  786. } audio;
  787. uint8_t payload[28];
  788. } __attribute__ ((packed)) u;
  789. } __attribute__((packed));
  790. static void intel_sdvo_set_avi_infoframe(struct intel_output *output,
  791. struct drm_display_mode * mode)
  792. {
  793. struct dip_infoframe avi_if = {
  794. .type = DIP_TYPE_AVI,
  795. .version = DIP_VERSION_AVI,
  796. .len = DIP_LEN_AVI,
  797. };
  798. avi_if.checksum = intel_sdvo_calc_hbuf_csum((uint8_t *)&avi_if,
  799. 4 + avi_if.len);
  800. intel_sdvo_set_hdmi_buf(output, 1, (uint8_t *)&avi_if, 4 + avi_if.len,
  801. SDVO_HBUF_TX_VSYNC);
  802. }
  803. static void intel_sdvo_set_tv_format(struct intel_output *output)
  804. {
  805. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  806. struct intel_sdvo_tv_format *format, unset;
  807. u8 status;
  808. format = &sdvo_priv->tv_format;
  809. memset(&unset, 0, sizeof(unset));
  810. if (memcmp(format, &unset, sizeof(*format))) {
  811. DRM_DEBUG("%s: Choosing default TV format of NTSC-M\n",
  812. SDVO_NAME(sdvo_priv));
  813. format->ntsc_m = 1;
  814. intel_sdvo_write_cmd(output, SDVO_CMD_SET_TV_FORMAT, format,
  815. sizeof(*format));
  816. status = intel_sdvo_read_response(output, NULL, 0);
  817. if (status != SDVO_CMD_STATUS_SUCCESS)
  818. DRM_DEBUG("%s: Failed to set TV format\n",
  819. SDVO_NAME(sdvo_priv));
  820. }
  821. }
  822. static bool intel_sdvo_mode_fixup(struct drm_encoder *encoder,
  823. struct drm_display_mode *mode,
  824. struct drm_display_mode *adjusted_mode)
  825. {
  826. struct intel_output *output = enc_to_intel_output(encoder);
  827. struct intel_sdvo_priv *dev_priv = output->dev_priv;
  828. if (dev_priv->is_tv) {
  829. struct intel_sdvo_dtd output_dtd;
  830. bool success;
  831. /* We need to construct preferred input timings based on our
  832. * output timings. To do that, we have to set the output
  833. * timings, even though this isn't really the right place in
  834. * the sequence to do it. Oh well.
  835. */
  836. /* Set output timings */
  837. intel_sdvo_get_dtd_from_mode(&output_dtd, mode);
  838. intel_sdvo_set_target_output(output,
  839. dev_priv->controlled_output);
  840. intel_sdvo_set_output_timing(output, &output_dtd);
  841. /* Set the input timing to the screen. Assume always input 0. */
  842. intel_sdvo_set_target_input(output, true, false);
  843. success = intel_sdvo_create_preferred_input_timing(output,
  844. mode->clock / 10,
  845. mode->hdisplay,
  846. mode->vdisplay);
  847. if (success) {
  848. struct intel_sdvo_dtd input_dtd;
  849. intel_sdvo_get_preferred_input_timing(output,
  850. &input_dtd);
  851. intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd);
  852. dev_priv->sdvo_flags = input_dtd.part2.sdvo_flags;
  853. drm_mode_set_crtcinfo(adjusted_mode, 0);
  854. mode->clock = adjusted_mode->clock;
  855. adjusted_mode->clock *=
  856. intel_sdvo_get_pixel_multiplier(mode);
  857. } else {
  858. return false;
  859. }
  860. } else if (dev_priv->is_lvds) {
  861. struct intel_sdvo_dtd output_dtd;
  862. bool success;
  863. drm_mode_set_crtcinfo(dev_priv->sdvo_lvds_fixed_mode, 0);
  864. /* Set output timings */
  865. intel_sdvo_get_dtd_from_mode(&output_dtd,
  866. dev_priv->sdvo_lvds_fixed_mode);
  867. intel_sdvo_set_target_output(output,
  868. dev_priv->controlled_output);
  869. intel_sdvo_set_output_timing(output, &output_dtd);
  870. /* Set the input timing to the screen. Assume always input 0. */
  871. intel_sdvo_set_target_input(output, true, false);
  872. success = intel_sdvo_create_preferred_input_timing(
  873. output,
  874. mode->clock / 10,
  875. mode->hdisplay,
  876. mode->vdisplay);
  877. if (success) {
  878. struct intel_sdvo_dtd input_dtd;
  879. intel_sdvo_get_preferred_input_timing(output,
  880. &input_dtd);
  881. intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd);
  882. dev_priv->sdvo_flags = input_dtd.part2.sdvo_flags;
  883. drm_mode_set_crtcinfo(adjusted_mode, 0);
  884. mode->clock = adjusted_mode->clock;
  885. adjusted_mode->clock *=
  886. intel_sdvo_get_pixel_multiplier(mode);
  887. } else {
  888. return false;
  889. }
  890. } else {
  891. /* Make the CRTC code factor in the SDVO pixel multiplier. The
  892. * SDVO device will be told of the multiplier during mode_set.
  893. */
  894. adjusted_mode->clock *= intel_sdvo_get_pixel_multiplier(mode);
  895. }
  896. return true;
  897. }
  898. static void intel_sdvo_mode_set(struct drm_encoder *encoder,
  899. struct drm_display_mode *mode,
  900. struct drm_display_mode *adjusted_mode)
  901. {
  902. struct drm_device *dev = encoder->dev;
  903. struct drm_i915_private *dev_priv = dev->dev_private;
  904. struct drm_crtc *crtc = encoder->crtc;
  905. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  906. struct intel_output *output = enc_to_intel_output(encoder);
  907. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  908. u32 sdvox = 0;
  909. int sdvo_pixel_multiply;
  910. struct intel_sdvo_in_out_map in_out;
  911. struct intel_sdvo_dtd input_dtd;
  912. u8 status;
  913. if (!mode)
  914. return;
  915. /* First, set the input mapping for the first input to our controlled
  916. * output. This is only correct if we're a single-input device, in
  917. * which case the first input is the output from the appropriate SDVO
  918. * channel on the motherboard. In a two-input device, the first input
  919. * will be SDVOB and the second SDVOC.
  920. */
  921. in_out.in0 = sdvo_priv->controlled_output;
  922. in_out.in1 = 0;
  923. intel_sdvo_write_cmd(output, SDVO_CMD_SET_IN_OUT_MAP,
  924. &in_out, sizeof(in_out));
  925. status = intel_sdvo_read_response(output, NULL, 0);
  926. if (sdvo_priv->is_hdmi) {
  927. intel_sdvo_set_avi_infoframe(output, mode);
  928. sdvox |= SDVO_AUDIO_ENABLE;
  929. }
  930. /* We have tried to get input timing in mode_fixup, and filled into
  931. adjusted_mode */
  932. if (sdvo_priv->is_tv || sdvo_priv->is_lvds) {
  933. intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode);
  934. input_dtd.part2.sdvo_flags = sdvo_priv->sdvo_flags;
  935. } else
  936. intel_sdvo_get_dtd_from_mode(&input_dtd, mode);
  937. /* If it's a TV, we already set the output timing in mode_fixup.
  938. * Otherwise, the output timing is equal to the input timing.
  939. */
  940. if (!sdvo_priv->is_tv && !sdvo_priv->is_lvds) {
  941. /* Set the output timing to the screen */
  942. intel_sdvo_set_target_output(output,
  943. sdvo_priv->controlled_output);
  944. intel_sdvo_set_output_timing(output, &input_dtd);
  945. }
  946. /* Set the input timing to the screen. Assume always input 0. */
  947. intel_sdvo_set_target_input(output, true, false);
  948. if (sdvo_priv->is_tv)
  949. intel_sdvo_set_tv_format(output);
  950. /* We would like to use intel_sdvo_create_preferred_input_timing() to
  951. * provide the device with a timing it can support, if it supports that
  952. * feature. However, presumably we would need to adjust the CRTC to
  953. * output the preferred timing, and we don't support that currently.
  954. */
  955. #if 0
  956. success = intel_sdvo_create_preferred_input_timing(output, clock,
  957. width, height);
  958. if (success) {
  959. struct intel_sdvo_dtd *input_dtd;
  960. intel_sdvo_get_preferred_input_timing(output, &input_dtd);
  961. intel_sdvo_set_input_timing(output, &input_dtd);
  962. }
  963. #else
  964. intel_sdvo_set_input_timing(output, &input_dtd);
  965. #endif
  966. switch (intel_sdvo_get_pixel_multiplier(mode)) {
  967. case 1:
  968. intel_sdvo_set_clock_rate_mult(output,
  969. SDVO_CLOCK_RATE_MULT_1X);
  970. break;
  971. case 2:
  972. intel_sdvo_set_clock_rate_mult(output,
  973. SDVO_CLOCK_RATE_MULT_2X);
  974. break;
  975. case 4:
  976. intel_sdvo_set_clock_rate_mult(output,
  977. SDVO_CLOCK_RATE_MULT_4X);
  978. break;
  979. }
  980. /* Set the SDVO control regs. */
  981. if (IS_I965G(dev)) {
  982. sdvox |= SDVO_BORDER_ENABLE |
  983. SDVO_VSYNC_ACTIVE_HIGH |
  984. SDVO_HSYNC_ACTIVE_HIGH;
  985. } else {
  986. sdvox |= I915_READ(sdvo_priv->output_device);
  987. switch (sdvo_priv->output_device) {
  988. case SDVOB:
  989. sdvox &= SDVOB_PRESERVE_MASK;
  990. break;
  991. case SDVOC:
  992. sdvox &= SDVOC_PRESERVE_MASK;
  993. break;
  994. }
  995. sdvox |= (9 << 19) | SDVO_BORDER_ENABLE;
  996. }
  997. if (intel_crtc->pipe == 1)
  998. sdvox |= SDVO_PIPE_B_SELECT;
  999. sdvo_pixel_multiply = intel_sdvo_get_pixel_multiplier(mode);
  1000. if (IS_I965G(dev)) {
  1001. /* done in crtc_mode_set as the dpll_md reg must be written early */
  1002. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  1003. /* done in crtc_mode_set as it lives inside the dpll register */
  1004. } else {
  1005. sdvox |= (sdvo_pixel_multiply - 1) << SDVO_PORT_MULTIPLY_SHIFT;
  1006. }
  1007. if (sdvo_priv->sdvo_flags & SDVO_NEED_TO_STALL)
  1008. sdvox |= SDVO_STALL_SELECT;
  1009. intel_sdvo_write_sdvox(output, sdvox);
  1010. }
  1011. static void intel_sdvo_dpms(struct drm_encoder *encoder, int mode)
  1012. {
  1013. struct drm_device *dev = encoder->dev;
  1014. struct drm_i915_private *dev_priv = dev->dev_private;
  1015. struct intel_output *intel_output = enc_to_intel_output(encoder);
  1016. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1017. u32 temp;
  1018. if (mode != DRM_MODE_DPMS_ON) {
  1019. intel_sdvo_set_active_outputs(intel_output, 0);
  1020. if (0)
  1021. intel_sdvo_set_encoder_power_state(intel_output, mode);
  1022. if (mode == DRM_MODE_DPMS_OFF) {
  1023. temp = I915_READ(sdvo_priv->output_device);
  1024. if ((temp & SDVO_ENABLE) != 0) {
  1025. intel_sdvo_write_sdvox(intel_output, temp & ~SDVO_ENABLE);
  1026. }
  1027. }
  1028. } else {
  1029. bool input1, input2;
  1030. int i;
  1031. u8 status;
  1032. temp = I915_READ(sdvo_priv->output_device);
  1033. if ((temp & SDVO_ENABLE) == 0)
  1034. intel_sdvo_write_sdvox(intel_output, temp | SDVO_ENABLE);
  1035. for (i = 0; i < 2; i++)
  1036. intel_wait_for_vblank(dev);
  1037. status = intel_sdvo_get_trained_inputs(intel_output, &input1,
  1038. &input2);
  1039. /* Warn if the device reported failure to sync.
  1040. * A lot of SDVO devices fail to notify of sync, but it's
  1041. * a given it the status is a success, we succeeded.
  1042. */
  1043. if (status == SDVO_CMD_STATUS_SUCCESS && !input1) {
  1044. DRM_DEBUG("First %s output reported failure to sync\n",
  1045. SDVO_NAME(sdvo_priv));
  1046. }
  1047. if (0)
  1048. intel_sdvo_set_encoder_power_state(intel_output, mode);
  1049. intel_sdvo_set_active_outputs(intel_output, sdvo_priv->controlled_output);
  1050. }
  1051. return;
  1052. }
  1053. static void intel_sdvo_save(struct drm_connector *connector)
  1054. {
  1055. struct drm_device *dev = connector->dev;
  1056. struct drm_i915_private *dev_priv = dev->dev_private;
  1057. struct intel_output *intel_output = to_intel_output(connector);
  1058. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1059. int o;
  1060. sdvo_priv->save_sdvo_mult = intel_sdvo_get_clock_rate_mult(intel_output);
  1061. intel_sdvo_get_active_outputs(intel_output, &sdvo_priv->save_active_outputs);
  1062. if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) {
  1063. intel_sdvo_set_target_input(intel_output, true, false);
  1064. intel_sdvo_get_input_timing(intel_output,
  1065. &sdvo_priv->save_input_dtd_1);
  1066. }
  1067. if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) {
  1068. intel_sdvo_set_target_input(intel_output, false, true);
  1069. intel_sdvo_get_input_timing(intel_output,
  1070. &sdvo_priv->save_input_dtd_2);
  1071. }
  1072. for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++)
  1073. {
  1074. u16 this_output = (1 << o);
  1075. if (sdvo_priv->caps.output_flags & this_output)
  1076. {
  1077. intel_sdvo_set_target_output(intel_output, this_output);
  1078. intel_sdvo_get_output_timing(intel_output,
  1079. &sdvo_priv->save_output_dtd[o]);
  1080. }
  1081. }
  1082. if (sdvo_priv->is_tv) {
  1083. /* XXX: Save TV format/enhancements. */
  1084. }
  1085. sdvo_priv->save_SDVOX = I915_READ(sdvo_priv->output_device);
  1086. }
  1087. static void intel_sdvo_restore(struct drm_connector *connector)
  1088. {
  1089. struct drm_device *dev = connector->dev;
  1090. struct intel_output *intel_output = to_intel_output(connector);
  1091. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1092. int o;
  1093. int i;
  1094. bool input1, input2;
  1095. u8 status;
  1096. intel_sdvo_set_active_outputs(intel_output, 0);
  1097. for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++)
  1098. {
  1099. u16 this_output = (1 << o);
  1100. if (sdvo_priv->caps.output_flags & this_output) {
  1101. intel_sdvo_set_target_output(intel_output, this_output);
  1102. intel_sdvo_set_output_timing(intel_output, &sdvo_priv->save_output_dtd[o]);
  1103. }
  1104. }
  1105. if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) {
  1106. intel_sdvo_set_target_input(intel_output, true, false);
  1107. intel_sdvo_set_input_timing(intel_output, &sdvo_priv->save_input_dtd_1);
  1108. }
  1109. if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) {
  1110. intel_sdvo_set_target_input(intel_output, false, true);
  1111. intel_sdvo_set_input_timing(intel_output, &sdvo_priv->save_input_dtd_2);
  1112. }
  1113. intel_sdvo_set_clock_rate_mult(intel_output, sdvo_priv->save_sdvo_mult);
  1114. if (sdvo_priv->is_tv) {
  1115. /* XXX: Restore TV format/enhancements. */
  1116. }
  1117. intel_sdvo_write_sdvox(intel_output, sdvo_priv->save_SDVOX);
  1118. if (sdvo_priv->save_SDVOX & SDVO_ENABLE)
  1119. {
  1120. for (i = 0; i < 2; i++)
  1121. intel_wait_for_vblank(dev);
  1122. status = intel_sdvo_get_trained_inputs(intel_output, &input1, &input2);
  1123. if (status == SDVO_CMD_STATUS_SUCCESS && !input1)
  1124. DRM_DEBUG("First %s output reported failure to sync\n",
  1125. SDVO_NAME(sdvo_priv));
  1126. }
  1127. intel_sdvo_set_active_outputs(intel_output, sdvo_priv->save_active_outputs);
  1128. }
  1129. static int intel_sdvo_mode_valid(struct drm_connector *connector,
  1130. struct drm_display_mode *mode)
  1131. {
  1132. struct intel_output *intel_output = to_intel_output(connector);
  1133. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1134. if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
  1135. return MODE_NO_DBLESCAN;
  1136. if (sdvo_priv->pixel_clock_min > mode->clock)
  1137. return MODE_CLOCK_LOW;
  1138. if (sdvo_priv->pixel_clock_max < mode->clock)
  1139. return MODE_CLOCK_HIGH;
  1140. if (sdvo_priv->is_lvds == true) {
  1141. if (sdvo_priv->sdvo_lvds_fixed_mode == NULL)
  1142. return MODE_PANEL;
  1143. if (mode->hdisplay > sdvo_priv->sdvo_lvds_fixed_mode->hdisplay)
  1144. return MODE_PANEL;
  1145. if (mode->vdisplay > sdvo_priv->sdvo_lvds_fixed_mode->vdisplay)
  1146. return MODE_PANEL;
  1147. }
  1148. return MODE_OK;
  1149. }
  1150. static bool intel_sdvo_get_capabilities(struct intel_output *intel_output, struct intel_sdvo_caps *caps)
  1151. {
  1152. u8 status;
  1153. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_DEVICE_CAPS, NULL, 0);
  1154. status = intel_sdvo_read_response(intel_output, caps, sizeof(*caps));
  1155. if (status != SDVO_CMD_STATUS_SUCCESS)
  1156. return false;
  1157. return true;
  1158. }
  1159. struct drm_connector* intel_sdvo_find(struct drm_device *dev, int sdvoB)
  1160. {
  1161. struct drm_connector *connector = NULL;
  1162. struct intel_output *iout = NULL;
  1163. struct intel_sdvo_priv *sdvo;
  1164. /* find the sdvo connector */
  1165. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  1166. iout = to_intel_output(connector);
  1167. if (iout->type != INTEL_OUTPUT_SDVO)
  1168. continue;
  1169. sdvo = iout->dev_priv;
  1170. if (sdvo->output_device == SDVOB && sdvoB)
  1171. return connector;
  1172. if (sdvo->output_device == SDVOC && !sdvoB)
  1173. return connector;
  1174. }
  1175. return NULL;
  1176. }
  1177. int intel_sdvo_supports_hotplug(struct drm_connector *connector)
  1178. {
  1179. u8 response[2];
  1180. u8 status;
  1181. struct intel_output *intel_output;
  1182. DRM_DEBUG("\n");
  1183. if (!connector)
  1184. return 0;
  1185. intel_output = to_intel_output(connector);
  1186. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0);
  1187. status = intel_sdvo_read_response(intel_output, &response, 2);
  1188. if (response[0] !=0)
  1189. return 1;
  1190. return 0;
  1191. }
  1192. void intel_sdvo_set_hotplug(struct drm_connector *connector, int on)
  1193. {
  1194. u8 response[2];
  1195. u8 status;
  1196. struct intel_output *intel_output = to_intel_output(connector);
  1197. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0);
  1198. intel_sdvo_read_response(intel_output, &response, 2);
  1199. if (on) {
  1200. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0);
  1201. status = intel_sdvo_read_response(intel_output, &response, 2);
  1202. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2);
  1203. } else {
  1204. response[0] = 0;
  1205. response[1] = 0;
  1206. intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2);
  1207. }
  1208. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0);
  1209. intel_sdvo_read_response(intel_output, &response, 2);
  1210. }
  1211. static bool
  1212. intel_sdvo_multifunc_encoder(struct intel_output *intel_output)
  1213. {
  1214. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1215. int caps = 0;
  1216. if (sdvo_priv->caps.output_flags &
  1217. (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1))
  1218. caps++;
  1219. if (sdvo_priv->caps.output_flags &
  1220. (SDVO_OUTPUT_RGB0 | SDVO_OUTPUT_RGB1))
  1221. caps++;
  1222. if (sdvo_priv->caps.output_flags &
  1223. (SDVO_OUTPUT_SVID0 | SDVO_OUTPUT_SVID0))
  1224. caps++;
  1225. if (sdvo_priv->caps.output_flags &
  1226. (SDVO_OUTPUT_CVBS0 | SDVO_OUTPUT_CVBS1))
  1227. caps++;
  1228. if (sdvo_priv->caps.output_flags &
  1229. (SDVO_OUTPUT_YPRPB0 | SDVO_OUTPUT_YPRPB1))
  1230. caps++;
  1231. if (sdvo_priv->caps.output_flags &
  1232. (SDVO_OUTPUT_SCART0 | SDVO_OUTPUT_SCART1))
  1233. caps++;
  1234. if (sdvo_priv->caps.output_flags &
  1235. (SDVO_OUTPUT_LVDS0 | SDVO_OUTPUT_LVDS1))
  1236. caps++;
  1237. return (caps > 1);
  1238. }
  1239. static void
  1240. intel_sdvo_hdmi_sink_detect(struct drm_connector *connector)
  1241. {
  1242. struct intel_output *intel_output = to_intel_output(connector);
  1243. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1244. struct edid *edid = NULL;
  1245. edid = drm_get_edid(&intel_output->base,
  1246. intel_output->ddc_bus);
  1247. if (edid != NULL) {
  1248. sdvo_priv->is_hdmi = drm_detect_hdmi_monitor(edid);
  1249. kfree(edid);
  1250. intel_output->base.display_info.raw_edid = NULL;
  1251. }
  1252. }
  1253. static enum drm_connector_status intel_sdvo_detect(struct drm_connector *connector)
  1254. {
  1255. uint16_t response;
  1256. u8 status;
  1257. struct intel_output *intel_output = to_intel_output(connector);
  1258. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1259. intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ATTACHED_DISPLAYS, NULL, 0);
  1260. status = intel_sdvo_read_response(intel_output, &response, 2);
  1261. DRM_DEBUG("SDVO response %d %d\n", response & 0xff, response >> 8);
  1262. if (status != SDVO_CMD_STATUS_SUCCESS)
  1263. return connector_status_unknown;
  1264. if (response == 0)
  1265. return connector_status_disconnected;
  1266. if (intel_sdvo_multifunc_encoder(intel_output) &&
  1267. sdvo_priv->attached_output != response) {
  1268. if (sdvo_priv->controlled_output != response &&
  1269. intel_sdvo_output_setup(intel_output, response) != true)
  1270. return connector_status_unknown;
  1271. sdvo_priv->attached_output = response;
  1272. }
  1273. intel_sdvo_hdmi_sink_detect(connector);
  1274. return connector_status_connected;
  1275. }
  1276. static void intel_sdvo_get_ddc_modes(struct drm_connector *connector)
  1277. {
  1278. struct intel_output *intel_output = to_intel_output(connector);
  1279. /* set the bus switch and get the modes */
  1280. intel_ddc_get_modes(intel_output);
  1281. #if 0
  1282. struct drm_device *dev = encoder->dev;
  1283. struct drm_i915_private *dev_priv = dev->dev_private;
  1284. /* Mac mini hack. On this device, I get DDC through the analog, which
  1285. * load-detects as disconnected. I fail to DDC through the SDVO DDC,
  1286. * but it does load-detect as connected. So, just steal the DDC bits
  1287. * from analog when we fail at finding it the right way.
  1288. */
  1289. crt = xf86_config->output[0];
  1290. intel_output = crt->driver_private;
  1291. if (intel_output->type == I830_OUTPUT_ANALOG &&
  1292. crt->funcs->detect(crt) == XF86OutputStatusDisconnected) {
  1293. I830I2CInit(pScrn, &intel_output->pDDCBus, GPIOA, "CRTDDC_A");
  1294. edid_mon = xf86OutputGetEDID(crt, intel_output->pDDCBus);
  1295. xf86DestroyI2CBusRec(intel_output->pDDCBus, true, true);
  1296. }
  1297. if (edid_mon) {
  1298. xf86OutputSetEDID(output, edid_mon);
  1299. modes = xf86OutputGetEDIDModes(output);
  1300. }
  1301. #endif
  1302. }
  1303. /**
  1304. * This function checks the current TV format, and chooses a default if
  1305. * it hasn't been set.
  1306. */
  1307. static void
  1308. intel_sdvo_check_tv_format(struct intel_output *output)
  1309. {
  1310. struct intel_sdvo_priv *dev_priv = output->dev_priv;
  1311. struct intel_sdvo_tv_format format;
  1312. uint8_t status;
  1313. intel_sdvo_write_cmd(output, SDVO_CMD_GET_TV_FORMAT, NULL, 0);
  1314. status = intel_sdvo_read_response(output, &format, sizeof(format));
  1315. if (status != SDVO_CMD_STATUS_SUCCESS)
  1316. return;
  1317. memcpy(&dev_priv->tv_format, &format, sizeof(format));
  1318. }
  1319. /*
  1320. * Set of SDVO TV modes.
  1321. * Note! This is in reply order (see loop in get_tv_modes).
  1322. * XXX: all 60Hz refresh?
  1323. */
  1324. struct drm_display_mode sdvo_tv_modes[] = {
  1325. { DRM_MODE("320x200", DRM_MODE_TYPE_DRIVER, 5815, 320, 321, 384,
  1326. 416, 0, 200, 201, 232, 233, 0,
  1327. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1328. { DRM_MODE("320x240", DRM_MODE_TYPE_DRIVER, 6814, 320, 321, 384,
  1329. 416, 0, 240, 241, 272, 273, 0,
  1330. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1331. { DRM_MODE("400x300", DRM_MODE_TYPE_DRIVER, 9910, 400, 401, 464,
  1332. 496, 0, 300, 301, 332, 333, 0,
  1333. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1334. { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 16913, 640, 641, 704,
  1335. 736, 0, 350, 351, 382, 383, 0,
  1336. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1337. { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 19121, 640, 641, 704,
  1338. 736, 0, 400, 401, 432, 433, 0,
  1339. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1340. { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 22654, 640, 641, 704,
  1341. 736, 0, 480, 481, 512, 513, 0,
  1342. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1343. { DRM_MODE("704x480", DRM_MODE_TYPE_DRIVER, 24624, 704, 705, 768,
  1344. 800, 0, 480, 481, 512, 513, 0,
  1345. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1346. { DRM_MODE("704x576", DRM_MODE_TYPE_DRIVER, 29232, 704, 705, 768,
  1347. 800, 0, 576, 577, 608, 609, 0,
  1348. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1349. { DRM_MODE("720x350", DRM_MODE_TYPE_DRIVER, 18751, 720, 721, 784,
  1350. 816, 0, 350, 351, 382, 383, 0,
  1351. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1352. { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 21199, 720, 721, 784,
  1353. 816, 0, 400, 401, 432, 433, 0,
  1354. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1355. { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 25116, 720, 721, 784,
  1356. 816, 0, 480, 481, 512, 513, 0,
  1357. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1358. { DRM_MODE("720x540", DRM_MODE_TYPE_DRIVER, 28054, 720, 721, 784,
  1359. 816, 0, 540, 541, 572, 573, 0,
  1360. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1361. { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 29816, 720, 721, 784,
  1362. 816, 0, 576, 577, 608, 609, 0,
  1363. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1364. { DRM_MODE("768x576", DRM_MODE_TYPE_DRIVER, 31570, 768, 769, 832,
  1365. 864, 0, 576, 577, 608, 609, 0,
  1366. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1367. { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 34030, 800, 801, 864,
  1368. 896, 0, 600, 601, 632, 633, 0,
  1369. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1370. { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 36581, 832, 833, 896,
  1371. 928, 0, 624, 625, 656, 657, 0,
  1372. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1373. { DRM_MODE("920x766", DRM_MODE_TYPE_DRIVER, 48707, 920, 921, 984,
  1374. 1016, 0, 766, 767, 798, 799, 0,
  1375. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1376. { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 53827, 1024, 1025, 1088,
  1377. 1120, 0, 768, 769, 800, 801, 0,
  1378. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1379. { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 87265, 1280, 1281, 1344,
  1380. 1376, 0, 1024, 1025, 1056, 1057, 0,
  1381. DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
  1382. };
  1383. static void intel_sdvo_get_tv_modes(struct drm_connector *connector)
  1384. {
  1385. struct intel_output *output = to_intel_output(connector);
  1386. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  1387. struct intel_sdvo_sdtv_resolution_request tv_res;
  1388. uint32_t reply = 0;
  1389. uint8_t status;
  1390. int i = 0;
  1391. intel_sdvo_check_tv_format(output);
  1392. /* Read the list of supported input resolutions for the selected TV
  1393. * format.
  1394. */
  1395. memset(&tv_res, 0, sizeof(tv_res));
  1396. memcpy(&tv_res, &sdvo_priv->tv_format, sizeof(tv_res));
  1397. intel_sdvo_write_cmd(output, SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT,
  1398. &tv_res, sizeof(tv_res));
  1399. status = intel_sdvo_read_response(output, &reply, 3);
  1400. if (status != SDVO_CMD_STATUS_SUCCESS)
  1401. return;
  1402. for (i = 0; i < ARRAY_SIZE(sdvo_tv_modes); i++)
  1403. if (reply & (1 << i)) {
  1404. struct drm_display_mode *nmode;
  1405. nmode = drm_mode_duplicate(connector->dev,
  1406. &sdvo_tv_modes[i]);
  1407. if (nmode)
  1408. drm_mode_probed_add(connector, nmode);
  1409. }
  1410. }
  1411. static void intel_sdvo_get_lvds_modes(struct drm_connector *connector)
  1412. {
  1413. struct intel_output *intel_output = to_intel_output(connector);
  1414. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1415. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1416. struct drm_display_mode *newmode;
  1417. /*
  1418. * Attempt to get the mode list from DDC.
  1419. * Assume that the preferred modes are
  1420. * arranged in priority order.
  1421. */
  1422. intel_ddc_get_modes(intel_output);
  1423. if (list_empty(&connector->probed_modes) == false)
  1424. goto end;
  1425. /* Fetch modes from VBT */
  1426. if (dev_priv->sdvo_lvds_vbt_mode != NULL) {
  1427. newmode = drm_mode_duplicate(connector->dev,
  1428. dev_priv->sdvo_lvds_vbt_mode);
  1429. if (newmode != NULL) {
  1430. /* Guarantee the mode is preferred */
  1431. newmode->type = (DRM_MODE_TYPE_PREFERRED |
  1432. DRM_MODE_TYPE_DRIVER);
  1433. drm_mode_probed_add(connector, newmode);
  1434. }
  1435. }
  1436. end:
  1437. list_for_each_entry(newmode, &connector->probed_modes, head) {
  1438. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1439. sdvo_priv->sdvo_lvds_fixed_mode =
  1440. drm_mode_duplicate(connector->dev, newmode);
  1441. break;
  1442. }
  1443. }
  1444. }
  1445. static int intel_sdvo_get_modes(struct drm_connector *connector)
  1446. {
  1447. struct intel_output *output = to_intel_output(connector);
  1448. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  1449. if (sdvo_priv->is_tv)
  1450. intel_sdvo_get_tv_modes(connector);
  1451. else if (sdvo_priv->is_lvds == true)
  1452. intel_sdvo_get_lvds_modes(connector);
  1453. else
  1454. intel_sdvo_get_ddc_modes(connector);
  1455. if (list_empty(&connector->probed_modes))
  1456. return 0;
  1457. return 1;
  1458. }
  1459. static void intel_sdvo_destroy(struct drm_connector *connector)
  1460. {
  1461. struct intel_output *intel_output = to_intel_output(connector);
  1462. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1463. if (intel_output->i2c_bus)
  1464. intel_i2c_destroy(intel_output->i2c_bus);
  1465. if (intel_output->ddc_bus)
  1466. intel_i2c_destroy(intel_output->ddc_bus);
  1467. if (sdvo_priv->sdvo_lvds_fixed_mode != NULL)
  1468. drm_mode_destroy(connector->dev,
  1469. sdvo_priv->sdvo_lvds_fixed_mode);
  1470. drm_sysfs_connector_remove(connector);
  1471. drm_connector_cleanup(connector);
  1472. kfree(intel_output);
  1473. }
  1474. static const struct drm_encoder_helper_funcs intel_sdvo_helper_funcs = {
  1475. .dpms = intel_sdvo_dpms,
  1476. .mode_fixup = intel_sdvo_mode_fixup,
  1477. .prepare = intel_encoder_prepare,
  1478. .mode_set = intel_sdvo_mode_set,
  1479. .commit = intel_encoder_commit,
  1480. };
  1481. static const struct drm_connector_funcs intel_sdvo_connector_funcs = {
  1482. .dpms = drm_helper_connector_dpms,
  1483. .save = intel_sdvo_save,
  1484. .restore = intel_sdvo_restore,
  1485. .detect = intel_sdvo_detect,
  1486. .fill_modes = drm_helper_probe_single_connector_modes,
  1487. .destroy = intel_sdvo_destroy,
  1488. };
  1489. static const struct drm_connector_helper_funcs intel_sdvo_connector_helper_funcs = {
  1490. .get_modes = intel_sdvo_get_modes,
  1491. .mode_valid = intel_sdvo_mode_valid,
  1492. .best_encoder = intel_best_encoder,
  1493. };
  1494. static void intel_sdvo_enc_destroy(struct drm_encoder *encoder)
  1495. {
  1496. drm_encoder_cleanup(encoder);
  1497. }
  1498. static const struct drm_encoder_funcs intel_sdvo_enc_funcs = {
  1499. .destroy = intel_sdvo_enc_destroy,
  1500. };
  1501. /**
  1502. * Choose the appropriate DDC bus for control bus switch command for this
  1503. * SDVO output based on the controlled output.
  1504. *
  1505. * DDC bus number assignment is in a priority order of RGB outputs, then TMDS
  1506. * outputs, then LVDS outputs.
  1507. */
  1508. static void
  1509. intel_sdvo_select_ddc_bus(struct intel_sdvo_priv *dev_priv)
  1510. {
  1511. uint16_t mask = 0;
  1512. unsigned int num_bits;
  1513. /* Make a mask of outputs less than or equal to our own priority in the
  1514. * list.
  1515. */
  1516. switch (dev_priv->controlled_output) {
  1517. case SDVO_OUTPUT_LVDS1:
  1518. mask |= SDVO_OUTPUT_LVDS1;
  1519. case SDVO_OUTPUT_LVDS0:
  1520. mask |= SDVO_OUTPUT_LVDS0;
  1521. case SDVO_OUTPUT_TMDS1:
  1522. mask |= SDVO_OUTPUT_TMDS1;
  1523. case SDVO_OUTPUT_TMDS0:
  1524. mask |= SDVO_OUTPUT_TMDS0;
  1525. case SDVO_OUTPUT_RGB1:
  1526. mask |= SDVO_OUTPUT_RGB1;
  1527. case SDVO_OUTPUT_RGB0:
  1528. mask |= SDVO_OUTPUT_RGB0;
  1529. break;
  1530. }
  1531. /* Count bits to find what number we are in the priority list. */
  1532. mask &= dev_priv->caps.output_flags;
  1533. num_bits = hweight16(mask);
  1534. if (num_bits > 3) {
  1535. /* if more than 3 outputs, default to DDC bus 3 for now */
  1536. num_bits = 3;
  1537. }
  1538. /* Corresponds to SDVO_CONTROL_BUS_DDCx */
  1539. dev_priv->ddc_bus = 1 << num_bits;
  1540. }
  1541. static bool
  1542. intel_sdvo_get_digital_encoding_mode(struct intel_output *output)
  1543. {
  1544. struct intel_sdvo_priv *sdvo_priv = output->dev_priv;
  1545. uint8_t status;
  1546. intel_sdvo_set_target_output(output, sdvo_priv->controlled_output);
  1547. intel_sdvo_write_cmd(output, SDVO_CMD_GET_ENCODE, NULL, 0);
  1548. status = intel_sdvo_read_response(output, &sdvo_priv->is_hdmi, 1);
  1549. if (status != SDVO_CMD_STATUS_SUCCESS)
  1550. return false;
  1551. return true;
  1552. }
  1553. static struct intel_output *
  1554. intel_sdvo_chan_to_intel_output(struct intel_i2c_chan *chan)
  1555. {
  1556. struct drm_device *dev = chan->drm_dev;
  1557. struct drm_connector *connector;
  1558. struct intel_output *intel_output = NULL;
  1559. list_for_each_entry(connector,
  1560. &dev->mode_config.connector_list, head) {
  1561. if (to_intel_output(connector)->ddc_bus == &chan->adapter) {
  1562. intel_output = to_intel_output(connector);
  1563. break;
  1564. }
  1565. }
  1566. return intel_output;
  1567. }
  1568. static int intel_sdvo_master_xfer(struct i2c_adapter *i2c_adap,
  1569. struct i2c_msg msgs[], int num)
  1570. {
  1571. struct intel_output *intel_output;
  1572. struct intel_sdvo_priv *sdvo_priv;
  1573. struct i2c_algo_bit_data *algo_data;
  1574. const struct i2c_algorithm *algo;
  1575. algo_data = (struct i2c_algo_bit_data *)i2c_adap->algo_data;
  1576. intel_output =
  1577. intel_sdvo_chan_to_intel_output(
  1578. (struct intel_i2c_chan *)(algo_data->data));
  1579. if (intel_output == NULL)
  1580. return -EINVAL;
  1581. sdvo_priv = intel_output->dev_priv;
  1582. algo = intel_output->i2c_bus->algo;
  1583. intel_sdvo_set_control_bus_switch(intel_output, sdvo_priv->ddc_bus);
  1584. return algo->master_xfer(i2c_adap, msgs, num);
  1585. }
  1586. static struct i2c_algorithm intel_sdvo_i2c_bit_algo = {
  1587. .master_xfer = intel_sdvo_master_xfer,
  1588. };
  1589. static u8
  1590. intel_sdvo_get_slave_addr(struct drm_device *dev, int output_device)
  1591. {
  1592. struct drm_i915_private *dev_priv = dev->dev_private;
  1593. struct sdvo_device_mapping *my_mapping, *other_mapping;
  1594. if (output_device == SDVOB) {
  1595. my_mapping = &dev_priv->sdvo_mappings[0];
  1596. other_mapping = &dev_priv->sdvo_mappings[1];
  1597. } else {
  1598. my_mapping = &dev_priv->sdvo_mappings[1];
  1599. other_mapping = &dev_priv->sdvo_mappings[0];
  1600. }
  1601. /* If the BIOS described our SDVO device, take advantage of it. */
  1602. if (my_mapping->slave_addr)
  1603. return my_mapping->slave_addr;
  1604. /* If the BIOS only described a different SDVO device, use the
  1605. * address that it isn't using.
  1606. */
  1607. if (other_mapping->slave_addr) {
  1608. if (other_mapping->slave_addr == 0x70)
  1609. return 0x72;
  1610. else
  1611. return 0x70;
  1612. }
  1613. /* No SDVO device info is found for another DVO port,
  1614. * so use mapping assumption we had before BIOS parsing.
  1615. */
  1616. if (output_device == SDVOB)
  1617. return 0x70;
  1618. else
  1619. return 0x72;
  1620. }
  1621. static bool
  1622. intel_sdvo_output_setup(struct intel_output *intel_output, uint16_t flags)
  1623. {
  1624. struct drm_connector *connector = &intel_output->base;
  1625. struct drm_encoder *encoder = &intel_output->enc;
  1626. struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
  1627. bool ret = true, registered = false;
  1628. sdvo_priv->is_tv = false;
  1629. intel_output->needs_tv_clock = false;
  1630. sdvo_priv->is_lvds = false;
  1631. if (device_is_registered(&connector->kdev)) {
  1632. drm_sysfs_connector_remove(connector);
  1633. registered = true;
  1634. }
  1635. if (flags &
  1636. (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1)) {
  1637. if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_TMDS0)
  1638. sdvo_priv->controlled_output = SDVO_OUTPUT_TMDS0;
  1639. else
  1640. sdvo_priv->controlled_output = SDVO_OUTPUT_TMDS1;
  1641. encoder->encoder_type = DRM_MODE_ENCODER_TMDS;
  1642. connector->connector_type = DRM_MODE_CONNECTOR_DVID;
  1643. if (intel_sdvo_get_supp_encode(intel_output,
  1644. &sdvo_priv->encode) &&
  1645. intel_sdvo_get_digital_encoding_mode(intel_output) &&
  1646. sdvo_priv->is_hdmi) {
  1647. /* enable hdmi encoding mode if supported */
  1648. intel_sdvo_set_encode(intel_output, SDVO_ENCODE_HDMI);
  1649. intel_sdvo_set_colorimetry(intel_output,
  1650. SDVO_COLORIMETRY_RGB256);
  1651. connector->connector_type = DRM_MODE_CONNECTOR_HDMIA;
  1652. }
  1653. } else if (flags & SDVO_OUTPUT_SVID0) {
  1654. sdvo_priv->controlled_output = SDVO_OUTPUT_SVID0;
  1655. encoder->encoder_type = DRM_MODE_ENCODER_TVDAC;
  1656. connector->connector_type = DRM_MODE_CONNECTOR_SVIDEO;
  1657. sdvo_priv->is_tv = true;
  1658. intel_output->needs_tv_clock = true;
  1659. } else if (flags & SDVO_OUTPUT_RGB0) {
  1660. sdvo_priv->controlled_output = SDVO_OUTPUT_RGB0;
  1661. encoder->encoder_type = DRM_MODE_ENCODER_DAC;
  1662. connector->connector_type = DRM_MODE_CONNECTOR_VGA;
  1663. } else if (flags & SDVO_OUTPUT_RGB1) {
  1664. sdvo_priv->controlled_output = SDVO_OUTPUT_RGB1;
  1665. encoder->encoder_type = DRM_MODE_ENCODER_DAC;
  1666. connector->connector_type = DRM_MODE_CONNECTOR_VGA;
  1667. } else if (flags & SDVO_OUTPUT_LVDS0) {
  1668. sdvo_priv->controlled_output = SDVO_OUTPUT_LVDS0;
  1669. encoder->encoder_type = DRM_MODE_ENCODER_LVDS;
  1670. connector->connector_type = DRM_MODE_CONNECTOR_LVDS;
  1671. sdvo_priv->is_lvds = true;
  1672. } else if (flags & SDVO_OUTPUT_LVDS1) {
  1673. sdvo_priv->controlled_output = SDVO_OUTPUT_LVDS1;
  1674. encoder->encoder_type = DRM_MODE_ENCODER_LVDS;
  1675. connector->connector_type = DRM_MODE_CONNECTOR_LVDS;
  1676. sdvo_priv->is_lvds = true;
  1677. } else {
  1678. unsigned char bytes[2];
  1679. sdvo_priv->controlled_output = 0;
  1680. memcpy(bytes, &sdvo_priv->caps.output_flags, 2);
  1681. DRM_DEBUG_KMS(I915_SDVO,
  1682. "%s: Unknown SDVO output type (0x%02x%02x)\n",
  1683. SDVO_NAME(sdvo_priv),
  1684. bytes[0], bytes[1]);
  1685. ret = false;
  1686. }
  1687. if (ret && registered)
  1688. ret = drm_sysfs_connector_add(connector) == 0 ? true : false;
  1689. return ret;
  1690. }
  1691. bool intel_sdvo_init(struct drm_device *dev, int output_device)
  1692. {
  1693. struct drm_connector *connector;
  1694. struct intel_output *intel_output;
  1695. struct intel_sdvo_priv *sdvo_priv;
  1696. u8 ch[0x40];
  1697. int i;
  1698. intel_output = kcalloc(sizeof(struct intel_output)+sizeof(struct intel_sdvo_priv), 1, GFP_KERNEL);
  1699. if (!intel_output) {
  1700. return false;
  1701. }
  1702. sdvo_priv = (struct intel_sdvo_priv *)(intel_output + 1);
  1703. sdvo_priv->output_device = output_device;
  1704. intel_output->dev_priv = sdvo_priv;
  1705. intel_output->type = INTEL_OUTPUT_SDVO;
  1706. /* setup the DDC bus. */
  1707. if (output_device == SDVOB)
  1708. intel_output->i2c_bus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOB");
  1709. else
  1710. intel_output->i2c_bus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOC");
  1711. if (!intel_output->i2c_bus)
  1712. goto err_inteloutput;
  1713. sdvo_priv->slave_addr = intel_sdvo_get_slave_addr(dev, output_device);
  1714. /* Save the bit-banging i2c functionality for use by the DDC wrapper */
  1715. intel_sdvo_i2c_bit_algo.functionality = intel_output->i2c_bus->algo->functionality;
  1716. /* Read the regs to test if we can talk to the device */
  1717. for (i = 0; i < 0x40; i++) {
  1718. if (!intel_sdvo_read_byte(intel_output, i, &ch[i])) {
  1719. DRM_DEBUG_KMS(I915_SDVO,
  1720. "No SDVO device found on SDVO%c\n",
  1721. output_device == SDVOB ? 'B' : 'C');
  1722. goto err_i2c;
  1723. }
  1724. }
  1725. /* setup the DDC bus. */
  1726. if (output_device == SDVOB)
  1727. intel_output->ddc_bus = intel_i2c_create(dev, GPIOE, "SDVOB DDC BUS");
  1728. else
  1729. intel_output->ddc_bus = intel_i2c_create(dev, GPIOE, "SDVOC DDC BUS");
  1730. if (intel_output->ddc_bus == NULL)
  1731. goto err_i2c;
  1732. /* Wrap with our custom algo which switches to DDC mode */
  1733. intel_output->ddc_bus->algo = &intel_sdvo_i2c_bit_algo;
  1734. /* In defaut case sdvo lvds is false */
  1735. intel_sdvo_get_capabilities(intel_output, &sdvo_priv->caps);
  1736. if (intel_sdvo_output_setup(intel_output,
  1737. sdvo_priv->caps.output_flags) != true) {
  1738. DRM_DEBUG("SDVO output failed to setup on SDVO%c\n",
  1739. output_device == SDVOB ? 'B' : 'C');
  1740. goto err_i2c;
  1741. }
  1742. connector = &intel_output->base;
  1743. drm_connector_init(dev, connector, &intel_sdvo_connector_funcs,
  1744. connector->connector_type);
  1745. drm_connector_helper_add(connector, &intel_sdvo_connector_helper_funcs);
  1746. connector->interlace_allowed = 0;
  1747. connector->doublescan_allowed = 0;
  1748. connector->display_info.subpixel_order = SubPixelHorizontalRGB;
  1749. drm_encoder_init(dev, &intel_output->enc,
  1750. &intel_sdvo_enc_funcs, intel_output->enc.encoder_type);
  1751. drm_encoder_helper_add(&intel_output->enc, &intel_sdvo_helper_funcs);
  1752. drm_mode_connector_attach_encoder(&intel_output->base, &intel_output->enc);
  1753. drm_sysfs_connector_add(connector);
  1754. intel_sdvo_select_ddc_bus(sdvo_priv);
  1755. /* Set the input timing to the screen. Assume always input 0. */
  1756. intel_sdvo_set_target_input(intel_output, true, false);
  1757. intel_sdvo_get_input_pixel_clock_range(intel_output,
  1758. &sdvo_priv->pixel_clock_min,
  1759. &sdvo_priv->pixel_clock_max);
  1760. DRM_DEBUG_KMS(I915_SDVO, "%s device VID/DID: %02X:%02X.%02X, "
  1761. "clock range %dMHz - %dMHz, "
  1762. "input 1: %c, input 2: %c, "
  1763. "output 1: %c, output 2: %c\n",
  1764. SDVO_NAME(sdvo_priv),
  1765. sdvo_priv->caps.vendor_id, sdvo_priv->caps.device_id,
  1766. sdvo_priv->caps.device_rev_id,
  1767. sdvo_priv->pixel_clock_min / 1000,
  1768. sdvo_priv->pixel_clock_max / 1000,
  1769. (sdvo_priv->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N',
  1770. (sdvo_priv->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N',
  1771. /* check currently supported outputs */
  1772. sdvo_priv->caps.output_flags &
  1773. (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N',
  1774. sdvo_priv->caps.output_flags &
  1775. (SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N');
  1776. return true;
  1777. err_i2c:
  1778. if (intel_output->ddc_bus != NULL)
  1779. intel_i2c_destroy(intel_output->ddc_bus);
  1780. if (intel_output->i2c_bus != NULL)
  1781. intel_i2c_destroy(intel_output->i2c_bus);
  1782. err_inteloutput:
  1783. kfree(intel_output);
  1784. return false;
  1785. }