kvm_main.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. struct kmem_cache *kvm_vcpu_cache;
  50. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  51. static __read_mostly struct preempt_ops kvm_preempt_ops;
  52. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  53. static struct kvm_stats_debugfs_item {
  54. const char *name;
  55. int offset;
  56. struct dentry *dentry;
  57. } debugfs_entries[] = {
  58. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  59. { "pf_guest", STAT_OFFSET(pf_guest) },
  60. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  61. { "invlpg", STAT_OFFSET(invlpg) },
  62. { "exits", STAT_OFFSET(exits) },
  63. { "io_exits", STAT_OFFSET(io_exits) },
  64. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  65. { "signal_exits", STAT_OFFSET(signal_exits) },
  66. { "irq_window", STAT_OFFSET(irq_window_exits) },
  67. { "halt_exits", STAT_OFFSET(halt_exits) },
  68. { "request_irq", STAT_OFFSET(request_irq_exits) },
  69. { "irq_exits", STAT_OFFSET(irq_exits) },
  70. { "light_exits", STAT_OFFSET(light_exits) },
  71. { "efer_reload", STAT_OFFSET(efer_reload) },
  72. { NULL }
  73. };
  74. static struct dentry *debugfs_dir;
  75. #define MAX_IO_MSRS 256
  76. #define CR0_RESERVED_BITS \
  77. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  78. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  79. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  80. #define CR4_RESERVED_BITS \
  81. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  82. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  83. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  84. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  85. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  86. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  87. #ifdef CONFIG_X86_64
  88. // LDT or TSS descriptor in the GDT. 16 bytes.
  89. struct segment_descriptor_64 {
  90. struct segment_descriptor s;
  91. u32 base_higher;
  92. u32 pad_zero;
  93. };
  94. #endif
  95. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  96. unsigned long arg);
  97. unsigned long segment_base(u16 selector)
  98. {
  99. struct descriptor_table gdt;
  100. struct segment_descriptor *d;
  101. unsigned long table_base;
  102. typedef unsigned long ul;
  103. unsigned long v;
  104. if (selector == 0)
  105. return 0;
  106. asm ("sgdt %0" : "=m"(gdt));
  107. table_base = gdt.base;
  108. if (selector & 4) { /* from ldt */
  109. u16 ldt_selector;
  110. asm ("sldt %0" : "=g"(ldt_selector));
  111. table_base = segment_base(ldt_selector);
  112. }
  113. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  114. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  115. #ifdef CONFIG_X86_64
  116. if (d->system == 0
  117. && (d->type == 2 || d->type == 9 || d->type == 11))
  118. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  119. #endif
  120. return v;
  121. }
  122. EXPORT_SYMBOL_GPL(segment_base);
  123. static inline int valid_vcpu(int n)
  124. {
  125. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  126. }
  127. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  128. {
  129. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  130. return;
  131. vcpu->guest_fpu_loaded = 1;
  132. fx_save(&vcpu->host_fx_image);
  133. fx_restore(&vcpu->guest_fx_image);
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  136. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  137. {
  138. if (!vcpu->guest_fpu_loaded)
  139. return;
  140. vcpu->guest_fpu_loaded = 0;
  141. fx_save(&vcpu->guest_fx_image);
  142. fx_restore(&vcpu->host_fx_image);
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  145. /*
  146. * Switches to specified vcpu, until a matching vcpu_put()
  147. */
  148. static void vcpu_load(struct kvm_vcpu *vcpu)
  149. {
  150. int cpu;
  151. mutex_lock(&vcpu->mutex);
  152. cpu = get_cpu();
  153. preempt_notifier_register(&vcpu->preempt_notifier);
  154. kvm_arch_ops->vcpu_load(vcpu, cpu);
  155. put_cpu();
  156. }
  157. static void vcpu_put(struct kvm_vcpu *vcpu)
  158. {
  159. preempt_disable();
  160. kvm_arch_ops->vcpu_put(vcpu);
  161. preempt_notifier_unregister(&vcpu->preempt_notifier);
  162. preempt_enable();
  163. mutex_unlock(&vcpu->mutex);
  164. }
  165. static void ack_flush(void *_completed)
  166. {
  167. atomic_t *completed = _completed;
  168. atomic_inc(completed);
  169. }
  170. void kvm_flush_remote_tlbs(struct kvm *kvm)
  171. {
  172. int i, cpu, needed;
  173. cpumask_t cpus;
  174. struct kvm_vcpu *vcpu;
  175. atomic_t completed;
  176. atomic_set(&completed, 0);
  177. cpus_clear(cpus);
  178. needed = 0;
  179. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  180. vcpu = kvm->vcpus[i];
  181. if (!vcpu)
  182. continue;
  183. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  184. continue;
  185. cpu = vcpu->cpu;
  186. if (cpu != -1 && cpu != raw_smp_processor_id())
  187. if (!cpu_isset(cpu, cpus)) {
  188. cpu_set(cpu, cpus);
  189. ++needed;
  190. }
  191. }
  192. /*
  193. * We really want smp_call_function_mask() here. But that's not
  194. * available, so ipi all cpus in parallel and wait for them
  195. * to complete.
  196. */
  197. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  198. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  199. while (atomic_read(&completed) != needed) {
  200. cpu_relax();
  201. barrier();
  202. }
  203. }
  204. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  205. {
  206. struct page *page;
  207. int r;
  208. mutex_init(&vcpu->mutex);
  209. vcpu->cpu = -1;
  210. vcpu->mmu.root_hpa = INVALID_PAGE;
  211. vcpu->kvm = kvm;
  212. vcpu->vcpu_id = id;
  213. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  214. if (!page) {
  215. r = -ENOMEM;
  216. goto fail;
  217. }
  218. vcpu->run = page_address(page);
  219. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  220. if (!page) {
  221. r = -ENOMEM;
  222. goto fail_free_run;
  223. }
  224. vcpu->pio_data = page_address(page);
  225. r = kvm_mmu_create(vcpu);
  226. if (r < 0)
  227. goto fail_free_pio_data;
  228. return 0;
  229. fail_free_pio_data:
  230. free_page((unsigned long)vcpu->pio_data);
  231. fail_free_run:
  232. free_page((unsigned long)vcpu->run);
  233. fail:
  234. return -ENOMEM;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  237. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  238. {
  239. kvm_mmu_destroy(vcpu);
  240. free_page((unsigned long)vcpu->pio_data);
  241. free_page((unsigned long)vcpu->run);
  242. }
  243. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  244. static struct kvm *kvm_create_vm(void)
  245. {
  246. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  247. if (!kvm)
  248. return ERR_PTR(-ENOMEM);
  249. kvm_io_bus_init(&kvm->pio_bus);
  250. mutex_init(&kvm->lock);
  251. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  252. kvm_io_bus_init(&kvm->mmio_bus);
  253. spin_lock(&kvm_lock);
  254. list_add(&kvm->vm_list, &vm_list);
  255. spin_unlock(&kvm_lock);
  256. return kvm;
  257. }
  258. static int kvm_dev_open(struct inode *inode, struct file *filp)
  259. {
  260. return 0;
  261. }
  262. /*
  263. * Free any memory in @free but not in @dont.
  264. */
  265. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  266. struct kvm_memory_slot *dont)
  267. {
  268. int i;
  269. if (!dont || free->phys_mem != dont->phys_mem)
  270. if (free->phys_mem) {
  271. for (i = 0; i < free->npages; ++i)
  272. if (free->phys_mem[i])
  273. __free_page(free->phys_mem[i]);
  274. vfree(free->phys_mem);
  275. }
  276. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  277. vfree(free->dirty_bitmap);
  278. free->phys_mem = NULL;
  279. free->npages = 0;
  280. free->dirty_bitmap = NULL;
  281. }
  282. static void kvm_free_physmem(struct kvm *kvm)
  283. {
  284. int i;
  285. for (i = 0; i < kvm->nmemslots; ++i)
  286. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  287. }
  288. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  289. {
  290. int i;
  291. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  292. if (vcpu->pio.guest_pages[i]) {
  293. __free_page(vcpu->pio.guest_pages[i]);
  294. vcpu->pio.guest_pages[i] = NULL;
  295. }
  296. }
  297. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  298. {
  299. vcpu_load(vcpu);
  300. kvm_mmu_unload(vcpu);
  301. vcpu_put(vcpu);
  302. }
  303. static void kvm_free_vcpus(struct kvm *kvm)
  304. {
  305. unsigned int i;
  306. /*
  307. * Unpin any mmu pages first.
  308. */
  309. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  310. if (kvm->vcpus[i])
  311. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  312. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  313. if (kvm->vcpus[i]) {
  314. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  315. kvm->vcpus[i] = NULL;
  316. }
  317. }
  318. }
  319. static int kvm_dev_release(struct inode *inode, struct file *filp)
  320. {
  321. return 0;
  322. }
  323. static void kvm_destroy_vm(struct kvm *kvm)
  324. {
  325. spin_lock(&kvm_lock);
  326. list_del(&kvm->vm_list);
  327. spin_unlock(&kvm_lock);
  328. kvm_io_bus_destroy(&kvm->pio_bus);
  329. kvm_io_bus_destroy(&kvm->mmio_bus);
  330. kvm_free_vcpus(kvm);
  331. kvm_free_physmem(kvm);
  332. kfree(kvm);
  333. }
  334. static int kvm_vm_release(struct inode *inode, struct file *filp)
  335. {
  336. struct kvm *kvm = filp->private_data;
  337. kvm_destroy_vm(kvm);
  338. return 0;
  339. }
  340. static void inject_gp(struct kvm_vcpu *vcpu)
  341. {
  342. kvm_arch_ops->inject_gp(vcpu, 0);
  343. }
  344. /*
  345. * Load the pae pdptrs. Return true is they are all valid.
  346. */
  347. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  348. {
  349. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  350. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  351. int i;
  352. u64 *pdpt;
  353. int ret;
  354. struct page *page;
  355. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  356. mutex_lock(&vcpu->kvm->lock);
  357. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  358. if (!page) {
  359. ret = 0;
  360. goto out;
  361. }
  362. pdpt = kmap_atomic(page, KM_USER0);
  363. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  364. kunmap_atomic(pdpt, KM_USER0);
  365. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  366. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  367. ret = 0;
  368. goto out;
  369. }
  370. }
  371. ret = 1;
  372. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  373. out:
  374. mutex_unlock(&vcpu->kvm->lock);
  375. return ret;
  376. }
  377. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  378. {
  379. if (cr0 & CR0_RESERVED_BITS) {
  380. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  381. cr0, vcpu->cr0);
  382. inject_gp(vcpu);
  383. return;
  384. }
  385. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  386. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  387. inject_gp(vcpu);
  388. return;
  389. }
  390. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  391. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  392. "and a clear PE flag\n");
  393. inject_gp(vcpu);
  394. return;
  395. }
  396. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  397. #ifdef CONFIG_X86_64
  398. if ((vcpu->shadow_efer & EFER_LME)) {
  399. int cs_db, cs_l;
  400. if (!is_pae(vcpu)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  402. "in long mode while PAE is disabled\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  407. if (cs_l) {
  408. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  409. "in long mode while CS.L == 1\n");
  410. inject_gp(vcpu);
  411. return;
  412. }
  413. } else
  414. #endif
  415. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  416. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  417. "reserved bits\n");
  418. inject_gp(vcpu);
  419. return;
  420. }
  421. }
  422. kvm_arch_ops->set_cr0(vcpu, cr0);
  423. vcpu->cr0 = cr0;
  424. mutex_lock(&vcpu->kvm->lock);
  425. kvm_mmu_reset_context(vcpu);
  426. mutex_unlock(&vcpu->kvm->lock);
  427. return;
  428. }
  429. EXPORT_SYMBOL_GPL(set_cr0);
  430. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  431. {
  432. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  433. }
  434. EXPORT_SYMBOL_GPL(lmsw);
  435. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  436. {
  437. if (cr4 & CR4_RESERVED_BITS) {
  438. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  439. inject_gp(vcpu);
  440. return;
  441. }
  442. if (is_long_mode(vcpu)) {
  443. if (!(cr4 & X86_CR4_PAE)) {
  444. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  445. "in long mode\n");
  446. inject_gp(vcpu);
  447. return;
  448. }
  449. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  450. && !load_pdptrs(vcpu, vcpu->cr3)) {
  451. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  452. inject_gp(vcpu);
  453. return;
  454. }
  455. if (cr4 & X86_CR4_VMXE) {
  456. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. kvm_arch_ops->set_cr4(vcpu, cr4);
  461. mutex_lock(&vcpu->kvm->lock);
  462. kvm_mmu_reset_context(vcpu);
  463. mutex_unlock(&vcpu->kvm->lock);
  464. }
  465. EXPORT_SYMBOL_GPL(set_cr4);
  466. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  467. {
  468. if (is_long_mode(vcpu)) {
  469. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  470. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. } else {
  475. if (is_pae(vcpu)) {
  476. if (cr3 & CR3_PAE_RESERVED_BITS) {
  477. printk(KERN_DEBUG
  478. "set_cr3: #GP, reserved bits\n");
  479. inject_gp(vcpu);
  480. return;
  481. }
  482. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  483. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  484. "reserved bits\n");
  485. inject_gp(vcpu);
  486. return;
  487. }
  488. } else {
  489. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  490. printk(KERN_DEBUG
  491. "set_cr3: #GP, reserved bits\n");
  492. inject_gp(vcpu);
  493. return;
  494. }
  495. }
  496. }
  497. mutex_lock(&vcpu->kvm->lock);
  498. /*
  499. * Does the new cr3 value map to physical memory? (Note, we
  500. * catch an invalid cr3 even in real-mode, because it would
  501. * cause trouble later on when we turn on paging anyway.)
  502. *
  503. * A real CPU would silently accept an invalid cr3 and would
  504. * attempt to use it - with largely undefined (and often hard
  505. * to debug) behavior on the guest side.
  506. */
  507. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  508. inject_gp(vcpu);
  509. else {
  510. vcpu->cr3 = cr3;
  511. vcpu->mmu.new_cr3(vcpu);
  512. }
  513. mutex_unlock(&vcpu->kvm->lock);
  514. }
  515. EXPORT_SYMBOL_GPL(set_cr3);
  516. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  517. {
  518. if (cr8 & CR8_RESERVED_BITS) {
  519. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  520. inject_gp(vcpu);
  521. return;
  522. }
  523. vcpu->cr8 = cr8;
  524. }
  525. EXPORT_SYMBOL_GPL(set_cr8);
  526. void fx_init(struct kvm_vcpu *vcpu)
  527. {
  528. unsigned after_mxcsr_mask;
  529. /* Initialize guest FPU by resetting ours and saving into guest's */
  530. preempt_disable();
  531. fx_save(&vcpu->host_fx_image);
  532. fpu_init();
  533. fx_save(&vcpu->guest_fx_image);
  534. fx_restore(&vcpu->host_fx_image);
  535. preempt_enable();
  536. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  537. vcpu->guest_fx_image.mxcsr = 0x1f80;
  538. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  539. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  540. }
  541. EXPORT_SYMBOL_GPL(fx_init);
  542. /*
  543. * Allocate some memory and give it an address in the guest physical address
  544. * space.
  545. *
  546. * Discontiguous memory is allowed, mostly for framebuffers.
  547. */
  548. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  549. struct kvm_memory_region *mem)
  550. {
  551. int r;
  552. gfn_t base_gfn;
  553. unsigned long npages;
  554. unsigned long i;
  555. struct kvm_memory_slot *memslot;
  556. struct kvm_memory_slot old, new;
  557. int memory_config_version;
  558. r = -EINVAL;
  559. /* General sanity checks */
  560. if (mem->memory_size & (PAGE_SIZE - 1))
  561. goto out;
  562. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  563. goto out;
  564. if (mem->slot >= KVM_MEMORY_SLOTS)
  565. goto out;
  566. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  567. goto out;
  568. memslot = &kvm->memslots[mem->slot];
  569. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  570. npages = mem->memory_size >> PAGE_SHIFT;
  571. if (!npages)
  572. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  573. raced:
  574. mutex_lock(&kvm->lock);
  575. memory_config_version = kvm->memory_config_version;
  576. new = old = *memslot;
  577. new.base_gfn = base_gfn;
  578. new.npages = npages;
  579. new.flags = mem->flags;
  580. /* Disallow changing a memory slot's size. */
  581. r = -EINVAL;
  582. if (npages && old.npages && npages != old.npages)
  583. goto out_unlock;
  584. /* Check for overlaps */
  585. r = -EEXIST;
  586. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  587. struct kvm_memory_slot *s = &kvm->memslots[i];
  588. if (s == memslot)
  589. continue;
  590. if (!((base_gfn + npages <= s->base_gfn) ||
  591. (base_gfn >= s->base_gfn + s->npages)))
  592. goto out_unlock;
  593. }
  594. /*
  595. * Do memory allocations outside lock. memory_config_version will
  596. * detect any races.
  597. */
  598. mutex_unlock(&kvm->lock);
  599. /* Deallocate if slot is being removed */
  600. if (!npages)
  601. new.phys_mem = NULL;
  602. /* Free page dirty bitmap if unneeded */
  603. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  604. new.dirty_bitmap = NULL;
  605. r = -ENOMEM;
  606. /* Allocate if a slot is being created */
  607. if (npages && !new.phys_mem) {
  608. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  609. if (!new.phys_mem)
  610. goto out_free;
  611. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  612. for (i = 0; i < npages; ++i) {
  613. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  614. | __GFP_ZERO);
  615. if (!new.phys_mem[i])
  616. goto out_free;
  617. set_page_private(new.phys_mem[i],0);
  618. }
  619. }
  620. /* Allocate page dirty bitmap if needed */
  621. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  622. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  623. new.dirty_bitmap = vmalloc(dirty_bytes);
  624. if (!new.dirty_bitmap)
  625. goto out_free;
  626. memset(new.dirty_bitmap, 0, dirty_bytes);
  627. }
  628. mutex_lock(&kvm->lock);
  629. if (memory_config_version != kvm->memory_config_version) {
  630. mutex_unlock(&kvm->lock);
  631. kvm_free_physmem_slot(&new, &old);
  632. goto raced;
  633. }
  634. r = -EAGAIN;
  635. if (kvm->busy)
  636. goto out_unlock;
  637. if (mem->slot >= kvm->nmemslots)
  638. kvm->nmemslots = mem->slot + 1;
  639. *memslot = new;
  640. ++kvm->memory_config_version;
  641. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  642. kvm_flush_remote_tlbs(kvm);
  643. mutex_unlock(&kvm->lock);
  644. kvm_free_physmem_slot(&old, &new);
  645. return 0;
  646. out_unlock:
  647. mutex_unlock(&kvm->lock);
  648. out_free:
  649. kvm_free_physmem_slot(&new, &old);
  650. out:
  651. return r;
  652. }
  653. /*
  654. * Get (and clear) the dirty memory log for a memory slot.
  655. */
  656. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  657. struct kvm_dirty_log *log)
  658. {
  659. struct kvm_memory_slot *memslot;
  660. int r, i;
  661. int n;
  662. unsigned long any = 0;
  663. mutex_lock(&kvm->lock);
  664. /*
  665. * Prevent changes to guest memory configuration even while the lock
  666. * is not taken.
  667. */
  668. ++kvm->busy;
  669. mutex_unlock(&kvm->lock);
  670. r = -EINVAL;
  671. if (log->slot >= KVM_MEMORY_SLOTS)
  672. goto out;
  673. memslot = &kvm->memslots[log->slot];
  674. r = -ENOENT;
  675. if (!memslot->dirty_bitmap)
  676. goto out;
  677. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  678. for (i = 0; !any && i < n/sizeof(long); ++i)
  679. any = memslot->dirty_bitmap[i];
  680. r = -EFAULT;
  681. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  682. goto out;
  683. /* If nothing is dirty, don't bother messing with page tables. */
  684. if (any) {
  685. mutex_lock(&kvm->lock);
  686. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  687. kvm_flush_remote_tlbs(kvm);
  688. memset(memslot->dirty_bitmap, 0, n);
  689. mutex_unlock(&kvm->lock);
  690. }
  691. r = 0;
  692. out:
  693. mutex_lock(&kvm->lock);
  694. --kvm->busy;
  695. mutex_unlock(&kvm->lock);
  696. return r;
  697. }
  698. /*
  699. * Set a new alias region. Aliases map a portion of physical memory into
  700. * another portion. This is useful for memory windows, for example the PC
  701. * VGA region.
  702. */
  703. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  704. struct kvm_memory_alias *alias)
  705. {
  706. int r, n;
  707. struct kvm_mem_alias *p;
  708. r = -EINVAL;
  709. /* General sanity checks */
  710. if (alias->memory_size & (PAGE_SIZE - 1))
  711. goto out;
  712. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  713. goto out;
  714. if (alias->slot >= KVM_ALIAS_SLOTS)
  715. goto out;
  716. if (alias->guest_phys_addr + alias->memory_size
  717. < alias->guest_phys_addr)
  718. goto out;
  719. if (alias->target_phys_addr + alias->memory_size
  720. < alias->target_phys_addr)
  721. goto out;
  722. mutex_lock(&kvm->lock);
  723. p = &kvm->aliases[alias->slot];
  724. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  725. p->npages = alias->memory_size >> PAGE_SHIFT;
  726. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  727. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  728. if (kvm->aliases[n - 1].npages)
  729. break;
  730. kvm->naliases = n;
  731. kvm_mmu_zap_all(kvm);
  732. mutex_unlock(&kvm->lock);
  733. return 0;
  734. out:
  735. return r;
  736. }
  737. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  738. {
  739. int i;
  740. struct kvm_mem_alias *alias;
  741. for (i = 0; i < kvm->naliases; ++i) {
  742. alias = &kvm->aliases[i];
  743. if (gfn >= alias->base_gfn
  744. && gfn < alias->base_gfn + alias->npages)
  745. return alias->target_gfn + gfn - alias->base_gfn;
  746. }
  747. return gfn;
  748. }
  749. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  750. {
  751. int i;
  752. for (i = 0; i < kvm->nmemslots; ++i) {
  753. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  754. if (gfn >= memslot->base_gfn
  755. && gfn < memslot->base_gfn + memslot->npages)
  756. return memslot;
  757. }
  758. return NULL;
  759. }
  760. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  761. {
  762. gfn = unalias_gfn(kvm, gfn);
  763. return __gfn_to_memslot(kvm, gfn);
  764. }
  765. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  766. {
  767. struct kvm_memory_slot *slot;
  768. gfn = unalias_gfn(kvm, gfn);
  769. slot = __gfn_to_memslot(kvm, gfn);
  770. if (!slot)
  771. return NULL;
  772. return slot->phys_mem[gfn - slot->base_gfn];
  773. }
  774. EXPORT_SYMBOL_GPL(gfn_to_page);
  775. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  776. {
  777. int i;
  778. struct kvm_memory_slot *memslot;
  779. unsigned long rel_gfn;
  780. for (i = 0; i < kvm->nmemslots; ++i) {
  781. memslot = &kvm->memslots[i];
  782. if (gfn >= memslot->base_gfn
  783. && gfn < memslot->base_gfn + memslot->npages) {
  784. if (!memslot->dirty_bitmap)
  785. return;
  786. rel_gfn = gfn - memslot->base_gfn;
  787. /* avoid RMW */
  788. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  789. set_bit(rel_gfn, memslot->dirty_bitmap);
  790. return;
  791. }
  792. }
  793. }
  794. int emulator_read_std(unsigned long addr,
  795. void *val,
  796. unsigned int bytes,
  797. struct kvm_vcpu *vcpu)
  798. {
  799. void *data = val;
  800. while (bytes) {
  801. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  802. unsigned offset = addr & (PAGE_SIZE-1);
  803. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  804. unsigned long pfn;
  805. struct page *page;
  806. void *page_virt;
  807. if (gpa == UNMAPPED_GVA)
  808. return X86EMUL_PROPAGATE_FAULT;
  809. pfn = gpa >> PAGE_SHIFT;
  810. page = gfn_to_page(vcpu->kvm, pfn);
  811. if (!page)
  812. return X86EMUL_UNHANDLEABLE;
  813. page_virt = kmap_atomic(page, KM_USER0);
  814. memcpy(data, page_virt + offset, tocopy);
  815. kunmap_atomic(page_virt, KM_USER0);
  816. bytes -= tocopy;
  817. data += tocopy;
  818. addr += tocopy;
  819. }
  820. return X86EMUL_CONTINUE;
  821. }
  822. EXPORT_SYMBOL_GPL(emulator_read_std);
  823. static int emulator_write_std(unsigned long addr,
  824. const void *val,
  825. unsigned int bytes,
  826. struct kvm_vcpu *vcpu)
  827. {
  828. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  829. addr, bytes);
  830. return X86EMUL_UNHANDLEABLE;
  831. }
  832. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  833. gpa_t addr)
  834. {
  835. /*
  836. * Note that its important to have this wrapper function because
  837. * in the very near future we will be checking for MMIOs against
  838. * the LAPIC as well as the general MMIO bus
  839. */
  840. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  841. }
  842. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  843. gpa_t addr)
  844. {
  845. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  846. }
  847. static int emulator_read_emulated(unsigned long addr,
  848. void *val,
  849. unsigned int bytes,
  850. struct kvm_vcpu *vcpu)
  851. {
  852. struct kvm_io_device *mmio_dev;
  853. gpa_t gpa;
  854. if (vcpu->mmio_read_completed) {
  855. memcpy(val, vcpu->mmio_data, bytes);
  856. vcpu->mmio_read_completed = 0;
  857. return X86EMUL_CONTINUE;
  858. } else if (emulator_read_std(addr, val, bytes, vcpu)
  859. == X86EMUL_CONTINUE)
  860. return X86EMUL_CONTINUE;
  861. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  862. if (gpa == UNMAPPED_GVA)
  863. return X86EMUL_PROPAGATE_FAULT;
  864. /*
  865. * Is this MMIO handled locally?
  866. */
  867. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  868. if (mmio_dev) {
  869. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  870. return X86EMUL_CONTINUE;
  871. }
  872. vcpu->mmio_needed = 1;
  873. vcpu->mmio_phys_addr = gpa;
  874. vcpu->mmio_size = bytes;
  875. vcpu->mmio_is_write = 0;
  876. return X86EMUL_UNHANDLEABLE;
  877. }
  878. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  879. const void *val, int bytes)
  880. {
  881. struct page *page;
  882. void *virt;
  883. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  884. return 0;
  885. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  886. if (!page)
  887. return 0;
  888. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  889. virt = kmap_atomic(page, KM_USER0);
  890. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  891. memcpy(virt + offset_in_page(gpa), val, bytes);
  892. kunmap_atomic(virt, KM_USER0);
  893. return 1;
  894. }
  895. static int emulator_write_emulated_onepage(unsigned long addr,
  896. const void *val,
  897. unsigned int bytes,
  898. struct kvm_vcpu *vcpu)
  899. {
  900. struct kvm_io_device *mmio_dev;
  901. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  902. if (gpa == UNMAPPED_GVA) {
  903. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  904. return X86EMUL_PROPAGATE_FAULT;
  905. }
  906. if (emulator_write_phys(vcpu, gpa, val, bytes))
  907. return X86EMUL_CONTINUE;
  908. /*
  909. * Is this MMIO handled locally?
  910. */
  911. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  912. if (mmio_dev) {
  913. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  914. return X86EMUL_CONTINUE;
  915. }
  916. vcpu->mmio_needed = 1;
  917. vcpu->mmio_phys_addr = gpa;
  918. vcpu->mmio_size = bytes;
  919. vcpu->mmio_is_write = 1;
  920. memcpy(vcpu->mmio_data, val, bytes);
  921. return X86EMUL_CONTINUE;
  922. }
  923. int emulator_write_emulated(unsigned long addr,
  924. const void *val,
  925. unsigned int bytes,
  926. struct kvm_vcpu *vcpu)
  927. {
  928. /* Crossing a page boundary? */
  929. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  930. int rc, now;
  931. now = -addr & ~PAGE_MASK;
  932. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  933. if (rc != X86EMUL_CONTINUE)
  934. return rc;
  935. addr += now;
  936. val += now;
  937. bytes -= now;
  938. }
  939. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  940. }
  941. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  942. static int emulator_cmpxchg_emulated(unsigned long addr,
  943. const void *old,
  944. const void *new,
  945. unsigned int bytes,
  946. struct kvm_vcpu *vcpu)
  947. {
  948. static int reported;
  949. if (!reported) {
  950. reported = 1;
  951. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  952. }
  953. return emulator_write_emulated(addr, new, bytes, vcpu);
  954. }
  955. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  956. {
  957. return kvm_arch_ops->get_segment_base(vcpu, seg);
  958. }
  959. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  960. {
  961. return X86EMUL_CONTINUE;
  962. }
  963. int emulate_clts(struct kvm_vcpu *vcpu)
  964. {
  965. unsigned long cr0;
  966. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  967. kvm_arch_ops->set_cr0(vcpu, cr0);
  968. return X86EMUL_CONTINUE;
  969. }
  970. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  971. {
  972. struct kvm_vcpu *vcpu = ctxt->vcpu;
  973. switch (dr) {
  974. case 0 ... 3:
  975. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  976. return X86EMUL_CONTINUE;
  977. default:
  978. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  979. __FUNCTION__, dr);
  980. return X86EMUL_UNHANDLEABLE;
  981. }
  982. }
  983. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  984. {
  985. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  986. int exception;
  987. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  988. if (exception) {
  989. /* FIXME: better handling */
  990. return X86EMUL_UNHANDLEABLE;
  991. }
  992. return X86EMUL_CONTINUE;
  993. }
  994. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  995. {
  996. static int reported;
  997. u8 opcodes[4];
  998. unsigned long rip = ctxt->vcpu->rip;
  999. unsigned long rip_linear;
  1000. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1001. if (reported)
  1002. return;
  1003. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  1004. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1005. " rip %lx %02x %02x %02x %02x\n",
  1006. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1007. reported = 1;
  1008. }
  1009. struct x86_emulate_ops emulate_ops = {
  1010. .read_std = emulator_read_std,
  1011. .write_std = emulator_write_std,
  1012. .read_emulated = emulator_read_emulated,
  1013. .write_emulated = emulator_write_emulated,
  1014. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1015. };
  1016. int emulate_instruction(struct kvm_vcpu *vcpu,
  1017. struct kvm_run *run,
  1018. unsigned long cr2,
  1019. u16 error_code)
  1020. {
  1021. struct x86_emulate_ctxt emulate_ctxt;
  1022. int r;
  1023. int cs_db, cs_l;
  1024. vcpu->mmio_fault_cr2 = cr2;
  1025. kvm_arch_ops->cache_regs(vcpu);
  1026. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1027. emulate_ctxt.vcpu = vcpu;
  1028. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1029. emulate_ctxt.cr2 = cr2;
  1030. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1031. ? X86EMUL_MODE_REAL : cs_l
  1032. ? X86EMUL_MODE_PROT64 : cs_db
  1033. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1034. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1035. emulate_ctxt.cs_base = 0;
  1036. emulate_ctxt.ds_base = 0;
  1037. emulate_ctxt.es_base = 0;
  1038. emulate_ctxt.ss_base = 0;
  1039. } else {
  1040. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1041. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1042. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1043. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1044. }
  1045. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1046. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1047. vcpu->mmio_is_write = 0;
  1048. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1049. if ((r || vcpu->mmio_is_write) && run) {
  1050. run->exit_reason = KVM_EXIT_MMIO;
  1051. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1052. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1053. run->mmio.len = vcpu->mmio_size;
  1054. run->mmio.is_write = vcpu->mmio_is_write;
  1055. }
  1056. if (r) {
  1057. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1058. return EMULATE_DONE;
  1059. if (!vcpu->mmio_needed) {
  1060. report_emulation_failure(&emulate_ctxt);
  1061. return EMULATE_FAIL;
  1062. }
  1063. return EMULATE_DO_MMIO;
  1064. }
  1065. kvm_arch_ops->decache_regs(vcpu);
  1066. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1067. if (vcpu->mmio_is_write) {
  1068. vcpu->mmio_needed = 0;
  1069. return EMULATE_DO_MMIO;
  1070. }
  1071. return EMULATE_DONE;
  1072. }
  1073. EXPORT_SYMBOL_GPL(emulate_instruction);
  1074. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1075. {
  1076. if (vcpu->irq_summary)
  1077. return 1;
  1078. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1079. ++vcpu->stat.halt_exits;
  1080. return 0;
  1081. }
  1082. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1083. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1084. {
  1085. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1086. kvm_arch_ops->cache_regs(vcpu);
  1087. ret = -KVM_EINVAL;
  1088. #ifdef CONFIG_X86_64
  1089. if (is_long_mode(vcpu)) {
  1090. nr = vcpu->regs[VCPU_REGS_RAX];
  1091. a0 = vcpu->regs[VCPU_REGS_RDI];
  1092. a1 = vcpu->regs[VCPU_REGS_RSI];
  1093. a2 = vcpu->regs[VCPU_REGS_RDX];
  1094. a3 = vcpu->regs[VCPU_REGS_RCX];
  1095. a4 = vcpu->regs[VCPU_REGS_R8];
  1096. a5 = vcpu->regs[VCPU_REGS_R9];
  1097. } else
  1098. #endif
  1099. {
  1100. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1101. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1102. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1103. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1104. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1105. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1106. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1107. }
  1108. switch (nr) {
  1109. default:
  1110. run->hypercall.nr = nr;
  1111. run->hypercall.args[0] = a0;
  1112. run->hypercall.args[1] = a1;
  1113. run->hypercall.args[2] = a2;
  1114. run->hypercall.args[3] = a3;
  1115. run->hypercall.args[4] = a4;
  1116. run->hypercall.args[5] = a5;
  1117. run->hypercall.ret = ret;
  1118. run->hypercall.longmode = is_long_mode(vcpu);
  1119. kvm_arch_ops->decache_regs(vcpu);
  1120. return 0;
  1121. }
  1122. vcpu->regs[VCPU_REGS_RAX] = ret;
  1123. kvm_arch_ops->decache_regs(vcpu);
  1124. return 1;
  1125. }
  1126. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1127. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1128. {
  1129. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1130. }
  1131. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1132. {
  1133. struct descriptor_table dt = { limit, base };
  1134. kvm_arch_ops->set_gdt(vcpu, &dt);
  1135. }
  1136. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1137. {
  1138. struct descriptor_table dt = { limit, base };
  1139. kvm_arch_ops->set_idt(vcpu, &dt);
  1140. }
  1141. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1142. unsigned long *rflags)
  1143. {
  1144. lmsw(vcpu, msw);
  1145. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1146. }
  1147. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1148. {
  1149. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1150. switch (cr) {
  1151. case 0:
  1152. return vcpu->cr0;
  1153. case 2:
  1154. return vcpu->cr2;
  1155. case 3:
  1156. return vcpu->cr3;
  1157. case 4:
  1158. return vcpu->cr4;
  1159. default:
  1160. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1161. return 0;
  1162. }
  1163. }
  1164. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1165. unsigned long *rflags)
  1166. {
  1167. switch (cr) {
  1168. case 0:
  1169. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1170. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1171. break;
  1172. case 2:
  1173. vcpu->cr2 = val;
  1174. break;
  1175. case 3:
  1176. set_cr3(vcpu, val);
  1177. break;
  1178. case 4:
  1179. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1180. break;
  1181. default:
  1182. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1183. }
  1184. }
  1185. /*
  1186. * Register the para guest with the host:
  1187. */
  1188. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1189. {
  1190. struct kvm_vcpu_para_state *para_state;
  1191. hpa_t para_state_hpa, hypercall_hpa;
  1192. struct page *para_state_page;
  1193. unsigned char *hypercall;
  1194. gpa_t hypercall_gpa;
  1195. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1196. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1197. /*
  1198. * Needs to be page aligned:
  1199. */
  1200. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1201. goto err_gp;
  1202. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1203. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1204. if (is_error_hpa(para_state_hpa))
  1205. goto err_gp;
  1206. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1207. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1208. para_state = kmap(para_state_page);
  1209. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1210. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1211. para_state->host_version = KVM_PARA_API_VERSION;
  1212. /*
  1213. * We cannot support guests that try to register themselves
  1214. * with a newer API version than the host supports:
  1215. */
  1216. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1217. para_state->ret = -KVM_EINVAL;
  1218. goto err_kunmap_skip;
  1219. }
  1220. hypercall_gpa = para_state->hypercall_gpa;
  1221. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1222. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1223. if (is_error_hpa(hypercall_hpa)) {
  1224. para_state->ret = -KVM_EINVAL;
  1225. goto err_kunmap_skip;
  1226. }
  1227. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1228. vcpu->para_state_page = para_state_page;
  1229. vcpu->para_state_gpa = para_state_gpa;
  1230. vcpu->hypercall_gpa = hypercall_gpa;
  1231. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1232. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1233. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1234. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1235. kunmap_atomic(hypercall, KM_USER1);
  1236. para_state->ret = 0;
  1237. err_kunmap_skip:
  1238. kunmap(para_state_page);
  1239. return 0;
  1240. err_gp:
  1241. return 1;
  1242. }
  1243. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1244. {
  1245. u64 data;
  1246. switch (msr) {
  1247. case 0xc0010010: /* SYSCFG */
  1248. case 0xc0010015: /* HWCR */
  1249. case MSR_IA32_PLATFORM_ID:
  1250. case MSR_IA32_P5_MC_ADDR:
  1251. case MSR_IA32_P5_MC_TYPE:
  1252. case MSR_IA32_MC0_CTL:
  1253. case MSR_IA32_MCG_STATUS:
  1254. case MSR_IA32_MCG_CAP:
  1255. case MSR_IA32_MC0_MISC:
  1256. case MSR_IA32_MC0_MISC+4:
  1257. case MSR_IA32_MC0_MISC+8:
  1258. case MSR_IA32_MC0_MISC+12:
  1259. case MSR_IA32_MC0_MISC+16:
  1260. case MSR_IA32_UCODE_REV:
  1261. case MSR_IA32_PERF_STATUS:
  1262. case MSR_IA32_EBL_CR_POWERON:
  1263. /* MTRR registers */
  1264. case 0xfe:
  1265. case 0x200 ... 0x2ff:
  1266. data = 0;
  1267. break;
  1268. case 0xcd: /* fsb frequency */
  1269. data = 3;
  1270. break;
  1271. case MSR_IA32_APICBASE:
  1272. data = vcpu->apic_base;
  1273. break;
  1274. case MSR_IA32_MISC_ENABLE:
  1275. data = vcpu->ia32_misc_enable_msr;
  1276. break;
  1277. #ifdef CONFIG_X86_64
  1278. case MSR_EFER:
  1279. data = vcpu->shadow_efer;
  1280. break;
  1281. #endif
  1282. default:
  1283. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1284. return 1;
  1285. }
  1286. *pdata = data;
  1287. return 0;
  1288. }
  1289. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1290. /*
  1291. * Reads an msr value (of 'msr_index') into 'pdata'.
  1292. * Returns 0 on success, non-0 otherwise.
  1293. * Assumes vcpu_load() was already called.
  1294. */
  1295. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1296. {
  1297. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1298. }
  1299. #ifdef CONFIG_X86_64
  1300. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1301. {
  1302. if (efer & EFER_RESERVED_BITS) {
  1303. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1304. efer);
  1305. inject_gp(vcpu);
  1306. return;
  1307. }
  1308. if (is_paging(vcpu)
  1309. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1310. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1311. inject_gp(vcpu);
  1312. return;
  1313. }
  1314. kvm_arch_ops->set_efer(vcpu, efer);
  1315. efer &= ~EFER_LMA;
  1316. efer |= vcpu->shadow_efer & EFER_LMA;
  1317. vcpu->shadow_efer = efer;
  1318. }
  1319. #endif
  1320. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1321. {
  1322. switch (msr) {
  1323. #ifdef CONFIG_X86_64
  1324. case MSR_EFER:
  1325. set_efer(vcpu, data);
  1326. break;
  1327. #endif
  1328. case MSR_IA32_MC0_STATUS:
  1329. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1330. __FUNCTION__, data);
  1331. break;
  1332. case MSR_IA32_MCG_STATUS:
  1333. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1334. __FUNCTION__, data);
  1335. break;
  1336. case MSR_IA32_UCODE_REV:
  1337. case MSR_IA32_UCODE_WRITE:
  1338. case 0x200 ... 0x2ff: /* MTRRs */
  1339. break;
  1340. case MSR_IA32_APICBASE:
  1341. vcpu->apic_base = data;
  1342. break;
  1343. case MSR_IA32_MISC_ENABLE:
  1344. vcpu->ia32_misc_enable_msr = data;
  1345. break;
  1346. /*
  1347. * This is the 'probe whether the host is KVM' logic:
  1348. */
  1349. case MSR_KVM_API_MAGIC:
  1350. return vcpu_register_para(vcpu, data);
  1351. default:
  1352. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1353. return 1;
  1354. }
  1355. return 0;
  1356. }
  1357. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1358. /*
  1359. * Writes msr value into into the appropriate "register".
  1360. * Returns 0 on success, non-0 otherwise.
  1361. * Assumes vcpu_load() was already called.
  1362. */
  1363. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1364. {
  1365. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1366. }
  1367. void kvm_resched(struct kvm_vcpu *vcpu)
  1368. {
  1369. if (!need_resched())
  1370. return;
  1371. cond_resched();
  1372. }
  1373. EXPORT_SYMBOL_GPL(kvm_resched);
  1374. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1375. {
  1376. int i;
  1377. u32 function;
  1378. struct kvm_cpuid_entry *e, *best;
  1379. kvm_arch_ops->cache_regs(vcpu);
  1380. function = vcpu->regs[VCPU_REGS_RAX];
  1381. vcpu->regs[VCPU_REGS_RAX] = 0;
  1382. vcpu->regs[VCPU_REGS_RBX] = 0;
  1383. vcpu->regs[VCPU_REGS_RCX] = 0;
  1384. vcpu->regs[VCPU_REGS_RDX] = 0;
  1385. best = NULL;
  1386. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1387. e = &vcpu->cpuid_entries[i];
  1388. if (e->function == function) {
  1389. best = e;
  1390. break;
  1391. }
  1392. /*
  1393. * Both basic or both extended?
  1394. */
  1395. if (((e->function ^ function) & 0x80000000) == 0)
  1396. if (!best || e->function > best->function)
  1397. best = e;
  1398. }
  1399. if (best) {
  1400. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1401. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1402. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1403. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1404. }
  1405. kvm_arch_ops->decache_regs(vcpu);
  1406. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1407. }
  1408. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1409. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1410. {
  1411. void *p = vcpu->pio_data;
  1412. void *q;
  1413. unsigned bytes;
  1414. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1415. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1416. PAGE_KERNEL);
  1417. if (!q) {
  1418. free_pio_guest_pages(vcpu);
  1419. return -ENOMEM;
  1420. }
  1421. q += vcpu->pio.guest_page_offset;
  1422. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1423. if (vcpu->pio.in)
  1424. memcpy(q, p, bytes);
  1425. else
  1426. memcpy(p, q, bytes);
  1427. q -= vcpu->pio.guest_page_offset;
  1428. vunmap(q);
  1429. free_pio_guest_pages(vcpu);
  1430. return 0;
  1431. }
  1432. static int complete_pio(struct kvm_vcpu *vcpu)
  1433. {
  1434. struct kvm_pio_request *io = &vcpu->pio;
  1435. long delta;
  1436. int r;
  1437. kvm_arch_ops->cache_regs(vcpu);
  1438. if (!io->string) {
  1439. if (io->in)
  1440. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1441. io->size);
  1442. } else {
  1443. if (io->in) {
  1444. r = pio_copy_data(vcpu);
  1445. if (r) {
  1446. kvm_arch_ops->cache_regs(vcpu);
  1447. return r;
  1448. }
  1449. }
  1450. delta = 1;
  1451. if (io->rep) {
  1452. delta *= io->cur_count;
  1453. /*
  1454. * The size of the register should really depend on
  1455. * current address size.
  1456. */
  1457. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1458. }
  1459. if (io->down)
  1460. delta = -delta;
  1461. delta *= io->size;
  1462. if (io->in)
  1463. vcpu->regs[VCPU_REGS_RDI] += delta;
  1464. else
  1465. vcpu->regs[VCPU_REGS_RSI] += delta;
  1466. }
  1467. kvm_arch_ops->decache_regs(vcpu);
  1468. io->count -= io->cur_count;
  1469. io->cur_count = 0;
  1470. if (!io->count)
  1471. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1472. return 0;
  1473. }
  1474. static void kernel_pio(struct kvm_io_device *pio_dev,
  1475. struct kvm_vcpu *vcpu,
  1476. void *pd)
  1477. {
  1478. /* TODO: String I/O for in kernel device */
  1479. if (vcpu->pio.in)
  1480. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1481. vcpu->pio.size,
  1482. pd);
  1483. else
  1484. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1485. vcpu->pio.size,
  1486. pd);
  1487. }
  1488. static void pio_string_write(struct kvm_io_device *pio_dev,
  1489. struct kvm_vcpu *vcpu)
  1490. {
  1491. struct kvm_pio_request *io = &vcpu->pio;
  1492. void *pd = vcpu->pio_data;
  1493. int i;
  1494. for (i = 0; i < io->cur_count; i++) {
  1495. kvm_iodevice_write(pio_dev, io->port,
  1496. io->size,
  1497. pd);
  1498. pd += io->size;
  1499. }
  1500. }
  1501. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1502. int size, unsigned long count, int string, int down,
  1503. gva_t address, int rep, unsigned port)
  1504. {
  1505. unsigned now, in_page;
  1506. int i, ret = 0;
  1507. int nr_pages = 1;
  1508. struct page *page;
  1509. struct kvm_io_device *pio_dev;
  1510. vcpu->run->exit_reason = KVM_EXIT_IO;
  1511. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1512. vcpu->run->io.size = size;
  1513. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1514. vcpu->run->io.count = count;
  1515. vcpu->run->io.port = port;
  1516. vcpu->pio.count = count;
  1517. vcpu->pio.cur_count = count;
  1518. vcpu->pio.size = size;
  1519. vcpu->pio.in = in;
  1520. vcpu->pio.port = port;
  1521. vcpu->pio.string = string;
  1522. vcpu->pio.down = down;
  1523. vcpu->pio.guest_page_offset = offset_in_page(address);
  1524. vcpu->pio.rep = rep;
  1525. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1526. if (!string) {
  1527. kvm_arch_ops->cache_regs(vcpu);
  1528. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1529. kvm_arch_ops->decache_regs(vcpu);
  1530. if (pio_dev) {
  1531. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1532. complete_pio(vcpu);
  1533. return 1;
  1534. }
  1535. return 0;
  1536. }
  1537. if (!count) {
  1538. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1539. return 1;
  1540. }
  1541. now = min(count, PAGE_SIZE / size);
  1542. if (!down)
  1543. in_page = PAGE_SIZE - offset_in_page(address);
  1544. else
  1545. in_page = offset_in_page(address) + size;
  1546. now = min(count, (unsigned long)in_page / size);
  1547. if (!now) {
  1548. /*
  1549. * String I/O straddles page boundary. Pin two guest pages
  1550. * so that we satisfy atomicity constraints. Do just one
  1551. * transaction to avoid complexity.
  1552. */
  1553. nr_pages = 2;
  1554. now = 1;
  1555. }
  1556. if (down) {
  1557. /*
  1558. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1559. */
  1560. printk(KERN_ERR "kvm: guest string pio down\n");
  1561. inject_gp(vcpu);
  1562. return 1;
  1563. }
  1564. vcpu->run->io.count = now;
  1565. vcpu->pio.cur_count = now;
  1566. for (i = 0; i < nr_pages; ++i) {
  1567. mutex_lock(&vcpu->kvm->lock);
  1568. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1569. if (page)
  1570. get_page(page);
  1571. vcpu->pio.guest_pages[i] = page;
  1572. mutex_unlock(&vcpu->kvm->lock);
  1573. if (!page) {
  1574. inject_gp(vcpu);
  1575. free_pio_guest_pages(vcpu);
  1576. return 1;
  1577. }
  1578. }
  1579. if (!vcpu->pio.in) {
  1580. /* string PIO write */
  1581. ret = pio_copy_data(vcpu);
  1582. if (ret >= 0 && pio_dev) {
  1583. pio_string_write(pio_dev, vcpu);
  1584. complete_pio(vcpu);
  1585. if (vcpu->pio.count == 0)
  1586. ret = 1;
  1587. }
  1588. } else if (pio_dev)
  1589. printk(KERN_ERR "no string pio read support yet, "
  1590. "port %x size %d count %ld\n",
  1591. port, size, count);
  1592. return ret;
  1593. }
  1594. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1595. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1596. {
  1597. int r;
  1598. sigset_t sigsaved;
  1599. vcpu_load(vcpu);
  1600. if (vcpu->sigset_active)
  1601. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1602. /* re-sync apic's tpr */
  1603. vcpu->cr8 = kvm_run->cr8;
  1604. if (vcpu->pio.cur_count) {
  1605. r = complete_pio(vcpu);
  1606. if (r)
  1607. goto out;
  1608. }
  1609. if (vcpu->mmio_needed) {
  1610. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1611. vcpu->mmio_read_completed = 1;
  1612. vcpu->mmio_needed = 0;
  1613. r = emulate_instruction(vcpu, kvm_run,
  1614. vcpu->mmio_fault_cr2, 0);
  1615. if (r == EMULATE_DO_MMIO) {
  1616. /*
  1617. * Read-modify-write. Back to userspace.
  1618. */
  1619. r = 0;
  1620. goto out;
  1621. }
  1622. }
  1623. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1624. kvm_arch_ops->cache_regs(vcpu);
  1625. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1626. kvm_arch_ops->decache_regs(vcpu);
  1627. }
  1628. r = kvm_arch_ops->run(vcpu, kvm_run);
  1629. out:
  1630. if (vcpu->sigset_active)
  1631. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1632. vcpu_put(vcpu);
  1633. return r;
  1634. }
  1635. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1636. struct kvm_regs *regs)
  1637. {
  1638. vcpu_load(vcpu);
  1639. kvm_arch_ops->cache_regs(vcpu);
  1640. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1641. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1642. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1643. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1644. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1645. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1646. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1647. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1648. #ifdef CONFIG_X86_64
  1649. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1650. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1651. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1652. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1653. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1654. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1655. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1656. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1657. #endif
  1658. regs->rip = vcpu->rip;
  1659. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1660. /*
  1661. * Don't leak debug flags in case they were set for guest debugging
  1662. */
  1663. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1664. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1665. vcpu_put(vcpu);
  1666. return 0;
  1667. }
  1668. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1669. struct kvm_regs *regs)
  1670. {
  1671. vcpu_load(vcpu);
  1672. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1673. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1674. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1675. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1676. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1677. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1678. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1679. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1680. #ifdef CONFIG_X86_64
  1681. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1682. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1683. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1684. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1685. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1686. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1687. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1688. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1689. #endif
  1690. vcpu->rip = regs->rip;
  1691. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1692. kvm_arch_ops->decache_regs(vcpu);
  1693. vcpu_put(vcpu);
  1694. return 0;
  1695. }
  1696. static void get_segment(struct kvm_vcpu *vcpu,
  1697. struct kvm_segment *var, int seg)
  1698. {
  1699. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1700. }
  1701. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1702. struct kvm_sregs *sregs)
  1703. {
  1704. struct descriptor_table dt;
  1705. vcpu_load(vcpu);
  1706. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1707. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1708. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1709. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1710. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1711. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1712. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1713. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1714. kvm_arch_ops->get_idt(vcpu, &dt);
  1715. sregs->idt.limit = dt.limit;
  1716. sregs->idt.base = dt.base;
  1717. kvm_arch_ops->get_gdt(vcpu, &dt);
  1718. sregs->gdt.limit = dt.limit;
  1719. sregs->gdt.base = dt.base;
  1720. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1721. sregs->cr0 = vcpu->cr0;
  1722. sregs->cr2 = vcpu->cr2;
  1723. sregs->cr3 = vcpu->cr3;
  1724. sregs->cr4 = vcpu->cr4;
  1725. sregs->cr8 = vcpu->cr8;
  1726. sregs->efer = vcpu->shadow_efer;
  1727. sregs->apic_base = vcpu->apic_base;
  1728. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1729. sizeof sregs->interrupt_bitmap);
  1730. vcpu_put(vcpu);
  1731. return 0;
  1732. }
  1733. static void set_segment(struct kvm_vcpu *vcpu,
  1734. struct kvm_segment *var, int seg)
  1735. {
  1736. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1737. }
  1738. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1739. struct kvm_sregs *sregs)
  1740. {
  1741. int mmu_reset_needed = 0;
  1742. int i;
  1743. struct descriptor_table dt;
  1744. vcpu_load(vcpu);
  1745. dt.limit = sregs->idt.limit;
  1746. dt.base = sregs->idt.base;
  1747. kvm_arch_ops->set_idt(vcpu, &dt);
  1748. dt.limit = sregs->gdt.limit;
  1749. dt.base = sregs->gdt.base;
  1750. kvm_arch_ops->set_gdt(vcpu, &dt);
  1751. vcpu->cr2 = sregs->cr2;
  1752. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1753. vcpu->cr3 = sregs->cr3;
  1754. vcpu->cr8 = sregs->cr8;
  1755. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1756. #ifdef CONFIG_X86_64
  1757. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1758. #endif
  1759. vcpu->apic_base = sregs->apic_base;
  1760. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1761. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1762. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1763. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1764. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1765. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1766. load_pdptrs(vcpu, vcpu->cr3);
  1767. if (mmu_reset_needed)
  1768. kvm_mmu_reset_context(vcpu);
  1769. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1770. sizeof vcpu->irq_pending);
  1771. vcpu->irq_summary = 0;
  1772. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1773. if (vcpu->irq_pending[i])
  1774. __set_bit(i, &vcpu->irq_summary);
  1775. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1776. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1777. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1778. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1779. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1780. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1781. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1782. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1783. vcpu_put(vcpu);
  1784. return 0;
  1785. }
  1786. /*
  1787. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1788. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1789. *
  1790. * This list is modified at module load time to reflect the
  1791. * capabilities of the host cpu.
  1792. */
  1793. static u32 msrs_to_save[] = {
  1794. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1795. MSR_K6_STAR,
  1796. #ifdef CONFIG_X86_64
  1797. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1798. #endif
  1799. MSR_IA32_TIME_STAMP_COUNTER,
  1800. };
  1801. static unsigned num_msrs_to_save;
  1802. static u32 emulated_msrs[] = {
  1803. MSR_IA32_MISC_ENABLE,
  1804. };
  1805. static __init void kvm_init_msr_list(void)
  1806. {
  1807. u32 dummy[2];
  1808. unsigned i, j;
  1809. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1810. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1811. continue;
  1812. if (j < i)
  1813. msrs_to_save[j] = msrs_to_save[i];
  1814. j++;
  1815. }
  1816. num_msrs_to_save = j;
  1817. }
  1818. /*
  1819. * Adapt set_msr() to msr_io()'s calling convention
  1820. */
  1821. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1822. {
  1823. return kvm_set_msr(vcpu, index, *data);
  1824. }
  1825. /*
  1826. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1827. *
  1828. * @return number of msrs set successfully.
  1829. */
  1830. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1831. struct kvm_msr_entry *entries,
  1832. int (*do_msr)(struct kvm_vcpu *vcpu,
  1833. unsigned index, u64 *data))
  1834. {
  1835. int i;
  1836. vcpu_load(vcpu);
  1837. for (i = 0; i < msrs->nmsrs; ++i)
  1838. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1839. break;
  1840. vcpu_put(vcpu);
  1841. return i;
  1842. }
  1843. /*
  1844. * Read or write a bunch of msrs. Parameters are user addresses.
  1845. *
  1846. * @return number of msrs set successfully.
  1847. */
  1848. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1849. int (*do_msr)(struct kvm_vcpu *vcpu,
  1850. unsigned index, u64 *data),
  1851. int writeback)
  1852. {
  1853. struct kvm_msrs msrs;
  1854. struct kvm_msr_entry *entries;
  1855. int r, n;
  1856. unsigned size;
  1857. r = -EFAULT;
  1858. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1859. goto out;
  1860. r = -E2BIG;
  1861. if (msrs.nmsrs >= MAX_IO_MSRS)
  1862. goto out;
  1863. r = -ENOMEM;
  1864. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1865. entries = vmalloc(size);
  1866. if (!entries)
  1867. goto out;
  1868. r = -EFAULT;
  1869. if (copy_from_user(entries, user_msrs->entries, size))
  1870. goto out_free;
  1871. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1872. if (r < 0)
  1873. goto out_free;
  1874. r = -EFAULT;
  1875. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1876. goto out_free;
  1877. r = n;
  1878. out_free:
  1879. vfree(entries);
  1880. out:
  1881. return r;
  1882. }
  1883. /*
  1884. * Translate a guest virtual address to a guest physical address.
  1885. */
  1886. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1887. struct kvm_translation *tr)
  1888. {
  1889. unsigned long vaddr = tr->linear_address;
  1890. gpa_t gpa;
  1891. vcpu_load(vcpu);
  1892. mutex_lock(&vcpu->kvm->lock);
  1893. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1894. tr->physical_address = gpa;
  1895. tr->valid = gpa != UNMAPPED_GVA;
  1896. tr->writeable = 1;
  1897. tr->usermode = 0;
  1898. mutex_unlock(&vcpu->kvm->lock);
  1899. vcpu_put(vcpu);
  1900. return 0;
  1901. }
  1902. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1903. struct kvm_interrupt *irq)
  1904. {
  1905. if (irq->irq < 0 || irq->irq >= 256)
  1906. return -EINVAL;
  1907. vcpu_load(vcpu);
  1908. set_bit(irq->irq, vcpu->irq_pending);
  1909. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1910. vcpu_put(vcpu);
  1911. return 0;
  1912. }
  1913. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1914. struct kvm_debug_guest *dbg)
  1915. {
  1916. int r;
  1917. vcpu_load(vcpu);
  1918. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1919. vcpu_put(vcpu);
  1920. return r;
  1921. }
  1922. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1923. unsigned long address,
  1924. int *type)
  1925. {
  1926. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1927. unsigned long pgoff;
  1928. struct page *page;
  1929. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1930. if (pgoff == 0)
  1931. page = virt_to_page(vcpu->run);
  1932. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1933. page = virt_to_page(vcpu->pio_data);
  1934. else
  1935. return NOPAGE_SIGBUS;
  1936. get_page(page);
  1937. if (type != NULL)
  1938. *type = VM_FAULT_MINOR;
  1939. return page;
  1940. }
  1941. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1942. .nopage = kvm_vcpu_nopage,
  1943. };
  1944. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1945. {
  1946. vma->vm_ops = &kvm_vcpu_vm_ops;
  1947. return 0;
  1948. }
  1949. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1950. {
  1951. struct kvm_vcpu *vcpu = filp->private_data;
  1952. fput(vcpu->kvm->filp);
  1953. return 0;
  1954. }
  1955. static struct file_operations kvm_vcpu_fops = {
  1956. .release = kvm_vcpu_release,
  1957. .unlocked_ioctl = kvm_vcpu_ioctl,
  1958. .compat_ioctl = kvm_vcpu_ioctl,
  1959. .mmap = kvm_vcpu_mmap,
  1960. };
  1961. /*
  1962. * Allocates an inode for the vcpu.
  1963. */
  1964. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1965. {
  1966. int fd, r;
  1967. struct inode *inode;
  1968. struct file *file;
  1969. r = anon_inode_getfd(&fd, &inode, &file,
  1970. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1971. if (r)
  1972. return r;
  1973. atomic_inc(&vcpu->kvm->filp->f_count);
  1974. return fd;
  1975. }
  1976. /*
  1977. * Creates some virtual cpus. Good luck creating more than one.
  1978. */
  1979. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1980. {
  1981. int r;
  1982. struct kvm_vcpu *vcpu;
  1983. if (!valid_vcpu(n))
  1984. return -EINVAL;
  1985. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  1986. if (IS_ERR(vcpu))
  1987. return PTR_ERR(vcpu);
  1988. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1989. /* We do fxsave: this must be aligned. */
  1990. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1991. vcpu_load(vcpu);
  1992. r = kvm_mmu_setup(vcpu);
  1993. vcpu_put(vcpu);
  1994. if (r < 0)
  1995. goto free_vcpu;
  1996. mutex_lock(&kvm->lock);
  1997. if (kvm->vcpus[n]) {
  1998. r = -EEXIST;
  1999. mutex_unlock(&kvm->lock);
  2000. goto mmu_unload;
  2001. }
  2002. kvm->vcpus[n] = vcpu;
  2003. mutex_unlock(&kvm->lock);
  2004. /* Now it's all set up, let userspace reach it */
  2005. r = create_vcpu_fd(vcpu);
  2006. if (r < 0)
  2007. goto unlink;
  2008. return r;
  2009. unlink:
  2010. mutex_lock(&kvm->lock);
  2011. kvm->vcpus[n] = NULL;
  2012. mutex_unlock(&kvm->lock);
  2013. mmu_unload:
  2014. vcpu_load(vcpu);
  2015. kvm_mmu_unload(vcpu);
  2016. vcpu_put(vcpu);
  2017. free_vcpu:
  2018. kvm_arch_ops->vcpu_free(vcpu);
  2019. return r;
  2020. }
  2021. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2022. {
  2023. u64 efer;
  2024. int i;
  2025. struct kvm_cpuid_entry *e, *entry;
  2026. rdmsrl(MSR_EFER, efer);
  2027. entry = NULL;
  2028. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2029. e = &vcpu->cpuid_entries[i];
  2030. if (e->function == 0x80000001) {
  2031. entry = e;
  2032. break;
  2033. }
  2034. }
  2035. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2036. entry->edx &= ~(1 << 20);
  2037. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2038. }
  2039. }
  2040. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2041. struct kvm_cpuid *cpuid,
  2042. struct kvm_cpuid_entry __user *entries)
  2043. {
  2044. int r;
  2045. r = -E2BIG;
  2046. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2047. goto out;
  2048. r = -EFAULT;
  2049. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2050. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2051. goto out;
  2052. vcpu->cpuid_nent = cpuid->nent;
  2053. cpuid_fix_nx_cap(vcpu);
  2054. return 0;
  2055. out:
  2056. return r;
  2057. }
  2058. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2059. {
  2060. if (sigset) {
  2061. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2062. vcpu->sigset_active = 1;
  2063. vcpu->sigset = *sigset;
  2064. } else
  2065. vcpu->sigset_active = 0;
  2066. return 0;
  2067. }
  2068. /*
  2069. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2070. * we have asm/x86/processor.h
  2071. */
  2072. struct fxsave {
  2073. u16 cwd;
  2074. u16 swd;
  2075. u16 twd;
  2076. u16 fop;
  2077. u64 rip;
  2078. u64 rdp;
  2079. u32 mxcsr;
  2080. u32 mxcsr_mask;
  2081. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2082. #ifdef CONFIG_X86_64
  2083. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2084. #else
  2085. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2086. #endif
  2087. };
  2088. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2089. {
  2090. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2091. vcpu_load(vcpu);
  2092. memcpy(fpu->fpr, fxsave->st_space, 128);
  2093. fpu->fcw = fxsave->cwd;
  2094. fpu->fsw = fxsave->swd;
  2095. fpu->ftwx = fxsave->twd;
  2096. fpu->last_opcode = fxsave->fop;
  2097. fpu->last_ip = fxsave->rip;
  2098. fpu->last_dp = fxsave->rdp;
  2099. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2100. vcpu_put(vcpu);
  2101. return 0;
  2102. }
  2103. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2104. {
  2105. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2106. vcpu_load(vcpu);
  2107. memcpy(fxsave->st_space, fpu->fpr, 128);
  2108. fxsave->cwd = fpu->fcw;
  2109. fxsave->swd = fpu->fsw;
  2110. fxsave->twd = fpu->ftwx;
  2111. fxsave->fop = fpu->last_opcode;
  2112. fxsave->rip = fpu->last_ip;
  2113. fxsave->rdp = fpu->last_dp;
  2114. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2115. vcpu_put(vcpu);
  2116. return 0;
  2117. }
  2118. static long kvm_vcpu_ioctl(struct file *filp,
  2119. unsigned int ioctl, unsigned long arg)
  2120. {
  2121. struct kvm_vcpu *vcpu = filp->private_data;
  2122. void __user *argp = (void __user *)arg;
  2123. int r = -EINVAL;
  2124. switch (ioctl) {
  2125. case KVM_RUN:
  2126. r = -EINVAL;
  2127. if (arg)
  2128. goto out;
  2129. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2130. break;
  2131. case KVM_GET_REGS: {
  2132. struct kvm_regs kvm_regs;
  2133. memset(&kvm_regs, 0, sizeof kvm_regs);
  2134. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2135. if (r)
  2136. goto out;
  2137. r = -EFAULT;
  2138. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2139. goto out;
  2140. r = 0;
  2141. break;
  2142. }
  2143. case KVM_SET_REGS: {
  2144. struct kvm_regs kvm_regs;
  2145. r = -EFAULT;
  2146. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2147. goto out;
  2148. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2149. if (r)
  2150. goto out;
  2151. r = 0;
  2152. break;
  2153. }
  2154. case KVM_GET_SREGS: {
  2155. struct kvm_sregs kvm_sregs;
  2156. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2157. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2158. if (r)
  2159. goto out;
  2160. r = -EFAULT;
  2161. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2162. goto out;
  2163. r = 0;
  2164. break;
  2165. }
  2166. case KVM_SET_SREGS: {
  2167. struct kvm_sregs kvm_sregs;
  2168. r = -EFAULT;
  2169. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2170. goto out;
  2171. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2172. if (r)
  2173. goto out;
  2174. r = 0;
  2175. break;
  2176. }
  2177. case KVM_TRANSLATE: {
  2178. struct kvm_translation tr;
  2179. r = -EFAULT;
  2180. if (copy_from_user(&tr, argp, sizeof tr))
  2181. goto out;
  2182. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2183. if (r)
  2184. goto out;
  2185. r = -EFAULT;
  2186. if (copy_to_user(argp, &tr, sizeof tr))
  2187. goto out;
  2188. r = 0;
  2189. break;
  2190. }
  2191. case KVM_INTERRUPT: {
  2192. struct kvm_interrupt irq;
  2193. r = -EFAULT;
  2194. if (copy_from_user(&irq, argp, sizeof irq))
  2195. goto out;
  2196. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2197. if (r)
  2198. goto out;
  2199. r = 0;
  2200. break;
  2201. }
  2202. case KVM_DEBUG_GUEST: {
  2203. struct kvm_debug_guest dbg;
  2204. r = -EFAULT;
  2205. if (copy_from_user(&dbg, argp, sizeof dbg))
  2206. goto out;
  2207. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2208. if (r)
  2209. goto out;
  2210. r = 0;
  2211. break;
  2212. }
  2213. case KVM_GET_MSRS:
  2214. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2215. break;
  2216. case KVM_SET_MSRS:
  2217. r = msr_io(vcpu, argp, do_set_msr, 0);
  2218. break;
  2219. case KVM_SET_CPUID: {
  2220. struct kvm_cpuid __user *cpuid_arg = argp;
  2221. struct kvm_cpuid cpuid;
  2222. r = -EFAULT;
  2223. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2224. goto out;
  2225. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2226. if (r)
  2227. goto out;
  2228. break;
  2229. }
  2230. case KVM_SET_SIGNAL_MASK: {
  2231. struct kvm_signal_mask __user *sigmask_arg = argp;
  2232. struct kvm_signal_mask kvm_sigmask;
  2233. sigset_t sigset, *p;
  2234. p = NULL;
  2235. if (argp) {
  2236. r = -EFAULT;
  2237. if (copy_from_user(&kvm_sigmask, argp,
  2238. sizeof kvm_sigmask))
  2239. goto out;
  2240. r = -EINVAL;
  2241. if (kvm_sigmask.len != sizeof sigset)
  2242. goto out;
  2243. r = -EFAULT;
  2244. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2245. sizeof sigset))
  2246. goto out;
  2247. p = &sigset;
  2248. }
  2249. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2250. break;
  2251. }
  2252. case KVM_GET_FPU: {
  2253. struct kvm_fpu fpu;
  2254. memset(&fpu, 0, sizeof fpu);
  2255. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2256. if (r)
  2257. goto out;
  2258. r = -EFAULT;
  2259. if (copy_to_user(argp, &fpu, sizeof fpu))
  2260. goto out;
  2261. r = 0;
  2262. break;
  2263. }
  2264. case KVM_SET_FPU: {
  2265. struct kvm_fpu fpu;
  2266. r = -EFAULT;
  2267. if (copy_from_user(&fpu, argp, sizeof fpu))
  2268. goto out;
  2269. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2270. if (r)
  2271. goto out;
  2272. r = 0;
  2273. break;
  2274. }
  2275. default:
  2276. ;
  2277. }
  2278. out:
  2279. return r;
  2280. }
  2281. static long kvm_vm_ioctl(struct file *filp,
  2282. unsigned int ioctl, unsigned long arg)
  2283. {
  2284. struct kvm *kvm = filp->private_data;
  2285. void __user *argp = (void __user *)arg;
  2286. int r = -EINVAL;
  2287. switch (ioctl) {
  2288. case KVM_CREATE_VCPU:
  2289. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2290. if (r < 0)
  2291. goto out;
  2292. break;
  2293. case KVM_SET_MEMORY_REGION: {
  2294. struct kvm_memory_region kvm_mem;
  2295. r = -EFAULT;
  2296. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2297. goto out;
  2298. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2299. if (r)
  2300. goto out;
  2301. break;
  2302. }
  2303. case KVM_GET_DIRTY_LOG: {
  2304. struct kvm_dirty_log log;
  2305. r = -EFAULT;
  2306. if (copy_from_user(&log, argp, sizeof log))
  2307. goto out;
  2308. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2309. if (r)
  2310. goto out;
  2311. break;
  2312. }
  2313. case KVM_SET_MEMORY_ALIAS: {
  2314. struct kvm_memory_alias alias;
  2315. r = -EFAULT;
  2316. if (copy_from_user(&alias, argp, sizeof alias))
  2317. goto out;
  2318. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2319. if (r)
  2320. goto out;
  2321. break;
  2322. }
  2323. default:
  2324. ;
  2325. }
  2326. out:
  2327. return r;
  2328. }
  2329. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2330. unsigned long address,
  2331. int *type)
  2332. {
  2333. struct kvm *kvm = vma->vm_file->private_data;
  2334. unsigned long pgoff;
  2335. struct page *page;
  2336. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2337. page = gfn_to_page(kvm, pgoff);
  2338. if (!page)
  2339. return NOPAGE_SIGBUS;
  2340. get_page(page);
  2341. if (type != NULL)
  2342. *type = VM_FAULT_MINOR;
  2343. return page;
  2344. }
  2345. static struct vm_operations_struct kvm_vm_vm_ops = {
  2346. .nopage = kvm_vm_nopage,
  2347. };
  2348. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2349. {
  2350. vma->vm_ops = &kvm_vm_vm_ops;
  2351. return 0;
  2352. }
  2353. static struct file_operations kvm_vm_fops = {
  2354. .release = kvm_vm_release,
  2355. .unlocked_ioctl = kvm_vm_ioctl,
  2356. .compat_ioctl = kvm_vm_ioctl,
  2357. .mmap = kvm_vm_mmap,
  2358. };
  2359. static int kvm_dev_ioctl_create_vm(void)
  2360. {
  2361. int fd, r;
  2362. struct inode *inode;
  2363. struct file *file;
  2364. struct kvm *kvm;
  2365. kvm = kvm_create_vm();
  2366. if (IS_ERR(kvm))
  2367. return PTR_ERR(kvm);
  2368. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2369. if (r) {
  2370. kvm_destroy_vm(kvm);
  2371. return r;
  2372. }
  2373. kvm->filp = file;
  2374. return fd;
  2375. }
  2376. static long kvm_dev_ioctl(struct file *filp,
  2377. unsigned int ioctl, unsigned long arg)
  2378. {
  2379. void __user *argp = (void __user *)arg;
  2380. long r = -EINVAL;
  2381. switch (ioctl) {
  2382. case KVM_GET_API_VERSION:
  2383. r = -EINVAL;
  2384. if (arg)
  2385. goto out;
  2386. r = KVM_API_VERSION;
  2387. break;
  2388. case KVM_CREATE_VM:
  2389. r = -EINVAL;
  2390. if (arg)
  2391. goto out;
  2392. r = kvm_dev_ioctl_create_vm();
  2393. break;
  2394. case KVM_GET_MSR_INDEX_LIST: {
  2395. struct kvm_msr_list __user *user_msr_list = argp;
  2396. struct kvm_msr_list msr_list;
  2397. unsigned n;
  2398. r = -EFAULT;
  2399. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2400. goto out;
  2401. n = msr_list.nmsrs;
  2402. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2403. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2404. goto out;
  2405. r = -E2BIG;
  2406. if (n < num_msrs_to_save)
  2407. goto out;
  2408. r = -EFAULT;
  2409. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2410. num_msrs_to_save * sizeof(u32)))
  2411. goto out;
  2412. if (copy_to_user(user_msr_list->indices
  2413. + num_msrs_to_save * sizeof(u32),
  2414. &emulated_msrs,
  2415. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2416. goto out;
  2417. r = 0;
  2418. break;
  2419. }
  2420. case KVM_CHECK_EXTENSION:
  2421. /*
  2422. * No extensions defined at present.
  2423. */
  2424. r = 0;
  2425. break;
  2426. case KVM_GET_VCPU_MMAP_SIZE:
  2427. r = -EINVAL;
  2428. if (arg)
  2429. goto out;
  2430. r = 2 * PAGE_SIZE;
  2431. break;
  2432. default:
  2433. ;
  2434. }
  2435. out:
  2436. return r;
  2437. }
  2438. static struct file_operations kvm_chardev_ops = {
  2439. .open = kvm_dev_open,
  2440. .release = kvm_dev_release,
  2441. .unlocked_ioctl = kvm_dev_ioctl,
  2442. .compat_ioctl = kvm_dev_ioctl,
  2443. };
  2444. static struct miscdevice kvm_dev = {
  2445. KVM_MINOR,
  2446. "kvm",
  2447. &kvm_chardev_ops,
  2448. };
  2449. /*
  2450. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2451. * cached on it.
  2452. */
  2453. static void decache_vcpus_on_cpu(int cpu)
  2454. {
  2455. struct kvm *vm;
  2456. struct kvm_vcpu *vcpu;
  2457. int i;
  2458. spin_lock(&kvm_lock);
  2459. list_for_each_entry(vm, &vm_list, vm_list)
  2460. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2461. vcpu = vm->vcpus[i];
  2462. if (!vcpu)
  2463. continue;
  2464. /*
  2465. * If the vcpu is locked, then it is running on some
  2466. * other cpu and therefore it is not cached on the
  2467. * cpu in question.
  2468. *
  2469. * If it's not locked, check the last cpu it executed
  2470. * on.
  2471. */
  2472. if (mutex_trylock(&vcpu->mutex)) {
  2473. if (vcpu->cpu == cpu) {
  2474. kvm_arch_ops->vcpu_decache(vcpu);
  2475. vcpu->cpu = -1;
  2476. }
  2477. mutex_unlock(&vcpu->mutex);
  2478. }
  2479. }
  2480. spin_unlock(&kvm_lock);
  2481. }
  2482. static void hardware_enable(void *junk)
  2483. {
  2484. int cpu = raw_smp_processor_id();
  2485. if (cpu_isset(cpu, cpus_hardware_enabled))
  2486. return;
  2487. cpu_set(cpu, cpus_hardware_enabled);
  2488. kvm_arch_ops->hardware_enable(NULL);
  2489. }
  2490. static void hardware_disable(void *junk)
  2491. {
  2492. int cpu = raw_smp_processor_id();
  2493. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2494. return;
  2495. cpu_clear(cpu, cpus_hardware_enabled);
  2496. decache_vcpus_on_cpu(cpu);
  2497. kvm_arch_ops->hardware_disable(NULL);
  2498. }
  2499. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2500. void *v)
  2501. {
  2502. int cpu = (long)v;
  2503. switch (val) {
  2504. case CPU_DYING:
  2505. case CPU_DYING_FROZEN:
  2506. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2507. cpu);
  2508. hardware_disable(NULL);
  2509. break;
  2510. case CPU_UP_CANCELED:
  2511. case CPU_UP_CANCELED_FROZEN:
  2512. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2513. cpu);
  2514. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2515. break;
  2516. case CPU_ONLINE:
  2517. case CPU_ONLINE_FROZEN:
  2518. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2519. cpu);
  2520. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2521. break;
  2522. }
  2523. return NOTIFY_OK;
  2524. }
  2525. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2526. void *v)
  2527. {
  2528. if (val == SYS_RESTART) {
  2529. /*
  2530. * Some (well, at least mine) BIOSes hang on reboot if
  2531. * in vmx root mode.
  2532. */
  2533. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2534. on_each_cpu(hardware_disable, NULL, 0, 1);
  2535. }
  2536. return NOTIFY_OK;
  2537. }
  2538. static struct notifier_block kvm_reboot_notifier = {
  2539. .notifier_call = kvm_reboot,
  2540. .priority = 0,
  2541. };
  2542. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2543. {
  2544. memset(bus, 0, sizeof(*bus));
  2545. }
  2546. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2547. {
  2548. int i;
  2549. for (i = 0; i < bus->dev_count; i++) {
  2550. struct kvm_io_device *pos = bus->devs[i];
  2551. kvm_iodevice_destructor(pos);
  2552. }
  2553. }
  2554. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2555. {
  2556. int i;
  2557. for (i = 0; i < bus->dev_count; i++) {
  2558. struct kvm_io_device *pos = bus->devs[i];
  2559. if (pos->in_range(pos, addr))
  2560. return pos;
  2561. }
  2562. return NULL;
  2563. }
  2564. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2565. {
  2566. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2567. bus->devs[bus->dev_count++] = dev;
  2568. }
  2569. static struct notifier_block kvm_cpu_notifier = {
  2570. .notifier_call = kvm_cpu_hotplug,
  2571. .priority = 20, /* must be > scheduler priority */
  2572. };
  2573. static u64 stat_get(void *_offset)
  2574. {
  2575. unsigned offset = (long)_offset;
  2576. u64 total = 0;
  2577. struct kvm *kvm;
  2578. struct kvm_vcpu *vcpu;
  2579. int i;
  2580. spin_lock(&kvm_lock);
  2581. list_for_each_entry(kvm, &vm_list, vm_list)
  2582. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2583. vcpu = kvm->vcpus[i];
  2584. if (vcpu)
  2585. total += *(u32 *)((void *)vcpu + offset);
  2586. }
  2587. spin_unlock(&kvm_lock);
  2588. return total;
  2589. }
  2590. static void stat_set(void *offset, u64 val)
  2591. {
  2592. }
  2593. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2594. static __init void kvm_init_debug(void)
  2595. {
  2596. struct kvm_stats_debugfs_item *p;
  2597. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2598. for (p = debugfs_entries; p->name; ++p)
  2599. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2600. (void *)(long)p->offset,
  2601. &stat_fops);
  2602. }
  2603. static void kvm_exit_debug(void)
  2604. {
  2605. struct kvm_stats_debugfs_item *p;
  2606. for (p = debugfs_entries; p->name; ++p)
  2607. debugfs_remove(p->dentry);
  2608. debugfs_remove(debugfs_dir);
  2609. }
  2610. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2611. {
  2612. hardware_disable(NULL);
  2613. return 0;
  2614. }
  2615. static int kvm_resume(struct sys_device *dev)
  2616. {
  2617. hardware_enable(NULL);
  2618. return 0;
  2619. }
  2620. static struct sysdev_class kvm_sysdev_class = {
  2621. set_kset_name("kvm"),
  2622. .suspend = kvm_suspend,
  2623. .resume = kvm_resume,
  2624. };
  2625. static struct sys_device kvm_sysdev = {
  2626. .id = 0,
  2627. .cls = &kvm_sysdev_class,
  2628. };
  2629. hpa_t bad_page_address;
  2630. static inline
  2631. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2632. {
  2633. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2634. }
  2635. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2636. {
  2637. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2638. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2639. }
  2640. static void kvm_sched_out(struct preempt_notifier *pn,
  2641. struct task_struct *next)
  2642. {
  2643. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2644. kvm_arch_ops->vcpu_put(vcpu);
  2645. }
  2646. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2647. struct module *module)
  2648. {
  2649. int r;
  2650. int cpu;
  2651. if (kvm_arch_ops) {
  2652. printk(KERN_ERR "kvm: already loaded the other module\n");
  2653. return -EEXIST;
  2654. }
  2655. if (!ops->cpu_has_kvm_support()) {
  2656. printk(KERN_ERR "kvm: no hardware support\n");
  2657. return -EOPNOTSUPP;
  2658. }
  2659. if (ops->disabled_by_bios()) {
  2660. printk(KERN_ERR "kvm: disabled by bios\n");
  2661. return -EOPNOTSUPP;
  2662. }
  2663. kvm_arch_ops = ops;
  2664. r = kvm_arch_ops->hardware_setup();
  2665. if (r < 0)
  2666. goto out;
  2667. for_each_online_cpu(cpu) {
  2668. smp_call_function_single(cpu,
  2669. kvm_arch_ops->check_processor_compatibility,
  2670. &r, 0, 1);
  2671. if (r < 0)
  2672. goto out_free_0;
  2673. }
  2674. on_each_cpu(hardware_enable, NULL, 0, 1);
  2675. r = register_cpu_notifier(&kvm_cpu_notifier);
  2676. if (r)
  2677. goto out_free_1;
  2678. register_reboot_notifier(&kvm_reboot_notifier);
  2679. r = sysdev_class_register(&kvm_sysdev_class);
  2680. if (r)
  2681. goto out_free_2;
  2682. r = sysdev_register(&kvm_sysdev);
  2683. if (r)
  2684. goto out_free_3;
  2685. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2686. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2687. __alignof__(struct kvm_vcpu), 0, 0);
  2688. if (!kvm_vcpu_cache) {
  2689. r = -ENOMEM;
  2690. goto out_free_4;
  2691. }
  2692. kvm_chardev_ops.owner = module;
  2693. r = misc_register(&kvm_dev);
  2694. if (r) {
  2695. printk (KERN_ERR "kvm: misc device register failed\n");
  2696. goto out_free;
  2697. }
  2698. kvm_preempt_ops.sched_in = kvm_sched_in;
  2699. kvm_preempt_ops.sched_out = kvm_sched_out;
  2700. return r;
  2701. out_free:
  2702. kmem_cache_destroy(kvm_vcpu_cache);
  2703. out_free_4:
  2704. sysdev_unregister(&kvm_sysdev);
  2705. out_free_3:
  2706. sysdev_class_unregister(&kvm_sysdev_class);
  2707. out_free_2:
  2708. unregister_reboot_notifier(&kvm_reboot_notifier);
  2709. unregister_cpu_notifier(&kvm_cpu_notifier);
  2710. out_free_1:
  2711. on_each_cpu(hardware_disable, NULL, 0, 1);
  2712. out_free_0:
  2713. kvm_arch_ops->hardware_unsetup();
  2714. out:
  2715. kvm_arch_ops = NULL;
  2716. return r;
  2717. }
  2718. void kvm_exit_arch(void)
  2719. {
  2720. misc_deregister(&kvm_dev);
  2721. kmem_cache_destroy(kvm_vcpu_cache);
  2722. sysdev_unregister(&kvm_sysdev);
  2723. sysdev_class_unregister(&kvm_sysdev_class);
  2724. unregister_reboot_notifier(&kvm_reboot_notifier);
  2725. unregister_cpu_notifier(&kvm_cpu_notifier);
  2726. on_each_cpu(hardware_disable, NULL, 0, 1);
  2727. kvm_arch_ops->hardware_unsetup();
  2728. kvm_arch_ops = NULL;
  2729. }
  2730. static __init int kvm_init(void)
  2731. {
  2732. static struct page *bad_page;
  2733. int r;
  2734. r = kvm_mmu_module_init();
  2735. if (r)
  2736. goto out4;
  2737. kvm_init_debug();
  2738. kvm_init_msr_list();
  2739. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2740. r = -ENOMEM;
  2741. goto out;
  2742. }
  2743. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2744. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2745. return 0;
  2746. out:
  2747. kvm_exit_debug();
  2748. kvm_mmu_module_exit();
  2749. out4:
  2750. return r;
  2751. }
  2752. static __exit void kvm_exit(void)
  2753. {
  2754. kvm_exit_debug();
  2755. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2756. kvm_mmu_module_exit();
  2757. }
  2758. module_init(kvm_init)
  2759. module_exit(kvm_exit)
  2760. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2761. EXPORT_SYMBOL_GPL(kvm_exit_arch);