raid0.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. /*
  2. raid0.c : Multiple Devices driver for Linux
  3. Copyright (C) 1994-96 Marc ZYNGIER
  4. <zyngier@ufr-info-p7.ibp.fr> or
  5. <maz@gloups.fdn.fr>
  6. Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
  7. RAID-0 management functions.
  8. This program is free software; you can redistribute it and/or modify
  9. it under the terms of the GNU General Public License as published by
  10. the Free Software Foundation; either version 2, or (at your option)
  11. any later version.
  12. You should have received a copy of the GNU General Public License
  13. (for example /usr/src/linux/COPYING); if not, write to the Free
  14. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/blkdev.h>
  17. #include <linux/seq_file.h>
  18. #include "md.h"
  19. #include "raid0.h"
  20. static void raid0_unplug(struct request_queue *q)
  21. {
  22. mddev_t *mddev = q->queuedata;
  23. raid0_conf_t *conf = mddev_to_conf(mddev);
  24. mdk_rdev_t **devlist = conf->strip_zone[0].dev;
  25. int i;
  26. for (i=0; i<mddev->raid_disks; i++) {
  27. struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
  28. blk_unplug(r_queue);
  29. }
  30. }
  31. static int raid0_congested(void *data, int bits)
  32. {
  33. mddev_t *mddev = data;
  34. raid0_conf_t *conf = mddev_to_conf(mddev);
  35. mdk_rdev_t **devlist = conf->strip_zone[0].dev;
  36. int i, ret = 0;
  37. for (i = 0; i < mddev->raid_disks && !ret ; i++) {
  38. struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
  39. ret |= bdi_congested(&q->backing_dev_info, bits);
  40. }
  41. return ret;
  42. }
  43. static int create_strip_zones(mddev_t *mddev)
  44. {
  45. int i, c, j, err;
  46. sector_t curr_zone_end;
  47. mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
  48. struct strip_zone *zone;
  49. int cnt;
  50. char b[BDEVNAME_SIZE];
  51. raid0_conf_t *conf = kzalloc(sizeof(*conf), GFP_KERNEL);
  52. if (!conf)
  53. return -ENOMEM;
  54. list_for_each_entry(rdev1, &mddev->disks, same_set) {
  55. printk(KERN_INFO "raid0: looking at %s\n",
  56. bdevname(rdev1->bdev,b));
  57. c = 0;
  58. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  59. printk(KERN_INFO "raid0: comparing %s(%llu)",
  60. bdevname(rdev1->bdev,b),
  61. (unsigned long long)rdev1->sectors);
  62. printk(KERN_INFO " with %s(%llu)\n",
  63. bdevname(rdev2->bdev,b),
  64. (unsigned long long)rdev2->sectors);
  65. if (rdev2 == rdev1) {
  66. printk(KERN_INFO "raid0: END\n");
  67. break;
  68. }
  69. if (rdev2->sectors == rdev1->sectors) {
  70. /*
  71. * Not unique, don't count it as a new
  72. * group
  73. */
  74. printk(KERN_INFO "raid0: EQUAL\n");
  75. c = 1;
  76. break;
  77. }
  78. printk(KERN_INFO "raid0: NOT EQUAL\n");
  79. }
  80. if (!c) {
  81. printk(KERN_INFO "raid0: ==> UNIQUE\n");
  82. conf->nr_strip_zones++;
  83. printk(KERN_INFO "raid0: %d zones\n",
  84. conf->nr_strip_zones);
  85. }
  86. }
  87. printk(KERN_INFO "raid0: FINAL %d zones\n", conf->nr_strip_zones);
  88. err = -ENOMEM;
  89. conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
  90. conf->nr_strip_zones, GFP_KERNEL);
  91. if (!conf->strip_zone)
  92. goto abort;
  93. conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
  94. conf->nr_strip_zones*mddev->raid_disks,
  95. GFP_KERNEL);
  96. if (!conf->devlist)
  97. goto abort;
  98. /* The first zone must contain all devices, so here we check that
  99. * there is a proper alignment of slots to devices and find them all
  100. */
  101. zone = &conf->strip_zone[0];
  102. cnt = 0;
  103. smallest = NULL;
  104. zone->dev = conf->devlist;
  105. err = -EINVAL;
  106. list_for_each_entry(rdev1, &mddev->disks, same_set) {
  107. int j = rdev1->raid_disk;
  108. if (j < 0 || j >= mddev->raid_disks) {
  109. printk(KERN_ERR "raid0: bad disk number %d - "
  110. "aborting!\n", j);
  111. goto abort;
  112. }
  113. if (zone->dev[j]) {
  114. printk(KERN_ERR "raid0: multiple devices for %d - "
  115. "aborting!\n", j);
  116. goto abort;
  117. }
  118. zone->dev[j] = rdev1;
  119. blk_queue_stack_limits(mddev->queue,
  120. rdev1->bdev->bd_disk->queue);
  121. /* as we don't honour merge_bvec_fn, we must never risk
  122. * violating it, so limit ->max_sector to one PAGE, as
  123. * a one page request is never in violation.
  124. */
  125. if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
  126. queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
  127. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  128. if (!smallest || (rdev1->sectors < smallest->sectors))
  129. smallest = rdev1;
  130. cnt++;
  131. }
  132. if (cnt != mddev->raid_disks) {
  133. printk(KERN_ERR "raid0: too few disks (%d of %d) - "
  134. "aborting!\n", cnt, mddev->raid_disks);
  135. goto abort;
  136. }
  137. zone->nb_dev = cnt;
  138. zone->sectors = smallest->sectors * cnt;
  139. zone->zone_end = zone->sectors;
  140. curr_zone_end = zone->sectors;
  141. /* now do the other zones */
  142. for (i = 1; i < conf->nr_strip_zones; i++)
  143. {
  144. zone = conf->strip_zone + i;
  145. zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
  146. printk(KERN_INFO "raid0: zone %d\n", i);
  147. zone->dev_start = smallest->sectors;
  148. smallest = NULL;
  149. c = 0;
  150. for (j=0; j<cnt; j++) {
  151. char b[BDEVNAME_SIZE];
  152. rdev = conf->strip_zone[0].dev[j];
  153. printk(KERN_INFO "raid0: checking %s ...",
  154. bdevname(rdev->bdev, b));
  155. if (rdev->sectors <= zone->dev_start) {
  156. printk(KERN_INFO " nope.\n");
  157. continue;
  158. }
  159. printk(KERN_INFO " contained as device %d\n", c);
  160. zone->dev[c] = rdev;
  161. c++;
  162. if (!smallest || rdev->sectors < smallest->sectors) {
  163. smallest = rdev;
  164. printk(KERN_INFO " (%llu) is smallest!.\n",
  165. (unsigned long long)rdev->sectors);
  166. }
  167. }
  168. zone->nb_dev = c;
  169. zone->sectors = (smallest->sectors - zone->dev_start) * c;
  170. printk(KERN_INFO "raid0: zone->nb_dev: %d, sectors: %llu\n",
  171. zone->nb_dev, (unsigned long long)zone->sectors);
  172. curr_zone_end += zone->sectors;
  173. zone->zone_end = curr_zone_end;
  174. printk(KERN_INFO "raid0: current zone start: %llu\n",
  175. (unsigned long long)smallest->sectors);
  176. }
  177. mddev->queue->unplug_fn = raid0_unplug;
  178. mddev->queue->backing_dev_info.congested_fn = raid0_congested;
  179. mddev->queue->backing_dev_info.congested_data = mddev;
  180. printk(KERN_INFO "raid0: done.\n");
  181. mddev->private = conf;
  182. return 0;
  183. abort:
  184. kfree(conf->strip_zone);
  185. kfree(conf->devlist);
  186. kfree(conf);
  187. mddev->private = NULL;
  188. return err;
  189. }
  190. /**
  191. * raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
  192. * @q: request queue
  193. * @bvm: properties of new bio
  194. * @biovec: the request that could be merged to it.
  195. *
  196. * Return amount of bytes we can accept at this offset
  197. */
  198. static int raid0_mergeable_bvec(struct request_queue *q,
  199. struct bvec_merge_data *bvm,
  200. struct bio_vec *biovec)
  201. {
  202. mddev_t *mddev = q->queuedata;
  203. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  204. int max;
  205. unsigned int chunk_sectors = mddev->chunk_size >> 9;
  206. unsigned int bio_sectors = bvm->bi_size >> 9;
  207. max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
  208. if (max < 0) max = 0; /* bio_add cannot handle a negative return */
  209. if (max <= biovec->bv_len && bio_sectors == 0)
  210. return biovec->bv_len;
  211. else
  212. return max;
  213. }
  214. static sector_t raid0_size(mddev_t *mddev, sector_t sectors, int raid_disks)
  215. {
  216. sector_t array_sectors = 0;
  217. mdk_rdev_t *rdev;
  218. WARN_ONCE(sectors || raid_disks,
  219. "%s does not support generic reshape\n", __func__);
  220. list_for_each_entry(rdev, &mddev->disks, same_set)
  221. array_sectors += rdev->sectors;
  222. return array_sectors;
  223. }
  224. static int raid0_run(mddev_t *mddev)
  225. {
  226. int ret;
  227. if (mddev->chunk_size == 0) {
  228. printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
  229. return -EINVAL;
  230. }
  231. printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
  232. mdname(mddev),
  233. mddev->chunk_size >> 9,
  234. (mddev->chunk_size>>1)-1);
  235. blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
  236. blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
  237. mddev->queue->queue_lock = &mddev->queue->__queue_lock;
  238. ret = create_strip_zones(mddev);
  239. if (ret < 0)
  240. return ret;
  241. /* calculate array device size */
  242. md_set_array_sectors(mddev, raid0_size(mddev, 0, 0));
  243. printk(KERN_INFO "raid0 : md_size is %llu sectors.\n",
  244. (unsigned long long)mddev->array_sectors);
  245. /* calculate the max read-ahead size.
  246. * For read-ahead of large files to be effective, we need to
  247. * readahead at least twice a whole stripe. i.e. number of devices
  248. * multiplied by chunk size times 2.
  249. * If an individual device has an ra_pages greater than the
  250. * chunk size, then we will not drive that device as hard as it
  251. * wants. We consider this a configuration error: a larger
  252. * chunksize should be used in that case.
  253. */
  254. {
  255. int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
  256. if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
  257. mddev->queue->backing_dev_info.ra_pages = 2* stripe;
  258. }
  259. blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
  260. return 0;
  261. }
  262. static int raid0_stop(mddev_t *mddev)
  263. {
  264. raid0_conf_t *conf = mddev_to_conf(mddev);
  265. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  266. kfree(conf->strip_zone);
  267. kfree(conf->devlist);
  268. kfree(conf);
  269. mddev->private = NULL;
  270. return 0;
  271. }
  272. /* Find the zone which holds a particular offset */
  273. static struct strip_zone *find_zone(struct raid0_private_data *conf,
  274. sector_t sector)
  275. {
  276. int i;
  277. struct strip_zone *z = conf->strip_zone;
  278. for (i = 0; i < conf->nr_strip_zones; i++)
  279. if (sector < z[i].zone_end)
  280. return z + i;
  281. BUG();
  282. }
  283. static int raid0_make_request (struct request_queue *q, struct bio *bio)
  284. {
  285. mddev_t *mddev = q->queuedata;
  286. unsigned int sect_in_chunk, chunksect_bits, chunk_sects;
  287. raid0_conf_t *conf = mddev_to_conf(mddev);
  288. struct strip_zone *zone;
  289. mdk_rdev_t *tmp_dev;
  290. sector_t chunk;
  291. sector_t sector, rsect;
  292. const int rw = bio_data_dir(bio);
  293. int cpu;
  294. if (unlikely(bio_barrier(bio))) {
  295. bio_endio(bio, -EOPNOTSUPP);
  296. return 0;
  297. }
  298. cpu = part_stat_lock();
  299. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  300. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
  301. bio_sectors(bio));
  302. part_stat_unlock();
  303. chunk_sects = mddev->chunk_size >> 9;
  304. chunksect_bits = ffz(~chunk_sects);
  305. sector = bio->bi_sector;
  306. if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
  307. struct bio_pair *bp;
  308. /* Sanity check -- queue functions should prevent this happening */
  309. if (bio->bi_vcnt != 1 ||
  310. bio->bi_idx != 0)
  311. goto bad_map;
  312. /* This is a one page bio that upper layers
  313. * refuse to split for us, so we need to split it.
  314. */
  315. bp = bio_split(bio, chunk_sects - (bio->bi_sector & (chunk_sects - 1)));
  316. if (raid0_make_request(q, &bp->bio1))
  317. generic_make_request(&bp->bio1);
  318. if (raid0_make_request(q, &bp->bio2))
  319. generic_make_request(&bp->bio2);
  320. bio_pair_release(bp);
  321. return 0;
  322. }
  323. zone = find_zone(conf, sector);
  324. sect_in_chunk = bio->bi_sector & (chunk_sects - 1);
  325. {
  326. sector_t x = (zone->sectors + sector - zone->zone_end)
  327. >> chunksect_bits;
  328. sector_div(x, zone->nb_dev);
  329. chunk = x;
  330. x = sector >> chunksect_bits;
  331. tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
  332. }
  333. rsect = (chunk << chunksect_bits) + zone->dev_start + sect_in_chunk;
  334. bio->bi_bdev = tmp_dev->bdev;
  335. bio->bi_sector = rsect + tmp_dev->data_offset;
  336. /*
  337. * Let the main block layer submit the IO and resolve recursion:
  338. */
  339. return 1;
  340. bad_map:
  341. printk("raid0_make_request bug: can't convert block across chunks"
  342. " or bigger than %dk %llu %d\n", chunk_sects / 2,
  343. (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
  344. bio_io_error(bio);
  345. return 0;
  346. }
  347. static void raid0_status (struct seq_file *seq, mddev_t *mddev)
  348. {
  349. #undef MD_DEBUG
  350. #ifdef MD_DEBUG
  351. int j, k, h;
  352. char b[BDEVNAME_SIZE];
  353. raid0_conf_t *conf = mddev_to_conf(mddev);
  354. h = 0;
  355. for (j = 0; j < conf->nr_strip_zones; j++) {
  356. seq_printf(seq, " z%d", j);
  357. seq_printf(seq, "=[");
  358. for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
  359. seq_printf(seq, "%s/", bdevname(
  360. conf->strip_zone[j].dev[k]->bdev,b));
  361. seq_printf(seq, "] ze=%d ds=%d s=%d\n",
  362. conf->strip_zone[j].zone_end,
  363. conf->strip_zone[j].dev_start,
  364. conf->strip_zone[j].sectors);
  365. }
  366. #endif
  367. seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
  368. return;
  369. }
  370. static struct mdk_personality raid0_personality=
  371. {
  372. .name = "raid0",
  373. .level = 0,
  374. .owner = THIS_MODULE,
  375. .make_request = raid0_make_request,
  376. .run = raid0_run,
  377. .stop = raid0_stop,
  378. .status = raid0_status,
  379. .size = raid0_size,
  380. };
  381. static int __init raid0_init (void)
  382. {
  383. return register_md_personality (&raid0_personality);
  384. }
  385. static void raid0_exit (void)
  386. {
  387. unregister_md_personality (&raid0_personality);
  388. }
  389. module_init(raid0_init);
  390. module_exit(raid0_exit);
  391. MODULE_LICENSE("GPL");
  392. MODULE_ALIAS("md-personality-2"); /* RAID0 */
  393. MODULE_ALIAS("md-raid0");
  394. MODULE_ALIAS("md-level-0");