process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/export.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <linux/cpuidle.h>
  33. #include <linux/leds.h>
  34. #include <asm/cacheflush.h>
  35. #include <asm/idmap.h>
  36. #include <asm/processor.h>
  37. #include <asm/thread_notify.h>
  38. #include <asm/stacktrace.h>
  39. #include <asm/mach/time.h>
  40. #include <asm/tls.h>
  41. #ifdef CONFIG_CC_STACKPROTECTOR
  42. #include <linux/stackprotector.h>
  43. unsigned long __stack_chk_guard __read_mostly;
  44. EXPORT_SYMBOL(__stack_chk_guard);
  45. #endif
  46. static const char *processor_modes[] = {
  47. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  48. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  49. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  50. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  51. };
  52. static const char *isa_modes[] = {
  53. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  54. };
  55. extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
  56. typedef void (*phys_reset_t)(unsigned long);
  57. /*
  58. * A temporary stack to use for CPU reset. This is static so that we
  59. * don't clobber it with the identity mapping. When running with this
  60. * stack, any references to the current task *will not work* so you
  61. * should really do as little as possible before jumping to your reset
  62. * code.
  63. */
  64. static u64 soft_restart_stack[16];
  65. static void __soft_restart(void *addr)
  66. {
  67. phys_reset_t phys_reset;
  68. /* Take out a flat memory mapping. */
  69. setup_mm_for_reboot();
  70. /* Clean and invalidate caches */
  71. flush_cache_all();
  72. /* Turn off caching */
  73. cpu_proc_fin();
  74. /* Push out any further dirty data, and ensure cache is empty */
  75. flush_cache_all();
  76. /* Switch to the identity mapping. */
  77. phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  78. phys_reset((unsigned long)addr);
  79. /* Should never get here. */
  80. BUG();
  81. }
  82. void soft_restart(unsigned long addr)
  83. {
  84. u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
  85. /* Disable interrupts first */
  86. local_irq_disable();
  87. local_fiq_disable();
  88. /* Disable the L2 if we're the last man standing. */
  89. if (num_online_cpus() == 1)
  90. outer_disable();
  91. /* Change to the new stack and continue with the reset. */
  92. call_with_stack(__soft_restart, (void *)addr, (void *)stack);
  93. /* Should never get here. */
  94. BUG();
  95. }
  96. static void null_restart(char mode, const char *cmd)
  97. {
  98. }
  99. /*
  100. * Function pointers to optional machine specific functions
  101. */
  102. void (*pm_power_off)(void);
  103. EXPORT_SYMBOL(pm_power_off);
  104. void (*arm_pm_restart)(char str, const char *cmd) = null_restart;
  105. EXPORT_SYMBOL_GPL(arm_pm_restart);
  106. /*
  107. * This is our default idle handler.
  108. */
  109. void (*arm_pm_idle)(void);
  110. static void default_idle(void)
  111. {
  112. if (arm_pm_idle)
  113. arm_pm_idle();
  114. else
  115. cpu_do_idle();
  116. local_irq_enable();
  117. }
  118. void arch_cpu_idle_prepare(void)
  119. {
  120. local_fiq_enable();
  121. }
  122. void arch_cpu_idle_enter(void)
  123. {
  124. ledtrig_cpu(CPU_LED_IDLE_START);
  125. #ifdef CONFIG_PL310_ERRATA_769419
  126. wmb();
  127. #endif
  128. }
  129. void arch_cpu_idle_exit(void)
  130. {
  131. ledtrig_cpu(CPU_LED_IDLE_END);
  132. }
  133. #ifdef CONFIG_HOTPLUG_CPU
  134. void arch_cpu_idle_dead(void)
  135. {
  136. cpu_die();
  137. }
  138. #endif
  139. /*
  140. * Called from the core idle loop.
  141. */
  142. void arch_cpu_idle(void)
  143. {
  144. if (cpuidle_idle_call())
  145. default_idle();
  146. }
  147. static char reboot_mode = 'h';
  148. int __init reboot_setup(char *str)
  149. {
  150. reboot_mode = str[0];
  151. return 1;
  152. }
  153. __setup("reboot=", reboot_setup);
  154. /*
  155. * Called by kexec, immediately prior to machine_kexec().
  156. *
  157. * This must completely disable all secondary CPUs; simply causing those CPUs
  158. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  159. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  160. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  161. * functionality embodied in disable_nonboot_cpus() to achieve this.
  162. */
  163. void machine_shutdown(void)
  164. {
  165. disable_nonboot_cpus();
  166. }
  167. /*
  168. * Halting simply requires that the secondary CPUs stop performing any
  169. * activity (executing tasks, handling interrupts). smp_send_stop()
  170. * achieves this.
  171. */
  172. void machine_halt(void)
  173. {
  174. smp_send_stop();
  175. local_irq_disable();
  176. while (1);
  177. }
  178. /*
  179. * Power-off simply requires that the secondary CPUs stop performing any
  180. * activity (executing tasks, handling interrupts). smp_send_stop()
  181. * achieves this. When the system power is turned off, it will take all CPUs
  182. * with it.
  183. */
  184. void machine_power_off(void)
  185. {
  186. smp_send_stop();
  187. if (pm_power_off)
  188. pm_power_off();
  189. }
  190. /*
  191. * Restart requires that the secondary CPUs stop performing any activity
  192. * while the primary CPU resets the system. Systems with a single CPU can
  193. * use soft_restart() as their machine descriptor's .restart hook, since that
  194. * will cause the only available CPU to reset. Systems with multiple CPUs must
  195. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  196. * This is required so that any code running after reset on the primary CPU
  197. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  198. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  199. * to use. Implementing such co-ordination would be essentially impossible.
  200. */
  201. void machine_restart(char *cmd)
  202. {
  203. smp_send_stop();
  204. arm_pm_restart(reboot_mode, cmd);
  205. /* Give a grace period for failure to restart of 1s */
  206. mdelay(1000);
  207. /* Whoops - the platform was unable to reboot. Tell the user! */
  208. printk("Reboot failed -- System halted\n");
  209. local_irq_disable();
  210. while (1);
  211. }
  212. void __show_regs(struct pt_regs *regs)
  213. {
  214. unsigned long flags;
  215. char buf[64];
  216. show_regs_print_info(KERN_DEFAULT);
  217. print_symbol("PC is at %s\n", instruction_pointer(regs));
  218. print_symbol("LR is at %s\n", regs->ARM_lr);
  219. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  220. "sp : %08lx ip : %08lx fp : %08lx\n",
  221. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  222. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  223. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  224. regs->ARM_r10, regs->ARM_r9,
  225. regs->ARM_r8);
  226. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  227. regs->ARM_r7, regs->ARM_r6,
  228. regs->ARM_r5, regs->ARM_r4);
  229. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  230. regs->ARM_r3, regs->ARM_r2,
  231. regs->ARM_r1, regs->ARM_r0);
  232. flags = regs->ARM_cpsr;
  233. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  234. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  235. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  236. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  237. buf[4] = '\0';
  238. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  239. buf, interrupts_enabled(regs) ? "n" : "ff",
  240. fast_interrupts_enabled(regs) ? "n" : "ff",
  241. processor_modes[processor_mode(regs)],
  242. isa_modes[isa_mode(regs)],
  243. get_fs() == get_ds() ? "kernel" : "user");
  244. #ifdef CONFIG_CPU_CP15
  245. {
  246. unsigned int ctrl;
  247. buf[0] = '\0';
  248. #ifdef CONFIG_CPU_CP15_MMU
  249. {
  250. unsigned int transbase, dac;
  251. asm("mrc p15, 0, %0, c2, c0\n\t"
  252. "mrc p15, 0, %1, c3, c0\n"
  253. : "=r" (transbase), "=r" (dac));
  254. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  255. transbase, dac);
  256. }
  257. #endif
  258. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  259. printk("Control: %08x%s\n", ctrl, buf);
  260. }
  261. #endif
  262. }
  263. void show_regs(struct pt_regs * regs)
  264. {
  265. printk("\n");
  266. __show_regs(regs);
  267. dump_stack();
  268. }
  269. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  270. EXPORT_SYMBOL_GPL(thread_notify_head);
  271. /*
  272. * Free current thread data structures etc..
  273. */
  274. void exit_thread(void)
  275. {
  276. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  277. }
  278. void flush_thread(void)
  279. {
  280. struct thread_info *thread = current_thread_info();
  281. struct task_struct *tsk = current;
  282. flush_ptrace_hw_breakpoint(tsk);
  283. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  284. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  285. memset(&thread->fpstate, 0, sizeof(union fp_state));
  286. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  287. }
  288. void release_thread(struct task_struct *dead_task)
  289. {
  290. }
  291. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  292. int
  293. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  294. unsigned long stk_sz, struct task_struct *p)
  295. {
  296. struct thread_info *thread = task_thread_info(p);
  297. struct pt_regs *childregs = task_pt_regs(p);
  298. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  299. if (likely(!(p->flags & PF_KTHREAD))) {
  300. *childregs = *current_pt_regs();
  301. childregs->ARM_r0 = 0;
  302. if (stack_start)
  303. childregs->ARM_sp = stack_start;
  304. } else {
  305. memset(childregs, 0, sizeof(struct pt_regs));
  306. thread->cpu_context.r4 = stk_sz;
  307. thread->cpu_context.r5 = stack_start;
  308. childregs->ARM_cpsr = SVC_MODE;
  309. }
  310. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  311. thread->cpu_context.sp = (unsigned long)childregs;
  312. clear_ptrace_hw_breakpoint(p);
  313. if (clone_flags & CLONE_SETTLS)
  314. thread->tp_value[0] = childregs->ARM_r3;
  315. thread->tp_value[1] = get_tpuser();
  316. thread_notify(THREAD_NOTIFY_COPY, thread);
  317. return 0;
  318. }
  319. /*
  320. * Fill in the task's elfregs structure for a core dump.
  321. */
  322. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  323. {
  324. elf_core_copy_regs(elfregs, task_pt_regs(t));
  325. return 1;
  326. }
  327. /*
  328. * fill in the fpe structure for a core dump...
  329. */
  330. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  331. {
  332. struct thread_info *thread = current_thread_info();
  333. int used_math = thread->used_cp[1] | thread->used_cp[2];
  334. if (used_math)
  335. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  336. return used_math != 0;
  337. }
  338. EXPORT_SYMBOL(dump_fpu);
  339. unsigned long get_wchan(struct task_struct *p)
  340. {
  341. struct stackframe frame;
  342. int count = 0;
  343. if (!p || p == current || p->state == TASK_RUNNING)
  344. return 0;
  345. frame.fp = thread_saved_fp(p);
  346. frame.sp = thread_saved_sp(p);
  347. frame.lr = 0; /* recovered from the stack */
  348. frame.pc = thread_saved_pc(p);
  349. do {
  350. int ret = unwind_frame(&frame);
  351. if (ret < 0)
  352. return 0;
  353. if (!in_sched_functions(frame.pc))
  354. return frame.pc;
  355. } while (count ++ < 16);
  356. return 0;
  357. }
  358. unsigned long arch_randomize_brk(struct mm_struct *mm)
  359. {
  360. unsigned long range_end = mm->brk + 0x02000000;
  361. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  362. }
  363. #ifdef CONFIG_MMU
  364. /*
  365. * The vectors page is always readable from user space for the
  366. * atomic helpers and the signal restart code. Insert it into the
  367. * gate_vma so that it is visible through ptrace and /proc/<pid>/mem.
  368. */
  369. static struct vm_area_struct gate_vma = {
  370. .vm_start = 0xffff0000,
  371. .vm_end = 0xffff0000 + PAGE_SIZE,
  372. .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
  373. };
  374. static int __init gate_vma_init(void)
  375. {
  376. gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
  377. return 0;
  378. }
  379. arch_initcall(gate_vma_init);
  380. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  381. {
  382. return &gate_vma;
  383. }
  384. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  385. {
  386. return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
  387. }
  388. int in_gate_area_no_mm(unsigned long addr)
  389. {
  390. return in_gate_area(NULL, addr);
  391. }
  392. const char *arch_vma_name(struct vm_area_struct *vma)
  393. {
  394. return (vma == &gate_vma) ? "[vectors]" : NULL;
  395. }
  396. #endif