namespace.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/percpu.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/nsproxy.h>
  26. #include <linux/security.h>
  27. #include <linux/mount.h>
  28. #include <linux/ramfs.h>
  29. #include <linux/log2.h>
  30. #include <linux/idr.h>
  31. #include <linux/fs_struct.h>
  32. #include <linux/fsnotify.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/unistd.h>
  35. #include "pnode.h"
  36. #include "internal.h"
  37. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38. #define HASH_SIZE (1UL << HASH_SHIFT)
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static DEFINE_SPINLOCK(mnt_id_lock);
  43. static int mnt_id_start = 0;
  44. static int mnt_group_start = 1;
  45. static struct list_head *mount_hashtable __read_mostly;
  46. static struct kmem_cache *mnt_cache __read_mostly;
  47. static struct rw_semaphore namespace_sem;
  48. /* /sys/fs */
  49. struct kobject *fs_kobj;
  50. EXPORT_SYMBOL_GPL(fs_kobj);
  51. /*
  52. * vfsmount lock may be taken for read to prevent changes to the
  53. * vfsmount hash, ie. during mountpoint lookups or walking back
  54. * up the tree.
  55. *
  56. * It should be taken for write in all cases where the vfsmount
  57. * tree or hash is modified or when a vfsmount structure is modified.
  58. */
  59. DEFINE_BRLOCK(vfsmount_lock);
  60. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  61. {
  62. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  63. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  64. tmp = tmp + (tmp >> HASH_SHIFT);
  65. return tmp & (HASH_SIZE - 1);
  66. }
  67. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  68. /*
  69. * allocation is serialized by namespace_sem, but we need the spinlock to
  70. * serialize with freeing.
  71. */
  72. static int mnt_alloc_id(struct vfsmount *mnt)
  73. {
  74. int res;
  75. retry:
  76. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  77. spin_lock(&mnt_id_lock);
  78. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  79. if (!res)
  80. mnt_id_start = mnt->mnt_id + 1;
  81. spin_unlock(&mnt_id_lock);
  82. if (res == -EAGAIN)
  83. goto retry;
  84. return res;
  85. }
  86. static void mnt_free_id(struct vfsmount *mnt)
  87. {
  88. int id = mnt->mnt_id;
  89. spin_lock(&mnt_id_lock);
  90. ida_remove(&mnt_id_ida, id);
  91. if (mnt_id_start > id)
  92. mnt_id_start = id;
  93. spin_unlock(&mnt_id_lock);
  94. }
  95. /*
  96. * Allocate a new peer group ID
  97. *
  98. * mnt_group_ida is protected by namespace_sem
  99. */
  100. static int mnt_alloc_group_id(struct vfsmount *mnt)
  101. {
  102. int res;
  103. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  104. return -ENOMEM;
  105. res = ida_get_new_above(&mnt_group_ida,
  106. mnt_group_start,
  107. &mnt->mnt_group_id);
  108. if (!res)
  109. mnt_group_start = mnt->mnt_group_id + 1;
  110. return res;
  111. }
  112. /*
  113. * Release a peer group ID
  114. */
  115. void mnt_release_group_id(struct vfsmount *mnt)
  116. {
  117. int id = mnt->mnt_group_id;
  118. ida_remove(&mnt_group_ida, id);
  119. if (mnt_group_start > id)
  120. mnt_group_start = id;
  121. mnt->mnt_group_id = 0;
  122. }
  123. struct vfsmount *alloc_vfsmnt(const char *name)
  124. {
  125. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  126. if (mnt) {
  127. int err;
  128. err = mnt_alloc_id(mnt);
  129. if (err)
  130. goto out_free_cache;
  131. if (name) {
  132. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  133. if (!mnt->mnt_devname)
  134. goto out_free_id;
  135. }
  136. atomic_set(&mnt->mnt_count, 1);
  137. INIT_LIST_HEAD(&mnt->mnt_hash);
  138. INIT_LIST_HEAD(&mnt->mnt_child);
  139. INIT_LIST_HEAD(&mnt->mnt_mounts);
  140. INIT_LIST_HEAD(&mnt->mnt_list);
  141. INIT_LIST_HEAD(&mnt->mnt_expire);
  142. INIT_LIST_HEAD(&mnt->mnt_share);
  143. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  144. INIT_LIST_HEAD(&mnt->mnt_slave);
  145. #ifdef CONFIG_FSNOTIFY
  146. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  147. #endif
  148. #ifdef CONFIG_SMP
  149. mnt->mnt_writers = alloc_percpu(int);
  150. if (!mnt->mnt_writers)
  151. goto out_free_devname;
  152. #else
  153. mnt->mnt_writers = 0;
  154. #endif
  155. }
  156. return mnt;
  157. #ifdef CONFIG_SMP
  158. out_free_devname:
  159. kfree(mnt->mnt_devname);
  160. #endif
  161. out_free_id:
  162. mnt_free_id(mnt);
  163. out_free_cache:
  164. kmem_cache_free(mnt_cache, mnt);
  165. return NULL;
  166. }
  167. /*
  168. * Most r/o checks on a fs are for operations that take
  169. * discrete amounts of time, like a write() or unlink().
  170. * We must keep track of when those operations start
  171. * (for permission checks) and when they end, so that
  172. * we can determine when writes are able to occur to
  173. * a filesystem.
  174. */
  175. /*
  176. * __mnt_is_readonly: check whether a mount is read-only
  177. * @mnt: the mount to check for its write status
  178. *
  179. * This shouldn't be used directly ouside of the VFS.
  180. * It does not guarantee that the filesystem will stay
  181. * r/w, just that it is right *now*. This can not and
  182. * should not be used in place of IS_RDONLY(inode).
  183. * mnt_want/drop_write() will _keep_ the filesystem
  184. * r/w.
  185. */
  186. int __mnt_is_readonly(struct vfsmount *mnt)
  187. {
  188. if (mnt->mnt_flags & MNT_READONLY)
  189. return 1;
  190. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  191. return 1;
  192. return 0;
  193. }
  194. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  195. static inline void inc_mnt_writers(struct vfsmount *mnt)
  196. {
  197. #ifdef CONFIG_SMP
  198. (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
  199. #else
  200. mnt->mnt_writers++;
  201. #endif
  202. }
  203. static inline void dec_mnt_writers(struct vfsmount *mnt)
  204. {
  205. #ifdef CONFIG_SMP
  206. (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
  207. #else
  208. mnt->mnt_writers--;
  209. #endif
  210. }
  211. static unsigned int count_mnt_writers(struct vfsmount *mnt)
  212. {
  213. #ifdef CONFIG_SMP
  214. unsigned int count = 0;
  215. int cpu;
  216. for_each_possible_cpu(cpu) {
  217. count += *per_cpu_ptr(mnt->mnt_writers, cpu);
  218. }
  219. return count;
  220. #else
  221. return mnt->mnt_writers;
  222. #endif
  223. }
  224. /*
  225. * Most r/o checks on a fs are for operations that take
  226. * discrete amounts of time, like a write() or unlink().
  227. * We must keep track of when those operations start
  228. * (for permission checks) and when they end, so that
  229. * we can determine when writes are able to occur to
  230. * a filesystem.
  231. */
  232. /**
  233. * mnt_want_write - get write access to a mount
  234. * @mnt: the mount on which to take a write
  235. *
  236. * This tells the low-level filesystem that a write is
  237. * about to be performed to it, and makes sure that
  238. * writes are allowed before returning success. When
  239. * the write operation is finished, mnt_drop_write()
  240. * must be called. This is effectively a refcount.
  241. */
  242. int mnt_want_write(struct vfsmount *mnt)
  243. {
  244. int ret = 0;
  245. preempt_disable();
  246. inc_mnt_writers(mnt);
  247. /*
  248. * The store to inc_mnt_writers must be visible before we pass
  249. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  250. * incremented count after it has set MNT_WRITE_HOLD.
  251. */
  252. smp_mb();
  253. while (mnt->mnt_flags & MNT_WRITE_HOLD)
  254. cpu_relax();
  255. /*
  256. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  257. * be set to match its requirements. So we must not load that until
  258. * MNT_WRITE_HOLD is cleared.
  259. */
  260. smp_rmb();
  261. if (__mnt_is_readonly(mnt)) {
  262. dec_mnt_writers(mnt);
  263. ret = -EROFS;
  264. goto out;
  265. }
  266. out:
  267. preempt_enable();
  268. return ret;
  269. }
  270. EXPORT_SYMBOL_GPL(mnt_want_write);
  271. /**
  272. * mnt_clone_write - get write access to a mount
  273. * @mnt: the mount on which to take a write
  274. *
  275. * This is effectively like mnt_want_write, except
  276. * it must only be used to take an extra write reference
  277. * on a mountpoint that we already know has a write reference
  278. * on it. This allows some optimisation.
  279. *
  280. * After finished, mnt_drop_write must be called as usual to
  281. * drop the reference.
  282. */
  283. int mnt_clone_write(struct vfsmount *mnt)
  284. {
  285. /* superblock may be r/o */
  286. if (__mnt_is_readonly(mnt))
  287. return -EROFS;
  288. preempt_disable();
  289. inc_mnt_writers(mnt);
  290. preempt_enable();
  291. return 0;
  292. }
  293. EXPORT_SYMBOL_GPL(mnt_clone_write);
  294. /**
  295. * mnt_want_write_file - get write access to a file's mount
  296. * @file: the file who's mount on which to take a write
  297. *
  298. * This is like mnt_want_write, but it takes a file and can
  299. * do some optimisations if the file is open for write already
  300. */
  301. int mnt_want_write_file(struct file *file)
  302. {
  303. struct inode *inode = file->f_dentry->d_inode;
  304. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  305. return mnt_want_write(file->f_path.mnt);
  306. else
  307. return mnt_clone_write(file->f_path.mnt);
  308. }
  309. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  310. /**
  311. * mnt_drop_write - give up write access to a mount
  312. * @mnt: the mount on which to give up write access
  313. *
  314. * Tells the low-level filesystem that we are done
  315. * performing writes to it. Must be matched with
  316. * mnt_want_write() call above.
  317. */
  318. void mnt_drop_write(struct vfsmount *mnt)
  319. {
  320. preempt_disable();
  321. dec_mnt_writers(mnt);
  322. preempt_enable();
  323. }
  324. EXPORT_SYMBOL_GPL(mnt_drop_write);
  325. static int mnt_make_readonly(struct vfsmount *mnt)
  326. {
  327. int ret = 0;
  328. br_write_lock(vfsmount_lock);
  329. mnt->mnt_flags |= MNT_WRITE_HOLD;
  330. /*
  331. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  332. * should be visible before we do.
  333. */
  334. smp_mb();
  335. /*
  336. * With writers on hold, if this value is zero, then there are
  337. * definitely no active writers (although held writers may subsequently
  338. * increment the count, they'll have to wait, and decrement it after
  339. * seeing MNT_READONLY).
  340. *
  341. * It is OK to have counter incremented on one CPU and decremented on
  342. * another: the sum will add up correctly. The danger would be when we
  343. * sum up each counter, if we read a counter before it is incremented,
  344. * but then read another CPU's count which it has been subsequently
  345. * decremented from -- we would see more decrements than we should.
  346. * MNT_WRITE_HOLD protects against this scenario, because
  347. * mnt_want_write first increments count, then smp_mb, then spins on
  348. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  349. * we're counting up here.
  350. */
  351. if (count_mnt_writers(mnt) > 0)
  352. ret = -EBUSY;
  353. else
  354. mnt->mnt_flags |= MNT_READONLY;
  355. /*
  356. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  357. * that become unheld will see MNT_READONLY.
  358. */
  359. smp_wmb();
  360. mnt->mnt_flags &= ~MNT_WRITE_HOLD;
  361. br_write_unlock(vfsmount_lock);
  362. return ret;
  363. }
  364. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  365. {
  366. br_write_lock(vfsmount_lock);
  367. mnt->mnt_flags &= ~MNT_READONLY;
  368. br_write_unlock(vfsmount_lock);
  369. }
  370. void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  371. {
  372. mnt->mnt_sb = sb;
  373. mnt->mnt_root = dget(sb->s_root);
  374. }
  375. EXPORT_SYMBOL(simple_set_mnt);
  376. void free_vfsmnt(struct vfsmount *mnt)
  377. {
  378. kfree(mnt->mnt_devname);
  379. mnt_free_id(mnt);
  380. #ifdef CONFIG_SMP
  381. free_percpu(mnt->mnt_writers);
  382. #endif
  383. kmem_cache_free(mnt_cache, mnt);
  384. }
  385. /*
  386. * find the first or last mount at @dentry on vfsmount @mnt depending on
  387. * @dir. If @dir is set return the first mount else return the last mount.
  388. * vfsmount_lock must be held for read or write.
  389. */
  390. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  391. int dir)
  392. {
  393. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  394. struct list_head *tmp = head;
  395. struct vfsmount *p, *found = NULL;
  396. for (;;) {
  397. tmp = dir ? tmp->next : tmp->prev;
  398. p = NULL;
  399. if (tmp == head)
  400. break;
  401. p = list_entry(tmp, struct vfsmount, mnt_hash);
  402. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  403. found = p;
  404. break;
  405. }
  406. }
  407. return found;
  408. }
  409. /*
  410. * lookup_mnt increments the ref count before returning
  411. * the vfsmount struct.
  412. */
  413. struct vfsmount *lookup_mnt(struct path *path)
  414. {
  415. struct vfsmount *child_mnt;
  416. br_read_lock(vfsmount_lock);
  417. if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
  418. mntget(child_mnt);
  419. br_read_unlock(vfsmount_lock);
  420. return child_mnt;
  421. }
  422. static inline int check_mnt(struct vfsmount *mnt)
  423. {
  424. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  425. }
  426. /*
  427. * vfsmount lock must be held for write
  428. */
  429. static void touch_mnt_namespace(struct mnt_namespace *ns)
  430. {
  431. if (ns) {
  432. ns->event = ++event;
  433. wake_up_interruptible(&ns->poll);
  434. }
  435. }
  436. /*
  437. * vfsmount lock must be held for write
  438. */
  439. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  440. {
  441. if (ns && ns->event != event) {
  442. ns->event = event;
  443. wake_up_interruptible(&ns->poll);
  444. }
  445. }
  446. /*
  447. * Clear dentry's mounted state if it has no remaining mounts.
  448. * vfsmount_lock must be held for write.
  449. */
  450. static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
  451. {
  452. unsigned u;
  453. for (u = 0; u < HASH_SIZE; u++) {
  454. struct vfsmount *p;
  455. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  456. if (p->mnt_mountpoint == dentry)
  457. return;
  458. }
  459. }
  460. spin_lock(&dentry->d_lock);
  461. dentry->d_flags &= ~DCACHE_MOUNTED;
  462. spin_unlock(&dentry->d_lock);
  463. }
  464. /*
  465. * vfsmount lock must be held for write
  466. */
  467. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  468. {
  469. old_path->dentry = mnt->mnt_mountpoint;
  470. old_path->mnt = mnt->mnt_parent;
  471. mnt->mnt_parent = mnt;
  472. mnt->mnt_mountpoint = mnt->mnt_root;
  473. list_del_init(&mnt->mnt_child);
  474. list_del_init(&mnt->mnt_hash);
  475. dentry_reset_mounted(old_path->mnt, old_path->dentry);
  476. }
  477. /*
  478. * vfsmount lock must be held for write
  479. */
  480. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  481. struct vfsmount *child_mnt)
  482. {
  483. child_mnt->mnt_parent = mntget(mnt);
  484. child_mnt->mnt_mountpoint = dget(dentry);
  485. spin_lock(&dentry->d_lock);
  486. dentry->d_flags |= DCACHE_MOUNTED;
  487. spin_unlock(&dentry->d_lock);
  488. }
  489. /*
  490. * vfsmount lock must be held for write
  491. */
  492. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  493. {
  494. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  495. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  496. hash(path->mnt, path->dentry));
  497. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  498. }
  499. /*
  500. * vfsmount lock must be held for write
  501. */
  502. static void commit_tree(struct vfsmount *mnt)
  503. {
  504. struct vfsmount *parent = mnt->mnt_parent;
  505. struct vfsmount *m;
  506. LIST_HEAD(head);
  507. struct mnt_namespace *n = parent->mnt_ns;
  508. BUG_ON(parent == mnt);
  509. list_add_tail(&head, &mnt->mnt_list);
  510. list_for_each_entry(m, &head, mnt_list)
  511. m->mnt_ns = n;
  512. list_splice(&head, n->list.prev);
  513. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  514. hash(parent, mnt->mnt_mountpoint));
  515. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  516. touch_mnt_namespace(n);
  517. }
  518. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  519. {
  520. struct list_head *next = p->mnt_mounts.next;
  521. if (next == &p->mnt_mounts) {
  522. while (1) {
  523. if (p == root)
  524. return NULL;
  525. next = p->mnt_child.next;
  526. if (next != &p->mnt_parent->mnt_mounts)
  527. break;
  528. p = p->mnt_parent;
  529. }
  530. }
  531. return list_entry(next, struct vfsmount, mnt_child);
  532. }
  533. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  534. {
  535. struct list_head *prev = p->mnt_mounts.prev;
  536. while (prev != &p->mnt_mounts) {
  537. p = list_entry(prev, struct vfsmount, mnt_child);
  538. prev = p->mnt_mounts.prev;
  539. }
  540. return p;
  541. }
  542. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  543. int flag)
  544. {
  545. struct super_block *sb = old->mnt_sb;
  546. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  547. if (mnt) {
  548. if (flag & (CL_SLAVE | CL_PRIVATE))
  549. mnt->mnt_group_id = 0; /* not a peer of original */
  550. else
  551. mnt->mnt_group_id = old->mnt_group_id;
  552. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  553. int err = mnt_alloc_group_id(mnt);
  554. if (err)
  555. goto out_free;
  556. }
  557. mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
  558. atomic_inc(&sb->s_active);
  559. mnt->mnt_sb = sb;
  560. mnt->mnt_root = dget(root);
  561. mnt->mnt_mountpoint = mnt->mnt_root;
  562. mnt->mnt_parent = mnt;
  563. if (flag & CL_SLAVE) {
  564. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  565. mnt->mnt_master = old;
  566. CLEAR_MNT_SHARED(mnt);
  567. } else if (!(flag & CL_PRIVATE)) {
  568. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  569. list_add(&mnt->mnt_share, &old->mnt_share);
  570. if (IS_MNT_SLAVE(old))
  571. list_add(&mnt->mnt_slave, &old->mnt_slave);
  572. mnt->mnt_master = old->mnt_master;
  573. }
  574. if (flag & CL_MAKE_SHARED)
  575. set_mnt_shared(mnt);
  576. /* stick the duplicate mount on the same expiry list
  577. * as the original if that was on one */
  578. if (flag & CL_EXPIRE) {
  579. if (!list_empty(&old->mnt_expire))
  580. list_add(&mnt->mnt_expire, &old->mnt_expire);
  581. }
  582. }
  583. return mnt;
  584. out_free:
  585. free_vfsmnt(mnt);
  586. return NULL;
  587. }
  588. static inline void __mntput(struct vfsmount *mnt)
  589. {
  590. struct super_block *sb = mnt->mnt_sb;
  591. /*
  592. * This probably indicates that somebody messed
  593. * up a mnt_want/drop_write() pair. If this
  594. * happens, the filesystem was probably unable
  595. * to make r/w->r/o transitions.
  596. */
  597. /*
  598. * atomic_dec_and_lock() used to deal with ->mnt_count decrements
  599. * provides barriers, so count_mnt_writers() below is safe. AV
  600. */
  601. WARN_ON(count_mnt_writers(mnt));
  602. fsnotify_vfsmount_delete(mnt);
  603. dput(mnt->mnt_root);
  604. free_vfsmnt(mnt);
  605. deactivate_super(sb);
  606. }
  607. void mntput_no_expire(struct vfsmount *mnt)
  608. {
  609. repeat:
  610. if (atomic_add_unless(&mnt->mnt_count, -1, 1))
  611. return;
  612. br_write_lock(vfsmount_lock);
  613. if (!atomic_dec_and_test(&mnt->mnt_count)) {
  614. br_write_unlock(vfsmount_lock);
  615. return;
  616. }
  617. if (likely(!mnt->mnt_pinned)) {
  618. br_write_unlock(vfsmount_lock);
  619. __mntput(mnt);
  620. return;
  621. }
  622. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  623. mnt->mnt_pinned = 0;
  624. br_write_unlock(vfsmount_lock);
  625. acct_auto_close_mnt(mnt);
  626. goto repeat;
  627. }
  628. EXPORT_SYMBOL(mntput_no_expire);
  629. void mnt_pin(struct vfsmount *mnt)
  630. {
  631. br_write_lock(vfsmount_lock);
  632. mnt->mnt_pinned++;
  633. br_write_unlock(vfsmount_lock);
  634. }
  635. EXPORT_SYMBOL(mnt_pin);
  636. void mnt_unpin(struct vfsmount *mnt)
  637. {
  638. br_write_lock(vfsmount_lock);
  639. if (mnt->mnt_pinned) {
  640. atomic_inc(&mnt->mnt_count);
  641. mnt->mnt_pinned--;
  642. }
  643. br_write_unlock(vfsmount_lock);
  644. }
  645. EXPORT_SYMBOL(mnt_unpin);
  646. static inline void mangle(struct seq_file *m, const char *s)
  647. {
  648. seq_escape(m, s, " \t\n\\");
  649. }
  650. /*
  651. * Simple .show_options callback for filesystems which don't want to
  652. * implement more complex mount option showing.
  653. *
  654. * See also save_mount_options().
  655. */
  656. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  657. {
  658. const char *options;
  659. rcu_read_lock();
  660. options = rcu_dereference(mnt->mnt_sb->s_options);
  661. if (options != NULL && options[0]) {
  662. seq_putc(m, ',');
  663. mangle(m, options);
  664. }
  665. rcu_read_unlock();
  666. return 0;
  667. }
  668. EXPORT_SYMBOL(generic_show_options);
  669. /*
  670. * If filesystem uses generic_show_options(), this function should be
  671. * called from the fill_super() callback.
  672. *
  673. * The .remount_fs callback usually needs to be handled in a special
  674. * way, to make sure, that previous options are not overwritten if the
  675. * remount fails.
  676. *
  677. * Also note, that if the filesystem's .remount_fs function doesn't
  678. * reset all options to their default value, but changes only newly
  679. * given options, then the displayed options will not reflect reality
  680. * any more.
  681. */
  682. void save_mount_options(struct super_block *sb, char *options)
  683. {
  684. BUG_ON(sb->s_options);
  685. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  686. }
  687. EXPORT_SYMBOL(save_mount_options);
  688. void replace_mount_options(struct super_block *sb, char *options)
  689. {
  690. char *old = sb->s_options;
  691. rcu_assign_pointer(sb->s_options, options);
  692. if (old) {
  693. synchronize_rcu();
  694. kfree(old);
  695. }
  696. }
  697. EXPORT_SYMBOL(replace_mount_options);
  698. #ifdef CONFIG_PROC_FS
  699. /* iterator */
  700. static void *m_start(struct seq_file *m, loff_t *pos)
  701. {
  702. struct proc_mounts *p = m->private;
  703. down_read(&namespace_sem);
  704. return seq_list_start(&p->ns->list, *pos);
  705. }
  706. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  707. {
  708. struct proc_mounts *p = m->private;
  709. return seq_list_next(v, &p->ns->list, pos);
  710. }
  711. static void m_stop(struct seq_file *m, void *v)
  712. {
  713. up_read(&namespace_sem);
  714. }
  715. int mnt_had_events(struct proc_mounts *p)
  716. {
  717. struct mnt_namespace *ns = p->ns;
  718. int res = 0;
  719. br_read_lock(vfsmount_lock);
  720. if (p->event != ns->event) {
  721. p->event = ns->event;
  722. res = 1;
  723. }
  724. br_read_unlock(vfsmount_lock);
  725. return res;
  726. }
  727. struct proc_fs_info {
  728. int flag;
  729. const char *str;
  730. };
  731. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  732. {
  733. static const struct proc_fs_info fs_info[] = {
  734. { MS_SYNCHRONOUS, ",sync" },
  735. { MS_DIRSYNC, ",dirsync" },
  736. { MS_MANDLOCK, ",mand" },
  737. { 0, NULL }
  738. };
  739. const struct proc_fs_info *fs_infop;
  740. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  741. if (sb->s_flags & fs_infop->flag)
  742. seq_puts(m, fs_infop->str);
  743. }
  744. return security_sb_show_options(m, sb);
  745. }
  746. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  747. {
  748. static const struct proc_fs_info mnt_info[] = {
  749. { MNT_NOSUID, ",nosuid" },
  750. { MNT_NODEV, ",nodev" },
  751. { MNT_NOEXEC, ",noexec" },
  752. { MNT_NOATIME, ",noatime" },
  753. { MNT_NODIRATIME, ",nodiratime" },
  754. { MNT_RELATIME, ",relatime" },
  755. { 0, NULL }
  756. };
  757. const struct proc_fs_info *fs_infop;
  758. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  759. if (mnt->mnt_flags & fs_infop->flag)
  760. seq_puts(m, fs_infop->str);
  761. }
  762. }
  763. static void show_type(struct seq_file *m, struct super_block *sb)
  764. {
  765. mangle(m, sb->s_type->name);
  766. if (sb->s_subtype && sb->s_subtype[0]) {
  767. seq_putc(m, '.');
  768. mangle(m, sb->s_subtype);
  769. }
  770. }
  771. static int show_vfsmnt(struct seq_file *m, void *v)
  772. {
  773. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  774. int err = 0;
  775. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  776. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  777. seq_putc(m, ' ');
  778. seq_path(m, &mnt_path, " \t\n\\");
  779. seq_putc(m, ' ');
  780. show_type(m, mnt->mnt_sb);
  781. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  782. err = show_sb_opts(m, mnt->mnt_sb);
  783. if (err)
  784. goto out;
  785. show_mnt_opts(m, mnt);
  786. if (mnt->mnt_sb->s_op->show_options)
  787. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  788. seq_puts(m, " 0 0\n");
  789. out:
  790. return err;
  791. }
  792. const struct seq_operations mounts_op = {
  793. .start = m_start,
  794. .next = m_next,
  795. .stop = m_stop,
  796. .show = show_vfsmnt
  797. };
  798. static int show_mountinfo(struct seq_file *m, void *v)
  799. {
  800. struct proc_mounts *p = m->private;
  801. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  802. struct super_block *sb = mnt->mnt_sb;
  803. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  804. struct path root = p->root;
  805. int err = 0;
  806. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  807. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  808. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  809. seq_putc(m, ' ');
  810. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  811. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  812. /*
  813. * Mountpoint is outside root, discard that one. Ugly,
  814. * but less so than trying to do that in iterator in a
  815. * race-free way (due to renames).
  816. */
  817. return SEQ_SKIP;
  818. }
  819. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  820. show_mnt_opts(m, mnt);
  821. /* Tagged fields ("foo:X" or "bar") */
  822. if (IS_MNT_SHARED(mnt))
  823. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  824. if (IS_MNT_SLAVE(mnt)) {
  825. int master = mnt->mnt_master->mnt_group_id;
  826. int dom = get_dominating_id(mnt, &p->root);
  827. seq_printf(m, " master:%i", master);
  828. if (dom && dom != master)
  829. seq_printf(m, " propagate_from:%i", dom);
  830. }
  831. if (IS_MNT_UNBINDABLE(mnt))
  832. seq_puts(m, " unbindable");
  833. /* Filesystem specific data */
  834. seq_puts(m, " - ");
  835. show_type(m, sb);
  836. seq_putc(m, ' ');
  837. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  838. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  839. err = show_sb_opts(m, sb);
  840. if (err)
  841. goto out;
  842. if (sb->s_op->show_options)
  843. err = sb->s_op->show_options(m, mnt);
  844. seq_putc(m, '\n');
  845. out:
  846. return err;
  847. }
  848. const struct seq_operations mountinfo_op = {
  849. .start = m_start,
  850. .next = m_next,
  851. .stop = m_stop,
  852. .show = show_mountinfo,
  853. };
  854. static int show_vfsstat(struct seq_file *m, void *v)
  855. {
  856. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  857. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  858. int err = 0;
  859. /* device */
  860. if (mnt->mnt_devname) {
  861. seq_puts(m, "device ");
  862. mangle(m, mnt->mnt_devname);
  863. } else
  864. seq_puts(m, "no device");
  865. /* mount point */
  866. seq_puts(m, " mounted on ");
  867. seq_path(m, &mnt_path, " \t\n\\");
  868. seq_putc(m, ' ');
  869. /* file system type */
  870. seq_puts(m, "with fstype ");
  871. show_type(m, mnt->mnt_sb);
  872. /* optional statistics */
  873. if (mnt->mnt_sb->s_op->show_stats) {
  874. seq_putc(m, ' ');
  875. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  876. }
  877. seq_putc(m, '\n');
  878. return err;
  879. }
  880. const struct seq_operations mountstats_op = {
  881. .start = m_start,
  882. .next = m_next,
  883. .stop = m_stop,
  884. .show = show_vfsstat,
  885. };
  886. #endif /* CONFIG_PROC_FS */
  887. /**
  888. * may_umount_tree - check if a mount tree is busy
  889. * @mnt: root of mount tree
  890. *
  891. * This is called to check if a tree of mounts has any
  892. * open files, pwds, chroots or sub mounts that are
  893. * busy.
  894. */
  895. int may_umount_tree(struct vfsmount *mnt)
  896. {
  897. int actual_refs = 0;
  898. int minimum_refs = 0;
  899. struct vfsmount *p;
  900. br_read_lock(vfsmount_lock);
  901. for (p = mnt; p; p = next_mnt(p, mnt)) {
  902. actual_refs += atomic_read(&p->mnt_count);
  903. minimum_refs += 2;
  904. }
  905. br_read_unlock(vfsmount_lock);
  906. if (actual_refs > minimum_refs)
  907. return 0;
  908. return 1;
  909. }
  910. EXPORT_SYMBOL(may_umount_tree);
  911. /**
  912. * may_umount - check if a mount point is busy
  913. * @mnt: root of mount
  914. *
  915. * This is called to check if a mount point has any
  916. * open files, pwds, chroots or sub mounts. If the
  917. * mount has sub mounts this will return busy
  918. * regardless of whether the sub mounts are busy.
  919. *
  920. * Doesn't take quota and stuff into account. IOW, in some cases it will
  921. * give false negatives. The main reason why it's here is that we need
  922. * a non-destructive way to look for easily umountable filesystems.
  923. */
  924. int may_umount(struct vfsmount *mnt)
  925. {
  926. int ret = 1;
  927. down_read(&namespace_sem);
  928. br_read_lock(vfsmount_lock);
  929. if (propagate_mount_busy(mnt, 2))
  930. ret = 0;
  931. br_read_unlock(vfsmount_lock);
  932. up_read(&namespace_sem);
  933. return ret;
  934. }
  935. EXPORT_SYMBOL(may_umount);
  936. void release_mounts(struct list_head *head)
  937. {
  938. struct vfsmount *mnt;
  939. while (!list_empty(head)) {
  940. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  941. list_del_init(&mnt->mnt_hash);
  942. if (mnt->mnt_parent != mnt) {
  943. struct dentry *dentry;
  944. struct vfsmount *m;
  945. br_write_lock(vfsmount_lock);
  946. dentry = mnt->mnt_mountpoint;
  947. m = mnt->mnt_parent;
  948. mnt->mnt_mountpoint = mnt->mnt_root;
  949. mnt->mnt_parent = mnt;
  950. m->mnt_ghosts--;
  951. br_write_unlock(vfsmount_lock);
  952. dput(dentry);
  953. mntput(m);
  954. }
  955. mntput(mnt);
  956. }
  957. }
  958. /*
  959. * vfsmount lock must be held for write
  960. * namespace_sem must be held for write
  961. */
  962. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  963. {
  964. struct vfsmount *p;
  965. for (p = mnt; p; p = next_mnt(p, mnt))
  966. list_move(&p->mnt_hash, kill);
  967. if (propagate)
  968. propagate_umount(kill);
  969. list_for_each_entry(p, kill, mnt_hash) {
  970. list_del_init(&p->mnt_expire);
  971. list_del_init(&p->mnt_list);
  972. __touch_mnt_namespace(p->mnt_ns);
  973. p->mnt_ns = NULL;
  974. list_del_init(&p->mnt_child);
  975. if (p->mnt_parent != p) {
  976. p->mnt_parent->mnt_ghosts++;
  977. dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
  978. }
  979. change_mnt_propagation(p, MS_PRIVATE);
  980. }
  981. }
  982. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  983. static int do_umount(struct vfsmount *mnt, int flags)
  984. {
  985. struct super_block *sb = mnt->mnt_sb;
  986. int retval;
  987. LIST_HEAD(umount_list);
  988. retval = security_sb_umount(mnt, flags);
  989. if (retval)
  990. return retval;
  991. /*
  992. * Allow userspace to request a mountpoint be expired rather than
  993. * unmounting unconditionally. Unmount only happens if:
  994. * (1) the mark is already set (the mark is cleared by mntput())
  995. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  996. */
  997. if (flags & MNT_EXPIRE) {
  998. if (mnt == current->fs->root.mnt ||
  999. flags & (MNT_FORCE | MNT_DETACH))
  1000. return -EINVAL;
  1001. if (atomic_read(&mnt->mnt_count) != 2)
  1002. return -EBUSY;
  1003. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1004. return -EAGAIN;
  1005. }
  1006. /*
  1007. * If we may have to abort operations to get out of this
  1008. * mount, and they will themselves hold resources we must
  1009. * allow the fs to do things. In the Unix tradition of
  1010. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1011. * might fail to complete on the first run through as other tasks
  1012. * must return, and the like. Thats for the mount program to worry
  1013. * about for the moment.
  1014. */
  1015. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1016. sb->s_op->umount_begin(sb);
  1017. }
  1018. /*
  1019. * No sense to grab the lock for this test, but test itself looks
  1020. * somewhat bogus. Suggestions for better replacement?
  1021. * Ho-hum... In principle, we might treat that as umount + switch
  1022. * to rootfs. GC would eventually take care of the old vfsmount.
  1023. * Actually it makes sense, especially if rootfs would contain a
  1024. * /reboot - static binary that would close all descriptors and
  1025. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1026. */
  1027. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1028. /*
  1029. * Special case for "unmounting" root ...
  1030. * we just try to remount it readonly.
  1031. */
  1032. down_write(&sb->s_umount);
  1033. if (!(sb->s_flags & MS_RDONLY))
  1034. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1035. up_write(&sb->s_umount);
  1036. return retval;
  1037. }
  1038. down_write(&namespace_sem);
  1039. br_write_lock(vfsmount_lock);
  1040. event++;
  1041. if (!(flags & MNT_DETACH))
  1042. shrink_submounts(mnt, &umount_list);
  1043. retval = -EBUSY;
  1044. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1045. if (!list_empty(&mnt->mnt_list))
  1046. umount_tree(mnt, 1, &umount_list);
  1047. retval = 0;
  1048. }
  1049. br_write_unlock(vfsmount_lock);
  1050. up_write(&namespace_sem);
  1051. release_mounts(&umount_list);
  1052. return retval;
  1053. }
  1054. /*
  1055. * Now umount can handle mount points as well as block devices.
  1056. * This is important for filesystems which use unnamed block devices.
  1057. *
  1058. * We now support a flag for forced unmount like the other 'big iron'
  1059. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1060. */
  1061. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1062. {
  1063. struct path path;
  1064. int retval;
  1065. int lookup_flags = 0;
  1066. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1067. return -EINVAL;
  1068. if (!(flags & UMOUNT_NOFOLLOW))
  1069. lookup_flags |= LOOKUP_FOLLOW;
  1070. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1071. if (retval)
  1072. goto out;
  1073. retval = -EINVAL;
  1074. if (path.dentry != path.mnt->mnt_root)
  1075. goto dput_and_out;
  1076. if (!check_mnt(path.mnt))
  1077. goto dput_and_out;
  1078. retval = -EPERM;
  1079. if (!capable(CAP_SYS_ADMIN))
  1080. goto dput_and_out;
  1081. retval = do_umount(path.mnt, flags);
  1082. dput_and_out:
  1083. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1084. dput(path.dentry);
  1085. mntput_no_expire(path.mnt);
  1086. out:
  1087. return retval;
  1088. }
  1089. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1090. /*
  1091. * The 2.0 compatible umount. No flags.
  1092. */
  1093. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1094. {
  1095. return sys_umount(name, 0);
  1096. }
  1097. #endif
  1098. static int mount_is_safe(struct path *path)
  1099. {
  1100. if (capable(CAP_SYS_ADMIN))
  1101. return 0;
  1102. return -EPERM;
  1103. #ifdef notyet
  1104. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1105. return -EPERM;
  1106. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1107. if (current_uid() != path->dentry->d_inode->i_uid)
  1108. return -EPERM;
  1109. }
  1110. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1111. return -EPERM;
  1112. return 0;
  1113. #endif
  1114. }
  1115. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1116. int flag)
  1117. {
  1118. struct vfsmount *res, *p, *q, *r, *s;
  1119. struct path path;
  1120. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1121. return NULL;
  1122. res = q = clone_mnt(mnt, dentry, flag);
  1123. if (!q)
  1124. goto Enomem;
  1125. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1126. p = mnt;
  1127. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1128. if (!is_subdir(r->mnt_mountpoint, dentry))
  1129. continue;
  1130. for (s = r; s; s = next_mnt(s, r)) {
  1131. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1132. s = skip_mnt_tree(s);
  1133. continue;
  1134. }
  1135. while (p != s->mnt_parent) {
  1136. p = p->mnt_parent;
  1137. q = q->mnt_parent;
  1138. }
  1139. p = s;
  1140. path.mnt = q;
  1141. path.dentry = p->mnt_mountpoint;
  1142. q = clone_mnt(p, p->mnt_root, flag);
  1143. if (!q)
  1144. goto Enomem;
  1145. br_write_lock(vfsmount_lock);
  1146. list_add_tail(&q->mnt_list, &res->mnt_list);
  1147. attach_mnt(q, &path);
  1148. br_write_unlock(vfsmount_lock);
  1149. }
  1150. }
  1151. return res;
  1152. Enomem:
  1153. if (res) {
  1154. LIST_HEAD(umount_list);
  1155. br_write_lock(vfsmount_lock);
  1156. umount_tree(res, 0, &umount_list);
  1157. br_write_unlock(vfsmount_lock);
  1158. release_mounts(&umount_list);
  1159. }
  1160. return NULL;
  1161. }
  1162. struct vfsmount *collect_mounts(struct path *path)
  1163. {
  1164. struct vfsmount *tree;
  1165. down_write(&namespace_sem);
  1166. tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
  1167. up_write(&namespace_sem);
  1168. return tree;
  1169. }
  1170. void drop_collected_mounts(struct vfsmount *mnt)
  1171. {
  1172. LIST_HEAD(umount_list);
  1173. down_write(&namespace_sem);
  1174. br_write_lock(vfsmount_lock);
  1175. umount_tree(mnt, 0, &umount_list);
  1176. br_write_unlock(vfsmount_lock);
  1177. up_write(&namespace_sem);
  1178. release_mounts(&umount_list);
  1179. }
  1180. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1181. struct vfsmount *root)
  1182. {
  1183. struct vfsmount *mnt;
  1184. int res = f(root, arg);
  1185. if (res)
  1186. return res;
  1187. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1188. res = f(mnt, arg);
  1189. if (res)
  1190. return res;
  1191. }
  1192. return 0;
  1193. }
  1194. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1195. {
  1196. struct vfsmount *p;
  1197. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1198. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1199. mnt_release_group_id(p);
  1200. }
  1201. }
  1202. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1203. {
  1204. struct vfsmount *p;
  1205. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1206. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1207. int err = mnt_alloc_group_id(p);
  1208. if (err) {
  1209. cleanup_group_ids(mnt, p);
  1210. return err;
  1211. }
  1212. }
  1213. }
  1214. return 0;
  1215. }
  1216. /*
  1217. * @source_mnt : mount tree to be attached
  1218. * @nd : place the mount tree @source_mnt is attached
  1219. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1220. * store the parent mount and mountpoint dentry.
  1221. * (done when source_mnt is moved)
  1222. *
  1223. * NOTE: in the table below explains the semantics when a source mount
  1224. * of a given type is attached to a destination mount of a given type.
  1225. * ---------------------------------------------------------------------------
  1226. * | BIND MOUNT OPERATION |
  1227. * |**************************************************************************
  1228. * | source-->| shared | private | slave | unbindable |
  1229. * | dest | | | | |
  1230. * | | | | | | |
  1231. * | v | | | | |
  1232. * |**************************************************************************
  1233. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1234. * | | | | | |
  1235. * |non-shared| shared (+) | private | slave (*) | invalid |
  1236. * ***************************************************************************
  1237. * A bind operation clones the source mount and mounts the clone on the
  1238. * destination mount.
  1239. *
  1240. * (++) the cloned mount is propagated to all the mounts in the propagation
  1241. * tree of the destination mount and the cloned mount is added to
  1242. * the peer group of the source mount.
  1243. * (+) the cloned mount is created under the destination mount and is marked
  1244. * as shared. The cloned mount is added to the peer group of the source
  1245. * mount.
  1246. * (+++) the mount is propagated to all the mounts in the propagation tree
  1247. * of the destination mount and the cloned mount is made slave
  1248. * of the same master as that of the source mount. The cloned mount
  1249. * is marked as 'shared and slave'.
  1250. * (*) the cloned mount is made a slave of the same master as that of the
  1251. * source mount.
  1252. *
  1253. * ---------------------------------------------------------------------------
  1254. * | MOVE MOUNT OPERATION |
  1255. * |**************************************************************************
  1256. * | source-->| shared | private | slave | unbindable |
  1257. * | dest | | | | |
  1258. * | | | | | | |
  1259. * | v | | | | |
  1260. * |**************************************************************************
  1261. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1262. * | | | | | |
  1263. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1264. * ***************************************************************************
  1265. *
  1266. * (+) the mount is moved to the destination. And is then propagated to
  1267. * all the mounts in the propagation tree of the destination mount.
  1268. * (+*) the mount is moved to the destination.
  1269. * (+++) the mount is moved to the destination and is then propagated to
  1270. * all the mounts belonging to the destination mount's propagation tree.
  1271. * the mount is marked as 'shared and slave'.
  1272. * (*) the mount continues to be a slave at the new location.
  1273. *
  1274. * if the source mount is a tree, the operations explained above is
  1275. * applied to each mount in the tree.
  1276. * Must be called without spinlocks held, since this function can sleep
  1277. * in allocations.
  1278. */
  1279. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1280. struct path *path, struct path *parent_path)
  1281. {
  1282. LIST_HEAD(tree_list);
  1283. struct vfsmount *dest_mnt = path->mnt;
  1284. struct dentry *dest_dentry = path->dentry;
  1285. struct vfsmount *child, *p;
  1286. int err;
  1287. if (IS_MNT_SHARED(dest_mnt)) {
  1288. err = invent_group_ids(source_mnt, true);
  1289. if (err)
  1290. goto out;
  1291. }
  1292. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1293. if (err)
  1294. goto out_cleanup_ids;
  1295. br_write_lock(vfsmount_lock);
  1296. if (IS_MNT_SHARED(dest_mnt)) {
  1297. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1298. set_mnt_shared(p);
  1299. }
  1300. if (parent_path) {
  1301. detach_mnt(source_mnt, parent_path);
  1302. attach_mnt(source_mnt, path);
  1303. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1304. } else {
  1305. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1306. commit_tree(source_mnt);
  1307. }
  1308. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1309. list_del_init(&child->mnt_hash);
  1310. commit_tree(child);
  1311. }
  1312. br_write_unlock(vfsmount_lock);
  1313. return 0;
  1314. out_cleanup_ids:
  1315. if (IS_MNT_SHARED(dest_mnt))
  1316. cleanup_group_ids(source_mnt, NULL);
  1317. out:
  1318. return err;
  1319. }
  1320. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1321. {
  1322. int err;
  1323. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1324. return -EINVAL;
  1325. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1326. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1327. return -ENOTDIR;
  1328. err = -ENOENT;
  1329. mutex_lock(&path->dentry->d_inode->i_mutex);
  1330. if (cant_mount(path->dentry))
  1331. goto out_unlock;
  1332. if (!d_unlinked(path->dentry))
  1333. err = attach_recursive_mnt(mnt, path, NULL);
  1334. out_unlock:
  1335. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1336. return err;
  1337. }
  1338. /*
  1339. * Sanity check the flags to change_mnt_propagation.
  1340. */
  1341. static int flags_to_propagation_type(int flags)
  1342. {
  1343. int type = flags & ~MS_REC;
  1344. /* Fail if any non-propagation flags are set */
  1345. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1346. return 0;
  1347. /* Only one propagation flag should be set */
  1348. if (!is_power_of_2(type))
  1349. return 0;
  1350. return type;
  1351. }
  1352. /*
  1353. * recursively change the type of the mountpoint.
  1354. */
  1355. static int do_change_type(struct path *path, int flag)
  1356. {
  1357. struct vfsmount *m, *mnt = path->mnt;
  1358. int recurse = flag & MS_REC;
  1359. int type;
  1360. int err = 0;
  1361. if (!capable(CAP_SYS_ADMIN))
  1362. return -EPERM;
  1363. if (path->dentry != path->mnt->mnt_root)
  1364. return -EINVAL;
  1365. type = flags_to_propagation_type(flag);
  1366. if (!type)
  1367. return -EINVAL;
  1368. down_write(&namespace_sem);
  1369. if (type == MS_SHARED) {
  1370. err = invent_group_ids(mnt, recurse);
  1371. if (err)
  1372. goto out_unlock;
  1373. }
  1374. br_write_lock(vfsmount_lock);
  1375. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1376. change_mnt_propagation(m, type);
  1377. br_write_unlock(vfsmount_lock);
  1378. out_unlock:
  1379. up_write(&namespace_sem);
  1380. return err;
  1381. }
  1382. /*
  1383. * do loopback mount.
  1384. */
  1385. static int do_loopback(struct path *path, char *old_name,
  1386. int recurse)
  1387. {
  1388. struct path old_path;
  1389. struct vfsmount *mnt = NULL;
  1390. int err = mount_is_safe(path);
  1391. if (err)
  1392. return err;
  1393. if (!old_name || !*old_name)
  1394. return -EINVAL;
  1395. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1396. if (err)
  1397. return err;
  1398. down_write(&namespace_sem);
  1399. err = -EINVAL;
  1400. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1401. goto out;
  1402. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1403. goto out;
  1404. err = -ENOMEM;
  1405. if (recurse)
  1406. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1407. else
  1408. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1409. if (!mnt)
  1410. goto out;
  1411. err = graft_tree(mnt, path);
  1412. if (err) {
  1413. LIST_HEAD(umount_list);
  1414. br_write_lock(vfsmount_lock);
  1415. umount_tree(mnt, 0, &umount_list);
  1416. br_write_unlock(vfsmount_lock);
  1417. release_mounts(&umount_list);
  1418. }
  1419. out:
  1420. up_write(&namespace_sem);
  1421. path_put(&old_path);
  1422. return err;
  1423. }
  1424. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1425. {
  1426. int error = 0;
  1427. int readonly_request = 0;
  1428. if (ms_flags & MS_RDONLY)
  1429. readonly_request = 1;
  1430. if (readonly_request == __mnt_is_readonly(mnt))
  1431. return 0;
  1432. if (readonly_request)
  1433. error = mnt_make_readonly(mnt);
  1434. else
  1435. __mnt_unmake_readonly(mnt);
  1436. return error;
  1437. }
  1438. /*
  1439. * change filesystem flags. dir should be a physical root of filesystem.
  1440. * If you've mounted a non-root directory somewhere and want to do remount
  1441. * on it - tough luck.
  1442. */
  1443. static int do_remount(struct path *path, int flags, int mnt_flags,
  1444. void *data)
  1445. {
  1446. int err;
  1447. struct super_block *sb = path->mnt->mnt_sb;
  1448. if (!capable(CAP_SYS_ADMIN))
  1449. return -EPERM;
  1450. if (!check_mnt(path->mnt))
  1451. return -EINVAL;
  1452. if (path->dentry != path->mnt->mnt_root)
  1453. return -EINVAL;
  1454. down_write(&sb->s_umount);
  1455. if (flags & MS_BIND)
  1456. err = change_mount_flags(path->mnt, flags);
  1457. else
  1458. err = do_remount_sb(sb, flags, data, 0);
  1459. if (!err) {
  1460. br_write_lock(vfsmount_lock);
  1461. mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
  1462. path->mnt->mnt_flags = mnt_flags;
  1463. br_write_unlock(vfsmount_lock);
  1464. }
  1465. up_write(&sb->s_umount);
  1466. if (!err) {
  1467. br_write_lock(vfsmount_lock);
  1468. touch_mnt_namespace(path->mnt->mnt_ns);
  1469. br_write_unlock(vfsmount_lock);
  1470. }
  1471. return err;
  1472. }
  1473. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1474. {
  1475. struct vfsmount *p;
  1476. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1477. if (IS_MNT_UNBINDABLE(p))
  1478. return 1;
  1479. }
  1480. return 0;
  1481. }
  1482. static int do_move_mount(struct path *path, char *old_name)
  1483. {
  1484. struct path old_path, parent_path;
  1485. struct vfsmount *p;
  1486. int err = 0;
  1487. if (!capable(CAP_SYS_ADMIN))
  1488. return -EPERM;
  1489. if (!old_name || !*old_name)
  1490. return -EINVAL;
  1491. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1492. if (err)
  1493. return err;
  1494. down_write(&namespace_sem);
  1495. while (d_mountpoint(path->dentry) &&
  1496. follow_down(path))
  1497. ;
  1498. err = -EINVAL;
  1499. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1500. goto out;
  1501. err = -ENOENT;
  1502. mutex_lock(&path->dentry->d_inode->i_mutex);
  1503. if (cant_mount(path->dentry))
  1504. goto out1;
  1505. if (d_unlinked(path->dentry))
  1506. goto out1;
  1507. err = -EINVAL;
  1508. if (old_path.dentry != old_path.mnt->mnt_root)
  1509. goto out1;
  1510. if (old_path.mnt == old_path.mnt->mnt_parent)
  1511. goto out1;
  1512. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1513. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1514. goto out1;
  1515. /*
  1516. * Don't move a mount residing in a shared parent.
  1517. */
  1518. if (old_path.mnt->mnt_parent &&
  1519. IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1520. goto out1;
  1521. /*
  1522. * Don't move a mount tree containing unbindable mounts to a destination
  1523. * mount which is shared.
  1524. */
  1525. if (IS_MNT_SHARED(path->mnt) &&
  1526. tree_contains_unbindable(old_path.mnt))
  1527. goto out1;
  1528. err = -ELOOP;
  1529. for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
  1530. if (p == old_path.mnt)
  1531. goto out1;
  1532. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1533. if (err)
  1534. goto out1;
  1535. /* if the mount is moved, it should no longer be expire
  1536. * automatically */
  1537. list_del_init(&old_path.mnt->mnt_expire);
  1538. out1:
  1539. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1540. out:
  1541. up_write(&namespace_sem);
  1542. if (!err)
  1543. path_put(&parent_path);
  1544. path_put(&old_path);
  1545. return err;
  1546. }
  1547. /*
  1548. * create a new mount for userspace and request it to be added into the
  1549. * namespace's tree
  1550. */
  1551. static int do_new_mount(struct path *path, char *type, int flags,
  1552. int mnt_flags, char *name, void *data)
  1553. {
  1554. struct vfsmount *mnt;
  1555. if (!type)
  1556. return -EINVAL;
  1557. /* we need capabilities... */
  1558. if (!capable(CAP_SYS_ADMIN))
  1559. return -EPERM;
  1560. mnt = do_kern_mount(type, flags, name, data);
  1561. if (IS_ERR(mnt))
  1562. return PTR_ERR(mnt);
  1563. return do_add_mount(mnt, path, mnt_flags, NULL);
  1564. }
  1565. /*
  1566. * add a mount into a namespace's mount tree
  1567. * - provide the option of adding the new mount to an expiration list
  1568. */
  1569. int do_add_mount(struct vfsmount *newmnt, struct path *path,
  1570. int mnt_flags, struct list_head *fslist)
  1571. {
  1572. int err;
  1573. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1574. down_write(&namespace_sem);
  1575. /* Something was mounted here while we slept */
  1576. while (d_mountpoint(path->dentry) &&
  1577. follow_down(path))
  1578. ;
  1579. err = -EINVAL;
  1580. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
  1581. goto unlock;
  1582. /* Refuse the same filesystem on the same mount point */
  1583. err = -EBUSY;
  1584. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1585. path->mnt->mnt_root == path->dentry)
  1586. goto unlock;
  1587. err = -EINVAL;
  1588. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1589. goto unlock;
  1590. newmnt->mnt_flags = mnt_flags;
  1591. if ((err = graft_tree(newmnt, path)))
  1592. goto unlock;
  1593. if (fslist) /* add to the specified expiration list */
  1594. list_add_tail(&newmnt->mnt_expire, fslist);
  1595. up_write(&namespace_sem);
  1596. return 0;
  1597. unlock:
  1598. up_write(&namespace_sem);
  1599. mntput(newmnt);
  1600. return err;
  1601. }
  1602. EXPORT_SYMBOL_GPL(do_add_mount);
  1603. /*
  1604. * process a list of expirable mountpoints with the intent of discarding any
  1605. * mountpoints that aren't in use and haven't been touched since last we came
  1606. * here
  1607. */
  1608. void mark_mounts_for_expiry(struct list_head *mounts)
  1609. {
  1610. struct vfsmount *mnt, *next;
  1611. LIST_HEAD(graveyard);
  1612. LIST_HEAD(umounts);
  1613. if (list_empty(mounts))
  1614. return;
  1615. down_write(&namespace_sem);
  1616. br_write_lock(vfsmount_lock);
  1617. /* extract from the expiration list every vfsmount that matches the
  1618. * following criteria:
  1619. * - only referenced by its parent vfsmount
  1620. * - still marked for expiry (marked on the last call here; marks are
  1621. * cleared by mntput())
  1622. */
  1623. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1624. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1625. propagate_mount_busy(mnt, 1))
  1626. continue;
  1627. list_move(&mnt->mnt_expire, &graveyard);
  1628. }
  1629. while (!list_empty(&graveyard)) {
  1630. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1631. touch_mnt_namespace(mnt->mnt_ns);
  1632. umount_tree(mnt, 1, &umounts);
  1633. }
  1634. br_write_unlock(vfsmount_lock);
  1635. up_write(&namespace_sem);
  1636. release_mounts(&umounts);
  1637. }
  1638. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1639. /*
  1640. * Ripoff of 'select_parent()'
  1641. *
  1642. * search the list of submounts for a given mountpoint, and move any
  1643. * shrinkable submounts to the 'graveyard' list.
  1644. */
  1645. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1646. {
  1647. struct vfsmount *this_parent = parent;
  1648. struct list_head *next;
  1649. int found = 0;
  1650. repeat:
  1651. next = this_parent->mnt_mounts.next;
  1652. resume:
  1653. while (next != &this_parent->mnt_mounts) {
  1654. struct list_head *tmp = next;
  1655. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1656. next = tmp->next;
  1657. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1658. continue;
  1659. /*
  1660. * Descend a level if the d_mounts list is non-empty.
  1661. */
  1662. if (!list_empty(&mnt->mnt_mounts)) {
  1663. this_parent = mnt;
  1664. goto repeat;
  1665. }
  1666. if (!propagate_mount_busy(mnt, 1)) {
  1667. list_move_tail(&mnt->mnt_expire, graveyard);
  1668. found++;
  1669. }
  1670. }
  1671. /*
  1672. * All done at this level ... ascend and resume the search
  1673. */
  1674. if (this_parent != parent) {
  1675. next = this_parent->mnt_child.next;
  1676. this_parent = this_parent->mnt_parent;
  1677. goto resume;
  1678. }
  1679. return found;
  1680. }
  1681. /*
  1682. * process a list of expirable mountpoints with the intent of discarding any
  1683. * submounts of a specific parent mountpoint
  1684. *
  1685. * vfsmount_lock must be held for write
  1686. */
  1687. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1688. {
  1689. LIST_HEAD(graveyard);
  1690. struct vfsmount *m;
  1691. /* extract submounts of 'mountpoint' from the expiration list */
  1692. while (select_submounts(mnt, &graveyard)) {
  1693. while (!list_empty(&graveyard)) {
  1694. m = list_first_entry(&graveyard, struct vfsmount,
  1695. mnt_expire);
  1696. touch_mnt_namespace(m->mnt_ns);
  1697. umount_tree(m, 1, umounts);
  1698. }
  1699. }
  1700. }
  1701. /*
  1702. * Some copy_from_user() implementations do not return the exact number of
  1703. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1704. * Note that this function differs from copy_from_user() in that it will oops
  1705. * on bad values of `to', rather than returning a short copy.
  1706. */
  1707. static long exact_copy_from_user(void *to, const void __user * from,
  1708. unsigned long n)
  1709. {
  1710. char *t = to;
  1711. const char __user *f = from;
  1712. char c;
  1713. if (!access_ok(VERIFY_READ, from, n))
  1714. return n;
  1715. while (n) {
  1716. if (__get_user(c, f)) {
  1717. memset(t, 0, n);
  1718. break;
  1719. }
  1720. *t++ = c;
  1721. f++;
  1722. n--;
  1723. }
  1724. return n;
  1725. }
  1726. int copy_mount_options(const void __user * data, unsigned long *where)
  1727. {
  1728. int i;
  1729. unsigned long page;
  1730. unsigned long size;
  1731. *where = 0;
  1732. if (!data)
  1733. return 0;
  1734. if (!(page = __get_free_page(GFP_KERNEL)))
  1735. return -ENOMEM;
  1736. /* We only care that *some* data at the address the user
  1737. * gave us is valid. Just in case, we'll zero
  1738. * the remainder of the page.
  1739. */
  1740. /* copy_from_user cannot cross TASK_SIZE ! */
  1741. size = TASK_SIZE - (unsigned long)data;
  1742. if (size > PAGE_SIZE)
  1743. size = PAGE_SIZE;
  1744. i = size - exact_copy_from_user((void *)page, data, size);
  1745. if (!i) {
  1746. free_page(page);
  1747. return -EFAULT;
  1748. }
  1749. if (i != PAGE_SIZE)
  1750. memset((char *)page + i, 0, PAGE_SIZE - i);
  1751. *where = page;
  1752. return 0;
  1753. }
  1754. int copy_mount_string(const void __user *data, char **where)
  1755. {
  1756. char *tmp;
  1757. if (!data) {
  1758. *where = NULL;
  1759. return 0;
  1760. }
  1761. tmp = strndup_user(data, PAGE_SIZE);
  1762. if (IS_ERR(tmp))
  1763. return PTR_ERR(tmp);
  1764. *where = tmp;
  1765. return 0;
  1766. }
  1767. /*
  1768. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1769. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1770. *
  1771. * data is a (void *) that can point to any structure up to
  1772. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1773. * information (or be NULL).
  1774. *
  1775. * Pre-0.97 versions of mount() didn't have a flags word.
  1776. * When the flags word was introduced its top half was required
  1777. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1778. * Therefore, if this magic number is present, it carries no information
  1779. * and must be discarded.
  1780. */
  1781. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1782. unsigned long flags, void *data_page)
  1783. {
  1784. struct path path;
  1785. int retval = 0;
  1786. int mnt_flags = 0;
  1787. /* Discard magic */
  1788. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1789. flags &= ~MS_MGC_MSK;
  1790. /* Basic sanity checks */
  1791. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1792. return -EINVAL;
  1793. if (data_page)
  1794. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1795. /* ... and get the mountpoint */
  1796. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1797. if (retval)
  1798. return retval;
  1799. retval = security_sb_mount(dev_name, &path,
  1800. type_page, flags, data_page);
  1801. if (retval)
  1802. goto dput_out;
  1803. /* Default to relatime unless overriden */
  1804. if (!(flags & MS_NOATIME))
  1805. mnt_flags |= MNT_RELATIME;
  1806. /* Separate the per-mountpoint flags */
  1807. if (flags & MS_NOSUID)
  1808. mnt_flags |= MNT_NOSUID;
  1809. if (flags & MS_NODEV)
  1810. mnt_flags |= MNT_NODEV;
  1811. if (flags & MS_NOEXEC)
  1812. mnt_flags |= MNT_NOEXEC;
  1813. if (flags & MS_NOATIME)
  1814. mnt_flags |= MNT_NOATIME;
  1815. if (flags & MS_NODIRATIME)
  1816. mnt_flags |= MNT_NODIRATIME;
  1817. if (flags & MS_STRICTATIME)
  1818. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1819. if (flags & MS_RDONLY)
  1820. mnt_flags |= MNT_READONLY;
  1821. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  1822. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1823. MS_STRICTATIME);
  1824. if (flags & MS_REMOUNT)
  1825. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1826. data_page);
  1827. else if (flags & MS_BIND)
  1828. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1829. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1830. retval = do_change_type(&path, flags);
  1831. else if (flags & MS_MOVE)
  1832. retval = do_move_mount(&path, dev_name);
  1833. else
  1834. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1835. dev_name, data_page);
  1836. dput_out:
  1837. path_put(&path);
  1838. return retval;
  1839. }
  1840. static struct mnt_namespace *alloc_mnt_ns(void)
  1841. {
  1842. struct mnt_namespace *new_ns;
  1843. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1844. if (!new_ns)
  1845. return ERR_PTR(-ENOMEM);
  1846. atomic_set(&new_ns->count, 1);
  1847. new_ns->root = NULL;
  1848. INIT_LIST_HEAD(&new_ns->list);
  1849. init_waitqueue_head(&new_ns->poll);
  1850. new_ns->event = 0;
  1851. return new_ns;
  1852. }
  1853. /*
  1854. * Allocate a new namespace structure and populate it with contents
  1855. * copied from the namespace of the passed in task structure.
  1856. */
  1857. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1858. struct fs_struct *fs)
  1859. {
  1860. struct mnt_namespace *new_ns;
  1861. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  1862. struct vfsmount *p, *q;
  1863. new_ns = alloc_mnt_ns();
  1864. if (IS_ERR(new_ns))
  1865. return new_ns;
  1866. down_write(&namespace_sem);
  1867. /* First pass: copy the tree topology */
  1868. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1869. CL_COPY_ALL | CL_EXPIRE);
  1870. if (!new_ns->root) {
  1871. up_write(&namespace_sem);
  1872. kfree(new_ns);
  1873. return ERR_PTR(-ENOMEM);
  1874. }
  1875. br_write_lock(vfsmount_lock);
  1876. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1877. br_write_unlock(vfsmount_lock);
  1878. /*
  1879. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1880. * as belonging to new namespace. We have already acquired a private
  1881. * fs_struct, so tsk->fs->lock is not needed.
  1882. */
  1883. p = mnt_ns->root;
  1884. q = new_ns->root;
  1885. while (p) {
  1886. q->mnt_ns = new_ns;
  1887. if (fs) {
  1888. if (p == fs->root.mnt) {
  1889. rootmnt = p;
  1890. fs->root.mnt = mntget(q);
  1891. }
  1892. if (p == fs->pwd.mnt) {
  1893. pwdmnt = p;
  1894. fs->pwd.mnt = mntget(q);
  1895. }
  1896. }
  1897. p = next_mnt(p, mnt_ns->root);
  1898. q = next_mnt(q, new_ns->root);
  1899. }
  1900. up_write(&namespace_sem);
  1901. if (rootmnt)
  1902. mntput(rootmnt);
  1903. if (pwdmnt)
  1904. mntput(pwdmnt);
  1905. return new_ns;
  1906. }
  1907. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1908. struct fs_struct *new_fs)
  1909. {
  1910. struct mnt_namespace *new_ns;
  1911. BUG_ON(!ns);
  1912. get_mnt_ns(ns);
  1913. if (!(flags & CLONE_NEWNS))
  1914. return ns;
  1915. new_ns = dup_mnt_ns(ns, new_fs);
  1916. put_mnt_ns(ns);
  1917. return new_ns;
  1918. }
  1919. /**
  1920. * create_mnt_ns - creates a private namespace and adds a root filesystem
  1921. * @mnt: pointer to the new root filesystem mountpoint
  1922. */
  1923. struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  1924. {
  1925. struct mnt_namespace *new_ns;
  1926. new_ns = alloc_mnt_ns();
  1927. if (!IS_ERR(new_ns)) {
  1928. mnt->mnt_ns = new_ns;
  1929. new_ns->root = mnt;
  1930. list_add(&new_ns->list, &new_ns->root->mnt_list);
  1931. }
  1932. return new_ns;
  1933. }
  1934. EXPORT_SYMBOL(create_mnt_ns);
  1935. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  1936. char __user *, type, unsigned long, flags, void __user *, data)
  1937. {
  1938. int ret;
  1939. char *kernel_type;
  1940. char *kernel_dir;
  1941. char *kernel_dev;
  1942. unsigned long data_page;
  1943. ret = copy_mount_string(type, &kernel_type);
  1944. if (ret < 0)
  1945. goto out_type;
  1946. kernel_dir = getname(dir_name);
  1947. if (IS_ERR(kernel_dir)) {
  1948. ret = PTR_ERR(kernel_dir);
  1949. goto out_dir;
  1950. }
  1951. ret = copy_mount_string(dev_name, &kernel_dev);
  1952. if (ret < 0)
  1953. goto out_dev;
  1954. ret = copy_mount_options(data, &data_page);
  1955. if (ret < 0)
  1956. goto out_data;
  1957. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  1958. (void *) data_page);
  1959. free_page(data_page);
  1960. out_data:
  1961. kfree(kernel_dev);
  1962. out_dev:
  1963. putname(kernel_dir);
  1964. out_dir:
  1965. kfree(kernel_type);
  1966. out_type:
  1967. return ret;
  1968. }
  1969. /*
  1970. * pivot_root Semantics:
  1971. * Moves the root file system of the current process to the directory put_old,
  1972. * makes new_root as the new root file system of the current process, and sets
  1973. * root/cwd of all processes which had them on the current root to new_root.
  1974. *
  1975. * Restrictions:
  1976. * The new_root and put_old must be directories, and must not be on the
  1977. * same file system as the current process root. The put_old must be
  1978. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1979. * pointed to by put_old must yield the same directory as new_root. No other
  1980. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1981. *
  1982. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1983. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1984. * in this situation.
  1985. *
  1986. * Notes:
  1987. * - we don't move root/cwd if they are not at the root (reason: if something
  1988. * cared enough to change them, it's probably wrong to force them elsewhere)
  1989. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1990. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1991. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1992. * first.
  1993. */
  1994. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  1995. const char __user *, put_old)
  1996. {
  1997. struct vfsmount *tmp;
  1998. struct path new, old, parent_path, root_parent, root;
  1999. int error;
  2000. if (!capable(CAP_SYS_ADMIN))
  2001. return -EPERM;
  2002. error = user_path_dir(new_root, &new);
  2003. if (error)
  2004. goto out0;
  2005. error = -EINVAL;
  2006. if (!check_mnt(new.mnt))
  2007. goto out1;
  2008. error = user_path_dir(put_old, &old);
  2009. if (error)
  2010. goto out1;
  2011. error = security_sb_pivotroot(&old, &new);
  2012. if (error) {
  2013. path_put(&old);
  2014. goto out1;
  2015. }
  2016. get_fs_root(current->fs, &root);
  2017. down_write(&namespace_sem);
  2018. mutex_lock(&old.dentry->d_inode->i_mutex);
  2019. error = -EINVAL;
  2020. if (IS_MNT_SHARED(old.mnt) ||
  2021. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  2022. IS_MNT_SHARED(root.mnt->mnt_parent))
  2023. goto out2;
  2024. if (!check_mnt(root.mnt))
  2025. goto out2;
  2026. error = -ENOENT;
  2027. if (cant_mount(old.dentry))
  2028. goto out2;
  2029. if (d_unlinked(new.dentry))
  2030. goto out2;
  2031. if (d_unlinked(old.dentry))
  2032. goto out2;
  2033. error = -EBUSY;
  2034. if (new.mnt == root.mnt ||
  2035. old.mnt == root.mnt)
  2036. goto out2; /* loop, on the same file system */
  2037. error = -EINVAL;
  2038. if (root.mnt->mnt_root != root.dentry)
  2039. goto out2; /* not a mountpoint */
  2040. if (root.mnt->mnt_parent == root.mnt)
  2041. goto out2; /* not attached */
  2042. if (new.mnt->mnt_root != new.dentry)
  2043. goto out2; /* not a mountpoint */
  2044. if (new.mnt->mnt_parent == new.mnt)
  2045. goto out2; /* not attached */
  2046. /* make sure we can reach put_old from new_root */
  2047. tmp = old.mnt;
  2048. br_write_lock(vfsmount_lock);
  2049. if (tmp != new.mnt) {
  2050. for (;;) {
  2051. if (tmp->mnt_parent == tmp)
  2052. goto out3; /* already mounted on put_old */
  2053. if (tmp->mnt_parent == new.mnt)
  2054. break;
  2055. tmp = tmp->mnt_parent;
  2056. }
  2057. if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
  2058. goto out3;
  2059. } else if (!is_subdir(old.dentry, new.dentry))
  2060. goto out3;
  2061. detach_mnt(new.mnt, &parent_path);
  2062. detach_mnt(root.mnt, &root_parent);
  2063. /* mount old root on put_old */
  2064. attach_mnt(root.mnt, &old);
  2065. /* mount new_root on / */
  2066. attach_mnt(new.mnt, &root_parent);
  2067. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2068. br_write_unlock(vfsmount_lock);
  2069. chroot_fs_refs(&root, &new);
  2070. error = 0;
  2071. path_put(&root_parent);
  2072. path_put(&parent_path);
  2073. out2:
  2074. mutex_unlock(&old.dentry->d_inode->i_mutex);
  2075. up_write(&namespace_sem);
  2076. path_put(&root);
  2077. path_put(&old);
  2078. out1:
  2079. path_put(&new);
  2080. out0:
  2081. return error;
  2082. out3:
  2083. br_write_unlock(vfsmount_lock);
  2084. goto out2;
  2085. }
  2086. static void __init init_mount_tree(void)
  2087. {
  2088. struct vfsmount *mnt;
  2089. struct mnt_namespace *ns;
  2090. struct path root;
  2091. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2092. if (IS_ERR(mnt))
  2093. panic("Can't create rootfs");
  2094. ns = create_mnt_ns(mnt);
  2095. if (IS_ERR(ns))
  2096. panic("Can't allocate initial namespace");
  2097. init_task.nsproxy->mnt_ns = ns;
  2098. get_mnt_ns(ns);
  2099. root.mnt = ns->root;
  2100. root.dentry = ns->root->mnt_root;
  2101. set_fs_pwd(current->fs, &root);
  2102. set_fs_root(current->fs, &root);
  2103. }
  2104. void __init mnt_init(void)
  2105. {
  2106. unsigned u;
  2107. int err;
  2108. init_rwsem(&namespace_sem);
  2109. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2110. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2111. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2112. if (!mount_hashtable)
  2113. panic("Failed to allocate mount hash table\n");
  2114. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2115. for (u = 0; u < HASH_SIZE; u++)
  2116. INIT_LIST_HEAD(&mount_hashtable[u]);
  2117. br_lock_init(vfsmount_lock);
  2118. err = sysfs_init();
  2119. if (err)
  2120. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2121. __func__, err);
  2122. fs_kobj = kobject_create_and_add("fs", NULL);
  2123. if (!fs_kobj)
  2124. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2125. init_rootfs();
  2126. init_mount_tree();
  2127. }
  2128. void put_mnt_ns(struct mnt_namespace *ns)
  2129. {
  2130. LIST_HEAD(umount_list);
  2131. if (!atomic_dec_and_test(&ns->count))
  2132. return;
  2133. down_write(&namespace_sem);
  2134. br_write_lock(vfsmount_lock);
  2135. umount_tree(ns->root, 0, &umount_list);
  2136. br_write_unlock(vfsmount_lock);
  2137. up_write(&namespace_sem);
  2138. release_mounts(&umount_list);
  2139. kfree(ns);
  2140. }
  2141. EXPORT_SYMBOL(put_mnt_ns);