kvm_main.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/pgtable.h>
  54. #include "coalesced_mmio.h"
  55. #include "async_pf.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  64. */
  65. DEFINE_RAW_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. static int kvm_usage_count = 0;
  69. static atomic_t hardware_enable_failed;
  70. struct kmem_cache *kvm_vcpu_cache;
  71. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  72. static __read_mostly struct preempt_ops kvm_preempt_ops;
  73. struct dentry *kvm_debugfs_dir;
  74. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  75. unsigned long arg);
  76. #ifdef CONFIG_COMPAT
  77. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  78. unsigned long arg);
  79. #endif
  80. static int hardware_enable_all(void);
  81. static void hardware_disable_all(void);
  82. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  83. bool kvm_rebooting;
  84. EXPORT_SYMBOL_GPL(kvm_rebooting);
  85. static bool largepages_enabled = true;
  86. static struct page *hwpoison_page;
  87. static pfn_t hwpoison_pfn;
  88. struct page *fault_page;
  89. pfn_t fault_pfn;
  90. inline int kvm_is_mmio_pfn(pfn_t pfn)
  91. {
  92. if (pfn_valid(pfn)) {
  93. int reserved;
  94. struct page *tail = pfn_to_page(pfn);
  95. struct page *head = compound_trans_head(tail);
  96. reserved = PageReserved(head);
  97. if (head != tail) {
  98. /*
  99. * "head" is not a dangling pointer
  100. * (compound_trans_head takes care of that)
  101. * but the hugepage may have been splitted
  102. * from under us (and we may not hold a
  103. * reference count on the head page so it can
  104. * be reused before we run PageReferenced), so
  105. * we've to check PageTail before returning
  106. * what we just read.
  107. */
  108. smp_rmb();
  109. if (PageTail(tail))
  110. return reserved;
  111. }
  112. return PageReserved(tail);
  113. }
  114. return true;
  115. }
  116. /*
  117. * Switches to specified vcpu, until a matching vcpu_put()
  118. */
  119. void vcpu_load(struct kvm_vcpu *vcpu)
  120. {
  121. int cpu;
  122. mutex_lock(&vcpu->mutex);
  123. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  124. /* The thread running this VCPU changed. */
  125. struct pid *oldpid = vcpu->pid;
  126. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  127. rcu_assign_pointer(vcpu->pid, newpid);
  128. synchronize_rcu();
  129. put_pid(oldpid);
  130. }
  131. cpu = get_cpu();
  132. preempt_notifier_register(&vcpu->preempt_notifier);
  133. kvm_arch_vcpu_load(vcpu, cpu);
  134. put_cpu();
  135. }
  136. void vcpu_put(struct kvm_vcpu *vcpu)
  137. {
  138. preempt_disable();
  139. kvm_arch_vcpu_put(vcpu);
  140. preempt_notifier_unregister(&vcpu->preempt_notifier);
  141. preempt_enable();
  142. mutex_unlock(&vcpu->mutex);
  143. }
  144. static void ack_flush(void *_completed)
  145. {
  146. }
  147. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  148. {
  149. int i, cpu, me;
  150. cpumask_var_t cpus;
  151. bool called = true;
  152. struct kvm_vcpu *vcpu;
  153. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  154. me = get_cpu();
  155. kvm_for_each_vcpu(i, vcpu, kvm) {
  156. kvm_make_request(req, vcpu);
  157. cpu = vcpu->cpu;
  158. /* Set ->requests bit before we read ->mode */
  159. smp_mb();
  160. if (cpus != NULL && cpu != -1 && cpu != me &&
  161. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  162. cpumask_set_cpu(cpu, cpus);
  163. }
  164. if (unlikely(cpus == NULL))
  165. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  166. else if (!cpumask_empty(cpus))
  167. smp_call_function_many(cpus, ack_flush, NULL, 1);
  168. else
  169. called = false;
  170. put_cpu();
  171. free_cpumask_var(cpus);
  172. return called;
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. int dirty_count = kvm->tlbs_dirty;
  177. smp_mb();
  178. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  179. ++kvm->stat.remote_tlb_flush;
  180. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  181. }
  182. void kvm_reload_remote_mmus(struct kvm *kvm)
  183. {
  184. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  185. }
  186. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  187. {
  188. struct page *page;
  189. int r;
  190. mutex_init(&vcpu->mutex);
  191. vcpu->cpu = -1;
  192. vcpu->kvm = kvm;
  193. vcpu->vcpu_id = id;
  194. vcpu->pid = NULL;
  195. init_waitqueue_head(&vcpu->wq);
  196. kvm_async_pf_vcpu_init(vcpu);
  197. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  198. if (!page) {
  199. r = -ENOMEM;
  200. goto fail;
  201. }
  202. vcpu->run = page_address(page);
  203. r = kvm_arch_vcpu_init(vcpu);
  204. if (r < 0)
  205. goto fail_free_run;
  206. return 0;
  207. fail_free_run:
  208. free_page((unsigned long)vcpu->run);
  209. fail:
  210. return r;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  213. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  214. {
  215. put_pid(vcpu->pid);
  216. kvm_arch_vcpu_uninit(vcpu);
  217. free_page((unsigned long)vcpu->run);
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  220. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  221. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  222. {
  223. return container_of(mn, struct kvm, mmu_notifier);
  224. }
  225. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  226. struct mm_struct *mm,
  227. unsigned long address)
  228. {
  229. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  230. int need_tlb_flush, idx;
  231. /*
  232. * When ->invalidate_page runs, the linux pte has been zapped
  233. * already but the page is still allocated until
  234. * ->invalidate_page returns. So if we increase the sequence
  235. * here the kvm page fault will notice if the spte can't be
  236. * established because the page is going to be freed. If
  237. * instead the kvm page fault establishes the spte before
  238. * ->invalidate_page runs, kvm_unmap_hva will release it
  239. * before returning.
  240. *
  241. * The sequence increase only need to be seen at spin_unlock
  242. * time, and not at spin_lock time.
  243. *
  244. * Increasing the sequence after the spin_unlock would be
  245. * unsafe because the kvm page fault could then establish the
  246. * pte after kvm_unmap_hva returned, without noticing the page
  247. * is going to be freed.
  248. */
  249. idx = srcu_read_lock(&kvm->srcu);
  250. spin_lock(&kvm->mmu_lock);
  251. kvm->mmu_notifier_seq++;
  252. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  253. spin_unlock(&kvm->mmu_lock);
  254. srcu_read_unlock(&kvm->srcu, idx);
  255. /* we've to flush the tlb before the pages can be freed */
  256. if (need_tlb_flush)
  257. kvm_flush_remote_tlbs(kvm);
  258. }
  259. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  260. struct mm_struct *mm,
  261. unsigned long address,
  262. pte_t pte)
  263. {
  264. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  265. int idx;
  266. idx = srcu_read_lock(&kvm->srcu);
  267. spin_lock(&kvm->mmu_lock);
  268. kvm->mmu_notifier_seq++;
  269. kvm_set_spte_hva(kvm, address, pte);
  270. spin_unlock(&kvm->mmu_lock);
  271. srcu_read_unlock(&kvm->srcu, idx);
  272. }
  273. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  274. struct mm_struct *mm,
  275. unsigned long start,
  276. unsigned long end)
  277. {
  278. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  279. int need_tlb_flush = 0, idx;
  280. idx = srcu_read_lock(&kvm->srcu);
  281. spin_lock(&kvm->mmu_lock);
  282. /*
  283. * The count increase must become visible at unlock time as no
  284. * spte can be established without taking the mmu_lock and
  285. * count is also read inside the mmu_lock critical section.
  286. */
  287. kvm->mmu_notifier_count++;
  288. for (; start < end; start += PAGE_SIZE)
  289. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  290. need_tlb_flush |= kvm->tlbs_dirty;
  291. spin_unlock(&kvm->mmu_lock);
  292. srcu_read_unlock(&kvm->srcu, idx);
  293. /* we've to flush the tlb before the pages can be freed */
  294. if (need_tlb_flush)
  295. kvm_flush_remote_tlbs(kvm);
  296. }
  297. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  298. struct mm_struct *mm,
  299. unsigned long start,
  300. unsigned long end)
  301. {
  302. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  303. spin_lock(&kvm->mmu_lock);
  304. /*
  305. * This sequence increase will notify the kvm page fault that
  306. * the page that is going to be mapped in the spte could have
  307. * been freed.
  308. */
  309. kvm->mmu_notifier_seq++;
  310. smp_wmb();
  311. /*
  312. * The above sequence increase must be visible before the
  313. * below count decrease, which is ensured by the smp_wmb above
  314. * in conjunction with the smp_rmb in mmu_notifier_retry().
  315. */
  316. kvm->mmu_notifier_count--;
  317. spin_unlock(&kvm->mmu_lock);
  318. BUG_ON(kvm->mmu_notifier_count < 0);
  319. }
  320. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  321. struct mm_struct *mm,
  322. unsigned long address)
  323. {
  324. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  325. int young, idx;
  326. idx = srcu_read_lock(&kvm->srcu);
  327. spin_lock(&kvm->mmu_lock);
  328. young = kvm_age_hva(kvm, address);
  329. spin_unlock(&kvm->mmu_lock);
  330. srcu_read_unlock(&kvm->srcu, idx);
  331. if (young)
  332. kvm_flush_remote_tlbs(kvm);
  333. return young;
  334. }
  335. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  336. struct mm_struct *mm,
  337. unsigned long address)
  338. {
  339. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  340. int young, idx;
  341. idx = srcu_read_lock(&kvm->srcu);
  342. spin_lock(&kvm->mmu_lock);
  343. young = kvm_test_age_hva(kvm, address);
  344. spin_unlock(&kvm->mmu_lock);
  345. srcu_read_unlock(&kvm->srcu, idx);
  346. return young;
  347. }
  348. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  349. struct mm_struct *mm)
  350. {
  351. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  352. int idx;
  353. idx = srcu_read_lock(&kvm->srcu);
  354. kvm_arch_flush_shadow(kvm);
  355. srcu_read_unlock(&kvm->srcu, idx);
  356. }
  357. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  358. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  359. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  360. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  361. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  362. .test_young = kvm_mmu_notifier_test_young,
  363. .change_pte = kvm_mmu_notifier_change_pte,
  364. .release = kvm_mmu_notifier_release,
  365. };
  366. static int kvm_init_mmu_notifier(struct kvm *kvm)
  367. {
  368. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  369. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  370. }
  371. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  372. static int kvm_init_mmu_notifier(struct kvm *kvm)
  373. {
  374. return 0;
  375. }
  376. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  377. static void kvm_init_memslots_id(struct kvm *kvm)
  378. {
  379. int i;
  380. struct kvm_memslots *slots = kvm->memslots;
  381. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  382. slots->id_to_index[i] = slots->memslots[i].id = i;
  383. }
  384. static struct kvm *kvm_create_vm(unsigned long type)
  385. {
  386. int r, i;
  387. struct kvm *kvm = kvm_arch_alloc_vm();
  388. if (!kvm)
  389. return ERR_PTR(-ENOMEM);
  390. r = kvm_arch_init_vm(kvm, type);
  391. if (r)
  392. goto out_err_nodisable;
  393. r = hardware_enable_all();
  394. if (r)
  395. goto out_err_nodisable;
  396. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  397. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  398. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  399. #endif
  400. r = -ENOMEM;
  401. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  402. if (!kvm->memslots)
  403. goto out_err_nosrcu;
  404. kvm_init_memslots_id(kvm);
  405. if (init_srcu_struct(&kvm->srcu))
  406. goto out_err_nosrcu;
  407. for (i = 0; i < KVM_NR_BUSES; i++) {
  408. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  409. GFP_KERNEL);
  410. if (!kvm->buses[i])
  411. goto out_err;
  412. }
  413. spin_lock_init(&kvm->mmu_lock);
  414. kvm->mm = current->mm;
  415. atomic_inc(&kvm->mm->mm_count);
  416. kvm_eventfd_init(kvm);
  417. mutex_init(&kvm->lock);
  418. mutex_init(&kvm->irq_lock);
  419. mutex_init(&kvm->slots_lock);
  420. atomic_set(&kvm->users_count, 1);
  421. r = kvm_init_mmu_notifier(kvm);
  422. if (r)
  423. goto out_err;
  424. raw_spin_lock(&kvm_lock);
  425. list_add(&kvm->vm_list, &vm_list);
  426. raw_spin_unlock(&kvm_lock);
  427. return kvm;
  428. out_err:
  429. cleanup_srcu_struct(&kvm->srcu);
  430. out_err_nosrcu:
  431. hardware_disable_all();
  432. out_err_nodisable:
  433. for (i = 0; i < KVM_NR_BUSES; i++)
  434. kfree(kvm->buses[i]);
  435. kfree(kvm->memslots);
  436. kvm_arch_free_vm(kvm);
  437. return ERR_PTR(r);
  438. }
  439. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  440. {
  441. if (!memslot->dirty_bitmap)
  442. return;
  443. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  444. vfree(memslot->dirty_bitmap_head);
  445. else
  446. kfree(memslot->dirty_bitmap_head);
  447. memslot->dirty_bitmap = NULL;
  448. memslot->dirty_bitmap_head = NULL;
  449. }
  450. /*
  451. * Free any memory in @free but not in @dont.
  452. */
  453. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  454. struct kvm_memory_slot *dont)
  455. {
  456. int i;
  457. if (!dont || free->rmap != dont->rmap)
  458. vfree(free->rmap);
  459. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  460. kvm_destroy_dirty_bitmap(free);
  461. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  462. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  463. vfree(free->lpage_info[i]);
  464. free->lpage_info[i] = NULL;
  465. }
  466. }
  467. free->npages = 0;
  468. free->rmap = NULL;
  469. }
  470. void kvm_free_physmem(struct kvm *kvm)
  471. {
  472. struct kvm_memslots *slots = kvm->memslots;
  473. struct kvm_memory_slot *memslot;
  474. kvm_for_each_memslot(memslot, slots)
  475. kvm_free_physmem_slot(memslot, NULL);
  476. kfree(kvm->memslots);
  477. }
  478. static void kvm_destroy_vm(struct kvm *kvm)
  479. {
  480. int i;
  481. struct mm_struct *mm = kvm->mm;
  482. kvm_arch_sync_events(kvm);
  483. raw_spin_lock(&kvm_lock);
  484. list_del(&kvm->vm_list);
  485. raw_spin_unlock(&kvm_lock);
  486. kvm_free_irq_routing(kvm);
  487. for (i = 0; i < KVM_NR_BUSES; i++)
  488. kvm_io_bus_destroy(kvm->buses[i]);
  489. kvm_coalesced_mmio_free(kvm);
  490. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  491. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  492. #else
  493. kvm_arch_flush_shadow(kvm);
  494. #endif
  495. kvm_arch_destroy_vm(kvm);
  496. kvm_free_physmem(kvm);
  497. cleanup_srcu_struct(&kvm->srcu);
  498. kvm_arch_free_vm(kvm);
  499. hardware_disable_all();
  500. mmdrop(mm);
  501. }
  502. void kvm_get_kvm(struct kvm *kvm)
  503. {
  504. atomic_inc(&kvm->users_count);
  505. }
  506. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  507. void kvm_put_kvm(struct kvm *kvm)
  508. {
  509. if (atomic_dec_and_test(&kvm->users_count))
  510. kvm_destroy_vm(kvm);
  511. }
  512. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  513. static int kvm_vm_release(struct inode *inode, struct file *filp)
  514. {
  515. struct kvm *kvm = filp->private_data;
  516. kvm_irqfd_release(kvm);
  517. kvm_put_kvm(kvm);
  518. return 0;
  519. }
  520. #ifndef CONFIG_S390
  521. /*
  522. * Allocation size is twice as large as the actual dirty bitmap size.
  523. * This makes it possible to do double buffering: see x86's
  524. * kvm_vm_ioctl_get_dirty_log().
  525. */
  526. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  527. {
  528. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  529. if (dirty_bytes > PAGE_SIZE)
  530. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  531. else
  532. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  533. if (!memslot->dirty_bitmap)
  534. return -ENOMEM;
  535. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  536. memslot->nr_dirty_pages = 0;
  537. return 0;
  538. }
  539. #endif /* !CONFIG_S390 */
  540. static int cmp_memslot(const void *slot1, const void *slot2)
  541. {
  542. struct kvm_memory_slot *s1, *s2;
  543. s1 = (struct kvm_memory_slot *)slot1;
  544. s2 = (struct kvm_memory_slot *)slot2;
  545. if (s1->npages < s2->npages)
  546. return 1;
  547. if (s1->npages > s2->npages)
  548. return -1;
  549. return 0;
  550. }
  551. /*
  552. * Sort the memslots base on its size, so the larger slots
  553. * will get better fit.
  554. */
  555. static void sort_memslots(struct kvm_memslots *slots)
  556. {
  557. int i;
  558. sort(slots->memslots, KVM_MEM_SLOTS_NUM,
  559. sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
  560. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  561. slots->id_to_index[slots->memslots[i].id] = i;
  562. }
  563. void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
  564. {
  565. if (new) {
  566. int id = new->id;
  567. struct kvm_memory_slot *old = id_to_memslot(slots, id);
  568. unsigned long npages = old->npages;
  569. *old = *new;
  570. if (new->npages != npages)
  571. sort_memslots(slots);
  572. }
  573. slots->generation++;
  574. }
  575. /*
  576. * Allocate some memory and give it an address in the guest physical address
  577. * space.
  578. *
  579. * Discontiguous memory is allowed, mostly for framebuffers.
  580. *
  581. * Must be called holding mmap_sem for write.
  582. */
  583. int __kvm_set_memory_region(struct kvm *kvm,
  584. struct kvm_userspace_memory_region *mem,
  585. int user_alloc)
  586. {
  587. int r;
  588. gfn_t base_gfn;
  589. unsigned long npages;
  590. unsigned long i;
  591. struct kvm_memory_slot *memslot;
  592. struct kvm_memory_slot old, new;
  593. struct kvm_memslots *slots, *old_memslots;
  594. r = -EINVAL;
  595. /* General sanity checks */
  596. if (mem->memory_size & (PAGE_SIZE - 1))
  597. goto out;
  598. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  599. goto out;
  600. /* We can read the guest memory with __xxx_user() later on. */
  601. if (user_alloc &&
  602. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  603. !access_ok(VERIFY_WRITE,
  604. (void __user *)(unsigned long)mem->userspace_addr,
  605. mem->memory_size)))
  606. goto out;
  607. if (mem->slot >= KVM_MEM_SLOTS_NUM)
  608. goto out;
  609. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  610. goto out;
  611. memslot = id_to_memslot(kvm->memslots, mem->slot);
  612. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  613. npages = mem->memory_size >> PAGE_SHIFT;
  614. r = -EINVAL;
  615. if (npages > KVM_MEM_MAX_NR_PAGES)
  616. goto out;
  617. if (!npages)
  618. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  619. new = old = *memslot;
  620. new.id = mem->slot;
  621. new.base_gfn = base_gfn;
  622. new.npages = npages;
  623. new.flags = mem->flags;
  624. /* Disallow changing a memory slot's size. */
  625. r = -EINVAL;
  626. if (npages && old.npages && npages != old.npages)
  627. goto out_free;
  628. /* Check for overlaps */
  629. r = -EEXIST;
  630. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  631. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  632. if (s == memslot || !s->npages)
  633. continue;
  634. if (!((base_gfn + npages <= s->base_gfn) ||
  635. (base_gfn >= s->base_gfn + s->npages)))
  636. goto out_free;
  637. }
  638. /* Free page dirty bitmap if unneeded */
  639. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  640. new.dirty_bitmap = NULL;
  641. r = -ENOMEM;
  642. /* Allocate if a slot is being created */
  643. #ifndef CONFIG_S390
  644. if (npages && !new.rmap) {
  645. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  646. if (!new.rmap)
  647. goto out_free;
  648. new.user_alloc = user_alloc;
  649. new.userspace_addr = mem->userspace_addr;
  650. }
  651. if (!npages)
  652. goto skip_lpage;
  653. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  654. unsigned long ugfn;
  655. unsigned long j;
  656. int lpages;
  657. int level = i + 2;
  658. if (new.lpage_info[i])
  659. continue;
  660. lpages = gfn_to_index(base_gfn + npages - 1, base_gfn, level) + 1;
  661. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  662. if (!new.lpage_info[i])
  663. goto out_free;
  664. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  665. new.lpage_info[i][0].write_count = 1;
  666. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  667. new.lpage_info[i][lpages - 1].write_count = 1;
  668. ugfn = new.userspace_addr >> PAGE_SHIFT;
  669. /*
  670. * If the gfn and userspace address are not aligned wrt each
  671. * other, or if explicitly asked to, disable large page
  672. * support for this slot
  673. */
  674. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  675. !largepages_enabled)
  676. for (j = 0; j < lpages; ++j)
  677. new.lpage_info[i][j].write_count = 1;
  678. }
  679. skip_lpage:
  680. /* Allocate page dirty bitmap if needed */
  681. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  682. if (kvm_create_dirty_bitmap(&new) < 0)
  683. goto out_free;
  684. /* destroy any largepage mappings for dirty tracking */
  685. }
  686. #else /* not defined CONFIG_S390 */
  687. new.user_alloc = user_alloc;
  688. if (user_alloc)
  689. new.userspace_addr = mem->userspace_addr;
  690. #endif /* not defined CONFIG_S390 */
  691. if (!npages) {
  692. struct kvm_memory_slot *slot;
  693. r = -ENOMEM;
  694. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  695. GFP_KERNEL);
  696. if (!slots)
  697. goto out_free;
  698. slot = id_to_memslot(slots, mem->slot);
  699. slot->flags |= KVM_MEMSLOT_INVALID;
  700. update_memslots(slots, NULL);
  701. old_memslots = kvm->memslots;
  702. rcu_assign_pointer(kvm->memslots, slots);
  703. synchronize_srcu_expedited(&kvm->srcu);
  704. /* From this point no new shadow pages pointing to a deleted
  705. * memslot will be created.
  706. *
  707. * validation of sp->gfn happens in:
  708. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  709. * - kvm_is_visible_gfn (mmu_check_roots)
  710. */
  711. kvm_arch_flush_shadow(kvm);
  712. kfree(old_memslots);
  713. }
  714. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  715. if (r)
  716. goto out_free;
  717. /* map the pages in iommu page table */
  718. if (npages) {
  719. r = kvm_iommu_map_pages(kvm, &new);
  720. if (r)
  721. goto out_free;
  722. }
  723. r = -ENOMEM;
  724. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  725. GFP_KERNEL);
  726. if (!slots)
  727. goto out_free;
  728. /* actual memory is freed via old in kvm_free_physmem_slot below */
  729. if (!npages) {
  730. new.rmap = NULL;
  731. new.dirty_bitmap = NULL;
  732. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  733. new.lpage_info[i] = NULL;
  734. }
  735. update_memslots(slots, &new);
  736. old_memslots = kvm->memslots;
  737. rcu_assign_pointer(kvm->memslots, slots);
  738. synchronize_srcu_expedited(&kvm->srcu);
  739. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  740. /*
  741. * If the new memory slot is created, we need to clear all
  742. * mmio sptes.
  743. */
  744. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  745. kvm_arch_flush_shadow(kvm);
  746. kvm_free_physmem_slot(&old, &new);
  747. kfree(old_memslots);
  748. return 0;
  749. out_free:
  750. kvm_free_physmem_slot(&new, &old);
  751. out:
  752. return r;
  753. }
  754. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  755. int kvm_set_memory_region(struct kvm *kvm,
  756. struct kvm_userspace_memory_region *mem,
  757. int user_alloc)
  758. {
  759. int r;
  760. mutex_lock(&kvm->slots_lock);
  761. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  762. mutex_unlock(&kvm->slots_lock);
  763. return r;
  764. }
  765. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  766. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  767. struct
  768. kvm_userspace_memory_region *mem,
  769. int user_alloc)
  770. {
  771. if (mem->slot >= KVM_MEMORY_SLOTS)
  772. return -EINVAL;
  773. return kvm_set_memory_region(kvm, mem, user_alloc);
  774. }
  775. int kvm_get_dirty_log(struct kvm *kvm,
  776. struct kvm_dirty_log *log, int *is_dirty)
  777. {
  778. struct kvm_memory_slot *memslot;
  779. int r, i;
  780. unsigned long n;
  781. unsigned long any = 0;
  782. r = -EINVAL;
  783. if (log->slot >= KVM_MEMORY_SLOTS)
  784. goto out;
  785. memslot = id_to_memslot(kvm->memslots, log->slot);
  786. r = -ENOENT;
  787. if (!memslot->dirty_bitmap)
  788. goto out;
  789. n = kvm_dirty_bitmap_bytes(memslot);
  790. for (i = 0; !any && i < n/sizeof(long); ++i)
  791. any = memslot->dirty_bitmap[i];
  792. r = -EFAULT;
  793. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  794. goto out;
  795. if (any)
  796. *is_dirty = 1;
  797. r = 0;
  798. out:
  799. return r;
  800. }
  801. void kvm_disable_largepages(void)
  802. {
  803. largepages_enabled = false;
  804. }
  805. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  806. int is_error_page(struct page *page)
  807. {
  808. return page == bad_page || page == hwpoison_page || page == fault_page;
  809. }
  810. EXPORT_SYMBOL_GPL(is_error_page);
  811. int is_error_pfn(pfn_t pfn)
  812. {
  813. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  814. }
  815. EXPORT_SYMBOL_GPL(is_error_pfn);
  816. int is_hwpoison_pfn(pfn_t pfn)
  817. {
  818. return pfn == hwpoison_pfn;
  819. }
  820. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  821. int is_fault_pfn(pfn_t pfn)
  822. {
  823. return pfn == fault_pfn;
  824. }
  825. EXPORT_SYMBOL_GPL(is_fault_pfn);
  826. int is_noslot_pfn(pfn_t pfn)
  827. {
  828. return pfn == bad_pfn;
  829. }
  830. EXPORT_SYMBOL_GPL(is_noslot_pfn);
  831. int is_invalid_pfn(pfn_t pfn)
  832. {
  833. return pfn == hwpoison_pfn || pfn == fault_pfn;
  834. }
  835. EXPORT_SYMBOL_GPL(is_invalid_pfn);
  836. static inline unsigned long bad_hva(void)
  837. {
  838. return PAGE_OFFSET;
  839. }
  840. int kvm_is_error_hva(unsigned long addr)
  841. {
  842. return addr == bad_hva();
  843. }
  844. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  845. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  846. {
  847. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  848. }
  849. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  850. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  851. {
  852. struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
  853. if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
  854. memslot->flags & KVM_MEMSLOT_INVALID)
  855. return 0;
  856. return 1;
  857. }
  858. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  859. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  860. {
  861. struct vm_area_struct *vma;
  862. unsigned long addr, size;
  863. size = PAGE_SIZE;
  864. addr = gfn_to_hva(kvm, gfn);
  865. if (kvm_is_error_hva(addr))
  866. return PAGE_SIZE;
  867. down_read(&current->mm->mmap_sem);
  868. vma = find_vma(current->mm, addr);
  869. if (!vma)
  870. goto out;
  871. size = vma_kernel_pagesize(vma);
  872. out:
  873. up_read(&current->mm->mmap_sem);
  874. return size;
  875. }
  876. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  877. gfn_t *nr_pages)
  878. {
  879. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  880. return bad_hva();
  881. if (nr_pages)
  882. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  883. return gfn_to_hva_memslot(slot, gfn);
  884. }
  885. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  886. {
  887. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  888. }
  889. EXPORT_SYMBOL_GPL(gfn_to_hva);
  890. static pfn_t get_fault_pfn(void)
  891. {
  892. get_page(fault_page);
  893. return fault_pfn;
  894. }
  895. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  896. unsigned long start, int write, struct page **page)
  897. {
  898. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  899. if (write)
  900. flags |= FOLL_WRITE;
  901. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  902. }
  903. static inline int check_user_page_hwpoison(unsigned long addr)
  904. {
  905. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  906. rc = __get_user_pages(current, current->mm, addr, 1,
  907. flags, NULL, NULL, NULL);
  908. return rc == -EHWPOISON;
  909. }
  910. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  911. bool *async, bool write_fault, bool *writable)
  912. {
  913. struct page *page[1];
  914. int npages = 0;
  915. pfn_t pfn;
  916. /* we can do it either atomically or asynchronously, not both */
  917. BUG_ON(atomic && async);
  918. BUG_ON(!write_fault && !writable);
  919. if (writable)
  920. *writable = true;
  921. if (atomic || async)
  922. npages = __get_user_pages_fast(addr, 1, 1, page);
  923. if (unlikely(npages != 1) && !atomic) {
  924. might_sleep();
  925. if (writable)
  926. *writable = write_fault;
  927. if (async) {
  928. down_read(&current->mm->mmap_sem);
  929. npages = get_user_page_nowait(current, current->mm,
  930. addr, write_fault, page);
  931. up_read(&current->mm->mmap_sem);
  932. } else
  933. npages = get_user_pages_fast(addr, 1, write_fault,
  934. page);
  935. /* map read fault as writable if possible */
  936. if (unlikely(!write_fault) && npages == 1) {
  937. struct page *wpage[1];
  938. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  939. if (npages == 1) {
  940. *writable = true;
  941. put_page(page[0]);
  942. page[0] = wpage[0];
  943. }
  944. npages = 1;
  945. }
  946. }
  947. if (unlikely(npages != 1)) {
  948. struct vm_area_struct *vma;
  949. if (atomic)
  950. return get_fault_pfn();
  951. down_read(&current->mm->mmap_sem);
  952. if (npages == -EHWPOISON ||
  953. (!async && check_user_page_hwpoison(addr))) {
  954. up_read(&current->mm->mmap_sem);
  955. get_page(hwpoison_page);
  956. return page_to_pfn(hwpoison_page);
  957. }
  958. vma = find_vma_intersection(current->mm, addr, addr+1);
  959. if (vma == NULL)
  960. pfn = get_fault_pfn();
  961. else if ((vma->vm_flags & VM_PFNMAP)) {
  962. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  963. vma->vm_pgoff;
  964. BUG_ON(!kvm_is_mmio_pfn(pfn));
  965. } else {
  966. if (async && (vma->vm_flags & VM_WRITE))
  967. *async = true;
  968. pfn = get_fault_pfn();
  969. }
  970. up_read(&current->mm->mmap_sem);
  971. } else
  972. pfn = page_to_pfn(page[0]);
  973. return pfn;
  974. }
  975. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  976. {
  977. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  978. }
  979. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  980. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  981. bool write_fault, bool *writable)
  982. {
  983. unsigned long addr;
  984. if (async)
  985. *async = false;
  986. addr = gfn_to_hva(kvm, gfn);
  987. if (kvm_is_error_hva(addr)) {
  988. get_page(bad_page);
  989. return page_to_pfn(bad_page);
  990. }
  991. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  992. }
  993. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  994. {
  995. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  996. }
  997. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  998. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  999. bool write_fault, bool *writable)
  1000. {
  1001. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  1002. }
  1003. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  1004. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1005. {
  1006. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  1007. }
  1008. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1009. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  1010. bool *writable)
  1011. {
  1012. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  1013. }
  1014. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  1015. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  1016. struct kvm_memory_slot *slot, gfn_t gfn)
  1017. {
  1018. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  1019. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  1020. }
  1021. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  1022. int nr_pages)
  1023. {
  1024. unsigned long addr;
  1025. gfn_t entry;
  1026. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  1027. if (kvm_is_error_hva(addr))
  1028. return -1;
  1029. if (entry < nr_pages)
  1030. return 0;
  1031. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  1032. }
  1033. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  1034. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1035. {
  1036. pfn_t pfn;
  1037. pfn = gfn_to_pfn(kvm, gfn);
  1038. if (!kvm_is_mmio_pfn(pfn))
  1039. return pfn_to_page(pfn);
  1040. WARN_ON(kvm_is_mmio_pfn(pfn));
  1041. get_page(bad_page);
  1042. return bad_page;
  1043. }
  1044. EXPORT_SYMBOL_GPL(gfn_to_page);
  1045. void kvm_release_page_clean(struct page *page)
  1046. {
  1047. kvm_release_pfn_clean(page_to_pfn(page));
  1048. }
  1049. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1050. void kvm_release_pfn_clean(pfn_t pfn)
  1051. {
  1052. if (!kvm_is_mmio_pfn(pfn))
  1053. put_page(pfn_to_page(pfn));
  1054. }
  1055. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1056. void kvm_release_page_dirty(struct page *page)
  1057. {
  1058. kvm_release_pfn_dirty(page_to_pfn(page));
  1059. }
  1060. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1061. void kvm_release_pfn_dirty(pfn_t pfn)
  1062. {
  1063. kvm_set_pfn_dirty(pfn);
  1064. kvm_release_pfn_clean(pfn);
  1065. }
  1066. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1067. void kvm_set_page_dirty(struct page *page)
  1068. {
  1069. kvm_set_pfn_dirty(page_to_pfn(page));
  1070. }
  1071. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1072. void kvm_set_pfn_dirty(pfn_t pfn)
  1073. {
  1074. if (!kvm_is_mmio_pfn(pfn)) {
  1075. struct page *page = pfn_to_page(pfn);
  1076. if (!PageReserved(page))
  1077. SetPageDirty(page);
  1078. }
  1079. }
  1080. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1081. void kvm_set_pfn_accessed(pfn_t pfn)
  1082. {
  1083. if (!kvm_is_mmio_pfn(pfn))
  1084. mark_page_accessed(pfn_to_page(pfn));
  1085. }
  1086. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1087. void kvm_get_pfn(pfn_t pfn)
  1088. {
  1089. if (!kvm_is_mmio_pfn(pfn))
  1090. get_page(pfn_to_page(pfn));
  1091. }
  1092. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1093. static int next_segment(unsigned long len, int offset)
  1094. {
  1095. if (len > PAGE_SIZE - offset)
  1096. return PAGE_SIZE - offset;
  1097. else
  1098. return len;
  1099. }
  1100. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1101. int len)
  1102. {
  1103. int r;
  1104. unsigned long addr;
  1105. addr = gfn_to_hva(kvm, gfn);
  1106. if (kvm_is_error_hva(addr))
  1107. return -EFAULT;
  1108. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1109. if (r)
  1110. return -EFAULT;
  1111. return 0;
  1112. }
  1113. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1114. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1115. {
  1116. gfn_t gfn = gpa >> PAGE_SHIFT;
  1117. int seg;
  1118. int offset = offset_in_page(gpa);
  1119. int ret;
  1120. while ((seg = next_segment(len, offset)) != 0) {
  1121. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1122. if (ret < 0)
  1123. return ret;
  1124. offset = 0;
  1125. len -= seg;
  1126. data += seg;
  1127. ++gfn;
  1128. }
  1129. return 0;
  1130. }
  1131. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1132. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1133. unsigned long len)
  1134. {
  1135. int r;
  1136. unsigned long addr;
  1137. gfn_t gfn = gpa >> PAGE_SHIFT;
  1138. int offset = offset_in_page(gpa);
  1139. addr = gfn_to_hva(kvm, gfn);
  1140. if (kvm_is_error_hva(addr))
  1141. return -EFAULT;
  1142. pagefault_disable();
  1143. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1144. pagefault_enable();
  1145. if (r)
  1146. return -EFAULT;
  1147. return 0;
  1148. }
  1149. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1150. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1151. int offset, int len)
  1152. {
  1153. int r;
  1154. unsigned long addr;
  1155. addr = gfn_to_hva(kvm, gfn);
  1156. if (kvm_is_error_hva(addr))
  1157. return -EFAULT;
  1158. r = __copy_to_user((void __user *)addr + offset, data, len);
  1159. if (r)
  1160. return -EFAULT;
  1161. mark_page_dirty(kvm, gfn);
  1162. return 0;
  1163. }
  1164. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1165. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1166. unsigned long len)
  1167. {
  1168. gfn_t gfn = gpa >> PAGE_SHIFT;
  1169. int seg;
  1170. int offset = offset_in_page(gpa);
  1171. int ret;
  1172. while ((seg = next_segment(len, offset)) != 0) {
  1173. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1174. if (ret < 0)
  1175. return ret;
  1176. offset = 0;
  1177. len -= seg;
  1178. data += seg;
  1179. ++gfn;
  1180. }
  1181. return 0;
  1182. }
  1183. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1184. gpa_t gpa)
  1185. {
  1186. struct kvm_memslots *slots = kvm_memslots(kvm);
  1187. int offset = offset_in_page(gpa);
  1188. gfn_t gfn = gpa >> PAGE_SHIFT;
  1189. ghc->gpa = gpa;
  1190. ghc->generation = slots->generation;
  1191. ghc->memslot = gfn_to_memslot(kvm, gfn);
  1192. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1193. if (!kvm_is_error_hva(ghc->hva))
  1194. ghc->hva += offset;
  1195. else
  1196. return -EFAULT;
  1197. return 0;
  1198. }
  1199. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1200. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1201. void *data, unsigned long len)
  1202. {
  1203. struct kvm_memslots *slots = kvm_memslots(kvm);
  1204. int r;
  1205. if (slots->generation != ghc->generation)
  1206. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1207. if (kvm_is_error_hva(ghc->hva))
  1208. return -EFAULT;
  1209. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1210. if (r)
  1211. return -EFAULT;
  1212. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1213. return 0;
  1214. }
  1215. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1216. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1217. void *data, unsigned long len)
  1218. {
  1219. struct kvm_memslots *slots = kvm_memslots(kvm);
  1220. int r;
  1221. if (slots->generation != ghc->generation)
  1222. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1223. if (kvm_is_error_hva(ghc->hva))
  1224. return -EFAULT;
  1225. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1226. if (r)
  1227. return -EFAULT;
  1228. return 0;
  1229. }
  1230. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1231. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1232. {
  1233. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1234. offset, len);
  1235. }
  1236. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1237. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1238. {
  1239. gfn_t gfn = gpa >> PAGE_SHIFT;
  1240. int seg;
  1241. int offset = offset_in_page(gpa);
  1242. int ret;
  1243. while ((seg = next_segment(len, offset)) != 0) {
  1244. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1245. if (ret < 0)
  1246. return ret;
  1247. offset = 0;
  1248. len -= seg;
  1249. ++gfn;
  1250. }
  1251. return 0;
  1252. }
  1253. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1254. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1255. gfn_t gfn)
  1256. {
  1257. if (memslot && memslot->dirty_bitmap) {
  1258. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1259. if (!test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
  1260. memslot->nr_dirty_pages++;
  1261. }
  1262. }
  1263. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1264. {
  1265. struct kvm_memory_slot *memslot;
  1266. memslot = gfn_to_memslot(kvm, gfn);
  1267. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1268. }
  1269. /*
  1270. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1271. */
  1272. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1273. {
  1274. DEFINE_WAIT(wait);
  1275. for (;;) {
  1276. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1277. if (kvm_arch_vcpu_runnable(vcpu)) {
  1278. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1279. break;
  1280. }
  1281. if (kvm_cpu_has_pending_timer(vcpu))
  1282. break;
  1283. if (signal_pending(current))
  1284. break;
  1285. schedule();
  1286. }
  1287. finish_wait(&vcpu->wq, &wait);
  1288. }
  1289. void kvm_resched(struct kvm_vcpu *vcpu)
  1290. {
  1291. if (!need_resched())
  1292. return;
  1293. cond_resched();
  1294. }
  1295. EXPORT_SYMBOL_GPL(kvm_resched);
  1296. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1297. {
  1298. struct kvm *kvm = me->kvm;
  1299. struct kvm_vcpu *vcpu;
  1300. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1301. int yielded = 0;
  1302. int pass;
  1303. int i;
  1304. /*
  1305. * We boost the priority of a VCPU that is runnable but not
  1306. * currently running, because it got preempted by something
  1307. * else and called schedule in __vcpu_run. Hopefully that
  1308. * VCPU is holding the lock that we need and will release it.
  1309. * We approximate round-robin by starting at the last boosted VCPU.
  1310. */
  1311. for (pass = 0; pass < 2 && !yielded; pass++) {
  1312. kvm_for_each_vcpu(i, vcpu, kvm) {
  1313. struct task_struct *task = NULL;
  1314. struct pid *pid;
  1315. if (!pass && i < last_boosted_vcpu) {
  1316. i = last_boosted_vcpu;
  1317. continue;
  1318. } else if (pass && i > last_boosted_vcpu)
  1319. break;
  1320. if (vcpu == me)
  1321. continue;
  1322. if (waitqueue_active(&vcpu->wq))
  1323. continue;
  1324. rcu_read_lock();
  1325. pid = rcu_dereference(vcpu->pid);
  1326. if (pid)
  1327. task = get_pid_task(vcpu->pid, PIDTYPE_PID);
  1328. rcu_read_unlock();
  1329. if (!task)
  1330. continue;
  1331. if (task->flags & PF_VCPU) {
  1332. put_task_struct(task);
  1333. continue;
  1334. }
  1335. if (yield_to(task, 1)) {
  1336. put_task_struct(task);
  1337. kvm->last_boosted_vcpu = i;
  1338. yielded = 1;
  1339. break;
  1340. }
  1341. put_task_struct(task);
  1342. }
  1343. }
  1344. }
  1345. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1346. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1347. {
  1348. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1349. struct page *page;
  1350. if (vmf->pgoff == 0)
  1351. page = virt_to_page(vcpu->run);
  1352. #ifdef CONFIG_X86
  1353. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1354. page = virt_to_page(vcpu->arch.pio_data);
  1355. #endif
  1356. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1357. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1358. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1359. #endif
  1360. else
  1361. return kvm_arch_vcpu_fault(vcpu, vmf);
  1362. get_page(page);
  1363. vmf->page = page;
  1364. return 0;
  1365. }
  1366. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1367. .fault = kvm_vcpu_fault,
  1368. };
  1369. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1370. {
  1371. vma->vm_ops = &kvm_vcpu_vm_ops;
  1372. return 0;
  1373. }
  1374. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1375. {
  1376. struct kvm_vcpu *vcpu = filp->private_data;
  1377. kvm_put_kvm(vcpu->kvm);
  1378. return 0;
  1379. }
  1380. static struct file_operations kvm_vcpu_fops = {
  1381. .release = kvm_vcpu_release,
  1382. .unlocked_ioctl = kvm_vcpu_ioctl,
  1383. #ifdef CONFIG_COMPAT
  1384. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1385. #endif
  1386. .mmap = kvm_vcpu_mmap,
  1387. .llseek = noop_llseek,
  1388. };
  1389. /*
  1390. * Allocates an inode for the vcpu.
  1391. */
  1392. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1393. {
  1394. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1395. }
  1396. /*
  1397. * Creates some virtual cpus. Good luck creating more than one.
  1398. */
  1399. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1400. {
  1401. int r;
  1402. struct kvm_vcpu *vcpu, *v;
  1403. vcpu = kvm_arch_vcpu_create(kvm, id);
  1404. if (IS_ERR(vcpu))
  1405. return PTR_ERR(vcpu);
  1406. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1407. r = kvm_arch_vcpu_setup(vcpu);
  1408. if (r)
  1409. goto vcpu_destroy;
  1410. mutex_lock(&kvm->lock);
  1411. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1412. r = -EINVAL;
  1413. goto unlock_vcpu_destroy;
  1414. }
  1415. kvm_for_each_vcpu(r, v, kvm)
  1416. if (v->vcpu_id == id) {
  1417. r = -EEXIST;
  1418. goto unlock_vcpu_destroy;
  1419. }
  1420. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1421. /* Now it's all set up, let userspace reach it */
  1422. kvm_get_kvm(kvm);
  1423. r = create_vcpu_fd(vcpu);
  1424. if (r < 0) {
  1425. kvm_put_kvm(kvm);
  1426. goto unlock_vcpu_destroy;
  1427. }
  1428. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1429. smp_wmb();
  1430. atomic_inc(&kvm->online_vcpus);
  1431. mutex_unlock(&kvm->lock);
  1432. return r;
  1433. unlock_vcpu_destroy:
  1434. mutex_unlock(&kvm->lock);
  1435. vcpu_destroy:
  1436. kvm_arch_vcpu_destroy(vcpu);
  1437. return r;
  1438. }
  1439. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1440. {
  1441. if (sigset) {
  1442. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1443. vcpu->sigset_active = 1;
  1444. vcpu->sigset = *sigset;
  1445. } else
  1446. vcpu->sigset_active = 0;
  1447. return 0;
  1448. }
  1449. static long kvm_vcpu_ioctl(struct file *filp,
  1450. unsigned int ioctl, unsigned long arg)
  1451. {
  1452. struct kvm_vcpu *vcpu = filp->private_data;
  1453. void __user *argp = (void __user *)arg;
  1454. int r;
  1455. struct kvm_fpu *fpu = NULL;
  1456. struct kvm_sregs *kvm_sregs = NULL;
  1457. if (vcpu->kvm->mm != current->mm)
  1458. return -EIO;
  1459. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1460. /*
  1461. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1462. * so vcpu_load() would break it.
  1463. */
  1464. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1465. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1466. #endif
  1467. vcpu_load(vcpu);
  1468. switch (ioctl) {
  1469. case KVM_RUN:
  1470. r = -EINVAL;
  1471. if (arg)
  1472. goto out;
  1473. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1474. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1475. break;
  1476. case KVM_GET_REGS: {
  1477. struct kvm_regs *kvm_regs;
  1478. r = -ENOMEM;
  1479. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1480. if (!kvm_regs)
  1481. goto out;
  1482. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1483. if (r)
  1484. goto out_free1;
  1485. r = -EFAULT;
  1486. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1487. goto out_free1;
  1488. r = 0;
  1489. out_free1:
  1490. kfree(kvm_regs);
  1491. break;
  1492. }
  1493. case KVM_SET_REGS: {
  1494. struct kvm_regs *kvm_regs;
  1495. r = -ENOMEM;
  1496. kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
  1497. if (IS_ERR(kvm_regs)) {
  1498. r = PTR_ERR(kvm_regs);
  1499. goto out;
  1500. }
  1501. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1502. if (r)
  1503. goto out_free2;
  1504. r = 0;
  1505. out_free2:
  1506. kfree(kvm_regs);
  1507. break;
  1508. }
  1509. case KVM_GET_SREGS: {
  1510. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1511. r = -ENOMEM;
  1512. if (!kvm_sregs)
  1513. goto out;
  1514. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1515. if (r)
  1516. goto out;
  1517. r = -EFAULT;
  1518. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1519. goto out;
  1520. r = 0;
  1521. break;
  1522. }
  1523. case KVM_SET_SREGS: {
  1524. kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
  1525. if (IS_ERR(kvm_sregs)) {
  1526. r = PTR_ERR(kvm_sregs);
  1527. goto out;
  1528. }
  1529. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1530. if (r)
  1531. goto out;
  1532. r = 0;
  1533. break;
  1534. }
  1535. case KVM_GET_MP_STATE: {
  1536. struct kvm_mp_state mp_state;
  1537. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1538. if (r)
  1539. goto out;
  1540. r = -EFAULT;
  1541. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1542. goto out;
  1543. r = 0;
  1544. break;
  1545. }
  1546. case KVM_SET_MP_STATE: {
  1547. struct kvm_mp_state mp_state;
  1548. r = -EFAULT;
  1549. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1550. goto out;
  1551. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1552. if (r)
  1553. goto out;
  1554. r = 0;
  1555. break;
  1556. }
  1557. case KVM_TRANSLATE: {
  1558. struct kvm_translation tr;
  1559. r = -EFAULT;
  1560. if (copy_from_user(&tr, argp, sizeof tr))
  1561. goto out;
  1562. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1563. if (r)
  1564. goto out;
  1565. r = -EFAULT;
  1566. if (copy_to_user(argp, &tr, sizeof tr))
  1567. goto out;
  1568. r = 0;
  1569. break;
  1570. }
  1571. case KVM_SET_GUEST_DEBUG: {
  1572. struct kvm_guest_debug dbg;
  1573. r = -EFAULT;
  1574. if (copy_from_user(&dbg, argp, sizeof dbg))
  1575. goto out;
  1576. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1577. if (r)
  1578. goto out;
  1579. r = 0;
  1580. break;
  1581. }
  1582. case KVM_SET_SIGNAL_MASK: {
  1583. struct kvm_signal_mask __user *sigmask_arg = argp;
  1584. struct kvm_signal_mask kvm_sigmask;
  1585. sigset_t sigset, *p;
  1586. p = NULL;
  1587. if (argp) {
  1588. r = -EFAULT;
  1589. if (copy_from_user(&kvm_sigmask, argp,
  1590. sizeof kvm_sigmask))
  1591. goto out;
  1592. r = -EINVAL;
  1593. if (kvm_sigmask.len != sizeof sigset)
  1594. goto out;
  1595. r = -EFAULT;
  1596. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1597. sizeof sigset))
  1598. goto out;
  1599. p = &sigset;
  1600. }
  1601. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1602. break;
  1603. }
  1604. case KVM_GET_FPU: {
  1605. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1606. r = -ENOMEM;
  1607. if (!fpu)
  1608. goto out;
  1609. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1610. if (r)
  1611. goto out;
  1612. r = -EFAULT;
  1613. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1614. goto out;
  1615. r = 0;
  1616. break;
  1617. }
  1618. case KVM_SET_FPU: {
  1619. fpu = memdup_user(argp, sizeof(*fpu));
  1620. if (IS_ERR(fpu)) {
  1621. r = PTR_ERR(fpu);
  1622. goto out;
  1623. }
  1624. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1625. if (r)
  1626. goto out;
  1627. r = 0;
  1628. break;
  1629. }
  1630. default:
  1631. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1632. }
  1633. out:
  1634. vcpu_put(vcpu);
  1635. kfree(fpu);
  1636. kfree(kvm_sregs);
  1637. return r;
  1638. }
  1639. #ifdef CONFIG_COMPAT
  1640. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1641. unsigned int ioctl, unsigned long arg)
  1642. {
  1643. struct kvm_vcpu *vcpu = filp->private_data;
  1644. void __user *argp = compat_ptr(arg);
  1645. int r;
  1646. if (vcpu->kvm->mm != current->mm)
  1647. return -EIO;
  1648. switch (ioctl) {
  1649. case KVM_SET_SIGNAL_MASK: {
  1650. struct kvm_signal_mask __user *sigmask_arg = argp;
  1651. struct kvm_signal_mask kvm_sigmask;
  1652. compat_sigset_t csigset;
  1653. sigset_t sigset;
  1654. if (argp) {
  1655. r = -EFAULT;
  1656. if (copy_from_user(&kvm_sigmask, argp,
  1657. sizeof kvm_sigmask))
  1658. goto out;
  1659. r = -EINVAL;
  1660. if (kvm_sigmask.len != sizeof csigset)
  1661. goto out;
  1662. r = -EFAULT;
  1663. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1664. sizeof csigset))
  1665. goto out;
  1666. }
  1667. sigset_from_compat(&sigset, &csigset);
  1668. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1669. break;
  1670. }
  1671. default:
  1672. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1673. }
  1674. out:
  1675. return r;
  1676. }
  1677. #endif
  1678. static long kvm_vm_ioctl(struct file *filp,
  1679. unsigned int ioctl, unsigned long arg)
  1680. {
  1681. struct kvm *kvm = filp->private_data;
  1682. void __user *argp = (void __user *)arg;
  1683. int r;
  1684. if (kvm->mm != current->mm)
  1685. return -EIO;
  1686. switch (ioctl) {
  1687. case KVM_CREATE_VCPU:
  1688. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1689. if (r < 0)
  1690. goto out;
  1691. break;
  1692. case KVM_SET_USER_MEMORY_REGION: {
  1693. struct kvm_userspace_memory_region kvm_userspace_mem;
  1694. r = -EFAULT;
  1695. if (copy_from_user(&kvm_userspace_mem, argp,
  1696. sizeof kvm_userspace_mem))
  1697. goto out;
  1698. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1699. if (r)
  1700. goto out;
  1701. break;
  1702. }
  1703. case KVM_GET_DIRTY_LOG: {
  1704. struct kvm_dirty_log log;
  1705. r = -EFAULT;
  1706. if (copy_from_user(&log, argp, sizeof log))
  1707. goto out;
  1708. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1709. if (r)
  1710. goto out;
  1711. break;
  1712. }
  1713. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1714. case KVM_REGISTER_COALESCED_MMIO: {
  1715. struct kvm_coalesced_mmio_zone zone;
  1716. r = -EFAULT;
  1717. if (copy_from_user(&zone, argp, sizeof zone))
  1718. goto out;
  1719. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1720. if (r)
  1721. goto out;
  1722. r = 0;
  1723. break;
  1724. }
  1725. case KVM_UNREGISTER_COALESCED_MMIO: {
  1726. struct kvm_coalesced_mmio_zone zone;
  1727. r = -EFAULT;
  1728. if (copy_from_user(&zone, argp, sizeof zone))
  1729. goto out;
  1730. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1731. if (r)
  1732. goto out;
  1733. r = 0;
  1734. break;
  1735. }
  1736. #endif
  1737. case KVM_IRQFD: {
  1738. struct kvm_irqfd data;
  1739. r = -EFAULT;
  1740. if (copy_from_user(&data, argp, sizeof data))
  1741. goto out;
  1742. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1743. break;
  1744. }
  1745. case KVM_IOEVENTFD: {
  1746. struct kvm_ioeventfd data;
  1747. r = -EFAULT;
  1748. if (copy_from_user(&data, argp, sizeof data))
  1749. goto out;
  1750. r = kvm_ioeventfd(kvm, &data);
  1751. break;
  1752. }
  1753. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1754. case KVM_SET_BOOT_CPU_ID:
  1755. r = 0;
  1756. mutex_lock(&kvm->lock);
  1757. if (atomic_read(&kvm->online_vcpus) != 0)
  1758. r = -EBUSY;
  1759. else
  1760. kvm->bsp_vcpu_id = arg;
  1761. mutex_unlock(&kvm->lock);
  1762. break;
  1763. #endif
  1764. default:
  1765. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1766. if (r == -ENOTTY)
  1767. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1768. }
  1769. out:
  1770. return r;
  1771. }
  1772. #ifdef CONFIG_COMPAT
  1773. struct compat_kvm_dirty_log {
  1774. __u32 slot;
  1775. __u32 padding1;
  1776. union {
  1777. compat_uptr_t dirty_bitmap; /* one bit per page */
  1778. __u64 padding2;
  1779. };
  1780. };
  1781. static long kvm_vm_compat_ioctl(struct file *filp,
  1782. unsigned int ioctl, unsigned long arg)
  1783. {
  1784. struct kvm *kvm = filp->private_data;
  1785. int r;
  1786. if (kvm->mm != current->mm)
  1787. return -EIO;
  1788. switch (ioctl) {
  1789. case KVM_GET_DIRTY_LOG: {
  1790. struct compat_kvm_dirty_log compat_log;
  1791. struct kvm_dirty_log log;
  1792. r = -EFAULT;
  1793. if (copy_from_user(&compat_log, (void __user *)arg,
  1794. sizeof(compat_log)))
  1795. goto out;
  1796. log.slot = compat_log.slot;
  1797. log.padding1 = compat_log.padding1;
  1798. log.padding2 = compat_log.padding2;
  1799. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1800. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1801. if (r)
  1802. goto out;
  1803. break;
  1804. }
  1805. default:
  1806. r = kvm_vm_ioctl(filp, ioctl, arg);
  1807. }
  1808. out:
  1809. return r;
  1810. }
  1811. #endif
  1812. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1813. {
  1814. struct page *page[1];
  1815. unsigned long addr;
  1816. int npages;
  1817. gfn_t gfn = vmf->pgoff;
  1818. struct kvm *kvm = vma->vm_file->private_data;
  1819. addr = gfn_to_hva(kvm, gfn);
  1820. if (kvm_is_error_hva(addr))
  1821. return VM_FAULT_SIGBUS;
  1822. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1823. NULL);
  1824. if (unlikely(npages != 1))
  1825. return VM_FAULT_SIGBUS;
  1826. vmf->page = page[0];
  1827. return 0;
  1828. }
  1829. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1830. .fault = kvm_vm_fault,
  1831. };
  1832. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1833. {
  1834. vma->vm_ops = &kvm_vm_vm_ops;
  1835. return 0;
  1836. }
  1837. static struct file_operations kvm_vm_fops = {
  1838. .release = kvm_vm_release,
  1839. .unlocked_ioctl = kvm_vm_ioctl,
  1840. #ifdef CONFIG_COMPAT
  1841. .compat_ioctl = kvm_vm_compat_ioctl,
  1842. #endif
  1843. .mmap = kvm_vm_mmap,
  1844. .llseek = noop_llseek,
  1845. };
  1846. static int kvm_dev_ioctl_create_vm(unsigned long type)
  1847. {
  1848. int r;
  1849. struct kvm *kvm;
  1850. kvm = kvm_create_vm(type);
  1851. if (IS_ERR(kvm))
  1852. return PTR_ERR(kvm);
  1853. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1854. r = kvm_coalesced_mmio_init(kvm);
  1855. if (r < 0) {
  1856. kvm_put_kvm(kvm);
  1857. return r;
  1858. }
  1859. #endif
  1860. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1861. if (r < 0)
  1862. kvm_put_kvm(kvm);
  1863. return r;
  1864. }
  1865. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1866. {
  1867. switch (arg) {
  1868. case KVM_CAP_USER_MEMORY:
  1869. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1870. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1871. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1872. case KVM_CAP_SET_BOOT_CPU_ID:
  1873. #endif
  1874. case KVM_CAP_INTERNAL_ERROR_DATA:
  1875. return 1;
  1876. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1877. case KVM_CAP_IRQ_ROUTING:
  1878. return KVM_MAX_IRQ_ROUTES;
  1879. #endif
  1880. default:
  1881. break;
  1882. }
  1883. return kvm_dev_ioctl_check_extension(arg);
  1884. }
  1885. static long kvm_dev_ioctl(struct file *filp,
  1886. unsigned int ioctl, unsigned long arg)
  1887. {
  1888. long r = -EINVAL;
  1889. switch (ioctl) {
  1890. case KVM_GET_API_VERSION:
  1891. r = -EINVAL;
  1892. if (arg)
  1893. goto out;
  1894. r = KVM_API_VERSION;
  1895. break;
  1896. case KVM_CREATE_VM:
  1897. r = kvm_dev_ioctl_create_vm(arg);
  1898. break;
  1899. case KVM_CHECK_EXTENSION:
  1900. r = kvm_dev_ioctl_check_extension_generic(arg);
  1901. break;
  1902. case KVM_GET_VCPU_MMAP_SIZE:
  1903. r = -EINVAL;
  1904. if (arg)
  1905. goto out;
  1906. r = PAGE_SIZE; /* struct kvm_run */
  1907. #ifdef CONFIG_X86
  1908. r += PAGE_SIZE; /* pio data page */
  1909. #endif
  1910. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1911. r += PAGE_SIZE; /* coalesced mmio ring page */
  1912. #endif
  1913. break;
  1914. case KVM_TRACE_ENABLE:
  1915. case KVM_TRACE_PAUSE:
  1916. case KVM_TRACE_DISABLE:
  1917. r = -EOPNOTSUPP;
  1918. break;
  1919. default:
  1920. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1921. }
  1922. out:
  1923. return r;
  1924. }
  1925. static struct file_operations kvm_chardev_ops = {
  1926. .unlocked_ioctl = kvm_dev_ioctl,
  1927. .compat_ioctl = kvm_dev_ioctl,
  1928. .llseek = noop_llseek,
  1929. };
  1930. static struct miscdevice kvm_dev = {
  1931. KVM_MINOR,
  1932. "kvm",
  1933. &kvm_chardev_ops,
  1934. };
  1935. static void hardware_enable_nolock(void *junk)
  1936. {
  1937. int cpu = raw_smp_processor_id();
  1938. int r;
  1939. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1940. return;
  1941. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1942. r = kvm_arch_hardware_enable(NULL);
  1943. if (r) {
  1944. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1945. atomic_inc(&hardware_enable_failed);
  1946. printk(KERN_INFO "kvm: enabling virtualization on "
  1947. "CPU%d failed\n", cpu);
  1948. }
  1949. }
  1950. static void hardware_enable(void *junk)
  1951. {
  1952. raw_spin_lock(&kvm_lock);
  1953. hardware_enable_nolock(junk);
  1954. raw_spin_unlock(&kvm_lock);
  1955. }
  1956. static void hardware_disable_nolock(void *junk)
  1957. {
  1958. int cpu = raw_smp_processor_id();
  1959. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1960. return;
  1961. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1962. kvm_arch_hardware_disable(NULL);
  1963. }
  1964. static void hardware_disable(void *junk)
  1965. {
  1966. raw_spin_lock(&kvm_lock);
  1967. hardware_disable_nolock(junk);
  1968. raw_spin_unlock(&kvm_lock);
  1969. }
  1970. static void hardware_disable_all_nolock(void)
  1971. {
  1972. BUG_ON(!kvm_usage_count);
  1973. kvm_usage_count--;
  1974. if (!kvm_usage_count)
  1975. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1976. }
  1977. static void hardware_disable_all(void)
  1978. {
  1979. raw_spin_lock(&kvm_lock);
  1980. hardware_disable_all_nolock();
  1981. raw_spin_unlock(&kvm_lock);
  1982. }
  1983. static int hardware_enable_all(void)
  1984. {
  1985. int r = 0;
  1986. raw_spin_lock(&kvm_lock);
  1987. kvm_usage_count++;
  1988. if (kvm_usage_count == 1) {
  1989. atomic_set(&hardware_enable_failed, 0);
  1990. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1991. if (atomic_read(&hardware_enable_failed)) {
  1992. hardware_disable_all_nolock();
  1993. r = -EBUSY;
  1994. }
  1995. }
  1996. raw_spin_unlock(&kvm_lock);
  1997. return r;
  1998. }
  1999. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2000. void *v)
  2001. {
  2002. int cpu = (long)v;
  2003. if (!kvm_usage_count)
  2004. return NOTIFY_OK;
  2005. val &= ~CPU_TASKS_FROZEN;
  2006. switch (val) {
  2007. case CPU_DYING:
  2008. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2009. cpu);
  2010. hardware_disable(NULL);
  2011. break;
  2012. case CPU_STARTING:
  2013. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2014. cpu);
  2015. hardware_enable(NULL);
  2016. break;
  2017. }
  2018. return NOTIFY_OK;
  2019. }
  2020. asmlinkage void kvm_spurious_fault(void)
  2021. {
  2022. /* Fault while not rebooting. We want the trace. */
  2023. BUG();
  2024. }
  2025. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2026. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2027. void *v)
  2028. {
  2029. /*
  2030. * Some (well, at least mine) BIOSes hang on reboot if
  2031. * in vmx root mode.
  2032. *
  2033. * And Intel TXT required VMX off for all cpu when system shutdown.
  2034. */
  2035. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2036. kvm_rebooting = true;
  2037. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2038. return NOTIFY_OK;
  2039. }
  2040. static struct notifier_block kvm_reboot_notifier = {
  2041. .notifier_call = kvm_reboot,
  2042. .priority = 0,
  2043. };
  2044. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2045. {
  2046. int i;
  2047. for (i = 0; i < bus->dev_count; i++) {
  2048. struct kvm_io_device *pos = bus->range[i].dev;
  2049. kvm_iodevice_destructor(pos);
  2050. }
  2051. kfree(bus);
  2052. }
  2053. int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2054. {
  2055. const struct kvm_io_range *r1 = p1;
  2056. const struct kvm_io_range *r2 = p2;
  2057. if (r1->addr < r2->addr)
  2058. return -1;
  2059. if (r1->addr + r1->len > r2->addr + r2->len)
  2060. return 1;
  2061. return 0;
  2062. }
  2063. int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2064. gpa_t addr, int len)
  2065. {
  2066. if (bus->dev_count == NR_IOBUS_DEVS)
  2067. return -ENOSPC;
  2068. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2069. .addr = addr,
  2070. .len = len,
  2071. .dev = dev,
  2072. };
  2073. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2074. kvm_io_bus_sort_cmp, NULL);
  2075. return 0;
  2076. }
  2077. int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2078. gpa_t addr, int len)
  2079. {
  2080. struct kvm_io_range *range, key;
  2081. int off;
  2082. key = (struct kvm_io_range) {
  2083. .addr = addr,
  2084. .len = len,
  2085. };
  2086. range = bsearch(&key, bus->range, bus->dev_count,
  2087. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2088. if (range == NULL)
  2089. return -ENOENT;
  2090. off = range - bus->range;
  2091. while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
  2092. off--;
  2093. return off;
  2094. }
  2095. /* kvm_io_bus_write - called under kvm->slots_lock */
  2096. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2097. int len, const void *val)
  2098. {
  2099. int idx;
  2100. struct kvm_io_bus *bus;
  2101. struct kvm_io_range range;
  2102. range = (struct kvm_io_range) {
  2103. .addr = addr,
  2104. .len = len,
  2105. };
  2106. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2107. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2108. if (idx < 0)
  2109. return -EOPNOTSUPP;
  2110. while (idx < bus->dev_count &&
  2111. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2112. if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
  2113. return 0;
  2114. idx++;
  2115. }
  2116. return -EOPNOTSUPP;
  2117. }
  2118. /* kvm_io_bus_read - called under kvm->slots_lock */
  2119. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2120. int len, void *val)
  2121. {
  2122. int idx;
  2123. struct kvm_io_bus *bus;
  2124. struct kvm_io_range range;
  2125. range = (struct kvm_io_range) {
  2126. .addr = addr,
  2127. .len = len,
  2128. };
  2129. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2130. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2131. if (idx < 0)
  2132. return -EOPNOTSUPP;
  2133. while (idx < bus->dev_count &&
  2134. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2135. if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
  2136. return 0;
  2137. idx++;
  2138. }
  2139. return -EOPNOTSUPP;
  2140. }
  2141. /* Caller must hold slots_lock. */
  2142. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2143. int len, struct kvm_io_device *dev)
  2144. {
  2145. struct kvm_io_bus *new_bus, *bus;
  2146. bus = kvm->buses[bus_idx];
  2147. if (bus->dev_count > NR_IOBUS_DEVS-1)
  2148. return -ENOSPC;
  2149. new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
  2150. if (!new_bus)
  2151. return -ENOMEM;
  2152. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2153. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2154. synchronize_srcu_expedited(&kvm->srcu);
  2155. kfree(bus);
  2156. return 0;
  2157. }
  2158. /* Caller must hold slots_lock. */
  2159. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2160. struct kvm_io_device *dev)
  2161. {
  2162. int i, r;
  2163. struct kvm_io_bus *new_bus, *bus;
  2164. bus = kvm->buses[bus_idx];
  2165. new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL);
  2166. if (!new_bus)
  2167. return -ENOMEM;
  2168. r = -ENOENT;
  2169. for (i = 0; i < new_bus->dev_count; i++)
  2170. if (new_bus->range[i].dev == dev) {
  2171. r = 0;
  2172. new_bus->dev_count--;
  2173. new_bus->range[i] = new_bus->range[new_bus->dev_count];
  2174. sort(new_bus->range, new_bus->dev_count,
  2175. sizeof(struct kvm_io_range),
  2176. kvm_io_bus_sort_cmp, NULL);
  2177. break;
  2178. }
  2179. if (r) {
  2180. kfree(new_bus);
  2181. return r;
  2182. }
  2183. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2184. synchronize_srcu_expedited(&kvm->srcu);
  2185. kfree(bus);
  2186. return r;
  2187. }
  2188. static struct notifier_block kvm_cpu_notifier = {
  2189. .notifier_call = kvm_cpu_hotplug,
  2190. };
  2191. static int vm_stat_get(void *_offset, u64 *val)
  2192. {
  2193. unsigned offset = (long)_offset;
  2194. struct kvm *kvm;
  2195. *val = 0;
  2196. raw_spin_lock(&kvm_lock);
  2197. list_for_each_entry(kvm, &vm_list, vm_list)
  2198. *val += *(u32 *)((void *)kvm + offset);
  2199. raw_spin_unlock(&kvm_lock);
  2200. return 0;
  2201. }
  2202. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2203. static int vcpu_stat_get(void *_offset, u64 *val)
  2204. {
  2205. unsigned offset = (long)_offset;
  2206. struct kvm *kvm;
  2207. struct kvm_vcpu *vcpu;
  2208. int i;
  2209. *val = 0;
  2210. raw_spin_lock(&kvm_lock);
  2211. list_for_each_entry(kvm, &vm_list, vm_list)
  2212. kvm_for_each_vcpu(i, vcpu, kvm)
  2213. *val += *(u32 *)((void *)vcpu + offset);
  2214. raw_spin_unlock(&kvm_lock);
  2215. return 0;
  2216. }
  2217. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2218. static const struct file_operations *stat_fops[] = {
  2219. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2220. [KVM_STAT_VM] = &vm_stat_fops,
  2221. };
  2222. static int kvm_init_debug(void)
  2223. {
  2224. int r = -EFAULT;
  2225. struct kvm_stats_debugfs_item *p;
  2226. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2227. if (kvm_debugfs_dir == NULL)
  2228. goto out;
  2229. for (p = debugfs_entries; p->name; ++p) {
  2230. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2231. (void *)(long)p->offset,
  2232. stat_fops[p->kind]);
  2233. if (p->dentry == NULL)
  2234. goto out_dir;
  2235. }
  2236. return 0;
  2237. out_dir:
  2238. debugfs_remove_recursive(kvm_debugfs_dir);
  2239. out:
  2240. return r;
  2241. }
  2242. static void kvm_exit_debug(void)
  2243. {
  2244. struct kvm_stats_debugfs_item *p;
  2245. for (p = debugfs_entries; p->name; ++p)
  2246. debugfs_remove(p->dentry);
  2247. debugfs_remove(kvm_debugfs_dir);
  2248. }
  2249. static int kvm_suspend(void)
  2250. {
  2251. if (kvm_usage_count)
  2252. hardware_disable_nolock(NULL);
  2253. return 0;
  2254. }
  2255. static void kvm_resume(void)
  2256. {
  2257. if (kvm_usage_count) {
  2258. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2259. hardware_enable_nolock(NULL);
  2260. }
  2261. }
  2262. static struct syscore_ops kvm_syscore_ops = {
  2263. .suspend = kvm_suspend,
  2264. .resume = kvm_resume,
  2265. };
  2266. struct page *bad_page;
  2267. pfn_t bad_pfn;
  2268. static inline
  2269. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2270. {
  2271. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2272. }
  2273. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2274. {
  2275. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2276. kvm_arch_vcpu_load(vcpu, cpu);
  2277. }
  2278. static void kvm_sched_out(struct preempt_notifier *pn,
  2279. struct task_struct *next)
  2280. {
  2281. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2282. kvm_arch_vcpu_put(vcpu);
  2283. }
  2284. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2285. struct module *module)
  2286. {
  2287. int r;
  2288. int cpu;
  2289. r = kvm_arch_init(opaque);
  2290. if (r)
  2291. goto out_fail;
  2292. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2293. if (bad_page == NULL) {
  2294. r = -ENOMEM;
  2295. goto out;
  2296. }
  2297. bad_pfn = page_to_pfn(bad_page);
  2298. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2299. if (hwpoison_page == NULL) {
  2300. r = -ENOMEM;
  2301. goto out_free_0;
  2302. }
  2303. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2304. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2305. if (fault_page == NULL) {
  2306. r = -ENOMEM;
  2307. goto out_free_0;
  2308. }
  2309. fault_pfn = page_to_pfn(fault_page);
  2310. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2311. r = -ENOMEM;
  2312. goto out_free_0;
  2313. }
  2314. r = kvm_arch_hardware_setup();
  2315. if (r < 0)
  2316. goto out_free_0a;
  2317. for_each_online_cpu(cpu) {
  2318. smp_call_function_single(cpu,
  2319. kvm_arch_check_processor_compat,
  2320. &r, 1);
  2321. if (r < 0)
  2322. goto out_free_1;
  2323. }
  2324. r = register_cpu_notifier(&kvm_cpu_notifier);
  2325. if (r)
  2326. goto out_free_2;
  2327. register_reboot_notifier(&kvm_reboot_notifier);
  2328. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2329. if (!vcpu_align)
  2330. vcpu_align = __alignof__(struct kvm_vcpu);
  2331. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2332. 0, NULL);
  2333. if (!kvm_vcpu_cache) {
  2334. r = -ENOMEM;
  2335. goto out_free_3;
  2336. }
  2337. r = kvm_async_pf_init();
  2338. if (r)
  2339. goto out_free;
  2340. kvm_chardev_ops.owner = module;
  2341. kvm_vm_fops.owner = module;
  2342. kvm_vcpu_fops.owner = module;
  2343. r = misc_register(&kvm_dev);
  2344. if (r) {
  2345. printk(KERN_ERR "kvm: misc device register failed\n");
  2346. goto out_unreg;
  2347. }
  2348. register_syscore_ops(&kvm_syscore_ops);
  2349. kvm_preempt_ops.sched_in = kvm_sched_in;
  2350. kvm_preempt_ops.sched_out = kvm_sched_out;
  2351. r = kvm_init_debug();
  2352. if (r) {
  2353. printk(KERN_ERR "kvm: create debugfs files failed\n");
  2354. goto out_undebugfs;
  2355. }
  2356. return 0;
  2357. out_undebugfs:
  2358. unregister_syscore_ops(&kvm_syscore_ops);
  2359. out_unreg:
  2360. kvm_async_pf_deinit();
  2361. out_free:
  2362. kmem_cache_destroy(kvm_vcpu_cache);
  2363. out_free_3:
  2364. unregister_reboot_notifier(&kvm_reboot_notifier);
  2365. unregister_cpu_notifier(&kvm_cpu_notifier);
  2366. out_free_2:
  2367. out_free_1:
  2368. kvm_arch_hardware_unsetup();
  2369. out_free_0a:
  2370. free_cpumask_var(cpus_hardware_enabled);
  2371. out_free_0:
  2372. if (fault_page)
  2373. __free_page(fault_page);
  2374. if (hwpoison_page)
  2375. __free_page(hwpoison_page);
  2376. __free_page(bad_page);
  2377. out:
  2378. kvm_arch_exit();
  2379. out_fail:
  2380. return r;
  2381. }
  2382. EXPORT_SYMBOL_GPL(kvm_init);
  2383. void kvm_exit(void)
  2384. {
  2385. kvm_exit_debug();
  2386. misc_deregister(&kvm_dev);
  2387. kmem_cache_destroy(kvm_vcpu_cache);
  2388. kvm_async_pf_deinit();
  2389. unregister_syscore_ops(&kvm_syscore_ops);
  2390. unregister_reboot_notifier(&kvm_reboot_notifier);
  2391. unregister_cpu_notifier(&kvm_cpu_notifier);
  2392. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2393. kvm_arch_hardware_unsetup();
  2394. kvm_arch_exit();
  2395. free_cpumask_var(cpus_hardware_enabled);
  2396. __free_page(hwpoison_page);
  2397. __free_page(bad_page);
  2398. }
  2399. EXPORT_SYMBOL_GPL(kvm_exit);