kvm_main.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #include "async_pf.h"
  55. #define CREATE_TRACE_POINTS
  56. #include <trace/events/kvm.h>
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. /*
  60. * Ordering of locks:
  61. *
  62. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  63. */
  64. DEFINE_SPINLOCK(kvm_lock);
  65. LIST_HEAD(vm_list);
  66. static cpumask_var_t cpus_hardware_enabled;
  67. static int kvm_usage_count = 0;
  68. static atomic_t hardware_enable_failed;
  69. struct kmem_cache *kvm_vcpu_cache;
  70. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  71. static __read_mostly struct preempt_ops kvm_preempt_ops;
  72. struct dentry *kvm_debugfs_dir;
  73. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  74. unsigned long arg);
  75. static int hardware_enable_all(void);
  76. static void hardware_disable_all(void);
  77. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  78. bool kvm_rebooting;
  79. EXPORT_SYMBOL_GPL(kvm_rebooting);
  80. static bool largepages_enabled = true;
  81. static struct page *hwpoison_page;
  82. static pfn_t hwpoison_pfn;
  83. static struct page *fault_page;
  84. static pfn_t fault_pfn;
  85. inline int kvm_is_mmio_pfn(pfn_t pfn)
  86. {
  87. if (pfn_valid(pfn)) {
  88. int reserved;
  89. struct page *tail = pfn_to_page(pfn);
  90. struct page *head = compound_trans_head(tail);
  91. reserved = PageReserved(head);
  92. if (head != tail) {
  93. /*
  94. * "head" is not a dangling pointer
  95. * (compound_trans_head takes care of that)
  96. * but the hugepage may have been splitted
  97. * from under us (and we may not hold a
  98. * reference count on the head page so it can
  99. * be reused before we run PageReferenced), so
  100. * we've to check PageTail before returning
  101. * what we just read.
  102. */
  103. smp_rmb();
  104. if (PageTail(tail))
  105. return reserved;
  106. }
  107. return PageReserved(tail);
  108. }
  109. return true;
  110. }
  111. /*
  112. * Switches to specified vcpu, until a matching vcpu_put()
  113. */
  114. void vcpu_load(struct kvm_vcpu *vcpu)
  115. {
  116. int cpu;
  117. mutex_lock(&vcpu->mutex);
  118. cpu = get_cpu();
  119. preempt_notifier_register(&vcpu->preempt_notifier);
  120. kvm_arch_vcpu_load(vcpu, cpu);
  121. put_cpu();
  122. }
  123. void vcpu_put(struct kvm_vcpu *vcpu)
  124. {
  125. preempt_disable();
  126. kvm_arch_vcpu_put(vcpu);
  127. preempt_notifier_unregister(&vcpu->preempt_notifier);
  128. preempt_enable();
  129. mutex_unlock(&vcpu->mutex);
  130. }
  131. static void ack_flush(void *_completed)
  132. {
  133. }
  134. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  135. {
  136. int i, cpu, me;
  137. cpumask_var_t cpus;
  138. bool called = true;
  139. struct kvm_vcpu *vcpu;
  140. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  141. me = get_cpu();
  142. kvm_for_each_vcpu(i, vcpu, kvm) {
  143. kvm_make_request(req, vcpu);
  144. cpu = vcpu->cpu;
  145. /* Set ->requests bit before we read ->mode */
  146. smp_mb();
  147. if (cpus != NULL && cpu != -1 && cpu != me &&
  148. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  149. cpumask_set_cpu(cpu, cpus);
  150. }
  151. if (unlikely(cpus == NULL))
  152. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  153. else if (!cpumask_empty(cpus))
  154. smp_call_function_many(cpus, ack_flush, NULL, 1);
  155. else
  156. called = false;
  157. put_cpu();
  158. free_cpumask_var(cpus);
  159. return called;
  160. }
  161. void kvm_flush_remote_tlbs(struct kvm *kvm)
  162. {
  163. int dirty_count = kvm->tlbs_dirty;
  164. smp_mb();
  165. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  166. ++kvm->stat.remote_tlb_flush;
  167. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  168. }
  169. void kvm_reload_remote_mmus(struct kvm *kvm)
  170. {
  171. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  172. }
  173. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  174. {
  175. struct page *page;
  176. int r;
  177. mutex_init(&vcpu->mutex);
  178. vcpu->cpu = -1;
  179. vcpu->kvm = kvm;
  180. vcpu->vcpu_id = id;
  181. init_waitqueue_head(&vcpu->wq);
  182. kvm_async_pf_vcpu_init(vcpu);
  183. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  184. if (!page) {
  185. r = -ENOMEM;
  186. goto fail;
  187. }
  188. vcpu->run = page_address(page);
  189. r = kvm_arch_vcpu_init(vcpu);
  190. if (r < 0)
  191. goto fail_free_run;
  192. return 0;
  193. fail_free_run:
  194. free_page((unsigned long)vcpu->run);
  195. fail:
  196. return r;
  197. }
  198. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  199. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  200. {
  201. kvm_arch_vcpu_uninit(vcpu);
  202. free_page((unsigned long)vcpu->run);
  203. }
  204. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  205. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  206. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  207. {
  208. return container_of(mn, struct kvm, mmu_notifier);
  209. }
  210. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  211. struct mm_struct *mm,
  212. unsigned long address)
  213. {
  214. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  215. int need_tlb_flush, idx;
  216. /*
  217. * When ->invalidate_page runs, the linux pte has been zapped
  218. * already but the page is still allocated until
  219. * ->invalidate_page returns. So if we increase the sequence
  220. * here the kvm page fault will notice if the spte can't be
  221. * established because the page is going to be freed. If
  222. * instead the kvm page fault establishes the spte before
  223. * ->invalidate_page runs, kvm_unmap_hva will release it
  224. * before returning.
  225. *
  226. * The sequence increase only need to be seen at spin_unlock
  227. * time, and not at spin_lock time.
  228. *
  229. * Increasing the sequence after the spin_unlock would be
  230. * unsafe because the kvm page fault could then establish the
  231. * pte after kvm_unmap_hva returned, without noticing the page
  232. * is going to be freed.
  233. */
  234. idx = srcu_read_lock(&kvm->srcu);
  235. spin_lock(&kvm->mmu_lock);
  236. kvm->mmu_notifier_seq++;
  237. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  238. spin_unlock(&kvm->mmu_lock);
  239. srcu_read_unlock(&kvm->srcu, idx);
  240. /* we've to flush the tlb before the pages can be freed */
  241. if (need_tlb_flush)
  242. kvm_flush_remote_tlbs(kvm);
  243. }
  244. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  245. struct mm_struct *mm,
  246. unsigned long address,
  247. pte_t pte)
  248. {
  249. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  250. int idx;
  251. idx = srcu_read_lock(&kvm->srcu);
  252. spin_lock(&kvm->mmu_lock);
  253. kvm->mmu_notifier_seq++;
  254. kvm_set_spte_hva(kvm, address, pte);
  255. spin_unlock(&kvm->mmu_lock);
  256. srcu_read_unlock(&kvm->srcu, idx);
  257. }
  258. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  259. struct mm_struct *mm,
  260. unsigned long start,
  261. unsigned long end)
  262. {
  263. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  264. int need_tlb_flush = 0, idx;
  265. idx = srcu_read_lock(&kvm->srcu);
  266. spin_lock(&kvm->mmu_lock);
  267. /*
  268. * The count increase must become visible at unlock time as no
  269. * spte can be established without taking the mmu_lock and
  270. * count is also read inside the mmu_lock critical section.
  271. */
  272. kvm->mmu_notifier_count++;
  273. for (; start < end; start += PAGE_SIZE)
  274. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  275. need_tlb_flush |= kvm->tlbs_dirty;
  276. spin_unlock(&kvm->mmu_lock);
  277. srcu_read_unlock(&kvm->srcu, idx);
  278. /* we've to flush the tlb before the pages can be freed */
  279. if (need_tlb_flush)
  280. kvm_flush_remote_tlbs(kvm);
  281. }
  282. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  283. struct mm_struct *mm,
  284. unsigned long start,
  285. unsigned long end)
  286. {
  287. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  288. spin_lock(&kvm->mmu_lock);
  289. /*
  290. * This sequence increase will notify the kvm page fault that
  291. * the page that is going to be mapped in the spte could have
  292. * been freed.
  293. */
  294. kvm->mmu_notifier_seq++;
  295. /*
  296. * The above sequence increase must be visible before the
  297. * below count decrease but both values are read by the kvm
  298. * page fault under mmu_lock spinlock so we don't need to add
  299. * a smb_wmb() here in between the two.
  300. */
  301. kvm->mmu_notifier_count--;
  302. spin_unlock(&kvm->mmu_lock);
  303. BUG_ON(kvm->mmu_notifier_count < 0);
  304. }
  305. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  306. struct mm_struct *mm,
  307. unsigned long address)
  308. {
  309. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  310. int young, idx;
  311. idx = srcu_read_lock(&kvm->srcu);
  312. spin_lock(&kvm->mmu_lock);
  313. young = kvm_age_hva(kvm, address);
  314. spin_unlock(&kvm->mmu_lock);
  315. srcu_read_unlock(&kvm->srcu, idx);
  316. if (young)
  317. kvm_flush_remote_tlbs(kvm);
  318. return young;
  319. }
  320. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  321. struct mm_struct *mm,
  322. unsigned long address)
  323. {
  324. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  325. int young, idx;
  326. idx = srcu_read_lock(&kvm->srcu);
  327. spin_lock(&kvm->mmu_lock);
  328. young = kvm_test_age_hva(kvm, address);
  329. spin_unlock(&kvm->mmu_lock);
  330. srcu_read_unlock(&kvm->srcu, idx);
  331. return young;
  332. }
  333. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  334. struct mm_struct *mm)
  335. {
  336. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  337. int idx;
  338. idx = srcu_read_lock(&kvm->srcu);
  339. kvm_arch_flush_shadow(kvm);
  340. srcu_read_unlock(&kvm->srcu, idx);
  341. }
  342. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  343. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  344. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  345. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  346. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  347. .test_young = kvm_mmu_notifier_test_young,
  348. .change_pte = kvm_mmu_notifier_change_pte,
  349. .release = kvm_mmu_notifier_release,
  350. };
  351. static int kvm_init_mmu_notifier(struct kvm *kvm)
  352. {
  353. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  354. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  355. }
  356. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  357. static int kvm_init_mmu_notifier(struct kvm *kvm)
  358. {
  359. return 0;
  360. }
  361. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  362. static struct kvm *kvm_create_vm(void)
  363. {
  364. int r, i;
  365. struct kvm *kvm = kvm_arch_alloc_vm();
  366. if (!kvm)
  367. return ERR_PTR(-ENOMEM);
  368. r = kvm_arch_init_vm(kvm);
  369. if (r)
  370. goto out_err_nodisable;
  371. r = hardware_enable_all();
  372. if (r)
  373. goto out_err_nodisable;
  374. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  375. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  376. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  377. #endif
  378. r = -ENOMEM;
  379. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  380. if (!kvm->memslots)
  381. goto out_err_nosrcu;
  382. if (init_srcu_struct(&kvm->srcu))
  383. goto out_err_nosrcu;
  384. for (i = 0; i < KVM_NR_BUSES; i++) {
  385. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  386. GFP_KERNEL);
  387. if (!kvm->buses[i])
  388. goto out_err;
  389. }
  390. r = kvm_init_mmu_notifier(kvm);
  391. if (r)
  392. goto out_err;
  393. kvm->mm = current->mm;
  394. atomic_inc(&kvm->mm->mm_count);
  395. spin_lock_init(&kvm->mmu_lock);
  396. kvm_eventfd_init(kvm);
  397. mutex_init(&kvm->lock);
  398. mutex_init(&kvm->irq_lock);
  399. mutex_init(&kvm->slots_lock);
  400. atomic_set(&kvm->users_count, 1);
  401. spin_lock(&kvm_lock);
  402. list_add(&kvm->vm_list, &vm_list);
  403. spin_unlock(&kvm_lock);
  404. return kvm;
  405. out_err:
  406. cleanup_srcu_struct(&kvm->srcu);
  407. out_err_nosrcu:
  408. hardware_disable_all();
  409. out_err_nodisable:
  410. for (i = 0; i < KVM_NR_BUSES; i++)
  411. kfree(kvm->buses[i]);
  412. kfree(kvm->memslots);
  413. kvm_arch_free_vm(kvm);
  414. return ERR_PTR(r);
  415. }
  416. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  417. {
  418. if (!memslot->dirty_bitmap)
  419. return;
  420. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  421. vfree(memslot->dirty_bitmap_head);
  422. else
  423. kfree(memslot->dirty_bitmap_head);
  424. memslot->dirty_bitmap = NULL;
  425. memslot->dirty_bitmap_head = NULL;
  426. }
  427. /*
  428. * Free any memory in @free but not in @dont.
  429. */
  430. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  431. struct kvm_memory_slot *dont)
  432. {
  433. int i;
  434. if (!dont || free->rmap != dont->rmap)
  435. vfree(free->rmap);
  436. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  437. kvm_destroy_dirty_bitmap(free);
  438. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  439. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  440. vfree(free->lpage_info[i]);
  441. free->lpage_info[i] = NULL;
  442. }
  443. }
  444. free->npages = 0;
  445. free->rmap = NULL;
  446. }
  447. void kvm_free_physmem(struct kvm *kvm)
  448. {
  449. int i;
  450. struct kvm_memslots *slots = kvm->memslots;
  451. for (i = 0; i < slots->nmemslots; ++i)
  452. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  453. kfree(kvm->memslots);
  454. }
  455. static void kvm_destroy_vm(struct kvm *kvm)
  456. {
  457. int i;
  458. struct mm_struct *mm = kvm->mm;
  459. kvm_arch_sync_events(kvm);
  460. spin_lock(&kvm_lock);
  461. list_del(&kvm->vm_list);
  462. spin_unlock(&kvm_lock);
  463. kvm_free_irq_routing(kvm);
  464. for (i = 0; i < KVM_NR_BUSES; i++)
  465. kvm_io_bus_destroy(kvm->buses[i]);
  466. kvm_coalesced_mmio_free(kvm);
  467. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  468. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  469. #else
  470. kvm_arch_flush_shadow(kvm);
  471. #endif
  472. kvm_arch_destroy_vm(kvm);
  473. kvm_free_physmem(kvm);
  474. cleanup_srcu_struct(&kvm->srcu);
  475. kvm_arch_free_vm(kvm);
  476. hardware_disable_all();
  477. mmdrop(mm);
  478. }
  479. void kvm_get_kvm(struct kvm *kvm)
  480. {
  481. atomic_inc(&kvm->users_count);
  482. }
  483. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  484. void kvm_put_kvm(struct kvm *kvm)
  485. {
  486. if (atomic_dec_and_test(&kvm->users_count))
  487. kvm_destroy_vm(kvm);
  488. }
  489. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  490. static int kvm_vm_release(struct inode *inode, struct file *filp)
  491. {
  492. struct kvm *kvm = filp->private_data;
  493. kvm_irqfd_release(kvm);
  494. kvm_put_kvm(kvm);
  495. return 0;
  496. }
  497. #ifndef CONFIG_S390
  498. /*
  499. * Allocation size is twice as large as the actual dirty bitmap size.
  500. * This makes it possible to do double buffering: see x86's
  501. * kvm_vm_ioctl_get_dirty_log().
  502. */
  503. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  504. {
  505. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  506. if (dirty_bytes > PAGE_SIZE)
  507. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  508. else
  509. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  510. if (!memslot->dirty_bitmap)
  511. return -ENOMEM;
  512. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  513. return 0;
  514. }
  515. #endif /* !CONFIG_S390 */
  516. /*
  517. * Allocate some memory and give it an address in the guest physical address
  518. * space.
  519. *
  520. * Discontiguous memory is allowed, mostly for framebuffers.
  521. *
  522. * Must be called holding mmap_sem for write.
  523. */
  524. int __kvm_set_memory_region(struct kvm *kvm,
  525. struct kvm_userspace_memory_region *mem,
  526. int user_alloc)
  527. {
  528. int r;
  529. gfn_t base_gfn;
  530. unsigned long npages;
  531. unsigned long i;
  532. struct kvm_memory_slot *memslot;
  533. struct kvm_memory_slot old, new;
  534. struct kvm_memslots *slots, *old_memslots;
  535. r = -EINVAL;
  536. /* General sanity checks */
  537. if (mem->memory_size & (PAGE_SIZE - 1))
  538. goto out;
  539. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  540. goto out;
  541. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  542. goto out;
  543. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  544. goto out;
  545. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  546. goto out;
  547. memslot = &kvm->memslots->memslots[mem->slot];
  548. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  549. npages = mem->memory_size >> PAGE_SHIFT;
  550. r = -EINVAL;
  551. if (npages > KVM_MEM_MAX_NR_PAGES)
  552. goto out;
  553. if (!npages)
  554. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  555. new = old = *memslot;
  556. new.id = mem->slot;
  557. new.base_gfn = base_gfn;
  558. new.npages = npages;
  559. new.flags = mem->flags;
  560. /* Disallow changing a memory slot's size. */
  561. r = -EINVAL;
  562. if (npages && old.npages && npages != old.npages)
  563. goto out_free;
  564. /* Check for overlaps */
  565. r = -EEXIST;
  566. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  567. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  568. if (s == memslot || !s->npages)
  569. continue;
  570. if (!((base_gfn + npages <= s->base_gfn) ||
  571. (base_gfn >= s->base_gfn + s->npages)))
  572. goto out_free;
  573. }
  574. /* Free page dirty bitmap if unneeded */
  575. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  576. new.dirty_bitmap = NULL;
  577. r = -ENOMEM;
  578. /* Allocate if a slot is being created */
  579. #ifndef CONFIG_S390
  580. if (npages && !new.rmap) {
  581. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  582. if (!new.rmap)
  583. goto out_free;
  584. new.user_alloc = user_alloc;
  585. new.userspace_addr = mem->userspace_addr;
  586. }
  587. if (!npages)
  588. goto skip_lpage;
  589. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  590. unsigned long ugfn;
  591. unsigned long j;
  592. int lpages;
  593. int level = i + 2;
  594. /* Avoid unused variable warning if no large pages */
  595. (void)level;
  596. if (new.lpage_info[i])
  597. continue;
  598. lpages = 1 + ((base_gfn + npages - 1)
  599. >> KVM_HPAGE_GFN_SHIFT(level));
  600. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  601. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  602. if (!new.lpage_info[i])
  603. goto out_free;
  604. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  605. new.lpage_info[i][0].write_count = 1;
  606. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  607. new.lpage_info[i][lpages - 1].write_count = 1;
  608. ugfn = new.userspace_addr >> PAGE_SHIFT;
  609. /*
  610. * If the gfn and userspace address are not aligned wrt each
  611. * other, or if explicitly asked to, disable large page
  612. * support for this slot
  613. */
  614. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  615. !largepages_enabled)
  616. for (j = 0; j < lpages; ++j)
  617. new.lpage_info[i][j].write_count = 1;
  618. }
  619. skip_lpage:
  620. /* Allocate page dirty bitmap if needed */
  621. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  622. if (kvm_create_dirty_bitmap(&new) < 0)
  623. goto out_free;
  624. /* destroy any largepage mappings for dirty tracking */
  625. }
  626. #else /* not defined CONFIG_S390 */
  627. new.user_alloc = user_alloc;
  628. if (user_alloc)
  629. new.userspace_addr = mem->userspace_addr;
  630. #endif /* not defined CONFIG_S390 */
  631. if (!npages) {
  632. r = -ENOMEM;
  633. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  634. if (!slots)
  635. goto out_free;
  636. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  637. if (mem->slot >= slots->nmemslots)
  638. slots->nmemslots = mem->slot + 1;
  639. slots->generation++;
  640. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  641. old_memslots = kvm->memslots;
  642. rcu_assign_pointer(kvm->memslots, slots);
  643. synchronize_srcu_expedited(&kvm->srcu);
  644. /* From this point no new shadow pages pointing to a deleted
  645. * memslot will be created.
  646. *
  647. * validation of sp->gfn happens in:
  648. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  649. * - kvm_is_visible_gfn (mmu_check_roots)
  650. */
  651. kvm_arch_flush_shadow(kvm);
  652. kfree(old_memslots);
  653. }
  654. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  655. if (r)
  656. goto out_free;
  657. /* map the pages in iommu page table */
  658. if (npages) {
  659. r = kvm_iommu_map_pages(kvm, &new);
  660. if (r)
  661. goto out_free;
  662. }
  663. r = -ENOMEM;
  664. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  665. if (!slots)
  666. goto out_free;
  667. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  668. if (mem->slot >= slots->nmemslots)
  669. slots->nmemslots = mem->slot + 1;
  670. slots->generation++;
  671. /* actual memory is freed via old in kvm_free_physmem_slot below */
  672. if (!npages) {
  673. new.rmap = NULL;
  674. new.dirty_bitmap = NULL;
  675. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  676. new.lpage_info[i] = NULL;
  677. }
  678. slots->memslots[mem->slot] = new;
  679. old_memslots = kvm->memslots;
  680. rcu_assign_pointer(kvm->memslots, slots);
  681. synchronize_srcu_expedited(&kvm->srcu);
  682. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  683. kvm_free_physmem_slot(&old, &new);
  684. kfree(old_memslots);
  685. return 0;
  686. out_free:
  687. kvm_free_physmem_slot(&new, &old);
  688. out:
  689. return r;
  690. }
  691. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  692. int kvm_set_memory_region(struct kvm *kvm,
  693. struct kvm_userspace_memory_region *mem,
  694. int user_alloc)
  695. {
  696. int r;
  697. mutex_lock(&kvm->slots_lock);
  698. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  699. mutex_unlock(&kvm->slots_lock);
  700. return r;
  701. }
  702. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  703. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  704. struct
  705. kvm_userspace_memory_region *mem,
  706. int user_alloc)
  707. {
  708. if (mem->slot >= KVM_MEMORY_SLOTS)
  709. return -EINVAL;
  710. return kvm_set_memory_region(kvm, mem, user_alloc);
  711. }
  712. int kvm_get_dirty_log(struct kvm *kvm,
  713. struct kvm_dirty_log *log, int *is_dirty)
  714. {
  715. struct kvm_memory_slot *memslot;
  716. int r, i;
  717. unsigned long n;
  718. unsigned long any = 0;
  719. r = -EINVAL;
  720. if (log->slot >= KVM_MEMORY_SLOTS)
  721. goto out;
  722. memslot = &kvm->memslots->memslots[log->slot];
  723. r = -ENOENT;
  724. if (!memslot->dirty_bitmap)
  725. goto out;
  726. n = kvm_dirty_bitmap_bytes(memslot);
  727. for (i = 0; !any && i < n/sizeof(long); ++i)
  728. any = memslot->dirty_bitmap[i];
  729. r = -EFAULT;
  730. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  731. goto out;
  732. if (any)
  733. *is_dirty = 1;
  734. r = 0;
  735. out:
  736. return r;
  737. }
  738. void kvm_disable_largepages(void)
  739. {
  740. largepages_enabled = false;
  741. }
  742. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  743. int is_error_page(struct page *page)
  744. {
  745. return page == bad_page || page == hwpoison_page || page == fault_page;
  746. }
  747. EXPORT_SYMBOL_GPL(is_error_page);
  748. int is_error_pfn(pfn_t pfn)
  749. {
  750. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  751. }
  752. EXPORT_SYMBOL_GPL(is_error_pfn);
  753. int is_hwpoison_pfn(pfn_t pfn)
  754. {
  755. return pfn == hwpoison_pfn;
  756. }
  757. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  758. int is_fault_pfn(pfn_t pfn)
  759. {
  760. return pfn == fault_pfn;
  761. }
  762. EXPORT_SYMBOL_GPL(is_fault_pfn);
  763. static inline unsigned long bad_hva(void)
  764. {
  765. return PAGE_OFFSET;
  766. }
  767. int kvm_is_error_hva(unsigned long addr)
  768. {
  769. return addr == bad_hva();
  770. }
  771. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  772. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  773. gfn_t gfn)
  774. {
  775. int i;
  776. for (i = 0; i < slots->nmemslots; ++i) {
  777. struct kvm_memory_slot *memslot = &slots->memslots[i];
  778. if (gfn >= memslot->base_gfn
  779. && gfn < memslot->base_gfn + memslot->npages)
  780. return memslot;
  781. }
  782. return NULL;
  783. }
  784. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  785. {
  786. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  787. }
  788. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  789. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  790. {
  791. int i;
  792. struct kvm_memslots *slots = kvm_memslots(kvm);
  793. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  794. struct kvm_memory_slot *memslot = &slots->memslots[i];
  795. if (memslot->flags & KVM_MEMSLOT_INVALID)
  796. continue;
  797. if (gfn >= memslot->base_gfn
  798. && gfn < memslot->base_gfn + memslot->npages)
  799. return 1;
  800. }
  801. return 0;
  802. }
  803. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  804. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  805. {
  806. struct vm_area_struct *vma;
  807. unsigned long addr, size;
  808. size = PAGE_SIZE;
  809. addr = gfn_to_hva(kvm, gfn);
  810. if (kvm_is_error_hva(addr))
  811. return PAGE_SIZE;
  812. down_read(&current->mm->mmap_sem);
  813. vma = find_vma(current->mm, addr);
  814. if (!vma)
  815. goto out;
  816. size = vma_kernel_pagesize(vma);
  817. out:
  818. up_read(&current->mm->mmap_sem);
  819. return size;
  820. }
  821. int memslot_id(struct kvm *kvm, gfn_t gfn)
  822. {
  823. int i;
  824. struct kvm_memslots *slots = kvm_memslots(kvm);
  825. struct kvm_memory_slot *memslot = NULL;
  826. for (i = 0; i < slots->nmemslots; ++i) {
  827. memslot = &slots->memslots[i];
  828. if (gfn >= memslot->base_gfn
  829. && gfn < memslot->base_gfn + memslot->npages)
  830. break;
  831. }
  832. return memslot - slots->memslots;
  833. }
  834. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  835. gfn_t *nr_pages)
  836. {
  837. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  838. return bad_hva();
  839. if (nr_pages)
  840. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  841. return gfn_to_hva_memslot(slot, gfn);
  842. }
  843. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  844. {
  845. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  846. }
  847. EXPORT_SYMBOL_GPL(gfn_to_hva);
  848. static pfn_t get_fault_pfn(void)
  849. {
  850. get_page(fault_page);
  851. return fault_pfn;
  852. }
  853. static inline int check_user_page_hwpoison(unsigned long addr)
  854. {
  855. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  856. rc = __get_user_pages(current, current->mm, addr, 1,
  857. flags, NULL, NULL, NULL);
  858. return rc == -EHWPOISON;
  859. }
  860. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  861. bool *async, bool write_fault, bool *writable)
  862. {
  863. struct page *page[1];
  864. int npages = 0;
  865. pfn_t pfn;
  866. /* we can do it either atomically or asynchronously, not both */
  867. BUG_ON(atomic && async);
  868. BUG_ON(!write_fault && !writable);
  869. if (writable)
  870. *writable = true;
  871. if (atomic || async)
  872. npages = __get_user_pages_fast(addr, 1, 1, page);
  873. if (unlikely(npages != 1) && !atomic) {
  874. might_sleep();
  875. if (writable)
  876. *writable = write_fault;
  877. npages = get_user_pages_fast(addr, 1, write_fault, page);
  878. /* map read fault as writable if possible */
  879. if (unlikely(!write_fault) && npages == 1) {
  880. struct page *wpage[1];
  881. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  882. if (npages == 1) {
  883. *writable = true;
  884. put_page(page[0]);
  885. page[0] = wpage[0];
  886. }
  887. npages = 1;
  888. }
  889. }
  890. if (unlikely(npages != 1)) {
  891. struct vm_area_struct *vma;
  892. if (atomic)
  893. return get_fault_pfn();
  894. down_read(&current->mm->mmap_sem);
  895. if (check_user_page_hwpoison(addr)) {
  896. up_read(&current->mm->mmap_sem);
  897. get_page(hwpoison_page);
  898. return page_to_pfn(hwpoison_page);
  899. }
  900. vma = find_vma_intersection(current->mm, addr, addr+1);
  901. if (vma == NULL)
  902. pfn = get_fault_pfn();
  903. else if ((vma->vm_flags & VM_PFNMAP)) {
  904. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  905. vma->vm_pgoff;
  906. BUG_ON(!kvm_is_mmio_pfn(pfn));
  907. } else {
  908. if (async && (vma->vm_flags & VM_WRITE))
  909. *async = true;
  910. pfn = get_fault_pfn();
  911. }
  912. up_read(&current->mm->mmap_sem);
  913. } else
  914. pfn = page_to_pfn(page[0]);
  915. return pfn;
  916. }
  917. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  918. {
  919. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  920. }
  921. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  922. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  923. bool write_fault, bool *writable)
  924. {
  925. unsigned long addr;
  926. if (async)
  927. *async = false;
  928. addr = gfn_to_hva(kvm, gfn);
  929. if (kvm_is_error_hva(addr)) {
  930. get_page(bad_page);
  931. return page_to_pfn(bad_page);
  932. }
  933. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  934. }
  935. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  936. {
  937. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  938. }
  939. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  940. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  941. bool write_fault, bool *writable)
  942. {
  943. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  944. }
  945. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  946. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  947. {
  948. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  949. }
  950. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  951. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  952. bool *writable)
  953. {
  954. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  955. }
  956. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  957. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  958. struct kvm_memory_slot *slot, gfn_t gfn)
  959. {
  960. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  961. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  962. }
  963. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  964. int nr_pages)
  965. {
  966. unsigned long addr;
  967. gfn_t entry;
  968. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  969. if (kvm_is_error_hva(addr))
  970. return -1;
  971. if (entry < nr_pages)
  972. return 0;
  973. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  974. }
  975. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  976. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  977. {
  978. pfn_t pfn;
  979. pfn = gfn_to_pfn(kvm, gfn);
  980. if (!kvm_is_mmio_pfn(pfn))
  981. return pfn_to_page(pfn);
  982. WARN_ON(kvm_is_mmio_pfn(pfn));
  983. get_page(bad_page);
  984. return bad_page;
  985. }
  986. EXPORT_SYMBOL_GPL(gfn_to_page);
  987. void kvm_release_page_clean(struct page *page)
  988. {
  989. kvm_release_pfn_clean(page_to_pfn(page));
  990. }
  991. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  992. void kvm_release_pfn_clean(pfn_t pfn)
  993. {
  994. if (!kvm_is_mmio_pfn(pfn))
  995. put_page(pfn_to_page(pfn));
  996. }
  997. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  998. void kvm_release_page_dirty(struct page *page)
  999. {
  1000. kvm_release_pfn_dirty(page_to_pfn(page));
  1001. }
  1002. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1003. void kvm_release_pfn_dirty(pfn_t pfn)
  1004. {
  1005. kvm_set_pfn_dirty(pfn);
  1006. kvm_release_pfn_clean(pfn);
  1007. }
  1008. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1009. void kvm_set_page_dirty(struct page *page)
  1010. {
  1011. kvm_set_pfn_dirty(page_to_pfn(page));
  1012. }
  1013. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1014. void kvm_set_pfn_dirty(pfn_t pfn)
  1015. {
  1016. if (!kvm_is_mmio_pfn(pfn)) {
  1017. struct page *page = pfn_to_page(pfn);
  1018. if (!PageReserved(page))
  1019. SetPageDirty(page);
  1020. }
  1021. }
  1022. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1023. void kvm_set_pfn_accessed(pfn_t pfn)
  1024. {
  1025. if (!kvm_is_mmio_pfn(pfn))
  1026. mark_page_accessed(pfn_to_page(pfn));
  1027. }
  1028. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1029. void kvm_get_pfn(pfn_t pfn)
  1030. {
  1031. if (!kvm_is_mmio_pfn(pfn))
  1032. get_page(pfn_to_page(pfn));
  1033. }
  1034. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1035. static int next_segment(unsigned long len, int offset)
  1036. {
  1037. if (len > PAGE_SIZE - offset)
  1038. return PAGE_SIZE - offset;
  1039. else
  1040. return len;
  1041. }
  1042. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1043. int len)
  1044. {
  1045. int r;
  1046. unsigned long addr;
  1047. addr = gfn_to_hva(kvm, gfn);
  1048. if (kvm_is_error_hva(addr))
  1049. return -EFAULT;
  1050. r = copy_from_user(data, (void __user *)addr + offset, len);
  1051. if (r)
  1052. return -EFAULT;
  1053. return 0;
  1054. }
  1055. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1056. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1057. {
  1058. gfn_t gfn = gpa >> PAGE_SHIFT;
  1059. int seg;
  1060. int offset = offset_in_page(gpa);
  1061. int ret;
  1062. while ((seg = next_segment(len, offset)) != 0) {
  1063. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1064. if (ret < 0)
  1065. return ret;
  1066. offset = 0;
  1067. len -= seg;
  1068. data += seg;
  1069. ++gfn;
  1070. }
  1071. return 0;
  1072. }
  1073. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1074. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1075. unsigned long len)
  1076. {
  1077. int r;
  1078. unsigned long addr;
  1079. gfn_t gfn = gpa >> PAGE_SHIFT;
  1080. int offset = offset_in_page(gpa);
  1081. addr = gfn_to_hva(kvm, gfn);
  1082. if (kvm_is_error_hva(addr))
  1083. return -EFAULT;
  1084. pagefault_disable();
  1085. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1086. pagefault_enable();
  1087. if (r)
  1088. return -EFAULT;
  1089. return 0;
  1090. }
  1091. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1092. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1093. int offset, int len)
  1094. {
  1095. int r;
  1096. unsigned long addr;
  1097. addr = gfn_to_hva(kvm, gfn);
  1098. if (kvm_is_error_hva(addr))
  1099. return -EFAULT;
  1100. r = copy_to_user((void __user *)addr + offset, data, len);
  1101. if (r)
  1102. return -EFAULT;
  1103. mark_page_dirty(kvm, gfn);
  1104. return 0;
  1105. }
  1106. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1107. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1108. unsigned long len)
  1109. {
  1110. gfn_t gfn = gpa >> PAGE_SHIFT;
  1111. int seg;
  1112. int offset = offset_in_page(gpa);
  1113. int ret;
  1114. while ((seg = next_segment(len, offset)) != 0) {
  1115. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1116. if (ret < 0)
  1117. return ret;
  1118. offset = 0;
  1119. len -= seg;
  1120. data += seg;
  1121. ++gfn;
  1122. }
  1123. return 0;
  1124. }
  1125. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1126. gpa_t gpa)
  1127. {
  1128. struct kvm_memslots *slots = kvm_memslots(kvm);
  1129. int offset = offset_in_page(gpa);
  1130. gfn_t gfn = gpa >> PAGE_SHIFT;
  1131. ghc->gpa = gpa;
  1132. ghc->generation = slots->generation;
  1133. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1134. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1135. if (!kvm_is_error_hva(ghc->hva))
  1136. ghc->hva += offset;
  1137. else
  1138. return -EFAULT;
  1139. return 0;
  1140. }
  1141. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1142. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1143. void *data, unsigned long len)
  1144. {
  1145. struct kvm_memslots *slots = kvm_memslots(kvm);
  1146. int r;
  1147. if (slots->generation != ghc->generation)
  1148. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1149. if (kvm_is_error_hva(ghc->hva))
  1150. return -EFAULT;
  1151. r = copy_to_user((void __user *)ghc->hva, data, len);
  1152. if (r)
  1153. return -EFAULT;
  1154. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1155. return 0;
  1156. }
  1157. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1158. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1159. {
  1160. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1161. offset, len);
  1162. }
  1163. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1164. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1165. {
  1166. gfn_t gfn = gpa >> PAGE_SHIFT;
  1167. int seg;
  1168. int offset = offset_in_page(gpa);
  1169. int ret;
  1170. while ((seg = next_segment(len, offset)) != 0) {
  1171. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1172. if (ret < 0)
  1173. return ret;
  1174. offset = 0;
  1175. len -= seg;
  1176. ++gfn;
  1177. }
  1178. return 0;
  1179. }
  1180. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1181. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1182. gfn_t gfn)
  1183. {
  1184. if (memslot && memslot->dirty_bitmap) {
  1185. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1186. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1187. }
  1188. }
  1189. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1190. {
  1191. struct kvm_memory_slot *memslot;
  1192. memslot = gfn_to_memslot(kvm, gfn);
  1193. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1194. }
  1195. /*
  1196. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1197. */
  1198. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1199. {
  1200. DEFINE_WAIT(wait);
  1201. for (;;) {
  1202. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1203. if (kvm_arch_vcpu_runnable(vcpu)) {
  1204. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1205. break;
  1206. }
  1207. if (kvm_cpu_has_pending_timer(vcpu))
  1208. break;
  1209. if (signal_pending(current))
  1210. break;
  1211. schedule();
  1212. }
  1213. finish_wait(&vcpu->wq, &wait);
  1214. }
  1215. void kvm_resched(struct kvm_vcpu *vcpu)
  1216. {
  1217. if (!need_resched())
  1218. return;
  1219. cond_resched();
  1220. }
  1221. EXPORT_SYMBOL_GPL(kvm_resched);
  1222. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1223. {
  1224. ktime_t expires;
  1225. DEFINE_WAIT(wait);
  1226. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1227. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1228. expires = ktime_add_ns(ktime_get(), 100000UL);
  1229. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1230. finish_wait(&vcpu->wq, &wait);
  1231. }
  1232. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1233. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1234. {
  1235. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1236. struct page *page;
  1237. if (vmf->pgoff == 0)
  1238. page = virt_to_page(vcpu->run);
  1239. #ifdef CONFIG_X86
  1240. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1241. page = virt_to_page(vcpu->arch.pio_data);
  1242. #endif
  1243. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1244. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1245. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1246. #endif
  1247. else
  1248. return VM_FAULT_SIGBUS;
  1249. get_page(page);
  1250. vmf->page = page;
  1251. return 0;
  1252. }
  1253. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1254. .fault = kvm_vcpu_fault,
  1255. };
  1256. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1257. {
  1258. vma->vm_ops = &kvm_vcpu_vm_ops;
  1259. return 0;
  1260. }
  1261. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1262. {
  1263. struct kvm_vcpu *vcpu = filp->private_data;
  1264. kvm_put_kvm(vcpu->kvm);
  1265. return 0;
  1266. }
  1267. static struct file_operations kvm_vcpu_fops = {
  1268. .release = kvm_vcpu_release,
  1269. .unlocked_ioctl = kvm_vcpu_ioctl,
  1270. .compat_ioctl = kvm_vcpu_ioctl,
  1271. .mmap = kvm_vcpu_mmap,
  1272. .llseek = noop_llseek,
  1273. };
  1274. /*
  1275. * Allocates an inode for the vcpu.
  1276. */
  1277. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1278. {
  1279. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1280. }
  1281. /*
  1282. * Creates some virtual cpus. Good luck creating more than one.
  1283. */
  1284. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1285. {
  1286. int r;
  1287. struct kvm_vcpu *vcpu, *v;
  1288. vcpu = kvm_arch_vcpu_create(kvm, id);
  1289. if (IS_ERR(vcpu))
  1290. return PTR_ERR(vcpu);
  1291. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1292. r = kvm_arch_vcpu_setup(vcpu);
  1293. if (r)
  1294. return r;
  1295. mutex_lock(&kvm->lock);
  1296. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1297. r = -EINVAL;
  1298. goto vcpu_destroy;
  1299. }
  1300. kvm_for_each_vcpu(r, v, kvm)
  1301. if (v->vcpu_id == id) {
  1302. r = -EEXIST;
  1303. goto vcpu_destroy;
  1304. }
  1305. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1306. /* Now it's all set up, let userspace reach it */
  1307. kvm_get_kvm(kvm);
  1308. r = create_vcpu_fd(vcpu);
  1309. if (r < 0) {
  1310. kvm_put_kvm(kvm);
  1311. goto vcpu_destroy;
  1312. }
  1313. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1314. smp_wmb();
  1315. atomic_inc(&kvm->online_vcpus);
  1316. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1317. if (kvm->bsp_vcpu_id == id)
  1318. kvm->bsp_vcpu = vcpu;
  1319. #endif
  1320. mutex_unlock(&kvm->lock);
  1321. return r;
  1322. vcpu_destroy:
  1323. mutex_unlock(&kvm->lock);
  1324. kvm_arch_vcpu_destroy(vcpu);
  1325. return r;
  1326. }
  1327. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1328. {
  1329. if (sigset) {
  1330. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1331. vcpu->sigset_active = 1;
  1332. vcpu->sigset = *sigset;
  1333. } else
  1334. vcpu->sigset_active = 0;
  1335. return 0;
  1336. }
  1337. static long kvm_vcpu_ioctl(struct file *filp,
  1338. unsigned int ioctl, unsigned long arg)
  1339. {
  1340. struct kvm_vcpu *vcpu = filp->private_data;
  1341. void __user *argp = (void __user *)arg;
  1342. int r;
  1343. struct kvm_fpu *fpu = NULL;
  1344. struct kvm_sregs *kvm_sregs = NULL;
  1345. if (vcpu->kvm->mm != current->mm)
  1346. return -EIO;
  1347. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1348. /*
  1349. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1350. * so vcpu_load() would break it.
  1351. */
  1352. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1353. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1354. #endif
  1355. vcpu_load(vcpu);
  1356. switch (ioctl) {
  1357. case KVM_RUN:
  1358. r = -EINVAL;
  1359. if (arg)
  1360. goto out;
  1361. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1362. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1363. break;
  1364. case KVM_GET_REGS: {
  1365. struct kvm_regs *kvm_regs;
  1366. r = -ENOMEM;
  1367. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1368. if (!kvm_regs)
  1369. goto out;
  1370. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1371. if (r)
  1372. goto out_free1;
  1373. r = -EFAULT;
  1374. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1375. goto out_free1;
  1376. r = 0;
  1377. out_free1:
  1378. kfree(kvm_regs);
  1379. break;
  1380. }
  1381. case KVM_SET_REGS: {
  1382. struct kvm_regs *kvm_regs;
  1383. r = -ENOMEM;
  1384. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1385. if (!kvm_regs)
  1386. goto out;
  1387. r = -EFAULT;
  1388. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1389. goto out_free2;
  1390. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1391. if (r)
  1392. goto out_free2;
  1393. r = 0;
  1394. out_free2:
  1395. kfree(kvm_regs);
  1396. break;
  1397. }
  1398. case KVM_GET_SREGS: {
  1399. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1400. r = -ENOMEM;
  1401. if (!kvm_sregs)
  1402. goto out;
  1403. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1404. if (r)
  1405. goto out;
  1406. r = -EFAULT;
  1407. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1408. goto out;
  1409. r = 0;
  1410. break;
  1411. }
  1412. case KVM_SET_SREGS: {
  1413. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1414. r = -ENOMEM;
  1415. if (!kvm_sregs)
  1416. goto out;
  1417. r = -EFAULT;
  1418. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1419. goto out;
  1420. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1421. if (r)
  1422. goto out;
  1423. r = 0;
  1424. break;
  1425. }
  1426. case KVM_GET_MP_STATE: {
  1427. struct kvm_mp_state mp_state;
  1428. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1429. if (r)
  1430. goto out;
  1431. r = -EFAULT;
  1432. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1433. goto out;
  1434. r = 0;
  1435. break;
  1436. }
  1437. case KVM_SET_MP_STATE: {
  1438. struct kvm_mp_state mp_state;
  1439. r = -EFAULT;
  1440. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1441. goto out;
  1442. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1443. if (r)
  1444. goto out;
  1445. r = 0;
  1446. break;
  1447. }
  1448. case KVM_TRANSLATE: {
  1449. struct kvm_translation tr;
  1450. r = -EFAULT;
  1451. if (copy_from_user(&tr, argp, sizeof tr))
  1452. goto out;
  1453. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1454. if (r)
  1455. goto out;
  1456. r = -EFAULT;
  1457. if (copy_to_user(argp, &tr, sizeof tr))
  1458. goto out;
  1459. r = 0;
  1460. break;
  1461. }
  1462. case KVM_SET_GUEST_DEBUG: {
  1463. struct kvm_guest_debug dbg;
  1464. r = -EFAULT;
  1465. if (copy_from_user(&dbg, argp, sizeof dbg))
  1466. goto out;
  1467. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1468. if (r)
  1469. goto out;
  1470. r = 0;
  1471. break;
  1472. }
  1473. case KVM_SET_SIGNAL_MASK: {
  1474. struct kvm_signal_mask __user *sigmask_arg = argp;
  1475. struct kvm_signal_mask kvm_sigmask;
  1476. sigset_t sigset, *p;
  1477. p = NULL;
  1478. if (argp) {
  1479. r = -EFAULT;
  1480. if (copy_from_user(&kvm_sigmask, argp,
  1481. sizeof kvm_sigmask))
  1482. goto out;
  1483. r = -EINVAL;
  1484. if (kvm_sigmask.len != sizeof sigset)
  1485. goto out;
  1486. r = -EFAULT;
  1487. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1488. sizeof sigset))
  1489. goto out;
  1490. p = &sigset;
  1491. }
  1492. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1493. break;
  1494. }
  1495. case KVM_GET_FPU: {
  1496. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1497. r = -ENOMEM;
  1498. if (!fpu)
  1499. goto out;
  1500. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1501. if (r)
  1502. goto out;
  1503. r = -EFAULT;
  1504. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1505. goto out;
  1506. r = 0;
  1507. break;
  1508. }
  1509. case KVM_SET_FPU: {
  1510. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1511. r = -ENOMEM;
  1512. if (!fpu)
  1513. goto out;
  1514. r = -EFAULT;
  1515. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1516. goto out;
  1517. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1518. if (r)
  1519. goto out;
  1520. r = 0;
  1521. break;
  1522. }
  1523. default:
  1524. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1525. }
  1526. out:
  1527. vcpu_put(vcpu);
  1528. kfree(fpu);
  1529. kfree(kvm_sregs);
  1530. return r;
  1531. }
  1532. static long kvm_vm_ioctl(struct file *filp,
  1533. unsigned int ioctl, unsigned long arg)
  1534. {
  1535. struct kvm *kvm = filp->private_data;
  1536. void __user *argp = (void __user *)arg;
  1537. int r;
  1538. if (kvm->mm != current->mm)
  1539. return -EIO;
  1540. switch (ioctl) {
  1541. case KVM_CREATE_VCPU:
  1542. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1543. if (r < 0)
  1544. goto out;
  1545. break;
  1546. case KVM_SET_USER_MEMORY_REGION: {
  1547. struct kvm_userspace_memory_region kvm_userspace_mem;
  1548. r = -EFAULT;
  1549. if (copy_from_user(&kvm_userspace_mem, argp,
  1550. sizeof kvm_userspace_mem))
  1551. goto out;
  1552. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1553. if (r)
  1554. goto out;
  1555. break;
  1556. }
  1557. case KVM_GET_DIRTY_LOG: {
  1558. struct kvm_dirty_log log;
  1559. r = -EFAULT;
  1560. if (copy_from_user(&log, argp, sizeof log))
  1561. goto out;
  1562. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1563. if (r)
  1564. goto out;
  1565. break;
  1566. }
  1567. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1568. case KVM_REGISTER_COALESCED_MMIO: {
  1569. struct kvm_coalesced_mmio_zone zone;
  1570. r = -EFAULT;
  1571. if (copy_from_user(&zone, argp, sizeof zone))
  1572. goto out;
  1573. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1574. if (r)
  1575. goto out;
  1576. r = 0;
  1577. break;
  1578. }
  1579. case KVM_UNREGISTER_COALESCED_MMIO: {
  1580. struct kvm_coalesced_mmio_zone zone;
  1581. r = -EFAULT;
  1582. if (copy_from_user(&zone, argp, sizeof zone))
  1583. goto out;
  1584. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1585. if (r)
  1586. goto out;
  1587. r = 0;
  1588. break;
  1589. }
  1590. #endif
  1591. case KVM_IRQFD: {
  1592. struct kvm_irqfd data;
  1593. r = -EFAULT;
  1594. if (copy_from_user(&data, argp, sizeof data))
  1595. goto out;
  1596. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1597. break;
  1598. }
  1599. case KVM_IOEVENTFD: {
  1600. struct kvm_ioeventfd data;
  1601. r = -EFAULT;
  1602. if (copy_from_user(&data, argp, sizeof data))
  1603. goto out;
  1604. r = kvm_ioeventfd(kvm, &data);
  1605. break;
  1606. }
  1607. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1608. case KVM_SET_BOOT_CPU_ID:
  1609. r = 0;
  1610. mutex_lock(&kvm->lock);
  1611. if (atomic_read(&kvm->online_vcpus) != 0)
  1612. r = -EBUSY;
  1613. else
  1614. kvm->bsp_vcpu_id = arg;
  1615. mutex_unlock(&kvm->lock);
  1616. break;
  1617. #endif
  1618. default:
  1619. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1620. if (r == -ENOTTY)
  1621. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1622. }
  1623. out:
  1624. return r;
  1625. }
  1626. #ifdef CONFIG_COMPAT
  1627. struct compat_kvm_dirty_log {
  1628. __u32 slot;
  1629. __u32 padding1;
  1630. union {
  1631. compat_uptr_t dirty_bitmap; /* one bit per page */
  1632. __u64 padding2;
  1633. };
  1634. };
  1635. static long kvm_vm_compat_ioctl(struct file *filp,
  1636. unsigned int ioctl, unsigned long arg)
  1637. {
  1638. struct kvm *kvm = filp->private_data;
  1639. int r;
  1640. if (kvm->mm != current->mm)
  1641. return -EIO;
  1642. switch (ioctl) {
  1643. case KVM_GET_DIRTY_LOG: {
  1644. struct compat_kvm_dirty_log compat_log;
  1645. struct kvm_dirty_log log;
  1646. r = -EFAULT;
  1647. if (copy_from_user(&compat_log, (void __user *)arg,
  1648. sizeof(compat_log)))
  1649. goto out;
  1650. log.slot = compat_log.slot;
  1651. log.padding1 = compat_log.padding1;
  1652. log.padding2 = compat_log.padding2;
  1653. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1654. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1655. if (r)
  1656. goto out;
  1657. break;
  1658. }
  1659. default:
  1660. r = kvm_vm_ioctl(filp, ioctl, arg);
  1661. }
  1662. out:
  1663. return r;
  1664. }
  1665. #endif
  1666. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1667. {
  1668. struct page *page[1];
  1669. unsigned long addr;
  1670. int npages;
  1671. gfn_t gfn = vmf->pgoff;
  1672. struct kvm *kvm = vma->vm_file->private_data;
  1673. addr = gfn_to_hva(kvm, gfn);
  1674. if (kvm_is_error_hva(addr))
  1675. return VM_FAULT_SIGBUS;
  1676. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1677. NULL);
  1678. if (unlikely(npages != 1))
  1679. return VM_FAULT_SIGBUS;
  1680. vmf->page = page[0];
  1681. return 0;
  1682. }
  1683. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1684. .fault = kvm_vm_fault,
  1685. };
  1686. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1687. {
  1688. vma->vm_ops = &kvm_vm_vm_ops;
  1689. return 0;
  1690. }
  1691. static struct file_operations kvm_vm_fops = {
  1692. .release = kvm_vm_release,
  1693. .unlocked_ioctl = kvm_vm_ioctl,
  1694. #ifdef CONFIG_COMPAT
  1695. .compat_ioctl = kvm_vm_compat_ioctl,
  1696. #endif
  1697. .mmap = kvm_vm_mmap,
  1698. .llseek = noop_llseek,
  1699. };
  1700. static int kvm_dev_ioctl_create_vm(void)
  1701. {
  1702. int r;
  1703. struct kvm *kvm;
  1704. kvm = kvm_create_vm();
  1705. if (IS_ERR(kvm))
  1706. return PTR_ERR(kvm);
  1707. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1708. r = kvm_coalesced_mmio_init(kvm);
  1709. if (r < 0) {
  1710. kvm_put_kvm(kvm);
  1711. return r;
  1712. }
  1713. #endif
  1714. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1715. if (r < 0)
  1716. kvm_put_kvm(kvm);
  1717. return r;
  1718. }
  1719. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1720. {
  1721. switch (arg) {
  1722. case KVM_CAP_USER_MEMORY:
  1723. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1724. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1725. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1726. case KVM_CAP_SET_BOOT_CPU_ID:
  1727. #endif
  1728. case KVM_CAP_INTERNAL_ERROR_DATA:
  1729. return 1;
  1730. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1731. case KVM_CAP_IRQ_ROUTING:
  1732. return KVM_MAX_IRQ_ROUTES;
  1733. #endif
  1734. default:
  1735. break;
  1736. }
  1737. return kvm_dev_ioctl_check_extension(arg);
  1738. }
  1739. static long kvm_dev_ioctl(struct file *filp,
  1740. unsigned int ioctl, unsigned long arg)
  1741. {
  1742. long r = -EINVAL;
  1743. switch (ioctl) {
  1744. case KVM_GET_API_VERSION:
  1745. r = -EINVAL;
  1746. if (arg)
  1747. goto out;
  1748. r = KVM_API_VERSION;
  1749. break;
  1750. case KVM_CREATE_VM:
  1751. r = -EINVAL;
  1752. if (arg)
  1753. goto out;
  1754. r = kvm_dev_ioctl_create_vm();
  1755. break;
  1756. case KVM_CHECK_EXTENSION:
  1757. r = kvm_dev_ioctl_check_extension_generic(arg);
  1758. break;
  1759. case KVM_GET_VCPU_MMAP_SIZE:
  1760. r = -EINVAL;
  1761. if (arg)
  1762. goto out;
  1763. r = PAGE_SIZE; /* struct kvm_run */
  1764. #ifdef CONFIG_X86
  1765. r += PAGE_SIZE; /* pio data page */
  1766. #endif
  1767. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1768. r += PAGE_SIZE; /* coalesced mmio ring page */
  1769. #endif
  1770. break;
  1771. case KVM_TRACE_ENABLE:
  1772. case KVM_TRACE_PAUSE:
  1773. case KVM_TRACE_DISABLE:
  1774. r = -EOPNOTSUPP;
  1775. break;
  1776. default:
  1777. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1778. }
  1779. out:
  1780. return r;
  1781. }
  1782. static struct file_operations kvm_chardev_ops = {
  1783. .unlocked_ioctl = kvm_dev_ioctl,
  1784. .compat_ioctl = kvm_dev_ioctl,
  1785. .llseek = noop_llseek,
  1786. };
  1787. static struct miscdevice kvm_dev = {
  1788. KVM_MINOR,
  1789. "kvm",
  1790. &kvm_chardev_ops,
  1791. };
  1792. static void hardware_enable_nolock(void *junk)
  1793. {
  1794. int cpu = raw_smp_processor_id();
  1795. int r;
  1796. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1797. return;
  1798. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1799. r = kvm_arch_hardware_enable(NULL);
  1800. if (r) {
  1801. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1802. atomic_inc(&hardware_enable_failed);
  1803. printk(KERN_INFO "kvm: enabling virtualization on "
  1804. "CPU%d failed\n", cpu);
  1805. }
  1806. }
  1807. static void hardware_enable(void *junk)
  1808. {
  1809. spin_lock(&kvm_lock);
  1810. hardware_enable_nolock(junk);
  1811. spin_unlock(&kvm_lock);
  1812. }
  1813. static void hardware_disable_nolock(void *junk)
  1814. {
  1815. int cpu = raw_smp_processor_id();
  1816. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1817. return;
  1818. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1819. kvm_arch_hardware_disable(NULL);
  1820. }
  1821. static void hardware_disable(void *junk)
  1822. {
  1823. spin_lock(&kvm_lock);
  1824. hardware_disable_nolock(junk);
  1825. spin_unlock(&kvm_lock);
  1826. }
  1827. static void hardware_disable_all_nolock(void)
  1828. {
  1829. BUG_ON(!kvm_usage_count);
  1830. kvm_usage_count--;
  1831. if (!kvm_usage_count)
  1832. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1833. }
  1834. static void hardware_disable_all(void)
  1835. {
  1836. spin_lock(&kvm_lock);
  1837. hardware_disable_all_nolock();
  1838. spin_unlock(&kvm_lock);
  1839. }
  1840. static int hardware_enable_all(void)
  1841. {
  1842. int r = 0;
  1843. spin_lock(&kvm_lock);
  1844. kvm_usage_count++;
  1845. if (kvm_usage_count == 1) {
  1846. atomic_set(&hardware_enable_failed, 0);
  1847. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1848. if (atomic_read(&hardware_enable_failed)) {
  1849. hardware_disable_all_nolock();
  1850. r = -EBUSY;
  1851. }
  1852. }
  1853. spin_unlock(&kvm_lock);
  1854. return r;
  1855. }
  1856. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1857. void *v)
  1858. {
  1859. int cpu = (long)v;
  1860. if (!kvm_usage_count)
  1861. return NOTIFY_OK;
  1862. val &= ~CPU_TASKS_FROZEN;
  1863. switch (val) {
  1864. case CPU_DYING:
  1865. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1866. cpu);
  1867. hardware_disable(NULL);
  1868. break;
  1869. case CPU_STARTING:
  1870. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1871. cpu);
  1872. hardware_enable(NULL);
  1873. break;
  1874. }
  1875. return NOTIFY_OK;
  1876. }
  1877. asmlinkage void kvm_spurious_fault(void)
  1878. {
  1879. /* Fault while not rebooting. We want the trace. */
  1880. BUG();
  1881. }
  1882. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  1883. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1884. void *v)
  1885. {
  1886. /*
  1887. * Some (well, at least mine) BIOSes hang on reboot if
  1888. * in vmx root mode.
  1889. *
  1890. * And Intel TXT required VMX off for all cpu when system shutdown.
  1891. */
  1892. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1893. kvm_rebooting = true;
  1894. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1895. return NOTIFY_OK;
  1896. }
  1897. static struct notifier_block kvm_reboot_notifier = {
  1898. .notifier_call = kvm_reboot,
  1899. .priority = 0,
  1900. };
  1901. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1902. {
  1903. int i;
  1904. for (i = 0; i < bus->dev_count; i++) {
  1905. struct kvm_io_device *pos = bus->devs[i];
  1906. kvm_iodevice_destructor(pos);
  1907. }
  1908. kfree(bus);
  1909. }
  1910. /* kvm_io_bus_write - called under kvm->slots_lock */
  1911. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1912. int len, const void *val)
  1913. {
  1914. int i;
  1915. struct kvm_io_bus *bus;
  1916. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1917. for (i = 0; i < bus->dev_count; i++)
  1918. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1919. return 0;
  1920. return -EOPNOTSUPP;
  1921. }
  1922. /* kvm_io_bus_read - called under kvm->slots_lock */
  1923. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1924. int len, void *val)
  1925. {
  1926. int i;
  1927. struct kvm_io_bus *bus;
  1928. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1929. for (i = 0; i < bus->dev_count; i++)
  1930. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1931. return 0;
  1932. return -EOPNOTSUPP;
  1933. }
  1934. /* Caller must hold slots_lock. */
  1935. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1936. struct kvm_io_device *dev)
  1937. {
  1938. struct kvm_io_bus *new_bus, *bus;
  1939. bus = kvm->buses[bus_idx];
  1940. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1941. return -ENOSPC;
  1942. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1943. if (!new_bus)
  1944. return -ENOMEM;
  1945. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1946. new_bus->devs[new_bus->dev_count++] = dev;
  1947. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1948. synchronize_srcu_expedited(&kvm->srcu);
  1949. kfree(bus);
  1950. return 0;
  1951. }
  1952. /* Caller must hold slots_lock. */
  1953. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1954. struct kvm_io_device *dev)
  1955. {
  1956. int i, r;
  1957. struct kvm_io_bus *new_bus, *bus;
  1958. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1959. if (!new_bus)
  1960. return -ENOMEM;
  1961. bus = kvm->buses[bus_idx];
  1962. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1963. r = -ENOENT;
  1964. for (i = 0; i < new_bus->dev_count; i++)
  1965. if (new_bus->devs[i] == dev) {
  1966. r = 0;
  1967. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1968. break;
  1969. }
  1970. if (r) {
  1971. kfree(new_bus);
  1972. return r;
  1973. }
  1974. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1975. synchronize_srcu_expedited(&kvm->srcu);
  1976. kfree(bus);
  1977. return r;
  1978. }
  1979. static struct notifier_block kvm_cpu_notifier = {
  1980. .notifier_call = kvm_cpu_hotplug,
  1981. };
  1982. static int vm_stat_get(void *_offset, u64 *val)
  1983. {
  1984. unsigned offset = (long)_offset;
  1985. struct kvm *kvm;
  1986. *val = 0;
  1987. spin_lock(&kvm_lock);
  1988. list_for_each_entry(kvm, &vm_list, vm_list)
  1989. *val += *(u32 *)((void *)kvm + offset);
  1990. spin_unlock(&kvm_lock);
  1991. return 0;
  1992. }
  1993. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1994. static int vcpu_stat_get(void *_offset, u64 *val)
  1995. {
  1996. unsigned offset = (long)_offset;
  1997. struct kvm *kvm;
  1998. struct kvm_vcpu *vcpu;
  1999. int i;
  2000. *val = 0;
  2001. spin_lock(&kvm_lock);
  2002. list_for_each_entry(kvm, &vm_list, vm_list)
  2003. kvm_for_each_vcpu(i, vcpu, kvm)
  2004. *val += *(u32 *)((void *)vcpu + offset);
  2005. spin_unlock(&kvm_lock);
  2006. return 0;
  2007. }
  2008. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2009. static const struct file_operations *stat_fops[] = {
  2010. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2011. [KVM_STAT_VM] = &vm_stat_fops,
  2012. };
  2013. static void kvm_init_debug(void)
  2014. {
  2015. struct kvm_stats_debugfs_item *p;
  2016. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2017. for (p = debugfs_entries; p->name; ++p)
  2018. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2019. (void *)(long)p->offset,
  2020. stat_fops[p->kind]);
  2021. }
  2022. static void kvm_exit_debug(void)
  2023. {
  2024. struct kvm_stats_debugfs_item *p;
  2025. for (p = debugfs_entries; p->name; ++p)
  2026. debugfs_remove(p->dentry);
  2027. debugfs_remove(kvm_debugfs_dir);
  2028. }
  2029. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2030. {
  2031. if (kvm_usage_count)
  2032. hardware_disable_nolock(NULL);
  2033. return 0;
  2034. }
  2035. static int kvm_resume(struct sys_device *dev)
  2036. {
  2037. if (kvm_usage_count) {
  2038. WARN_ON(spin_is_locked(&kvm_lock));
  2039. hardware_enable_nolock(NULL);
  2040. }
  2041. return 0;
  2042. }
  2043. static struct sysdev_class kvm_sysdev_class = {
  2044. .name = "kvm",
  2045. .suspend = kvm_suspend,
  2046. .resume = kvm_resume,
  2047. };
  2048. static struct sys_device kvm_sysdev = {
  2049. .id = 0,
  2050. .cls = &kvm_sysdev_class,
  2051. };
  2052. struct page *bad_page;
  2053. pfn_t bad_pfn;
  2054. static inline
  2055. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2056. {
  2057. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2058. }
  2059. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2060. {
  2061. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2062. kvm_arch_vcpu_load(vcpu, cpu);
  2063. }
  2064. static void kvm_sched_out(struct preempt_notifier *pn,
  2065. struct task_struct *next)
  2066. {
  2067. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2068. kvm_arch_vcpu_put(vcpu);
  2069. }
  2070. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2071. struct module *module)
  2072. {
  2073. int r;
  2074. int cpu;
  2075. r = kvm_arch_init(opaque);
  2076. if (r)
  2077. goto out_fail;
  2078. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2079. if (bad_page == NULL) {
  2080. r = -ENOMEM;
  2081. goto out;
  2082. }
  2083. bad_pfn = page_to_pfn(bad_page);
  2084. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2085. if (hwpoison_page == NULL) {
  2086. r = -ENOMEM;
  2087. goto out_free_0;
  2088. }
  2089. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2090. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2091. if (fault_page == NULL) {
  2092. r = -ENOMEM;
  2093. goto out_free_0;
  2094. }
  2095. fault_pfn = page_to_pfn(fault_page);
  2096. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2097. r = -ENOMEM;
  2098. goto out_free_0;
  2099. }
  2100. r = kvm_arch_hardware_setup();
  2101. if (r < 0)
  2102. goto out_free_0a;
  2103. for_each_online_cpu(cpu) {
  2104. smp_call_function_single(cpu,
  2105. kvm_arch_check_processor_compat,
  2106. &r, 1);
  2107. if (r < 0)
  2108. goto out_free_1;
  2109. }
  2110. r = register_cpu_notifier(&kvm_cpu_notifier);
  2111. if (r)
  2112. goto out_free_2;
  2113. register_reboot_notifier(&kvm_reboot_notifier);
  2114. r = sysdev_class_register(&kvm_sysdev_class);
  2115. if (r)
  2116. goto out_free_3;
  2117. r = sysdev_register(&kvm_sysdev);
  2118. if (r)
  2119. goto out_free_4;
  2120. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2121. if (!vcpu_align)
  2122. vcpu_align = __alignof__(struct kvm_vcpu);
  2123. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2124. 0, NULL);
  2125. if (!kvm_vcpu_cache) {
  2126. r = -ENOMEM;
  2127. goto out_free_5;
  2128. }
  2129. r = kvm_async_pf_init();
  2130. if (r)
  2131. goto out_free;
  2132. kvm_chardev_ops.owner = module;
  2133. kvm_vm_fops.owner = module;
  2134. kvm_vcpu_fops.owner = module;
  2135. r = misc_register(&kvm_dev);
  2136. if (r) {
  2137. printk(KERN_ERR "kvm: misc device register failed\n");
  2138. goto out_unreg;
  2139. }
  2140. kvm_preempt_ops.sched_in = kvm_sched_in;
  2141. kvm_preempt_ops.sched_out = kvm_sched_out;
  2142. kvm_init_debug();
  2143. return 0;
  2144. out_unreg:
  2145. kvm_async_pf_deinit();
  2146. out_free:
  2147. kmem_cache_destroy(kvm_vcpu_cache);
  2148. out_free_5:
  2149. sysdev_unregister(&kvm_sysdev);
  2150. out_free_4:
  2151. sysdev_class_unregister(&kvm_sysdev_class);
  2152. out_free_3:
  2153. unregister_reboot_notifier(&kvm_reboot_notifier);
  2154. unregister_cpu_notifier(&kvm_cpu_notifier);
  2155. out_free_2:
  2156. out_free_1:
  2157. kvm_arch_hardware_unsetup();
  2158. out_free_0a:
  2159. free_cpumask_var(cpus_hardware_enabled);
  2160. out_free_0:
  2161. if (fault_page)
  2162. __free_page(fault_page);
  2163. if (hwpoison_page)
  2164. __free_page(hwpoison_page);
  2165. __free_page(bad_page);
  2166. out:
  2167. kvm_arch_exit();
  2168. out_fail:
  2169. return r;
  2170. }
  2171. EXPORT_SYMBOL_GPL(kvm_init);
  2172. void kvm_exit(void)
  2173. {
  2174. kvm_exit_debug();
  2175. misc_deregister(&kvm_dev);
  2176. kmem_cache_destroy(kvm_vcpu_cache);
  2177. kvm_async_pf_deinit();
  2178. sysdev_unregister(&kvm_sysdev);
  2179. sysdev_class_unregister(&kvm_sysdev_class);
  2180. unregister_reboot_notifier(&kvm_reboot_notifier);
  2181. unregister_cpu_notifier(&kvm_cpu_notifier);
  2182. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2183. kvm_arch_hardware_unsetup();
  2184. kvm_arch_exit();
  2185. free_cpumask_var(cpus_hardware_enabled);
  2186. __free_page(hwpoison_page);
  2187. __free_page(bad_page);
  2188. }
  2189. EXPORT_SYMBOL_GPL(kvm_exit);