pgtable_32.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389
  1. /*
  2. * linux/arch/i386/mm/pgtable.c
  3. */
  4. #include <linux/sched.h>
  5. #include <linux/kernel.h>
  6. #include <linux/errno.h>
  7. #include <linux/mm.h>
  8. #include <linux/nmi.h>
  9. #include <linux/swap.h>
  10. #include <linux/smp.h>
  11. #include <linux/highmem.h>
  12. #include <linux/slab.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/module.h>
  16. #include <linux/quicklist.h>
  17. #include <asm/system.h>
  18. #include <asm/pgtable.h>
  19. #include <asm/pgalloc.h>
  20. #include <asm/fixmap.h>
  21. #include <asm/e820.h>
  22. #include <asm/tlb.h>
  23. #include <asm/tlbflush.h>
  24. void show_mem(void)
  25. {
  26. int total = 0, reserved = 0;
  27. int shared = 0, cached = 0;
  28. int highmem = 0;
  29. struct page *page;
  30. pg_data_t *pgdat;
  31. unsigned long i;
  32. unsigned long flags;
  33. printk(KERN_INFO "Mem-info:\n");
  34. show_free_areas();
  35. for_each_online_pgdat(pgdat) {
  36. pgdat_resize_lock(pgdat, &flags);
  37. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  38. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  39. touch_nmi_watchdog();
  40. page = pgdat_page_nr(pgdat, i);
  41. total++;
  42. if (PageHighMem(page))
  43. highmem++;
  44. if (PageReserved(page))
  45. reserved++;
  46. else if (PageSwapCache(page))
  47. cached++;
  48. else if (page_count(page))
  49. shared += page_count(page) - 1;
  50. }
  51. pgdat_resize_unlock(pgdat, &flags);
  52. }
  53. printk(KERN_INFO "%d pages of RAM\n", total);
  54. printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
  55. printk(KERN_INFO "%d reserved pages\n", reserved);
  56. printk(KERN_INFO "%d pages shared\n", shared);
  57. printk(KERN_INFO "%d pages swap cached\n", cached);
  58. printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
  59. printk(KERN_INFO "%lu pages writeback\n",
  60. global_page_state(NR_WRITEBACK));
  61. printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
  62. printk(KERN_INFO "%lu pages slab\n",
  63. global_page_state(NR_SLAB_RECLAIMABLE) +
  64. global_page_state(NR_SLAB_UNRECLAIMABLE));
  65. printk(KERN_INFO "%lu pages pagetables\n",
  66. global_page_state(NR_PAGETABLE));
  67. }
  68. /*
  69. * Associate a virtual page frame with a given physical page frame
  70. * and protection flags for that frame.
  71. */
  72. static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  73. {
  74. pgd_t *pgd;
  75. pud_t *pud;
  76. pmd_t *pmd;
  77. pte_t *pte;
  78. pgd = swapper_pg_dir + pgd_index(vaddr);
  79. if (pgd_none(*pgd)) {
  80. BUG();
  81. return;
  82. }
  83. pud = pud_offset(pgd, vaddr);
  84. if (pud_none(*pud)) {
  85. BUG();
  86. return;
  87. }
  88. pmd = pmd_offset(pud, vaddr);
  89. if (pmd_none(*pmd)) {
  90. BUG();
  91. return;
  92. }
  93. pte = pte_offset_kernel(pmd, vaddr);
  94. if (pgprot_val(flags))
  95. set_pte_present(&init_mm, vaddr, pte, pfn_pte(pfn, flags));
  96. else
  97. pte_clear(&init_mm, vaddr, pte);
  98. /*
  99. * It's enough to flush this one mapping.
  100. * (PGE mappings get flushed as well)
  101. */
  102. __flush_tlb_one(vaddr);
  103. }
  104. /*
  105. * Associate a large virtual page frame with a given physical page frame
  106. * and protection flags for that frame. pfn is for the base of the page,
  107. * vaddr is what the page gets mapped to - both must be properly aligned.
  108. * The pmd must already be instantiated. Assumes PAE mode.
  109. */
  110. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  111. {
  112. pgd_t *pgd;
  113. pud_t *pud;
  114. pmd_t *pmd;
  115. if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
  116. printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
  117. return; /* BUG(); */
  118. }
  119. if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
  120. printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
  121. return; /* BUG(); */
  122. }
  123. pgd = swapper_pg_dir + pgd_index(vaddr);
  124. if (pgd_none(*pgd)) {
  125. printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
  126. return; /* BUG(); */
  127. }
  128. pud = pud_offset(pgd, vaddr);
  129. pmd = pmd_offset(pud, vaddr);
  130. set_pmd(pmd, pfn_pmd(pfn, flags));
  131. /*
  132. * It's enough to flush this one mapping.
  133. * (PGE mappings get flushed as well)
  134. */
  135. __flush_tlb_one(vaddr);
  136. }
  137. static int fixmaps;
  138. unsigned long __FIXADDR_TOP = 0xfffff000;
  139. EXPORT_SYMBOL(__FIXADDR_TOP);
  140. void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
  141. {
  142. unsigned long address = __fix_to_virt(idx);
  143. if (idx >= __end_of_fixed_addresses) {
  144. BUG();
  145. return;
  146. }
  147. set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
  148. fixmaps++;
  149. }
  150. /**
  151. * reserve_top_address - reserves a hole in the top of kernel address space
  152. * @reserve - size of hole to reserve
  153. *
  154. * Can be used to relocate the fixmap area and poke a hole in the top
  155. * of kernel address space to make room for a hypervisor.
  156. */
  157. void reserve_top_address(unsigned long reserve)
  158. {
  159. BUG_ON(fixmaps > 0);
  160. printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
  161. (int)-reserve);
  162. __FIXADDR_TOP = -reserve - PAGE_SIZE;
  163. __VMALLOC_RESERVE += reserve;
  164. }
  165. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  166. {
  167. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  168. }
  169. pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  170. {
  171. struct page *pte;
  172. #ifdef CONFIG_HIGHPTE
  173. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  174. #else
  175. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  176. #endif
  177. if (pte)
  178. pgtable_page_ctor(pte);
  179. return pte;
  180. }
  181. /*
  182. * List of all pgd's needed for non-PAE so it can invalidate entries
  183. * in both cached and uncached pgd's; not needed for PAE since the
  184. * kernel pmd is shared. If PAE were not to share the pmd a similar
  185. * tactic would be needed. This is essentially codepath-based locking
  186. * against pageattr.c; it is the unique case in which a valid change
  187. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  188. * vmalloc faults work because attached pagetables are never freed.
  189. * -- wli
  190. */
  191. static inline void pgd_list_add(pgd_t *pgd)
  192. {
  193. struct page *page = virt_to_page(pgd);
  194. list_add(&page->lru, &pgd_list);
  195. }
  196. static inline void pgd_list_del(pgd_t *pgd)
  197. {
  198. struct page *page = virt_to_page(pgd);
  199. list_del(&page->lru);
  200. }
  201. #define UNSHARED_PTRS_PER_PGD \
  202. (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
  203. static void pgd_ctor(void *p)
  204. {
  205. pgd_t *pgd = p;
  206. unsigned long flags;
  207. /* Clear usermode parts of PGD */
  208. memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
  209. spin_lock_irqsave(&pgd_lock, flags);
  210. /* If the pgd points to a shared pagetable level (either the
  211. ptes in non-PAE, or shared PMD in PAE), then just copy the
  212. references from swapper_pg_dir. */
  213. if (PAGETABLE_LEVELS == 2 ||
  214. (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD)) {
  215. clone_pgd_range(pgd + USER_PTRS_PER_PGD,
  216. swapper_pg_dir + USER_PTRS_PER_PGD,
  217. KERNEL_PGD_PTRS);
  218. paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT,
  219. __pa(swapper_pg_dir) >> PAGE_SHIFT,
  220. USER_PTRS_PER_PGD,
  221. KERNEL_PGD_PTRS);
  222. }
  223. /* list required to sync kernel mapping updates */
  224. if (!SHARED_KERNEL_PMD)
  225. pgd_list_add(pgd);
  226. spin_unlock_irqrestore(&pgd_lock, flags);
  227. }
  228. static void pgd_dtor(void *pgd)
  229. {
  230. unsigned long flags; /* can be called from interrupt context */
  231. if (SHARED_KERNEL_PMD)
  232. return;
  233. spin_lock_irqsave(&pgd_lock, flags);
  234. pgd_list_del(pgd);
  235. spin_unlock_irqrestore(&pgd_lock, flags);
  236. }
  237. #ifdef CONFIG_X86_PAE
  238. /*
  239. * Mop up any pmd pages which may still be attached to the pgd.
  240. * Normally they will be freed by munmap/exit_mmap, but any pmd we
  241. * preallocate which never got a corresponding vma will need to be
  242. * freed manually.
  243. */
  244. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  245. {
  246. int i;
  247. for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) {
  248. pgd_t pgd = pgdp[i];
  249. if (pgd_val(pgd) != 0) {
  250. pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
  251. pgdp[i] = native_make_pgd(0);
  252. paravirt_release_pd(pgd_val(pgd) >> PAGE_SHIFT);
  253. pmd_free(mm, pmd);
  254. }
  255. }
  256. }
  257. /*
  258. * In PAE mode, we need to do a cr3 reload (=tlb flush) when
  259. * updating the top-level pagetable entries to guarantee the
  260. * processor notices the update. Since this is expensive, and
  261. * all 4 top-level entries are used almost immediately in a
  262. * new process's life, we just pre-populate them here.
  263. *
  264. * Also, if we're in a paravirt environment where the kernel pmd is
  265. * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
  266. * and initialize the kernel pmds here.
  267. */
  268. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  269. {
  270. pud_t *pud;
  271. unsigned long addr;
  272. int i;
  273. pud = pud_offset(pgd, 0);
  274. for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD;
  275. i++, pud++, addr += PUD_SIZE) {
  276. pmd_t *pmd = pmd_alloc_one(mm, addr);
  277. if (!pmd) {
  278. pgd_mop_up_pmds(mm, pgd);
  279. return 0;
  280. }
  281. if (i >= USER_PTRS_PER_PGD)
  282. memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
  283. sizeof(pmd_t) * PTRS_PER_PMD);
  284. pud_populate(mm, pud, pmd);
  285. }
  286. return 1;
  287. }
  288. #else /* !CONFIG_X86_PAE */
  289. /* No need to prepopulate any pagetable entries in non-PAE modes. */
  290. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  291. {
  292. return 1;
  293. }
  294. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  295. {
  296. }
  297. #endif /* CONFIG_X86_PAE */
  298. pgd_t *pgd_alloc(struct mm_struct *mm)
  299. {
  300. pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  301. /* so that alloc_pd can use it */
  302. mm->pgd = pgd;
  303. if (pgd)
  304. pgd_ctor(pgd);
  305. if (pgd && !pgd_prepopulate_pmd(mm, pgd)) {
  306. pgd_dtor(pgd);
  307. free_page((unsigned long)pgd);
  308. pgd = NULL;
  309. }
  310. return pgd;
  311. }
  312. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  313. {
  314. pgd_mop_up_pmds(mm, pgd);
  315. pgd_dtor(pgd);
  316. free_page((unsigned long)pgd);
  317. }
  318. void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  319. {
  320. pgtable_page_dtor(pte);
  321. paravirt_release_pt(page_to_pfn(pte));
  322. tlb_remove_page(tlb, pte);
  323. }
  324. #ifdef CONFIG_X86_PAE
  325. void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  326. {
  327. paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
  328. tlb_remove_page(tlb, virt_to_page(pmd));
  329. }
  330. #endif
  331. int pmd_bad(pmd_t pmd)
  332. {
  333. WARN_ON_ONCE(pmd_bad_v1(pmd) != pmd_bad_v2(pmd));
  334. return pmd_bad_v1(pmd);
  335. }