proc.c 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. #include <linux/smp.h>
  2. #include <linux/timex.h>
  3. #include <linux/string.h>
  4. #include <asm/semaphore.h>
  5. #include <linux/seq_file.h>
  6. #include <linux/cpufreq.h>
  7. /*
  8. * Get CPU information for use by the procfs.
  9. */
  10. #ifdef CONFIG_X86_32
  11. static void show_cpuinfo_core(struct seq_file *m, struct cpuinfo_x86 *c,
  12. unsigned int cpu)
  13. {
  14. #ifdef CONFIG_X86_HT
  15. if (c->x86_max_cores * smp_num_siblings > 1) {
  16. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  17. seq_printf(m, "siblings\t: %d\n",
  18. cpus_weight(per_cpu(cpu_core_map, cpu)));
  19. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  20. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  21. seq_printf(m, "apicid\t\t: %d\n", c->apicid);
  22. seq_printf(m, "initial apicid\t: %d\n", c->initial_apicid);
  23. }
  24. #endif
  25. }
  26. static void show_cpuinfo_misc(struct seq_file *m, struct cpuinfo_x86 *c)
  27. {
  28. /*
  29. * We use exception 16 if we have hardware math and we've either seen
  30. * it or the CPU claims it is internal
  31. */
  32. int fpu_exception = c->hard_math && (ignore_fpu_irq || cpu_has_fpu);
  33. seq_printf(m,
  34. "fdiv_bug\t: %s\n"
  35. "hlt_bug\t\t: %s\n"
  36. "f00f_bug\t: %s\n"
  37. "coma_bug\t: %s\n"
  38. "fpu\t\t: %s\n"
  39. "fpu_exception\t: %s\n"
  40. "cpuid level\t: %d\n"
  41. "wp\t\t: %s\n",
  42. c->fdiv_bug ? "yes" : "no",
  43. c->hlt_works_ok ? "no" : "yes",
  44. c->f00f_bug ? "yes" : "no",
  45. c->coma_bug ? "yes" : "no",
  46. c->hard_math ? "yes" : "no",
  47. fpu_exception ? "yes" : "no",
  48. c->cpuid_level,
  49. c->wp_works_ok ? "yes" : "no");
  50. }
  51. #else
  52. static void show_cpuinfo_core(struct seq_file *m, struct cpuinfo_x86 *c,
  53. unsigned int cpu)
  54. {
  55. #ifdef CONFIG_SMP
  56. if (c->x86_max_cores * smp_num_siblings > 1) {
  57. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  58. seq_printf(m, "siblings\t: %d\n",
  59. cpus_weight(per_cpu(cpu_core_map, cpu)));
  60. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  61. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  62. seq_printf(m, "apicid\t\t: %d\n", c->apicid);
  63. seq_printf(m, "initial apicid\t: %d\n", c->initial_apicid);
  64. }
  65. #endif
  66. }
  67. static void show_cpuinfo_misc(struct seq_file *m, struct cpuinfo_x86 *c)
  68. {
  69. seq_printf(m,
  70. "fpu\t\t: yes\n"
  71. "fpu_exception\t: yes\n"
  72. "cpuid level\t: %d\n"
  73. "wp\t\t: yes\n",
  74. c->cpuid_level);
  75. }
  76. #endif
  77. static int show_cpuinfo(struct seq_file *m, void *v)
  78. {
  79. struct cpuinfo_x86 *c = v;
  80. unsigned int cpu = 0;
  81. int i;
  82. #ifdef CONFIG_SMP
  83. cpu = c->cpu_index;
  84. #endif
  85. seq_printf(m, "processor\t: %u\n"
  86. "vendor_id\t: %s\n"
  87. "cpu family\t: %d\n"
  88. "model\t\t: %u\n"
  89. "model name\t: %s\n",
  90. cpu,
  91. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  92. c->x86,
  93. c->x86_model,
  94. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  95. if (c->x86_mask || c->cpuid_level >= 0)
  96. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  97. else
  98. seq_printf(m, "stepping\t: unknown\n");
  99. if (cpu_has(c, X86_FEATURE_TSC)) {
  100. unsigned int freq = cpufreq_quick_get(cpu);
  101. if (!freq)
  102. freq = cpu_khz;
  103. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  104. freq / 1000, (freq % 1000));
  105. }
  106. /* Cache size */
  107. if (c->x86_cache_size >= 0)
  108. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  109. show_cpuinfo_core(m, c, cpu);
  110. show_cpuinfo_misc(m, c);
  111. seq_printf(m, "flags\t\t:");
  112. for (i = 0; i < 32*NCAPINTS; i++)
  113. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  114. seq_printf(m, " %s", x86_cap_flags[i]);
  115. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  116. c->loops_per_jiffy/(500000/HZ),
  117. (c->loops_per_jiffy/(5000/HZ)) % 100);
  118. #ifdef CONFIG_X86_64
  119. if (c->x86_tlbsize > 0)
  120. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  121. #endif
  122. seq_printf(m, "clflush size\t: %u\n", c->x86_clflush_size);
  123. #ifdef CONFIG_X86_64
  124. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  125. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  126. c->x86_phys_bits, c->x86_virt_bits);
  127. #endif
  128. seq_printf(m, "power management:");
  129. for (i = 0; i < 32; i++) {
  130. if (c->x86_power & (1 << i)) {
  131. if (i < ARRAY_SIZE(x86_power_flags) &&
  132. x86_power_flags[i])
  133. seq_printf(m, "%s%s",
  134. x86_power_flags[i][0]?" ":"",
  135. x86_power_flags[i]);
  136. else
  137. seq_printf(m, " [%d]", i);
  138. }
  139. }
  140. seq_printf(m, "\n\n");
  141. return 0;
  142. }
  143. static void *c_start(struct seq_file *m, loff_t *pos)
  144. {
  145. if (*pos == 0) /* just in case, cpu 0 is not the first */
  146. *pos = first_cpu(cpu_online_map);
  147. if ((*pos) < NR_CPUS && cpu_online(*pos))
  148. return &cpu_data(*pos);
  149. return NULL;
  150. }
  151. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  152. {
  153. *pos = next_cpu(*pos, cpu_online_map);
  154. return c_start(m, pos);
  155. }
  156. static void c_stop(struct seq_file *m, void *v)
  157. {
  158. }
  159. const struct seq_operations cpuinfo_op = {
  160. .start = c_start,
  161. .next = c_next,
  162. .stop = c_stop,
  163. .show = show_cpuinfo,
  164. };