common.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751
  1. #include <linux/init.h>
  2. #include <linux/string.h>
  3. #include <linux/delay.h>
  4. #include <linux/smp.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/bootmem.h>
  8. #include <asm/semaphore.h>
  9. #include <asm/processor.h>
  10. #include <asm/i387.h>
  11. #include <asm/msr.h>
  12. #include <asm/io.h>
  13. #include <asm/mmu_context.h>
  14. #include <asm/mtrr.h>
  15. #include <asm/mce.h>
  16. #ifdef CONFIG_X86_LOCAL_APIC
  17. #include <asm/mpspec.h>
  18. #include <asm/apic.h>
  19. #include <mach_apic.h>
  20. #endif
  21. #include "cpu.h"
  22. DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
  23. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  24. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  25. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  26. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  27. /*
  28. * Segments used for calling PnP BIOS have byte granularity.
  29. * They code segments and data segments have fixed 64k limits,
  30. * the transfer segment sizes are set at run time.
  31. */
  32. /* 32-bit code */
  33. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  34. /* 16-bit code */
  35. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  36. /* 16-bit data */
  37. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  38. /* 16-bit data */
  39. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  40. /* 16-bit data */
  41. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  42. /*
  43. * The APM segments have byte granularity and their bases
  44. * are set at run time. All have 64k limits.
  45. */
  46. /* 32-bit code */
  47. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  48. /* 16-bit code */
  49. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  50. /* data */
  51. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  52. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  53. [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
  54. } };
  55. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  56. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  57. static int cachesize_override __cpuinitdata = -1;
  58. static int disable_x86_serial_nr __cpuinitdata = 1;
  59. struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  60. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  61. {
  62. /* Not much we can do here... */
  63. /* Check if at least it has cpuid */
  64. if (c->cpuid_level == -1) {
  65. /* No cpuid. It must be an ancient CPU */
  66. if (c->x86 == 4)
  67. strcpy(c->x86_model_id, "486");
  68. else if (c->x86 == 3)
  69. strcpy(c->x86_model_id, "386");
  70. }
  71. }
  72. static struct cpu_dev __cpuinitdata default_cpu = {
  73. .c_init = default_init,
  74. .c_vendor = "Unknown",
  75. };
  76. static struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
  77. static int __init cachesize_setup(char *str)
  78. {
  79. get_option(&str, &cachesize_override);
  80. return 1;
  81. }
  82. __setup("cachesize=", cachesize_setup);
  83. int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  84. {
  85. unsigned int *v;
  86. char *p, *q;
  87. if (cpuid_eax(0x80000000) < 0x80000004)
  88. return 0;
  89. v = (unsigned int *) c->x86_model_id;
  90. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  91. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  92. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  93. c->x86_model_id[48] = 0;
  94. /* Intel chips right-justify this string for some dumb reason;
  95. undo that brain damage */
  96. p = q = &c->x86_model_id[0];
  97. while (*p == ' ')
  98. p++;
  99. if (p != q) {
  100. while (*p)
  101. *q++ = *p++;
  102. while (q <= &c->x86_model_id[48])
  103. *q++ = '\0'; /* Zero-pad the rest */
  104. }
  105. return 1;
  106. }
  107. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  108. {
  109. unsigned int n, dummy, ecx, edx, l2size;
  110. n = cpuid_eax(0x80000000);
  111. if (n >= 0x80000005) {
  112. cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
  113. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  114. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  115. c->x86_cache_size = (ecx>>24)+(edx>>24);
  116. }
  117. if (n < 0x80000006) /* Some chips just has a large L1. */
  118. return;
  119. ecx = cpuid_ecx(0x80000006);
  120. l2size = ecx >> 16;
  121. /* do processor-specific cache resizing */
  122. if (this_cpu->c_size_cache)
  123. l2size = this_cpu->c_size_cache(c, l2size);
  124. /* Allow user to override all this if necessary. */
  125. if (cachesize_override != -1)
  126. l2size = cachesize_override;
  127. if (l2size == 0)
  128. return; /* Again, no L2 cache is possible */
  129. c->x86_cache_size = l2size;
  130. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  131. l2size, ecx & 0xFF);
  132. }
  133. /*
  134. * Naming convention should be: <Name> [(<Codename>)]
  135. * This table only is used unless init_<vendor>() below doesn't set it;
  136. * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
  137. *
  138. */
  139. /* Look up CPU names by table lookup. */
  140. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  141. {
  142. struct cpu_model_info *info;
  143. if (c->x86_model >= 16)
  144. return NULL; /* Range check */
  145. if (!this_cpu)
  146. return NULL;
  147. info = this_cpu->c_models;
  148. while (info && info->family) {
  149. if (info->family == c->x86)
  150. return info->model_names[c->x86_model];
  151. info++;
  152. }
  153. return NULL; /* Not found */
  154. }
  155. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
  156. {
  157. char *v = c->x86_vendor_id;
  158. int i;
  159. static int printed;
  160. for (i = 0; i < X86_VENDOR_NUM; i++) {
  161. if (cpu_devs[i]) {
  162. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  163. (cpu_devs[i]->c_ident[1] &&
  164. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  165. c->x86_vendor = i;
  166. if (!early)
  167. this_cpu = cpu_devs[i];
  168. return;
  169. }
  170. }
  171. }
  172. if (!printed) {
  173. printed++;
  174. printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
  175. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  176. }
  177. c->x86_vendor = X86_VENDOR_UNKNOWN;
  178. this_cpu = &default_cpu;
  179. }
  180. static int __init x86_fxsr_setup(char *s)
  181. {
  182. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  183. setup_clear_cpu_cap(X86_FEATURE_XMM);
  184. return 1;
  185. }
  186. __setup("nofxsr", x86_fxsr_setup);
  187. static int __init x86_sep_setup(char *s)
  188. {
  189. setup_clear_cpu_cap(X86_FEATURE_SEP);
  190. return 1;
  191. }
  192. __setup("nosep", x86_sep_setup);
  193. /* Standard macro to see if a specific flag is changeable */
  194. static inline int flag_is_changeable_p(u32 flag)
  195. {
  196. u32 f1, f2;
  197. asm("pushfl\n\t"
  198. "pushfl\n\t"
  199. "popl %0\n\t"
  200. "movl %0,%1\n\t"
  201. "xorl %2,%0\n\t"
  202. "pushl %0\n\t"
  203. "popfl\n\t"
  204. "pushfl\n\t"
  205. "popl %0\n\t"
  206. "popfl\n\t"
  207. : "=&r" (f1), "=&r" (f2)
  208. : "ir" (flag));
  209. return ((f1^f2) & flag) != 0;
  210. }
  211. /* Probe for the CPUID instruction */
  212. static int __cpuinit have_cpuid_p(void)
  213. {
  214. return flag_is_changeable_p(X86_EFLAGS_ID);
  215. }
  216. void __init cpu_detect(struct cpuinfo_x86 *c)
  217. {
  218. /* Get vendor name */
  219. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  220. (unsigned int *)&c->x86_vendor_id[0],
  221. (unsigned int *)&c->x86_vendor_id[8],
  222. (unsigned int *)&c->x86_vendor_id[4]);
  223. c->x86 = 4;
  224. if (c->cpuid_level >= 0x00000001) {
  225. u32 junk, tfms, cap0, misc;
  226. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  227. c->x86 = (tfms >> 8) & 15;
  228. c->x86_model = (tfms >> 4) & 15;
  229. if (c->x86 == 0xf)
  230. c->x86 += (tfms >> 20) & 0xff;
  231. if (c->x86 >= 0x6)
  232. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  233. c->x86_mask = tfms & 15;
  234. if (cap0 & (1<<19)) {
  235. c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
  236. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  237. }
  238. }
  239. }
  240. static void __cpuinit early_get_cap(struct cpuinfo_x86 *c)
  241. {
  242. u32 tfms, xlvl;
  243. unsigned int ebx;
  244. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  245. if (have_cpuid_p()) {
  246. /* Intel-defined flags: level 0x00000001 */
  247. if (c->cpuid_level >= 0x00000001) {
  248. u32 capability, excap;
  249. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  250. c->x86_capability[0] = capability;
  251. c->x86_capability[4] = excap;
  252. }
  253. /* AMD-defined flags: level 0x80000001 */
  254. xlvl = cpuid_eax(0x80000000);
  255. if ((xlvl & 0xffff0000) == 0x80000000) {
  256. if (xlvl >= 0x80000001) {
  257. c->x86_capability[1] = cpuid_edx(0x80000001);
  258. c->x86_capability[6] = cpuid_ecx(0x80000001);
  259. }
  260. }
  261. }
  262. clear_cpu_cap(c, X86_FEATURE_PAT);
  263. switch (c->x86_vendor) {
  264. case X86_VENDOR_AMD:
  265. if (c->x86 >= 0xf && c->x86 <= 0x11)
  266. set_cpu_cap(c, X86_FEATURE_PAT);
  267. break;
  268. case X86_VENDOR_INTEL:
  269. if (c->x86 == 0xF || (c->x86 == 6 && c->x86_model >= 15))
  270. set_cpu_cap(c, X86_FEATURE_PAT);
  271. break;
  272. }
  273. }
  274. /*
  275. * Do minimum CPU detection early.
  276. * Fields really needed: vendor, cpuid_level, family, model, mask,
  277. * cache alignment.
  278. * The others are not touched to avoid unwanted side effects.
  279. *
  280. * WARNING: this function is only called on the BP. Don't add code here
  281. * that is supposed to run on all CPUs.
  282. */
  283. static void __init early_cpu_detect(void)
  284. {
  285. struct cpuinfo_x86 *c = &boot_cpu_data;
  286. c->x86_cache_alignment = 32;
  287. c->x86_clflush_size = 32;
  288. if (!have_cpuid_p())
  289. return;
  290. cpu_detect(c);
  291. get_cpu_vendor(c, 1);
  292. if (c->x86_vendor != X86_VENDOR_UNKNOWN &&
  293. cpu_devs[c->x86_vendor]->c_early_init)
  294. cpu_devs[c->x86_vendor]->c_early_init(c);
  295. early_get_cap(c);
  296. }
  297. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  298. {
  299. u32 tfms, xlvl;
  300. unsigned int ebx;
  301. if (have_cpuid_p()) {
  302. /* Get vendor name */
  303. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  304. (unsigned int *)&c->x86_vendor_id[0],
  305. (unsigned int *)&c->x86_vendor_id[8],
  306. (unsigned int *)&c->x86_vendor_id[4]);
  307. get_cpu_vendor(c, 0);
  308. /* Initialize the standard set of capabilities */
  309. /* Note that the vendor-specific code below might override */
  310. /* Intel-defined flags: level 0x00000001 */
  311. if (c->cpuid_level >= 0x00000001) {
  312. u32 capability, excap;
  313. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  314. c->x86_capability[0] = capability;
  315. c->x86_capability[4] = excap;
  316. c->x86 = (tfms >> 8) & 15;
  317. c->x86_model = (tfms >> 4) & 15;
  318. if (c->x86 == 0xf)
  319. c->x86 += (tfms >> 20) & 0xff;
  320. if (c->x86 >= 0x6)
  321. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  322. c->x86_mask = tfms & 15;
  323. c->initial_apicid = (ebx >> 24) & 0xFF;
  324. #ifdef CONFIG_X86_HT
  325. c->apicid = phys_pkg_id(c->initial_apicid, 0);
  326. c->phys_proc_id = c->initial_apicid;
  327. #else
  328. c->apicid = c->initial_apicid;
  329. #endif
  330. if (test_cpu_cap(c, X86_FEATURE_CLFLSH))
  331. c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
  332. } else {
  333. /* Have CPUID level 0 only - unheard of */
  334. c->x86 = 4;
  335. }
  336. /* AMD-defined flags: level 0x80000001 */
  337. xlvl = cpuid_eax(0x80000000);
  338. if ((xlvl & 0xffff0000) == 0x80000000) {
  339. if (xlvl >= 0x80000001) {
  340. c->x86_capability[1] = cpuid_edx(0x80000001);
  341. c->x86_capability[6] = cpuid_ecx(0x80000001);
  342. }
  343. if (xlvl >= 0x80000004)
  344. get_model_name(c); /* Default name */
  345. }
  346. init_scattered_cpuid_features(c);
  347. }
  348. clear_cpu_cap(c, X86_FEATURE_PAT);
  349. switch (c->x86_vendor) {
  350. case X86_VENDOR_AMD:
  351. if (c->x86 >= 0xf && c->x86 <= 0x11)
  352. set_cpu_cap(c, X86_FEATURE_PAT);
  353. break;
  354. case X86_VENDOR_INTEL:
  355. if (c->x86 == 0xF || (c->x86 == 6 && c->x86_model >= 15))
  356. set_cpu_cap(c, X86_FEATURE_PAT);
  357. break;
  358. }
  359. }
  360. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  361. {
  362. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
  363. /* Disable processor serial number */
  364. unsigned long lo, hi;
  365. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  366. lo |= 0x200000;
  367. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  368. printk(KERN_NOTICE "CPU serial number disabled.\n");
  369. clear_cpu_cap(c, X86_FEATURE_PN);
  370. /* Disabling the serial number may affect the cpuid level */
  371. c->cpuid_level = cpuid_eax(0);
  372. }
  373. }
  374. static int __init x86_serial_nr_setup(char *s)
  375. {
  376. disable_x86_serial_nr = 0;
  377. return 1;
  378. }
  379. __setup("serialnumber", x86_serial_nr_setup);
  380. /*
  381. * This does the hard work of actually picking apart the CPU stuff...
  382. */
  383. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  384. {
  385. int i;
  386. c->loops_per_jiffy = loops_per_jiffy;
  387. c->x86_cache_size = -1;
  388. c->x86_vendor = X86_VENDOR_UNKNOWN;
  389. c->cpuid_level = -1; /* CPUID not detected */
  390. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  391. c->x86_vendor_id[0] = '\0'; /* Unset */
  392. c->x86_model_id[0] = '\0'; /* Unset */
  393. c->x86_max_cores = 1;
  394. c->x86_clflush_size = 32;
  395. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  396. if (!have_cpuid_p()) {
  397. /*
  398. * First of all, decide if this is a 486 or higher
  399. * It's a 486 if we can modify the AC flag
  400. */
  401. if (flag_is_changeable_p(X86_EFLAGS_AC))
  402. c->x86 = 4;
  403. else
  404. c->x86 = 3;
  405. }
  406. generic_identify(c);
  407. if (this_cpu->c_identify)
  408. this_cpu->c_identify(c);
  409. /*
  410. * Vendor-specific initialization. In this section we
  411. * canonicalize the feature flags, meaning if there are
  412. * features a certain CPU supports which CPUID doesn't
  413. * tell us, CPUID claiming incorrect flags, or other bugs,
  414. * we handle them here.
  415. *
  416. * At the end of this section, c->x86_capability better
  417. * indicate the features this CPU genuinely supports!
  418. */
  419. if (this_cpu->c_init)
  420. this_cpu->c_init(c);
  421. /* Disable the PN if appropriate */
  422. squash_the_stupid_serial_number(c);
  423. /*
  424. * The vendor-specific functions might have changed features. Now
  425. * we do "generic changes."
  426. */
  427. /* If the model name is still unset, do table lookup. */
  428. if (!c->x86_model_id[0]) {
  429. char *p;
  430. p = table_lookup_model(c);
  431. if (p)
  432. strcpy(c->x86_model_id, p);
  433. else
  434. /* Last resort... */
  435. sprintf(c->x86_model_id, "%02x/%02x",
  436. c->x86, c->x86_model);
  437. }
  438. /*
  439. * On SMP, boot_cpu_data holds the common feature set between
  440. * all CPUs; so make sure that we indicate which features are
  441. * common between the CPUs. The first time this routine gets
  442. * executed, c == &boot_cpu_data.
  443. */
  444. if (c != &boot_cpu_data) {
  445. /* AND the already accumulated flags with these */
  446. for (i = 0 ; i < NCAPINTS ; i++)
  447. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  448. }
  449. /* Clear all flags overriden by options */
  450. for (i = 0; i < NCAPINTS; i++)
  451. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  452. /* Init Machine Check Exception if available. */
  453. mcheck_init(c);
  454. select_idle_routine(c);
  455. }
  456. void __init identify_boot_cpu(void)
  457. {
  458. identify_cpu(&boot_cpu_data);
  459. sysenter_setup();
  460. enable_sep_cpu();
  461. }
  462. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  463. {
  464. BUG_ON(c == &boot_cpu_data);
  465. identify_cpu(c);
  466. enable_sep_cpu();
  467. mtrr_ap_init();
  468. }
  469. #ifdef CONFIG_X86_HT
  470. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  471. {
  472. u32 eax, ebx, ecx, edx;
  473. int index_msb, core_bits;
  474. cpuid(1, &eax, &ebx, &ecx, &edx);
  475. if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
  476. return;
  477. smp_num_siblings = (ebx & 0xff0000) >> 16;
  478. if (smp_num_siblings == 1) {
  479. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  480. } else if (smp_num_siblings > 1) {
  481. if (smp_num_siblings > NR_CPUS) {
  482. printk(KERN_WARNING "CPU: Unsupported number of the "
  483. "siblings %d", smp_num_siblings);
  484. smp_num_siblings = 1;
  485. return;
  486. }
  487. index_msb = get_count_order(smp_num_siblings);
  488. c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
  489. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  490. c->phys_proc_id);
  491. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  492. index_msb = get_count_order(smp_num_siblings) ;
  493. core_bits = get_count_order(c->x86_max_cores);
  494. c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
  495. ((1 << core_bits) - 1);
  496. if (c->x86_max_cores > 1)
  497. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  498. c->cpu_core_id);
  499. }
  500. }
  501. #endif
  502. static __init int setup_noclflush(char *arg)
  503. {
  504. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  505. return 1;
  506. }
  507. __setup("noclflush", setup_noclflush);
  508. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  509. {
  510. char *vendor = NULL;
  511. if (c->x86_vendor < X86_VENDOR_NUM)
  512. vendor = this_cpu->c_vendor;
  513. else if (c->cpuid_level >= 0)
  514. vendor = c->x86_vendor_id;
  515. if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
  516. printk("%s ", vendor);
  517. if (!c->x86_model_id[0])
  518. printk("%d86", c->x86);
  519. else
  520. printk("%s", c->x86_model_id);
  521. if (c->x86_mask || c->cpuid_level >= 0)
  522. printk(" stepping %02x\n", c->x86_mask);
  523. else
  524. printk("\n");
  525. }
  526. static __init int setup_disablecpuid(char *arg)
  527. {
  528. int bit;
  529. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  530. setup_clear_cpu_cap(bit);
  531. else
  532. return 0;
  533. return 1;
  534. }
  535. __setup("clearcpuid=", setup_disablecpuid);
  536. cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
  537. void __init early_cpu_init(void)
  538. {
  539. struct cpu_vendor_dev *cvdev;
  540. for (cvdev = __x86cpuvendor_start ;
  541. cvdev < __x86cpuvendor_end ;
  542. cvdev++)
  543. cpu_devs[cvdev->vendor] = cvdev->cpu_dev;
  544. early_cpu_detect();
  545. }
  546. /* Make sure %fs is initialized properly in idle threads */
  547. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  548. {
  549. memset(regs, 0, sizeof(struct pt_regs));
  550. regs->fs = __KERNEL_PERCPU;
  551. return regs;
  552. }
  553. /* Current gdt points %fs at the "master" per-cpu area: after this,
  554. * it's on the real one. */
  555. void switch_to_new_gdt(void)
  556. {
  557. struct desc_ptr gdt_descr;
  558. gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
  559. gdt_descr.size = GDT_SIZE - 1;
  560. load_gdt(&gdt_descr);
  561. asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
  562. }
  563. /*
  564. * cpu_init() initializes state that is per-CPU. Some data is already
  565. * initialized (naturally) in the bootstrap process, such as the GDT
  566. * and IDT. We reload them nevertheless, this function acts as a
  567. * 'CPU state barrier', nothing should get across.
  568. */
  569. void __cpuinit cpu_init(void)
  570. {
  571. int cpu = smp_processor_id();
  572. struct task_struct *curr = current;
  573. struct tss_struct *t = &per_cpu(init_tss, cpu);
  574. struct thread_struct *thread = &curr->thread;
  575. if (cpu_test_and_set(cpu, cpu_initialized)) {
  576. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  577. for (;;) local_irq_enable();
  578. }
  579. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  580. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  581. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  582. load_idt(&idt_descr);
  583. switch_to_new_gdt();
  584. /*
  585. * Set up and load the per-CPU TSS and LDT
  586. */
  587. atomic_inc(&init_mm.mm_count);
  588. curr->active_mm = &init_mm;
  589. if (curr->mm)
  590. BUG();
  591. enter_lazy_tlb(&init_mm, curr);
  592. load_sp0(t, thread);
  593. set_tss_desc(cpu, t);
  594. load_TR_desc();
  595. load_LDT(&init_mm.context);
  596. #ifdef CONFIG_DOUBLEFAULT
  597. /* Set up doublefault TSS pointer in the GDT */
  598. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  599. #endif
  600. /* Clear %gs. */
  601. asm volatile ("mov %0, %%gs" : : "r" (0));
  602. /* Clear all 6 debug registers: */
  603. set_debugreg(0, 0);
  604. set_debugreg(0, 1);
  605. set_debugreg(0, 2);
  606. set_debugreg(0, 3);
  607. set_debugreg(0, 6);
  608. set_debugreg(0, 7);
  609. /*
  610. * Force FPU initialization:
  611. */
  612. current_thread_info()->status = 0;
  613. clear_used_math();
  614. mxcsr_feature_mask_init();
  615. }
  616. #ifdef CONFIG_HOTPLUG_CPU
  617. void __cpuinit cpu_uninit(void)
  618. {
  619. int cpu = raw_smp_processor_id();
  620. cpu_clear(cpu, cpu_initialized);
  621. /* lazy TLB state */
  622. per_cpu(cpu_tlbstate, cpu).state = 0;
  623. per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
  624. }
  625. #endif