cpufreq_conservative.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. /*
  2. * drivers/cpufreq/cpufreq_conservative.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/slab.h>
  14. #include "cpufreq_governor.h"
  15. /* Conservative governor macros */
  16. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  17. #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
  18. #define DEF_FREQUENCY_STEP (5)
  19. #define DEF_SAMPLING_DOWN_FACTOR (1)
  20. #define MAX_SAMPLING_DOWN_FACTOR (10)
  21. static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
  22. static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
  23. struct cpufreq_policy *policy)
  24. {
  25. unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
  26. /* max freq cannot be less than 100. But who knows... */
  27. if (unlikely(freq_target == 0))
  28. freq_target = DEF_FREQUENCY_STEP;
  29. return freq_target;
  30. }
  31. /*
  32. * Every sampling_rate, we check, if current idle time is less than 20%
  33. * (default), then we try to increase frequency. Every sampling_rate *
  34. * sampling_down_factor, we check, if current idle time is more than 80%
  35. * (default), then we try to decrease frequency
  36. *
  37. * Any frequency increase takes it to the maximum frequency. Frequency reduction
  38. * happens at minimum steps of 5% (default) of maximum frequency
  39. */
  40. static void cs_check_cpu(int cpu, unsigned int load)
  41. {
  42. struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
  43. struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
  44. struct dbs_data *dbs_data = policy->governor_data;
  45. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  46. /*
  47. * break out if we 'cannot' reduce the speed as the user might
  48. * want freq_step to be zero
  49. */
  50. if (cs_tuners->freq_step == 0)
  51. return;
  52. /* Check for frequency increase */
  53. if (load > cs_tuners->up_threshold) {
  54. dbs_info->down_skip = 0;
  55. /* if we are already at full speed then break out early */
  56. if (dbs_info->requested_freq == policy->max)
  57. return;
  58. dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
  59. __cpufreq_driver_target(policy, dbs_info->requested_freq,
  60. CPUFREQ_RELATION_H);
  61. return;
  62. }
  63. /* if sampling_down_factor is active break out early */
  64. if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
  65. return;
  66. dbs_info->down_skip = 0;
  67. /* Check for frequency decrease */
  68. if (load < cs_tuners->down_threshold) {
  69. unsigned int freq_target;
  70. /*
  71. * if we cannot reduce the frequency anymore, break out early
  72. */
  73. if (policy->cur == policy->min)
  74. return;
  75. freq_target = get_freq_target(cs_tuners, policy);
  76. if (dbs_info->requested_freq > freq_target)
  77. dbs_info->requested_freq -= freq_target;
  78. else
  79. dbs_info->requested_freq = policy->min;
  80. __cpufreq_driver_target(policy, dbs_info->requested_freq,
  81. CPUFREQ_RELATION_L);
  82. return;
  83. }
  84. }
  85. static void cs_dbs_timer(struct work_struct *work)
  86. {
  87. struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
  88. struct cs_cpu_dbs_info_s, cdbs.work.work);
  89. unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
  90. struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
  91. cpu);
  92. struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
  93. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  94. int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
  95. bool modify_all = true;
  96. mutex_lock(&core_dbs_info->cdbs.timer_mutex);
  97. if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
  98. modify_all = false;
  99. else
  100. dbs_check_cpu(dbs_data, cpu);
  101. gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
  102. mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
  103. }
  104. static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  105. void *data)
  106. {
  107. struct cpufreq_freqs *freq = data;
  108. struct cs_cpu_dbs_info_s *dbs_info =
  109. &per_cpu(cs_cpu_dbs_info, freq->cpu);
  110. struct cpufreq_policy *policy;
  111. if (!dbs_info->enable)
  112. return 0;
  113. policy = dbs_info->cdbs.cur_policy;
  114. /*
  115. * we only care if our internally tracked freq moves outside the 'valid'
  116. * ranges of frequency available to us otherwise we do not change it
  117. */
  118. if (dbs_info->requested_freq > policy->max
  119. || dbs_info->requested_freq < policy->min)
  120. dbs_info->requested_freq = freq->new;
  121. return 0;
  122. }
  123. /************************** sysfs interface ************************/
  124. static struct common_dbs_data cs_dbs_cdata;
  125. static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
  126. const char *buf, size_t count)
  127. {
  128. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  129. unsigned int input;
  130. int ret;
  131. ret = sscanf(buf, "%u", &input);
  132. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  133. return -EINVAL;
  134. cs_tuners->sampling_down_factor = input;
  135. return count;
  136. }
  137. static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
  138. size_t count)
  139. {
  140. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  141. unsigned int input;
  142. int ret;
  143. ret = sscanf(buf, "%u", &input);
  144. if (ret != 1)
  145. return -EINVAL;
  146. cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
  147. return count;
  148. }
  149. static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
  150. size_t count)
  151. {
  152. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  153. unsigned int input;
  154. int ret;
  155. ret = sscanf(buf, "%u", &input);
  156. if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
  157. return -EINVAL;
  158. cs_tuners->up_threshold = input;
  159. return count;
  160. }
  161. static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
  162. size_t count)
  163. {
  164. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  165. unsigned int input;
  166. int ret;
  167. ret = sscanf(buf, "%u", &input);
  168. /* cannot be lower than 11 otherwise freq will not fall */
  169. if (ret != 1 || input < 11 || input > 100 ||
  170. input >= cs_tuners->up_threshold)
  171. return -EINVAL;
  172. cs_tuners->down_threshold = input;
  173. return count;
  174. }
  175. static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
  176. const char *buf, size_t count)
  177. {
  178. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  179. unsigned int input, j;
  180. int ret;
  181. ret = sscanf(buf, "%u", &input);
  182. if (ret != 1)
  183. return -EINVAL;
  184. if (input > 1)
  185. input = 1;
  186. if (input == cs_tuners->ignore_nice_load) /* nothing to do */
  187. return count;
  188. cs_tuners->ignore_nice_load = input;
  189. /* we need to re-evaluate prev_cpu_idle */
  190. for_each_online_cpu(j) {
  191. struct cs_cpu_dbs_info_s *dbs_info;
  192. dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  193. dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
  194. &dbs_info->cdbs.prev_cpu_wall, 0);
  195. if (cs_tuners->ignore_nice_load)
  196. dbs_info->cdbs.prev_cpu_nice =
  197. kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  198. }
  199. return count;
  200. }
  201. static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
  202. size_t count)
  203. {
  204. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  205. unsigned int input;
  206. int ret;
  207. ret = sscanf(buf, "%u", &input);
  208. if (ret != 1)
  209. return -EINVAL;
  210. if (input > 100)
  211. input = 100;
  212. /*
  213. * no need to test here if freq_step is zero as the user might actually
  214. * want this, they would be crazy though :)
  215. */
  216. cs_tuners->freq_step = input;
  217. return count;
  218. }
  219. show_store_one(cs, sampling_rate);
  220. show_store_one(cs, sampling_down_factor);
  221. show_store_one(cs, up_threshold);
  222. show_store_one(cs, down_threshold);
  223. show_store_one(cs, ignore_nice_load);
  224. show_store_one(cs, freq_step);
  225. declare_show_sampling_rate_min(cs);
  226. gov_sys_pol_attr_rw(sampling_rate);
  227. gov_sys_pol_attr_rw(sampling_down_factor);
  228. gov_sys_pol_attr_rw(up_threshold);
  229. gov_sys_pol_attr_rw(down_threshold);
  230. gov_sys_pol_attr_rw(ignore_nice_load);
  231. gov_sys_pol_attr_rw(freq_step);
  232. gov_sys_pol_attr_ro(sampling_rate_min);
  233. static struct attribute *dbs_attributes_gov_sys[] = {
  234. &sampling_rate_min_gov_sys.attr,
  235. &sampling_rate_gov_sys.attr,
  236. &sampling_down_factor_gov_sys.attr,
  237. &up_threshold_gov_sys.attr,
  238. &down_threshold_gov_sys.attr,
  239. &ignore_nice_load_gov_sys.attr,
  240. &freq_step_gov_sys.attr,
  241. NULL
  242. };
  243. static struct attribute_group cs_attr_group_gov_sys = {
  244. .attrs = dbs_attributes_gov_sys,
  245. .name = "conservative",
  246. };
  247. static struct attribute *dbs_attributes_gov_pol[] = {
  248. &sampling_rate_min_gov_pol.attr,
  249. &sampling_rate_gov_pol.attr,
  250. &sampling_down_factor_gov_pol.attr,
  251. &up_threshold_gov_pol.attr,
  252. &down_threshold_gov_pol.attr,
  253. &ignore_nice_load_gov_pol.attr,
  254. &freq_step_gov_pol.attr,
  255. NULL
  256. };
  257. static struct attribute_group cs_attr_group_gov_pol = {
  258. .attrs = dbs_attributes_gov_pol,
  259. .name = "conservative",
  260. };
  261. /************************** sysfs end ************************/
  262. static int cs_init(struct dbs_data *dbs_data)
  263. {
  264. struct cs_dbs_tuners *tuners;
  265. tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
  266. if (!tuners) {
  267. pr_err("%s: kzalloc failed\n", __func__);
  268. return -ENOMEM;
  269. }
  270. tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
  271. tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
  272. tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
  273. tuners->ignore_nice_load = 0;
  274. tuners->freq_step = DEF_FREQUENCY_STEP;
  275. dbs_data->tuners = tuners;
  276. dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
  277. jiffies_to_usecs(10);
  278. mutex_init(&dbs_data->mutex);
  279. return 0;
  280. }
  281. static void cs_exit(struct dbs_data *dbs_data)
  282. {
  283. kfree(dbs_data->tuners);
  284. }
  285. define_get_cpu_dbs_routines(cs_cpu_dbs_info);
  286. static struct notifier_block cs_cpufreq_notifier_block = {
  287. .notifier_call = dbs_cpufreq_notifier,
  288. };
  289. static struct cs_ops cs_ops = {
  290. .notifier_block = &cs_cpufreq_notifier_block,
  291. };
  292. static struct common_dbs_data cs_dbs_cdata = {
  293. .governor = GOV_CONSERVATIVE,
  294. .attr_group_gov_sys = &cs_attr_group_gov_sys,
  295. .attr_group_gov_pol = &cs_attr_group_gov_pol,
  296. .get_cpu_cdbs = get_cpu_cdbs,
  297. .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
  298. .gov_dbs_timer = cs_dbs_timer,
  299. .gov_check_cpu = cs_check_cpu,
  300. .gov_ops = &cs_ops,
  301. .init = cs_init,
  302. .exit = cs_exit,
  303. };
  304. static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
  305. unsigned int event)
  306. {
  307. return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
  308. }
  309. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  310. static
  311. #endif
  312. struct cpufreq_governor cpufreq_gov_conservative = {
  313. .name = "conservative",
  314. .governor = cs_cpufreq_governor_dbs,
  315. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  316. .owner = THIS_MODULE,
  317. };
  318. static int __init cpufreq_gov_dbs_init(void)
  319. {
  320. return cpufreq_register_governor(&cpufreq_gov_conservative);
  321. }
  322. static void __exit cpufreq_gov_dbs_exit(void)
  323. {
  324. cpufreq_unregister_governor(&cpufreq_gov_conservative);
  325. }
  326. MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
  327. MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
  328. "Low Latency Frequency Transition capable processors "
  329. "optimised for use in a battery environment");
  330. MODULE_LICENSE("GPL");
  331. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  332. fs_initcall(cpufreq_gov_dbs_init);
  333. #else
  334. module_init(cpufreq_gov_dbs_init);
  335. #endif
  336. module_exit(cpufreq_gov_dbs_exit);