file.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/falloc.h>
  17. #include <linux/types.h>
  18. #include <linux/uaccess.h>
  19. #include <linux/mount.h>
  20. #include "f2fs.h"
  21. #include "node.h"
  22. #include "segment.h"
  23. #include "xattr.h"
  24. #include "acl.h"
  25. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  26. struct vm_fault *vmf)
  27. {
  28. struct page *page = vmf->page;
  29. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  30. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  31. block_t old_blk_addr;
  32. struct dnode_of_data dn;
  33. int err;
  34. f2fs_balance_fs(sbi);
  35. sb_start_pagefault(inode->i_sb);
  36. mutex_lock_op(sbi, DATA_NEW);
  37. /* block allocation */
  38. set_new_dnode(&dn, inode, NULL, NULL, 0);
  39. err = get_dnode_of_data(&dn, page->index, 0);
  40. if (err) {
  41. mutex_unlock_op(sbi, DATA_NEW);
  42. goto out;
  43. }
  44. old_blk_addr = dn.data_blkaddr;
  45. if (old_blk_addr == NULL_ADDR) {
  46. err = reserve_new_block(&dn);
  47. if (err) {
  48. f2fs_put_dnode(&dn);
  49. mutex_unlock_op(sbi, DATA_NEW);
  50. goto out;
  51. }
  52. }
  53. f2fs_put_dnode(&dn);
  54. mutex_unlock_op(sbi, DATA_NEW);
  55. lock_page(page);
  56. if (page->mapping != inode->i_mapping ||
  57. page_offset(page) >= i_size_read(inode) ||
  58. !PageUptodate(page)) {
  59. unlock_page(page);
  60. err = -EFAULT;
  61. goto out;
  62. }
  63. /*
  64. * check to see if the page is mapped already (no holes)
  65. */
  66. if (PageMappedToDisk(page))
  67. goto out;
  68. /* fill the page */
  69. wait_on_page_writeback(page);
  70. /* page is wholly or partially inside EOF */
  71. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  72. unsigned offset;
  73. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  74. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  75. }
  76. set_page_dirty(page);
  77. SetPageUptodate(page);
  78. file_update_time(vma->vm_file);
  79. out:
  80. sb_end_pagefault(inode->i_sb);
  81. return block_page_mkwrite_return(err);
  82. }
  83. static const struct vm_operations_struct f2fs_file_vm_ops = {
  84. .fault = filemap_fault,
  85. .page_mkwrite = f2fs_vm_page_mkwrite,
  86. .remap_pages = generic_file_remap_pages,
  87. };
  88. static int need_to_sync_dir(struct f2fs_sb_info *sbi, struct inode *inode)
  89. {
  90. struct dentry *dentry;
  91. nid_t pino;
  92. inode = igrab(inode);
  93. dentry = d_find_any_alias(inode);
  94. if (!dentry) {
  95. iput(inode);
  96. return 0;
  97. }
  98. pino = dentry->d_parent->d_inode->i_ino;
  99. dput(dentry);
  100. iput(inode);
  101. return !is_checkpointed_node(sbi, pino);
  102. }
  103. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  104. {
  105. struct inode *inode = file->f_mapping->host;
  106. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  107. unsigned long long cur_version;
  108. int ret = 0;
  109. bool need_cp = false;
  110. struct writeback_control wbc = {
  111. .sync_mode = WB_SYNC_ALL,
  112. .nr_to_write = LONG_MAX,
  113. .for_reclaim = 0,
  114. };
  115. if (inode->i_sb->s_flags & MS_RDONLY)
  116. return 0;
  117. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  118. if (ret)
  119. return ret;
  120. /* guarantee free sections for fsync */
  121. f2fs_balance_fs(sbi);
  122. mutex_lock(&inode->i_mutex);
  123. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  124. goto out;
  125. mutex_lock(&sbi->cp_mutex);
  126. cur_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
  127. mutex_unlock(&sbi->cp_mutex);
  128. if (F2FS_I(inode)->data_version != cur_version &&
  129. !(inode->i_state & I_DIRTY))
  130. goto out;
  131. F2FS_I(inode)->data_version--;
  132. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  133. need_cp = true;
  134. else if (is_inode_flag_set(F2FS_I(inode), FI_NEED_CP))
  135. need_cp = true;
  136. else if (!space_for_roll_forward(sbi))
  137. need_cp = true;
  138. else if (need_to_sync_dir(sbi, inode))
  139. need_cp = true;
  140. if (need_cp) {
  141. /* all the dirty node pages should be flushed for POR */
  142. ret = f2fs_sync_fs(inode->i_sb, 1);
  143. clear_inode_flag(F2FS_I(inode), FI_NEED_CP);
  144. } else {
  145. /* if there is no written node page, write its inode page */
  146. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  147. ret = f2fs_write_inode(inode, NULL);
  148. if (ret)
  149. goto out;
  150. }
  151. filemap_fdatawait_range(sbi->node_inode->i_mapping,
  152. 0, LONG_MAX);
  153. }
  154. out:
  155. mutex_unlock(&inode->i_mutex);
  156. return ret;
  157. }
  158. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  159. {
  160. file_accessed(file);
  161. vma->vm_ops = &f2fs_file_vm_ops;
  162. return 0;
  163. }
  164. static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  165. {
  166. int nr_free = 0, ofs = dn->ofs_in_node;
  167. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  168. struct f2fs_node *raw_node;
  169. __le32 *addr;
  170. raw_node = page_address(dn->node_page);
  171. addr = blkaddr_in_node(raw_node) + ofs;
  172. for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
  173. block_t blkaddr = le32_to_cpu(*addr);
  174. if (blkaddr == NULL_ADDR)
  175. continue;
  176. update_extent_cache(NULL_ADDR, dn);
  177. invalidate_blocks(sbi, blkaddr);
  178. dec_valid_block_count(sbi, dn->inode, 1);
  179. nr_free++;
  180. }
  181. if (nr_free) {
  182. set_page_dirty(dn->node_page);
  183. sync_inode_page(dn);
  184. }
  185. dn->ofs_in_node = ofs;
  186. return nr_free;
  187. }
  188. void truncate_data_blocks(struct dnode_of_data *dn)
  189. {
  190. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  191. }
  192. static void truncate_partial_data_page(struct inode *inode, u64 from)
  193. {
  194. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  195. struct page *page;
  196. if (!offset)
  197. return;
  198. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT);
  199. if (IS_ERR(page))
  200. return;
  201. lock_page(page);
  202. wait_on_page_writeback(page);
  203. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  204. set_page_dirty(page);
  205. f2fs_put_page(page, 1);
  206. }
  207. static int truncate_blocks(struct inode *inode, u64 from)
  208. {
  209. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  210. unsigned int blocksize = inode->i_sb->s_blocksize;
  211. struct dnode_of_data dn;
  212. pgoff_t free_from;
  213. int count = 0;
  214. int err;
  215. free_from = (pgoff_t)
  216. ((from + blocksize - 1) >> (sbi->log_blocksize));
  217. mutex_lock_op(sbi, DATA_TRUNC);
  218. set_new_dnode(&dn, inode, NULL, NULL, 0);
  219. err = get_dnode_of_data(&dn, free_from, RDONLY_NODE);
  220. if (err) {
  221. if (err == -ENOENT)
  222. goto free_next;
  223. mutex_unlock_op(sbi, DATA_TRUNC);
  224. return err;
  225. }
  226. if (IS_INODE(dn.node_page))
  227. count = ADDRS_PER_INODE;
  228. else
  229. count = ADDRS_PER_BLOCK;
  230. count -= dn.ofs_in_node;
  231. BUG_ON(count < 0);
  232. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  233. truncate_data_blocks_range(&dn, count);
  234. free_from += count;
  235. }
  236. f2fs_put_dnode(&dn);
  237. free_next:
  238. err = truncate_inode_blocks(inode, free_from);
  239. mutex_unlock_op(sbi, DATA_TRUNC);
  240. /* lastly zero out the first data page */
  241. truncate_partial_data_page(inode, from);
  242. return err;
  243. }
  244. void f2fs_truncate(struct inode *inode)
  245. {
  246. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  247. S_ISLNK(inode->i_mode)))
  248. return;
  249. if (!truncate_blocks(inode, i_size_read(inode))) {
  250. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  251. mark_inode_dirty(inode);
  252. }
  253. }
  254. static int f2fs_getattr(struct vfsmount *mnt,
  255. struct dentry *dentry, struct kstat *stat)
  256. {
  257. struct inode *inode = dentry->d_inode;
  258. generic_fillattr(inode, stat);
  259. stat->blocks <<= 3;
  260. return 0;
  261. }
  262. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  263. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  264. {
  265. struct f2fs_inode_info *fi = F2FS_I(inode);
  266. unsigned int ia_valid = attr->ia_valid;
  267. if (ia_valid & ATTR_UID)
  268. inode->i_uid = attr->ia_uid;
  269. if (ia_valid & ATTR_GID)
  270. inode->i_gid = attr->ia_gid;
  271. if (ia_valid & ATTR_ATIME)
  272. inode->i_atime = timespec_trunc(attr->ia_atime,
  273. inode->i_sb->s_time_gran);
  274. if (ia_valid & ATTR_MTIME)
  275. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  276. inode->i_sb->s_time_gran);
  277. if (ia_valid & ATTR_CTIME)
  278. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  279. inode->i_sb->s_time_gran);
  280. if (ia_valid & ATTR_MODE) {
  281. umode_t mode = attr->ia_mode;
  282. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  283. mode &= ~S_ISGID;
  284. set_acl_inode(fi, mode);
  285. }
  286. }
  287. #else
  288. #define __setattr_copy setattr_copy
  289. #endif
  290. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  291. {
  292. struct inode *inode = dentry->d_inode;
  293. struct f2fs_inode_info *fi = F2FS_I(inode);
  294. int err;
  295. err = inode_change_ok(inode, attr);
  296. if (err)
  297. return err;
  298. if ((attr->ia_valid & ATTR_SIZE) &&
  299. attr->ia_size != i_size_read(inode)) {
  300. truncate_setsize(inode, attr->ia_size);
  301. f2fs_truncate(inode);
  302. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  303. }
  304. __setattr_copy(inode, attr);
  305. if (attr->ia_valid & ATTR_MODE) {
  306. err = f2fs_acl_chmod(inode);
  307. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  308. inode->i_mode = fi->i_acl_mode;
  309. clear_inode_flag(fi, FI_ACL_MODE);
  310. }
  311. }
  312. mark_inode_dirty(inode);
  313. return err;
  314. }
  315. const struct inode_operations f2fs_file_inode_operations = {
  316. .getattr = f2fs_getattr,
  317. .setattr = f2fs_setattr,
  318. .get_acl = f2fs_get_acl,
  319. #ifdef CONFIG_F2FS_FS_XATTR
  320. .setxattr = generic_setxattr,
  321. .getxattr = generic_getxattr,
  322. .listxattr = f2fs_listxattr,
  323. .removexattr = generic_removexattr,
  324. #endif
  325. };
  326. static void fill_zero(struct inode *inode, pgoff_t index,
  327. loff_t start, loff_t len)
  328. {
  329. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  330. struct page *page;
  331. if (!len)
  332. return;
  333. f2fs_balance_fs(sbi);
  334. mutex_lock_op(sbi, DATA_NEW);
  335. page = get_new_data_page(inode, index, false);
  336. mutex_unlock_op(sbi, DATA_NEW);
  337. if (!IS_ERR(page)) {
  338. wait_on_page_writeback(page);
  339. zero_user(page, start, len);
  340. set_page_dirty(page);
  341. f2fs_put_page(page, 1);
  342. }
  343. }
  344. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  345. {
  346. pgoff_t index;
  347. int err;
  348. for (index = pg_start; index < pg_end; index++) {
  349. struct dnode_of_data dn;
  350. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  351. f2fs_balance_fs(sbi);
  352. mutex_lock_op(sbi, DATA_TRUNC);
  353. set_new_dnode(&dn, inode, NULL, NULL, 0);
  354. err = get_dnode_of_data(&dn, index, RDONLY_NODE);
  355. if (err) {
  356. mutex_unlock_op(sbi, DATA_TRUNC);
  357. if (err == -ENOENT)
  358. continue;
  359. return err;
  360. }
  361. if (dn.data_blkaddr != NULL_ADDR)
  362. truncate_data_blocks_range(&dn, 1);
  363. f2fs_put_dnode(&dn);
  364. mutex_unlock_op(sbi, DATA_TRUNC);
  365. }
  366. return 0;
  367. }
  368. static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
  369. {
  370. pgoff_t pg_start, pg_end;
  371. loff_t off_start, off_end;
  372. int ret = 0;
  373. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  374. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  375. off_start = offset & (PAGE_CACHE_SIZE - 1);
  376. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  377. if (pg_start == pg_end) {
  378. fill_zero(inode, pg_start, off_start,
  379. off_end - off_start);
  380. } else {
  381. if (off_start)
  382. fill_zero(inode, pg_start++, off_start,
  383. PAGE_CACHE_SIZE - off_start);
  384. if (off_end)
  385. fill_zero(inode, pg_end, 0, off_end);
  386. if (pg_start < pg_end) {
  387. struct address_space *mapping = inode->i_mapping;
  388. loff_t blk_start, blk_end;
  389. blk_start = pg_start << PAGE_CACHE_SHIFT;
  390. blk_end = pg_end << PAGE_CACHE_SHIFT;
  391. truncate_inode_pages_range(mapping, blk_start,
  392. blk_end - 1);
  393. ret = truncate_hole(inode, pg_start, pg_end);
  394. }
  395. }
  396. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  397. i_size_read(inode) <= (offset + len)) {
  398. i_size_write(inode, offset);
  399. mark_inode_dirty(inode);
  400. }
  401. return ret;
  402. }
  403. static int expand_inode_data(struct inode *inode, loff_t offset,
  404. loff_t len, int mode)
  405. {
  406. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  407. pgoff_t index, pg_start, pg_end;
  408. loff_t new_size = i_size_read(inode);
  409. loff_t off_start, off_end;
  410. int ret = 0;
  411. ret = inode_newsize_ok(inode, (len + offset));
  412. if (ret)
  413. return ret;
  414. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  415. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  416. off_start = offset & (PAGE_CACHE_SIZE - 1);
  417. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  418. for (index = pg_start; index <= pg_end; index++) {
  419. struct dnode_of_data dn;
  420. mutex_lock_op(sbi, DATA_NEW);
  421. set_new_dnode(&dn, inode, NULL, NULL, 0);
  422. ret = get_dnode_of_data(&dn, index, 0);
  423. if (ret) {
  424. mutex_unlock_op(sbi, DATA_NEW);
  425. break;
  426. }
  427. if (dn.data_blkaddr == NULL_ADDR) {
  428. ret = reserve_new_block(&dn);
  429. if (ret) {
  430. f2fs_put_dnode(&dn);
  431. mutex_unlock_op(sbi, DATA_NEW);
  432. break;
  433. }
  434. }
  435. f2fs_put_dnode(&dn);
  436. mutex_unlock_op(sbi, DATA_NEW);
  437. if (pg_start == pg_end)
  438. new_size = offset + len;
  439. else if (index == pg_start && off_start)
  440. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  441. else if (index == pg_end)
  442. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  443. else
  444. new_size += PAGE_CACHE_SIZE;
  445. }
  446. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  447. i_size_read(inode) < new_size) {
  448. i_size_write(inode, new_size);
  449. mark_inode_dirty(inode);
  450. }
  451. return ret;
  452. }
  453. static long f2fs_fallocate(struct file *file, int mode,
  454. loff_t offset, loff_t len)
  455. {
  456. struct inode *inode = file->f_path.dentry->d_inode;
  457. long ret;
  458. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  459. return -EOPNOTSUPP;
  460. if (mode & FALLOC_FL_PUNCH_HOLE)
  461. ret = punch_hole(inode, offset, len, mode);
  462. else
  463. ret = expand_inode_data(inode, offset, len, mode);
  464. if (!ret) {
  465. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  466. mark_inode_dirty(inode);
  467. }
  468. return ret;
  469. }
  470. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  471. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  472. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  473. {
  474. if (S_ISDIR(mode))
  475. return flags;
  476. else if (S_ISREG(mode))
  477. return flags & F2FS_REG_FLMASK;
  478. else
  479. return flags & F2FS_OTHER_FLMASK;
  480. }
  481. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  482. {
  483. struct inode *inode = filp->f_dentry->d_inode;
  484. struct f2fs_inode_info *fi = F2FS_I(inode);
  485. unsigned int flags;
  486. int ret;
  487. switch (cmd) {
  488. case FS_IOC_GETFLAGS:
  489. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  490. return put_user(flags, (int __user *) arg);
  491. case FS_IOC_SETFLAGS:
  492. {
  493. unsigned int oldflags;
  494. ret = mnt_want_write(filp->f_path.mnt);
  495. if (ret)
  496. return ret;
  497. if (!inode_owner_or_capable(inode)) {
  498. ret = -EACCES;
  499. goto out;
  500. }
  501. if (get_user(flags, (int __user *) arg)) {
  502. ret = -EFAULT;
  503. goto out;
  504. }
  505. flags = f2fs_mask_flags(inode->i_mode, flags);
  506. mutex_lock(&inode->i_mutex);
  507. oldflags = fi->i_flags;
  508. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  509. if (!capable(CAP_LINUX_IMMUTABLE)) {
  510. mutex_unlock(&inode->i_mutex);
  511. ret = -EPERM;
  512. goto out;
  513. }
  514. }
  515. flags = flags & FS_FL_USER_MODIFIABLE;
  516. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  517. fi->i_flags = flags;
  518. mutex_unlock(&inode->i_mutex);
  519. f2fs_set_inode_flags(inode);
  520. inode->i_ctime = CURRENT_TIME;
  521. mark_inode_dirty(inode);
  522. out:
  523. mnt_drop_write(filp->f_path.mnt);
  524. return ret;
  525. }
  526. default:
  527. return -ENOTTY;
  528. }
  529. }
  530. const struct file_operations f2fs_file_operations = {
  531. .llseek = generic_file_llseek,
  532. .read = do_sync_read,
  533. .write = do_sync_write,
  534. .aio_read = generic_file_aio_read,
  535. .aio_write = generic_file_aio_write,
  536. .open = generic_file_open,
  537. .mmap = f2fs_file_mmap,
  538. .fsync = f2fs_sync_file,
  539. .fallocate = f2fs_fallocate,
  540. .unlocked_ioctl = f2fs_ioctl,
  541. .splice_read = generic_file_splice_read,
  542. .splice_write = generic_file_splice_write,
  543. };