voyager_smp.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991
  1. /* -*- mode: c; c-basic-offset: 8 -*- */
  2. /* Copyright (C) 1999,2001
  3. *
  4. * Author: J.E.J.Bottomley@HansenPartnership.com
  5. *
  6. * linux/arch/i386/kernel/voyager_smp.c
  7. *
  8. * This file provides all the same external entries as smp.c but uses
  9. * the voyager hal to provide the functionality
  10. */
  11. #include <linux/module.h>
  12. #include <linux/mm.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/delay.h>
  15. #include <linux/mc146818rtc.h>
  16. #include <linux/cache.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/smp_lock.h>
  19. #include <linux/init.h>
  20. #include <linux/kernel.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/completion.h>
  23. #include <asm/desc.h>
  24. #include <asm/voyager.h>
  25. #include <asm/vic.h>
  26. #include <asm/mtrr.h>
  27. #include <asm/pgalloc.h>
  28. #include <asm/tlbflush.h>
  29. #include <asm/arch_hooks.h>
  30. #include <asm/pda.h>
  31. /* TLB state -- visible externally, indexed physically */
  32. DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0 };
  33. /* CPU IRQ affinity -- set to all ones initially */
  34. static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1] = ~0UL };
  35. /* per CPU data structure (for /proc/cpuinfo et al), visible externally
  36. * indexed physically */
  37. struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
  38. EXPORT_SYMBOL(cpu_data);
  39. /* physical ID of the CPU used to boot the system */
  40. unsigned char boot_cpu_id;
  41. /* The memory line addresses for the Quad CPIs */
  42. struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
  43. /* The masks for the Extended VIC processors, filled in by cat_init */
  44. __u32 voyager_extended_vic_processors = 0;
  45. /* Masks for the extended Quad processors which cannot be VIC booted */
  46. __u32 voyager_allowed_boot_processors = 0;
  47. /* The mask for the Quad Processors (both extended and non-extended) */
  48. __u32 voyager_quad_processors = 0;
  49. /* Total count of live CPUs, used in process.c to display
  50. * the CPU information and in irq.c for the per CPU irq
  51. * activity count. Finally exported by i386_ksyms.c */
  52. static int voyager_extended_cpus = 1;
  53. /* Have we found an SMP box - used by time.c to do the profiling
  54. interrupt for timeslicing; do not set to 1 until the per CPU timer
  55. interrupt is active */
  56. int smp_found_config = 0;
  57. /* Used for the invalidate map that's also checked in the spinlock */
  58. static volatile unsigned long smp_invalidate_needed;
  59. /* Bitmask of currently online CPUs - used by setup.c for
  60. /proc/cpuinfo, visible externally but still physical */
  61. cpumask_t cpu_online_map = CPU_MASK_NONE;
  62. EXPORT_SYMBOL(cpu_online_map);
  63. /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
  64. * by scheduler but indexed physically */
  65. cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
  66. /* The internal functions */
  67. static void send_CPI(__u32 cpuset, __u8 cpi);
  68. static void ack_CPI(__u8 cpi);
  69. static int ack_QIC_CPI(__u8 cpi);
  70. static void ack_special_QIC_CPI(__u8 cpi);
  71. static void ack_VIC_CPI(__u8 cpi);
  72. static void send_CPI_allbutself(__u8 cpi);
  73. static void mask_vic_irq(unsigned int irq);
  74. static void unmask_vic_irq(unsigned int irq);
  75. static unsigned int startup_vic_irq(unsigned int irq);
  76. static void enable_local_vic_irq(unsigned int irq);
  77. static void disable_local_vic_irq(unsigned int irq);
  78. static void before_handle_vic_irq(unsigned int irq);
  79. static void after_handle_vic_irq(unsigned int irq);
  80. static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
  81. static void ack_vic_irq(unsigned int irq);
  82. static void vic_enable_cpi(void);
  83. static void do_boot_cpu(__u8 cpuid);
  84. static void do_quad_bootstrap(void);
  85. int hard_smp_processor_id(void);
  86. int safe_smp_processor_id(void);
  87. /* Inline functions */
  88. static inline void
  89. send_one_QIC_CPI(__u8 cpu, __u8 cpi)
  90. {
  91. voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
  92. (smp_processor_id() << 16) + cpi;
  93. }
  94. static inline void
  95. send_QIC_CPI(__u32 cpuset, __u8 cpi)
  96. {
  97. int cpu;
  98. for_each_online_cpu(cpu) {
  99. if(cpuset & (1<<cpu)) {
  100. #ifdef VOYAGER_DEBUG
  101. if(!cpu_isset(cpu, cpu_online_map))
  102. VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu));
  103. #endif
  104. send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
  105. }
  106. }
  107. }
  108. static inline void
  109. wrapper_smp_local_timer_interrupt(void)
  110. {
  111. irq_enter();
  112. smp_local_timer_interrupt();
  113. irq_exit();
  114. }
  115. static inline void
  116. send_one_CPI(__u8 cpu, __u8 cpi)
  117. {
  118. if(voyager_quad_processors & (1<<cpu))
  119. send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
  120. else
  121. send_CPI(1<<cpu, cpi);
  122. }
  123. static inline void
  124. send_CPI_allbutself(__u8 cpi)
  125. {
  126. __u8 cpu = smp_processor_id();
  127. __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
  128. send_CPI(mask, cpi);
  129. }
  130. static inline int
  131. is_cpu_quad(void)
  132. {
  133. __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
  134. return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
  135. }
  136. static inline int
  137. is_cpu_extended(void)
  138. {
  139. __u8 cpu = hard_smp_processor_id();
  140. return(voyager_extended_vic_processors & (1<<cpu));
  141. }
  142. static inline int
  143. is_cpu_vic_boot(void)
  144. {
  145. __u8 cpu = hard_smp_processor_id();
  146. return(voyager_extended_vic_processors
  147. & voyager_allowed_boot_processors & (1<<cpu));
  148. }
  149. static inline void
  150. ack_CPI(__u8 cpi)
  151. {
  152. switch(cpi) {
  153. case VIC_CPU_BOOT_CPI:
  154. if(is_cpu_quad() && !is_cpu_vic_boot())
  155. ack_QIC_CPI(cpi);
  156. else
  157. ack_VIC_CPI(cpi);
  158. break;
  159. case VIC_SYS_INT:
  160. case VIC_CMN_INT:
  161. /* These are slightly strange. Even on the Quad card,
  162. * They are vectored as VIC CPIs */
  163. if(is_cpu_quad())
  164. ack_special_QIC_CPI(cpi);
  165. else
  166. ack_VIC_CPI(cpi);
  167. break;
  168. default:
  169. printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
  170. break;
  171. }
  172. }
  173. /* local variables */
  174. /* The VIC IRQ descriptors -- these look almost identical to the
  175. * 8259 IRQs except that masks and things must be kept per processor
  176. */
  177. static struct irq_chip vic_chip = {
  178. .name = "VIC",
  179. .startup = startup_vic_irq,
  180. .mask = mask_vic_irq,
  181. .unmask = unmask_vic_irq,
  182. .set_affinity = set_vic_irq_affinity,
  183. };
  184. /* used to count up as CPUs are brought on line (starts at 0) */
  185. static int cpucount = 0;
  186. /* steal a page from the bottom of memory for the trampoline and
  187. * squirrel its address away here. This will be in kernel virtual
  188. * space */
  189. static __u32 trampoline_base;
  190. /* The per cpu profile stuff - used in smp_local_timer_interrupt */
  191. static DEFINE_PER_CPU(int, prof_multiplier) = 1;
  192. static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
  193. static DEFINE_PER_CPU(int, prof_counter) = 1;
  194. /* the map used to check if a CPU has booted */
  195. static __u32 cpu_booted_map;
  196. /* the synchronize flag used to hold all secondary CPUs spinning in
  197. * a tight loop until the boot sequence is ready for them */
  198. static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
  199. /* This is for the new dynamic CPU boot code */
  200. cpumask_t cpu_callin_map = CPU_MASK_NONE;
  201. cpumask_t cpu_callout_map = CPU_MASK_NONE;
  202. EXPORT_SYMBOL(cpu_callout_map);
  203. cpumask_t cpu_possible_map = CPU_MASK_NONE;
  204. EXPORT_SYMBOL(cpu_possible_map);
  205. /* The per processor IRQ masks (these are usually kept in sync) */
  206. static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
  207. /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
  208. static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
  209. /* Lock for enable/disable of VIC interrupts */
  210. static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
  211. /* The boot processor is correctly set up in PC mode when it
  212. * comes up, but the secondaries need their master/slave 8259
  213. * pairs initializing correctly */
  214. /* Interrupt counters (per cpu) and total - used to try to
  215. * even up the interrupt handling routines */
  216. static long vic_intr_total = 0;
  217. static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
  218. static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
  219. /* Since we can only use CPI0, we fake all the other CPIs */
  220. static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
  221. /* debugging routine to read the isr of the cpu's pic */
  222. static inline __u16
  223. vic_read_isr(void)
  224. {
  225. __u16 isr;
  226. outb(0x0b, 0xa0);
  227. isr = inb(0xa0) << 8;
  228. outb(0x0b, 0x20);
  229. isr |= inb(0x20);
  230. return isr;
  231. }
  232. static __init void
  233. qic_setup(void)
  234. {
  235. if(!is_cpu_quad()) {
  236. /* not a quad, no setup */
  237. return;
  238. }
  239. outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
  240. outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
  241. if(is_cpu_extended()) {
  242. /* the QIC duplicate of the VIC base register */
  243. outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
  244. outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
  245. /* FIXME: should set up the QIC timer and memory parity
  246. * error vectors here */
  247. }
  248. }
  249. static __init void
  250. vic_setup_pic(void)
  251. {
  252. outb(1, VIC_REDIRECT_REGISTER_1);
  253. /* clear the claim registers for dynamic routing */
  254. outb(0, VIC_CLAIM_REGISTER_0);
  255. outb(0, VIC_CLAIM_REGISTER_1);
  256. outb(0, VIC_PRIORITY_REGISTER);
  257. /* Set the Primary and Secondary Microchannel vector
  258. * bases to be the same as the ordinary interrupts
  259. *
  260. * FIXME: This would be more efficient using separate
  261. * vectors. */
  262. outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
  263. outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
  264. /* Now initiallise the master PIC belonging to this CPU by
  265. * sending the four ICWs */
  266. /* ICW1: level triggered, ICW4 needed */
  267. outb(0x19, 0x20);
  268. /* ICW2: vector base */
  269. outb(FIRST_EXTERNAL_VECTOR, 0x21);
  270. /* ICW3: slave at line 2 */
  271. outb(0x04, 0x21);
  272. /* ICW4: 8086 mode */
  273. outb(0x01, 0x21);
  274. /* now the same for the slave PIC */
  275. /* ICW1: level trigger, ICW4 needed */
  276. outb(0x19, 0xA0);
  277. /* ICW2: slave vector base */
  278. outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
  279. /* ICW3: slave ID */
  280. outb(0x02, 0xA1);
  281. /* ICW4: 8086 mode */
  282. outb(0x01, 0xA1);
  283. }
  284. static void
  285. do_quad_bootstrap(void)
  286. {
  287. if(is_cpu_quad() && is_cpu_vic_boot()) {
  288. int i;
  289. unsigned long flags;
  290. __u8 cpuid = hard_smp_processor_id();
  291. local_irq_save(flags);
  292. for(i = 0; i<4; i++) {
  293. /* FIXME: this would be >>3 &0x7 on the 32 way */
  294. if(((cpuid >> 2) & 0x03) == i)
  295. /* don't lower our own mask! */
  296. continue;
  297. /* masquerade as local Quad CPU */
  298. outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
  299. /* enable the startup CPI */
  300. outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
  301. /* restore cpu id */
  302. outb(0, QIC_PROCESSOR_ID);
  303. }
  304. local_irq_restore(flags);
  305. }
  306. }
  307. /* Set up all the basic stuff: read the SMP config and make all the
  308. * SMP information reflect only the boot cpu. All others will be
  309. * brought on-line later. */
  310. void __init
  311. find_smp_config(void)
  312. {
  313. int i;
  314. boot_cpu_id = hard_smp_processor_id();
  315. printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
  316. /* initialize the CPU structures (moved from smp_boot_cpus) */
  317. for(i=0; i<NR_CPUS; i++) {
  318. cpu_irq_affinity[i] = ~0;
  319. }
  320. cpu_online_map = cpumask_of_cpu(boot_cpu_id);
  321. /* The boot CPU must be extended */
  322. voyager_extended_vic_processors = 1<<boot_cpu_id;
  323. /* initially, all of the first 8 cpu's can boot */
  324. voyager_allowed_boot_processors = 0xff;
  325. /* set up everything for just this CPU, we can alter
  326. * this as we start the other CPUs later */
  327. /* now get the CPU disposition from the extended CMOS */
  328. cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
  329. cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
  330. cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16;
  331. cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24;
  332. cpu_possible_map = phys_cpu_present_map;
  333. printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]);
  334. /* Here we set up the VIC to enable SMP */
  335. /* enable the CPIs by writing the base vector to their register */
  336. outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
  337. outb(1, VIC_REDIRECT_REGISTER_1);
  338. /* set the claim registers for static routing --- Boot CPU gets
  339. * all interrupts untill all other CPUs started */
  340. outb(0xff, VIC_CLAIM_REGISTER_0);
  341. outb(0xff, VIC_CLAIM_REGISTER_1);
  342. /* Set the Primary and Secondary Microchannel vector
  343. * bases to be the same as the ordinary interrupts
  344. *
  345. * FIXME: This would be more efficient using separate
  346. * vectors. */
  347. outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
  348. outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
  349. /* Finally tell the firmware that we're driving */
  350. outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
  351. VOYAGER_SUS_IN_CONTROL_PORT);
  352. current_thread_info()->cpu = boot_cpu_id;
  353. write_pda(cpu_number, boot_cpu_id);
  354. }
  355. /*
  356. * The bootstrap kernel entry code has set these up. Save them
  357. * for a given CPU, id is physical */
  358. void __init
  359. smp_store_cpu_info(int id)
  360. {
  361. struct cpuinfo_x86 *c=&cpu_data[id];
  362. *c = boot_cpu_data;
  363. identify_cpu(c);
  364. }
  365. /* set up the trampoline and return the physical address of the code */
  366. static __u32 __init
  367. setup_trampoline(void)
  368. {
  369. /* these two are global symbols in trampoline.S */
  370. extern __u8 trampoline_end[];
  371. extern __u8 trampoline_data[];
  372. memcpy((__u8 *)trampoline_base, trampoline_data,
  373. trampoline_end - trampoline_data);
  374. return virt_to_phys((__u8 *)trampoline_base);
  375. }
  376. /* Routine initially called when a non-boot CPU is brought online */
  377. static void __init
  378. start_secondary(void *unused)
  379. {
  380. __u8 cpuid = hard_smp_processor_id();
  381. /* external functions not defined in the headers */
  382. extern void calibrate_delay(void);
  383. secondary_cpu_init();
  384. /* OK, we're in the routine */
  385. ack_CPI(VIC_CPU_BOOT_CPI);
  386. /* setup the 8259 master slave pair belonging to this CPU ---
  387. * we won't actually receive any until the boot CPU
  388. * relinquishes it's static routing mask */
  389. vic_setup_pic();
  390. qic_setup();
  391. if(is_cpu_quad() && !is_cpu_vic_boot()) {
  392. /* clear the boot CPI */
  393. __u8 dummy;
  394. dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
  395. printk("read dummy %d\n", dummy);
  396. }
  397. /* lower the mask to receive CPIs */
  398. vic_enable_cpi();
  399. VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
  400. /* enable interrupts */
  401. local_irq_enable();
  402. /* get our bogomips */
  403. calibrate_delay();
  404. /* save our processor parameters */
  405. smp_store_cpu_info(cpuid);
  406. /* if we're a quad, we may need to bootstrap other CPUs */
  407. do_quad_bootstrap();
  408. /* FIXME: this is rather a poor hack to prevent the CPU
  409. * activating softirqs while it's supposed to be waiting for
  410. * permission to proceed. Without this, the new per CPU stuff
  411. * in the softirqs will fail */
  412. local_irq_disable();
  413. cpu_set(cpuid, cpu_callin_map);
  414. /* signal that we're done */
  415. cpu_booted_map = 1;
  416. while (!cpu_isset(cpuid, smp_commenced_mask))
  417. rep_nop();
  418. local_irq_enable();
  419. local_flush_tlb();
  420. cpu_set(cpuid, cpu_online_map);
  421. wmb();
  422. cpu_idle();
  423. }
  424. /* Routine to kick start the given CPU and wait for it to report ready
  425. * (or timeout in startup). When this routine returns, the requested
  426. * CPU is either fully running and configured or known to be dead.
  427. *
  428. * We call this routine sequentially 1 CPU at a time, so no need for
  429. * locking */
  430. static void __init
  431. do_boot_cpu(__u8 cpu)
  432. {
  433. struct task_struct *idle;
  434. int timeout;
  435. unsigned long flags;
  436. int quad_boot = (1<<cpu) & voyager_quad_processors
  437. & ~( voyager_extended_vic_processors
  438. & voyager_allowed_boot_processors);
  439. /* This is an area in head.S which was used to set up the
  440. * initial kernel stack. We need to alter this to give the
  441. * booting CPU a new stack (taken from its idle process) */
  442. extern struct {
  443. __u8 *esp;
  444. unsigned short ss;
  445. } stack_start;
  446. /* This is the format of the CPI IDT gate (in real mode) which
  447. * we're hijacking to boot the CPU */
  448. union IDTFormat {
  449. struct seg {
  450. __u16 Offset;
  451. __u16 Segment;
  452. } idt;
  453. __u32 val;
  454. } hijack_source;
  455. __u32 *hijack_vector;
  456. __u32 start_phys_address = setup_trampoline();
  457. /* There's a clever trick to this: The linux trampoline is
  458. * compiled to begin at absolute location zero, so make the
  459. * address zero but have the data segment selector compensate
  460. * for the actual address */
  461. hijack_source.idt.Offset = start_phys_address & 0x000F;
  462. hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
  463. cpucount++;
  464. alternatives_smp_switch(1);
  465. idle = fork_idle(cpu);
  466. if(IS_ERR(idle))
  467. panic("failed fork for CPU%d", cpu);
  468. idle->thread.eip = (unsigned long) start_secondary;
  469. /* init_tasks (in sched.c) is indexed logically */
  470. stack_start.esp = (void *) idle->thread.esp;
  471. /* Pre-allocate and initialize the CPU's GDT and PDA so it
  472. doesn't have to do any memory allocation during the
  473. delicate CPU-bringup phase. */
  474. if (!init_gdt(cpu, idle)) {
  475. printk(KERN_INFO "Couldn't allocate GDT/PDA for CPU %d\n", cpu);
  476. cpucount--;
  477. return;
  478. }
  479. irq_ctx_init(cpu);
  480. /* Note: Don't modify initial ss override */
  481. VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
  482. (unsigned long)hijack_source.val, hijack_source.idt.Segment,
  483. hijack_source.idt.Offset, stack_start.esp));
  484. /* init lowmem identity mapping */
  485. clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
  486. min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
  487. flush_tlb_all();
  488. if(quad_boot) {
  489. printk("CPU %d: non extended Quad boot\n", cpu);
  490. hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4);
  491. *hijack_vector = hijack_source.val;
  492. } else {
  493. printk("CPU%d: extended VIC boot\n", cpu);
  494. hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4);
  495. *hijack_vector = hijack_source.val;
  496. /* VIC errata, may also receive interrupt at this address */
  497. hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4);
  498. *hijack_vector = hijack_source.val;
  499. }
  500. /* All non-boot CPUs start with interrupts fully masked. Need
  501. * to lower the mask of the CPI we're about to send. We do
  502. * this in the VIC by masquerading as the processor we're
  503. * about to boot and lowering its interrupt mask */
  504. local_irq_save(flags);
  505. if(quad_boot) {
  506. send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
  507. } else {
  508. outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
  509. /* here we're altering registers belonging to `cpu' */
  510. outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
  511. /* now go back to our original identity */
  512. outb(boot_cpu_id, VIC_PROCESSOR_ID);
  513. /* and boot the CPU */
  514. send_CPI((1<<cpu), VIC_CPU_BOOT_CPI);
  515. }
  516. cpu_booted_map = 0;
  517. local_irq_restore(flags);
  518. /* now wait for it to become ready (or timeout) */
  519. for(timeout = 0; timeout < 50000; timeout++) {
  520. if(cpu_booted_map)
  521. break;
  522. udelay(100);
  523. }
  524. /* reset the page table */
  525. zap_low_mappings();
  526. if (cpu_booted_map) {
  527. VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
  528. cpu, smp_processor_id()));
  529. printk("CPU%d: ", cpu);
  530. print_cpu_info(&cpu_data[cpu]);
  531. wmb();
  532. cpu_set(cpu, cpu_callout_map);
  533. cpu_set(cpu, cpu_present_map);
  534. }
  535. else {
  536. printk("CPU%d FAILED TO BOOT: ", cpu);
  537. if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5)
  538. printk("Stuck.\n");
  539. else
  540. printk("Not responding.\n");
  541. cpucount--;
  542. }
  543. }
  544. void __init
  545. smp_boot_cpus(void)
  546. {
  547. int i;
  548. /* CAT BUS initialisation must be done after the memory */
  549. /* FIXME: The L4 has a catbus too, it just needs to be
  550. * accessed in a totally different way */
  551. if(voyager_level == 5) {
  552. voyager_cat_init();
  553. /* now that the cat has probed the Voyager System Bus, sanity
  554. * check the cpu map */
  555. if( ((voyager_quad_processors | voyager_extended_vic_processors)
  556. & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) {
  557. /* should panic */
  558. printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
  559. }
  560. } else if(voyager_level == 4)
  561. voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0];
  562. /* this sets up the idle task to run on the current cpu */
  563. voyager_extended_cpus = 1;
  564. /* Remove the global_irq_holder setting, it triggers a BUG() on
  565. * schedule at the moment */
  566. //global_irq_holder = boot_cpu_id;
  567. /* FIXME: Need to do something about this but currently only works
  568. * on CPUs with a tsc which none of mine have.
  569. smp_tune_scheduling();
  570. */
  571. smp_store_cpu_info(boot_cpu_id);
  572. printk("CPU%d: ", boot_cpu_id);
  573. print_cpu_info(&cpu_data[boot_cpu_id]);
  574. if(is_cpu_quad()) {
  575. /* booting on a Quad CPU */
  576. printk("VOYAGER SMP: Boot CPU is Quad\n");
  577. qic_setup();
  578. do_quad_bootstrap();
  579. }
  580. /* enable our own CPIs */
  581. vic_enable_cpi();
  582. cpu_set(boot_cpu_id, cpu_online_map);
  583. cpu_set(boot_cpu_id, cpu_callout_map);
  584. /* loop over all the extended VIC CPUs and boot them. The
  585. * Quad CPUs must be bootstrapped by their extended VIC cpu */
  586. for(i = 0; i < NR_CPUS; i++) {
  587. if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
  588. continue;
  589. do_boot_cpu(i);
  590. /* This udelay seems to be needed for the Quad boots
  591. * don't remove unless you know what you're doing */
  592. udelay(1000);
  593. }
  594. /* we could compute the total bogomips here, but why bother?,
  595. * Code added from smpboot.c */
  596. {
  597. unsigned long bogosum = 0;
  598. for (i = 0; i < NR_CPUS; i++)
  599. if (cpu_isset(i, cpu_online_map))
  600. bogosum += cpu_data[i].loops_per_jiffy;
  601. printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  602. cpucount+1,
  603. bogosum/(500000/HZ),
  604. (bogosum/(5000/HZ))%100);
  605. }
  606. voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
  607. printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus);
  608. /* that's it, switch to symmetric mode */
  609. outb(0, VIC_PRIORITY_REGISTER);
  610. outb(0, VIC_CLAIM_REGISTER_0);
  611. outb(0, VIC_CLAIM_REGISTER_1);
  612. VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
  613. }
  614. /* Reload the secondary CPUs task structure (this function does not
  615. * return ) */
  616. void __init
  617. initialize_secondary(void)
  618. {
  619. #if 0
  620. // AC kernels only
  621. set_current(hard_get_current());
  622. #endif
  623. /*
  624. * switch to the per CPU GDT we already set up
  625. * in do_boot_cpu()
  626. */
  627. cpu_set_gdt(current_thread_info()->cpu);
  628. /*
  629. * We don't actually need to load the full TSS,
  630. * basically just the stack pointer and the eip.
  631. */
  632. asm volatile(
  633. "movl %0,%%esp\n\t"
  634. "jmp *%1"
  635. :
  636. :"r" (current->thread.esp),"r" (current->thread.eip));
  637. }
  638. /* handle a Voyager SYS_INT -- If we don't, the base board will
  639. * panic the system.
  640. *
  641. * System interrupts occur because some problem was detected on the
  642. * various busses. To find out what you have to probe all the
  643. * hardware via the CAT bus. FIXME: At the moment we do nothing. */
  644. fastcall void
  645. smp_vic_sys_interrupt(struct pt_regs *regs)
  646. {
  647. ack_CPI(VIC_SYS_INT);
  648. printk("Voyager SYSTEM INTERRUPT\n");
  649. }
  650. /* Handle a voyager CMN_INT; These interrupts occur either because of
  651. * a system status change or because a single bit memory error
  652. * occurred. FIXME: At the moment, ignore all this. */
  653. fastcall void
  654. smp_vic_cmn_interrupt(struct pt_regs *regs)
  655. {
  656. static __u8 in_cmn_int = 0;
  657. static DEFINE_SPINLOCK(cmn_int_lock);
  658. /* common ints are broadcast, so make sure we only do this once */
  659. _raw_spin_lock(&cmn_int_lock);
  660. if(in_cmn_int)
  661. goto unlock_end;
  662. in_cmn_int++;
  663. _raw_spin_unlock(&cmn_int_lock);
  664. VDEBUG(("Voyager COMMON INTERRUPT\n"));
  665. if(voyager_level == 5)
  666. voyager_cat_do_common_interrupt();
  667. _raw_spin_lock(&cmn_int_lock);
  668. in_cmn_int = 0;
  669. unlock_end:
  670. _raw_spin_unlock(&cmn_int_lock);
  671. ack_CPI(VIC_CMN_INT);
  672. }
  673. /*
  674. * Reschedule call back. Nothing to do, all the work is done
  675. * automatically when we return from the interrupt. */
  676. static void
  677. smp_reschedule_interrupt(void)
  678. {
  679. /* do nothing */
  680. }
  681. static struct mm_struct * flush_mm;
  682. static unsigned long flush_va;
  683. static DEFINE_SPINLOCK(tlbstate_lock);
  684. #define FLUSH_ALL 0xffffffff
  685. /*
  686. * We cannot call mmdrop() because we are in interrupt context,
  687. * instead update mm->cpu_vm_mask.
  688. *
  689. * We need to reload %cr3 since the page tables may be going
  690. * away from under us..
  691. */
  692. static inline void
  693. leave_mm (unsigned long cpu)
  694. {
  695. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
  696. BUG();
  697. cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
  698. load_cr3(swapper_pg_dir);
  699. }
  700. /*
  701. * Invalidate call-back
  702. */
  703. static void
  704. smp_invalidate_interrupt(void)
  705. {
  706. __u8 cpu = smp_processor_id();
  707. if (!test_bit(cpu, &smp_invalidate_needed))
  708. return;
  709. /* This will flood messages. Don't uncomment unless you see
  710. * Problems with cross cpu invalidation
  711. VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
  712. smp_processor_id()));
  713. */
  714. if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
  715. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
  716. if (flush_va == FLUSH_ALL)
  717. local_flush_tlb();
  718. else
  719. __flush_tlb_one(flush_va);
  720. } else
  721. leave_mm(cpu);
  722. }
  723. smp_mb__before_clear_bit();
  724. clear_bit(cpu, &smp_invalidate_needed);
  725. smp_mb__after_clear_bit();
  726. }
  727. /* All the new flush operations for 2.4 */
  728. /* This routine is called with a physical cpu mask */
  729. static void
  730. flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
  731. unsigned long va)
  732. {
  733. int stuck = 50000;
  734. if (!cpumask)
  735. BUG();
  736. if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
  737. BUG();
  738. if (cpumask & (1 << smp_processor_id()))
  739. BUG();
  740. if (!mm)
  741. BUG();
  742. spin_lock(&tlbstate_lock);
  743. flush_mm = mm;
  744. flush_va = va;
  745. atomic_set_mask(cpumask, &smp_invalidate_needed);
  746. /*
  747. * We have to send the CPI only to
  748. * CPUs affected.
  749. */
  750. send_CPI(cpumask, VIC_INVALIDATE_CPI);
  751. while (smp_invalidate_needed) {
  752. mb();
  753. if(--stuck == 0) {
  754. printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
  755. break;
  756. }
  757. }
  758. /* Uncomment only to debug invalidation problems
  759. VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
  760. */
  761. flush_mm = NULL;
  762. flush_va = 0;
  763. spin_unlock(&tlbstate_lock);
  764. }
  765. void
  766. flush_tlb_current_task(void)
  767. {
  768. struct mm_struct *mm = current->mm;
  769. unsigned long cpu_mask;
  770. preempt_disable();
  771. cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
  772. local_flush_tlb();
  773. if (cpu_mask)
  774. flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
  775. preempt_enable();
  776. }
  777. void
  778. flush_tlb_mm (struct mm_struct * mm)
  779. {
  780. unsigned long cpu_mask;
  781. preempt_disable();
  782. cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
  783. if (current->active_mm == mm) {
  784. if (current->mm)
  785. local_flush_tlb();
  786. else
  787. leave_mm(smp_processor_id());
  788. }
  789. if (cpu_mask)
  790. flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
  791. preempt_enable();
  792. }
  793. void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
  794. {
  795. struct mm_struct *mm = vma->vm_mm;
  796. unsigned long cpu_mask;
  797. preempt_disable();
  798. cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
  799. if (current->active_mm == mm) {
  800. if(current->mm)
  801. __flush_tlb_one(va);
  802. else
  803. leave_mm(smp_processor_id());
  804. }
  805. if (cpu_mask)
  806. flush_tlb_others(cpu_mask, mm, va);
  807. preempt_enable();
  808. }
  809. EXPORT_SYMBOL(flush_tlb_page);
  810. /* enable the requested IRQs */
  811. static void
  812. smp_enable_irq_interrupt(void)
  813. {
  814. __u8 irq;
  815. __u8 cpu = get_cpu();
  816. VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
  817. vic_irq_enable_mask[cpu]));
  818. spin_lock(&vic_irq_lock);
  819. for(irq = 0; irq < 16; irq++) {
  820. if(vic_irq_enable_mask[cpu] & (1<<irq))
  821. enable_local_vic_irq(irq);
  822. }
  823. vic_irq_enable_mask[cpu] = 0;
  824. spin_unlock(&vic_irq_lock);
  825. put_cpu_no_resched();
  826. }
  827. /*
  828. * CPU halt call-back
  829. */
  830. static void
  831. smp_stop_cpu_function(void *dummy)
  832. {
  833. VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
  834. cpu_clear(smp_processor_id(), cpu_online_map);
  835. local_irq_disable();
  836. for(;;)
  837. halt();
  838. }
  839. static DEFINE_SPINLOCK(call_lock);
  840. struct call_data_struct {
  841. void (*func) (void *info);
  842. void *info;
  843. volatile unsigned long started;
  844. volatile unsigned long finished;
  845. int wait;
  846. };
  847. static struct call_data_struct * call_data;
  848. /* execute a thread on a new CPU. The function to be called must be
  849. * previously set up. This is used to schedule a function for
  850. * execution on all CPU's - set up the function then broadcast a
  851. * function_interrupt CPI to come here on each CPU */
  852. static void
  853. smp_call_function_interrupt(void)
  854. {
  855. void (*func) (void *info) = call_data->func;
  856. void *info = call_data->info;
  857. /* must take copy of wait because call_data may be replaced
  858. * unless the function is waiting for us to finish */
  859. int wait = call_data->wait;
  860. __u8 cpu = smp_processor_id();
  861. /*
  862. * Notify initiating CPU that I've grabbed the data and am
  863. * about to execute the function
  864. */
  865. mb();
  866. if(!test_and_clear_bit(cpu, &call_data->started)) {
  867. /* If the bit wasn't set, this could be a replay */
  868. printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu);
  869. return;
  870. }
  871. /*
  872. * At this point the info structure may be out of scope unless wait==1
  873. */
  874. irq_enter();
  875. (*func)(info);
  876. irq_exit();
  877. if (wait) {
  878. mb();
  879. clear_bit(cpu, &call_data->finished);
  880. }
  881. }
  882. static int
  883. __smp_call_function_mask (void (*func) (void *info), void *info, int retry,
  884. int wait, __u32 mask)
  885. {
  886. struct call_data_struct data;
  887. mask &= ~(1<<smp_processor_id());
  888. if (!mask)
  889. return 0;
  890. /* Can deadlock when called with interrupts disabled */
  891. WARN_ON(irqs_disabled());
  892. data.func = func;
  893. data.info = info;
  894. data.started = mask;
  895. data.wait = wait;
  896. if (wait)
  897. data.finished = mask;
  898. spin_lock(&call_lock);
  899. call_data = &data;
  900. wmb();
  901. /* Send a message to all other CPUs and wait for them to respond */
  902. send_CPI(mask, VIC_CALL_FUNCTION_CPI);
  903. /* Wait for response */
  904. while (data.started)
  905. barrier();
  906. if (wait)
  907. while (data.finished)
  908. barrier();
  909. spin_unlock(&call_lock);
  910. return 0;
  911. }
  912. /* Call this function on all CPUs using the function_interrupt above
  913. <func> The function to run. This must be fast and non-blocking.
  914. <info> An arbitrary pointer to pass to the function.
  915. <retry> If true, keep retrying until ready.
  916. <wait> If true, wait until function has completed on other CPUs.
  917. [RETURNS] 0 on success, else a negative status code. Does not return until
  918. remote CPUs are nearly ready to execute <<func>> or are or have executed.
  919. */
  920. int
  921. smp_call_function(void (*func) (void *info), void *info, int retry,
  922. int wait)
  923. {
  924. __u32 mask = cpus_addr(cpu_online_map)[0];
  925. return __smp_call_function_mask(func, info, retry, wait, mask);
  926. }
  927. EXPORT_SYMBOL(smp_call_function);
  928. /*
  929. * smp_call_function_single - Run a function on another CPU
  930. * @func: The function to run. This must be fast and non-blocking.
  931. * @info: An arbitrary pointer to pass to the function.
  932. * @nonatomic: Currently unused.
  933. * @wait: If true, wait until function has completed on other CPUs.
  934. *
  935. * Retrurns 0 on success, else a negative status code.
  936. *
  937. * Does not return until the remote CPU is nearly ready to execute <func>
  938. * or is or has executed.
  939. */
  940. int
  941. smp_call_function_single(int cpu, void (*func) (void *info), void *info,
  942. int nonatomic, int wait)
  943. {
  944. __u32 mask = 1 << cpu;
  945. return __smp_call_function_mask(func, info, nonatomic, wait, mask);
  946. }
  947. EXPORT_SYMBOL(smp_call_function_single);
  948. /* Sorry about the name. In an APIC based system, the APICs
  949. * themselves are programmed to send a timer interrupt. This is used
  950. * by linux to reschedule the processor. Voyager doesn't have this,
  951. * so we use the system clock to interrupt one processor, which in
  952. * turn, broadcasts a timer CPI to all the others --- we receive that
  953. * CPI here. We don't use this actually for counting so losing
  954. * ticks doesn't matter
  955. *
  956. * FIXME: For those CPU's which actually have a local APIC, we could
  957. * try to use it to trigger this interrupt instead of having to
  958. * broadcast the timer tick. Unfortunately, all my pentium DYADs have
  959. * no local APIC, so I can't do this
  960. *
  961. * This function is currently a placeholder and is unused in the code */
  962. fastcall void
  963. smp_apic_timer_interrupt(struct pt_regs *regs)
  964. {
  965. struct pt_regs *old_regs = set_irq_regs(regs);
  966. wrapper_smp_local_timer_interrupt();
  967. set_irq_regs(old_regs);
  968. }
  969. /* All of the QUAD interrupt GATES */
  970. fastcall void
  971. smp_qic_timer_interrupt(struct pt_regs *regs)
  972. {
  973. struct pt_regs *old_regs = set_irq_regs(regs);
  974. ack_QIC_CPI(QIC_TIMER_CPI);
  975. wrapper_smp_local_timer_interrupt();
  976. set_irq_regs(old_regs);
  977. }
  978. fastcall void
  979. smp_qic_invalidate_interrupt(struct pt_regs *regs)
  980. {
  981. ack_QIC_CPI(QIC_INVALIDATE_CPI);
  982. smp_invalidate_interrupt();
  983. }
  984. fastcall void
  985. smp_qic_reschedule_interrupt(struct pt_regs *regs)
  986. {
  987. ack_QIC_CPI(QIC_RESCHEDULE_CPI);
  988. smp_reschedule_interrupt();
  989. }
  990. fastcall void
  991. smp_qic_enable_irq_interrupt(struct pt_regs *regs)
  992. {
  993. ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
  994. smp_enable_irq_interrupt();
  995. }
  996. fastcall void
  997. smp_qic_call_function_interrupt(struct pt_regs *regs)
  998. {
  999. ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
  1000. smp_call_function_interrupt();
  1001. }
  1002. fastcall void
  1003. smp_vic_cpi_interrupt(struct pt_regs *regs)
  1004. {
  1005. struct pt_regs *old_regs = set_irq_regs(regs);
  1006. __u8 cpu = smp_processor_id();
  1007. if(is_cpu_quad())
  1008. ack_QIC_CPI(VIC_CPI_LEVEL0);
  1009. else
  1010. ack_VIC_CPI(VIC_CPI_LEVEL0);
  1011. if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
  1012. wrapper_smp_local_timer_interrupt();
  1013. if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
  1014. smp_invalidate_interrupt();
  1015. if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
  1016. smp_reschedule_interrupt();
  1017. if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
  1018. smp_enable_irq_interrupt();
  1019. if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
  1020. smp_call_function_interrupt();
  1021. set_irq_regs(old_regs);
  1022. }
  1023. static void
  1024. do_flush_tlb_all(void* info)
  1025. {
  1026. unsigned long cpu = smp_processor_id();
  1027. __flush_tlb_all();
  1028. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
  1029. leave_mm(cpu);
  1030. }
  1031. /* flush the TLB of every active CPU in the system */
  1032. void
  1033. flush_tlb_all(void)
  1034. {
  1035. on_each_cpu(do_flush_tlb_all, 0, 1, 1);
  1036. }
  1037. /* used to set up the trampoline for other CPUs when the memory manager
  1038. * is sorted out */
  1039. void __init
  1040. smp_alloc_memory(void)
  1041. {
  1042. trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE);
  1043. if(__pa(trampoline_base) >= 0x93000)
  1044. BUG();
  1045. }
  1046. /* send a reschedule CPI to one CPU by physical CPU number*/
  1047. void
  1048. smp_send_reschedule(int cpu)
  1049. {
  1050. send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
  1051. }
  1052. int
  1053. hard_smp_processor_id(void)
  1054. {
  1055. __u8 i;
  1056. __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
  1057. if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
  1058. return cpumask & 0x1F;
  1059. for(i = 0; i < 8; i++) {
  1060. if(cpumask & (1<<i))
  1061. return i;
  1062. }
  1063. printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
  1064. return 0;
  1065. }
  1066. int
  1067. safe_smp_processor_id(void)
  1068. {
  1069. return hard_smp_processor_id();
  1070. }
  1071. /* broadcast a halt to all other CPUs */
  1072. void
  1073. smp_send_stop(void)
  1074. {
  1075. smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
  1076. }
  1077. /* this function is triggered in time.c when a clock tick fires
  1078. * we need to re-broadcast the tick to all CPUs */
  1079. void
  1080. smp_vic_timer_interrupt(void)
  1081. {
  1082. send_CPI_allbutself(VIC_TIMER_CPI);
  1083. smp_local_timer_interrupt();
  1084. }
  1085. /* local (per CPU) timer interrupt. It does both profiling and
  1086. * process statistics/rescheduling.
  1087. *
  1088. * We do profiling in every local tick, statistics/rescheduling
  1089. * happen only every 'profiling multiplier' ticks. The default
  1090. * multiplier is 1 and it can be changed by writing the new multiplier
  1091. * value into /proc/profile.
  1092. */
  1093. void
  1094. smp_local_timer_interrupt(void)
  1095. {
  1096. int cpu = smp_processor_id();
  1097. long weight;
  1098. profile_tick(CPU_PROFILING);
  1099. if (--per_cpu(prof_counter, cpu) <= 0) {
  1100. /*
  1101. * The multiplier may have changed since the last time we got
  1102. * to this point as a result of the user writing to
  1103. * /proc/profile. In this case we need to adjust the APIC
  1104. * timer accordingly.
  1105. *
  1106. * Interrupts are already masked off at this point.
  1107. */
  1108. per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu);
  1109. if (per_cpu(prof_counter, cpu) !=
  1110. per_cpu(prof_old_multiplier, cpu)) {
  1111. /* FIXME: need to update the vic timer tick here */
  1112. per_cpu(prof_old_multiplier, cpu) =
  1113. per_cpu(prof_counter, cpu);
  1114. }
  1115. update_process_times(user_mode_vm(get_irq_regs()));
  1116. }
  1117. if( ((1<<cpu) & voyager_extended_vic_processors) == 0)
  1118. /* only extended VIC processors participate in
  1119. * interrupt distribution */
  1120. return;
  1121. /*
  1122. * We take the 'long' return path, and there every subsystem
  1123. * grabs the apropriate locks (kernel lock/ irq lock).
  1124. *
  1125. * we might want to decouple profiling from the 'long path',
  1126. * and do the profiling totally in assembly.
  1127. *
  1128. * Currently this isn't too much of an issue (performance wise),
  1129. * we can take more than 100K local irqs per second on a 100 MHz P5.
  1130. */
  1131. if((++vic_tick[cpu] & 0x7) != 0)
  1132. return;
  1133. /* get here every 16 ticks (about every 1/6 of a second) */
  1134. /* Change our priority to give someone else a chance at getting
  1135. * the IRQ. The algorithm goes like this:
  1136. *
  1137. * In the VIC, the dynamically routed interrupt is always
  1138. * handled by the lowest priority eligible (i.e. receiving
  1139. * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
  1140. * lowest processor number gets it.
  1141. *
  1142. * The priority of a CPU is controlled by a special per-CPU
  1143. * VIC priority register which is 3 bits wide 0 being lowest
  1144. * and 7 highest priority..
  1145. *
  1146. * Therefore we subtract the average number of interrupts from
  1147. * the number we've fielded. If this number is negative, we
  1148. * lower the activity count and if it is positive, we raise
  1149. * it.
  1150. *
  1151. * I'm afraid this still leads to odd looking interrupt counts:
  1152. * the totals are all roughly equal, but the individual ones
  1153. * look rather skewed.
  1154. *
  1155. * FIXME: This algorithm is total crap when mixed with SMP
  1156. * affinity code since we now try to even up the interrupt
  1157. * counts when an affinity binding is keeping them on a
  1158. * particular CPU*/
  1159. weight = (vic_intr_count[cpu]*voyager_extended_cpus
  1160. - vic_intr_total) >> 4;
  1161. weight += 4;
  1162. if(weight > 7)
  1163. weight = 7;
  1164. if(weight < 0)
  1165. weight = 0;
  1166. outb((__u8)weight, VIC_PRIORITY_REGISTER);
  1167. #ifdef VOYAGER_DEBUG
  1168. if((vic_tick[cpu] & 0xFFF) == 0) {
  1169. /* print this message roughly every 25 secs */
  1170. printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
  1171. cpu, vic_tick[cpu], weight);
  1172. }
  1173. #endif
  1174. }
  1175. /* setup the profiling timer */
  1176. int
  1177. setup_profiling_timer(unsigned int multiplier)
  1178. {
  1179. int i;
  1180. if ( (!multiplier))
  1181. return -EINVAL;
  1182. /*
  1183. * Set the new multiplier for each CPU. CPUs don't start using the
  1184. * new values until the next timer interrupt in which they do process
  1185. * accounting.
  1186. */
  1187. for (i = 0; i < NR_CPUS; ++i)
  1188. per_cpu(prof_multiplier, i) = multiplier;
  1189. return 0;
  1190. }
  1191. /* This is a bit of a mess, but forced on us by the genirq changes
  1192. * there's no genirq handler that really does what voyager wants
  1193. * so hack it up with the simple IRQ handler */
  1194. static void fastcall
  1195. handle_vic_irq(unsigned int irq, struct irq_desc *desc)
  1196. {
  1197. before_handle_vic_irq(irq);
  1198. handle_simple_irq(irq, desc);
  1199. after_handle_vic_irq(irq);
  1200. }
  1201. /* The CPIs are handled in the per cpu 8259s, so they must be
  1202. * enabled to be received: FIX: enabling the CPIs in the early
  1203. * boot sequence interferes with bug checking; enable them later
  1204. * on in smp_init */
  1205. #define VIC_SET_GATE(cpi, vector) \
  1206. set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
  1207. #define QIC_SET_GATE(cpi, vector) \
  1208. set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
  1209. void __init
  1210. smp_intr_init(void)
  1211. {
  1212. int i;
  1213. /* initialize the per cpu irq mask to all disabled */
  1214. for(i = 0; i < NR_CPUS; i++)
  1215. vic_irq_mask[i] = 0xFFFF;
  1216. VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
  1217. VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
  1218. VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
  1219. QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
  1220. QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
  1221. QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
  1222. QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
  1223. QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
  1224. /* now put the VIC descriptor into the first 48 IRQs
  1225. *
  1226. * This is for later: first 16 correspond to PC IRQs; next 16
  1227. * are Primary MC IRQs and final 16 are Secondary MC IRQs */
  1228. for(i = 0; i < 48; i++)
  1229. set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
  1230. }
  1231. /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
  1232. * processor to receive CPI */
  1233. static void
  1234. send_CPI(__u32 cpuset, __u8 cpi)
  1235. {
  1236. int cpu;
  1237. __u32 quad_cpuset = (cpuset & voyager_quad_processors);
  1238. if(cpi < VIC_START_FAKE_CPI) {
  1239. /* fake CPI are only used for booting, so send to the
  1240. * extended quads as well---Quads must be VIC booted */
  1241. outb((__u8)(cpuset), VIC_CPI_Registers[cpi]);
  1242. return;
  1243. }
  1244. if(quad_cpuset)
  1245. send_QIC_CPI(quad_cpuset, cpi);
  1246. cpuset &= ~quad_cpuset;
  1247. cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
  1248. if(cpuset == 0)
  1249. return;
  1250. for_each_online_cpu(cpu) {
  1251. if(cpuset & (1<<cpu))
  1252. set_bit(cpi, &vic_cpi_mailbox[cpu]);
  1253. }
  1254. if(cpuset)
  1255. outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
  1256. }
  1257. /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
  1258. * set the cache line to shared by reading it.
  1259. *
  1260. * DON'T make this inline otherwise the cache line read will be
  1261. * optimised away
  1262. * */
  1263. static int
  1264. ack_QIC_CPI(__u8 cpi) {
  1265. __u8 cpu = hard_smp_processor_id();
  1266. cpi &= 7;
  1267. outb(1<<cpi, QIC_INTERRUPT_CLEAR1);
  1268. return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
  1269. }
  1270. static void
  1271. ack_special_QIC_CPI(__u8 cpi)
  1272. {
  1273. switch(cpi) {
  1274. case VIC_CMN_INT:
  1275. outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
  1276. break;
  1277. case VIC_SYS_INT:
  1278. outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
  1279. break;
  1280. }
  1281. /* also clear at the VIC, just in case (nop for non-extended proc) */
  1282. ack_VIC_CPI(cpi);
  1283. }
  1284. /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
  1285. static void
  1286. ack_VIC_CPI(__u8 cpi)
  1287. {
  1288. #ifdef VOYAGER_DEBUG
  1289. unsigned long flags;
  1290. __u16 isr;
  1291. __u8 cpu = smp_processor_id();
  1292. local_irq_save(flags);
  1293. isr = vic_read_isr();
  1294. if((isr & (1<<(cpi &7))) == 0) {
  1295. printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
  1296. }
  1297. #endif
  1298. /* send specific EOI; the two system interrupts have
  1299. * bit 4 set for a separate vector but behave as the
  1300. * corresponding 3 bit intr */
  1301. outb_p(0x60|(cpi & 7),0x20);
  1302. #ifdef VOYAGER_DEBUG
  1303. if((vic_read_isr() & (1<<(cpi &7))) != 0) {
  1304. printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
  1305. }
  1306. local_irq_restore(flags);
  1307. #endif
  1308. }
  1309. /* cribbed with thanks from irq.c */
  1310. #define __byte(x,y) (((unsigned char *)&(y))[x])
  1311. #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
  1312. #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
  1313. static unsigned int
  1314. startup_vic_irq(unsigned int irq)
  1315. {
  1316. unmask_vic_irq(irq);
  1317. return 0;
  1318. }
  1319. /* The enable and disable routines. This is where we run into
  1320. * conflicting architectural philosophy. Fundamentally, the voyager
  1321. * architecture does not expect to have to disable interrupts globally
  1322. * (the IRQ controllers belong to each CPU). The processor masquerade
  1323. * which is used to start the system shouldn't be used in a running OS
  1324. * since it will cause great confusion if two separate CPUs drive to
  1325. * the same IRQ controller (I know, I've tried it).
  1326. *
  1327. * The solution is a variant on the NCR lazy SPL design:
  1328. *
  1329. * 1) To disable an interrupt, do nothing (other than set the
  1330. * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
  1331. *
  1332. * 2) If the interrupt dares to come in, raise the local mask against
  1333. * it (this will result in all the CPU masks being raised
  1334. * eventually).
  1335. *
  1336. * 3) To enable the interrupt, lower the mask on the local CPU and
  1337. * broadcast an Interrupt enable CPI which causes all other CPUs to
  1338. * adjust their masks accordingly. */
  1339. static void
  1340. unmask_vic_irq(unsigned int irq)
  1341. {
  1342. /* linux doesn't to processor-irq affinity, so enable on
  1343. * all CPUs we know about */
  1344. int cpu = smp_processor_id(), real_cpu;
  1345. __u16 mask = (1<<irq);
  1346. __u32 processorList = 0;
  1347. unsigned long flags;
  1348. VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
  1349. irq, cpu, cpu_irq_affinity[cpu]));
  1350. spin_lock_irqsave(&vic_irq_lock, flags);
  1351. for_each_online_cpu(real_cpu) {
  1352. if(!(voyager_extended_vic_processors & (1<<real_cpu)))
  1353. continue;
  1354. if(!(cpu_irq_affinity[real_cpu] & mask)) {
  1355. /* irq has no affinity for this CPU, ignore */
  1356. continue;
  1357. }
  1358. if(real_cpu == cpu) {
  1359. enable_local_vic_irq(irq);
  1360. }
  1361. else if(vic_irq_mask[real_cpu] & mask) {
  1362. vic_irq_enable_mask[real_cpu] |= mask;
  1363. processorList |= (1<<real_cpu);
  1364. }
  1365. }
  1366. spin_unlock_irqrestore(&vic_irq_lock, flags);
  1367. if(processorList)
  1368. send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
  1369. }
  1370. static void
  1371. mask_vic_irq(unsigned int irq)
  1372. {
  1373. /* lazy disable, do nothing */
  1374. }
  1375. static void
  1376. enable_local_vic_irq(unsigned int irq)
  1377. {
  1378. __u8 cpu = smp_processor_id();
  1379. __u16 mask = ~(1 << irq);
  1380. __u16 old_mask = vic_irq_mask[cpu];
  1381. vic_irq_mask[cpu] &= mask;
  1382. if(vic_irq_mask[cpu] == old_mask)
  1383. return;
  1384. VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
  1385. irq, cpu));
  1386. if (irq & 8) {
  1387. outb_p(cached_A1(cpu),0xA1);
  1388. (void)inb_p(0xA1);
  1389. }
  1390. else {
  1391. outb_p(cached_21(cpu),0x21);
  1392. (void)inb_p(0x21);
  1393. }
  1394. }
  1395. static void
  1396. disable_local_vic_irq(unsigned int irq)
  1397. {
  1398. __u8 cpu = smp_processor_id();
  1399. __u16 mask = (1 << irq);
  1400. __u16 old_mask = vic_irq_mask[cpu];
  1401. if(irq == 7)
  1402. return;
  1403. vic_irq_mask[cpu] |= mask;
  1404. if(old_mask == vic_irq_mask[cpu])
  1405. return;
  1406. VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
  1407. irq, cpu));
  1408. if (irq & 8) {
  1409. outb_p(cached_A1(cpu),0xA1);
  1410. (void)inb_p(0xA1);
  1411. }
  1412. else {
  1413. outb_p(cached_21(cpu),0x21);
  1414. (void)inb_p(0x21);
  1415. }
  1416. }
  1417. /* The VIC is level triggered, so the ack can only be issued after the
  1418. * interrupt completes. However, we do Voyager lazy interrupt
  1419. * handling here: It is an extremely expensive operation to mask an
  1420. * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
  1421. * this interrupt actually comes in, then we mask and ack here to push
  1422. * the interrupt off to another CPU */
  1423. static void
  1424. before_handle_vic_irq(unsigned int irq)
  1425. {
  1426. irq_desc_t *desc = irq_desc + irq;
  1427. __u8 cpu = smp_processor_id();
  1428. _raw_spin_lock(&vic_irq_lock);
  1429. vic_intr_total++;
  1430. vic_intr_count[cpu]++;
  1431. if(!(cpu_irq_affinity[cpu] & (1<<irq))) {
  1432. /* The irq is not in our affinity mask, push it off
  1433. * onto another CPU */
  1434. VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
  1435. irq, cpu));
  1436. disable_local_vic_irq(irq);
  1437. /* set IRQ_INPROGRESS to prevent the handler in irq.c from
  1438. * actually calling the interrupt routine */
  1439. desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
  1440. } else if(desc->status & IRQ_DISABLED) {
  1441. /* Damn, the interrupt actually arrived, do the lazy
  1442. * disable thing. The interrupt routine in irq.c will
  1443. * not handle a IRQ_DISABLED interrupt, so nothing more
  1444. * need be done here */
  1445. VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
  1446. irq, cpu));
  1447. disable_local_vic_irq(irq);
  1448. desc->status |= IRQ_REPLAY;
  1449. } else {
  1450. desc->status &= ~IRQ_REPLAY;
  1451. }
  1452. _raw_spin_unlock(&vic_irq_lock);
  1453. }
  1454. /* Finish the VIC interrupt: basically mask */
  1455. static void
  1456. after_handle_vic_irq(unsigned int irq)
  1457. {
  1458. irq_desc_t *desc = irq_desc + irq;
  1459. _raw_spin_lock(&vic_irq_lock);
  1460. {
  1461. unsigned int status = desc->status & ~IRQ_INPROGRESS;
  1462. #ifdef VOYAGER_DEBUG
  1463. __u16 isr;
  1464. #endif
  1465. desc->status = status;
  1466. if ((status & IRQ_DISABLED))
  1467. disable_local_vic_irq(irq);
  1468. #ifdef VOYAGER_DEBUG
  1469. /* DEBUG: before we ack, check what's in progress */
  1470. isr = vic_read_isr();
  1471. if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) {
  1472. int i;
  1473. __u8 cpu = smp_processor_id();
  1474. __u8 real_cpu;
  1475. int mask; /* Um... initialize me??? --RR */
  1476. printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
  1477. cpu, irq);
  1478. for_each_possible_cpu(real_cpu, mask) {
  1479. outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
  1480. VIC_PROCESSOR_ID);
  1481. isr = vic_read_isr();
  1482. if(isr & (1<<irq)) {
  1483. printk("VOYAGER SMP: CPU%d ack irq %d\n",
  1484. real_cpu, irq);
  1485. ack_vic_irq(irq);
  1486. }
  1487. outb(cpu, VIC_PROCESSOR_ID);
  1488. }
  1489. }
  1490. #endif /* VOYAGER_DEBUG */
  1491. /* as soon as we ack, the interrupt is eligible for
  1492. * receipt by another CPU so everything must be in
  1493. * order here */
  1494. ack_vic_irq(irq);
  1495. if(status & IRQ_REPLAY) {
  1496. /* replay is set if we disable the interrupt
  1497. * in the before_handle_vic_irq() routine, so
  1498. * clear the in progress bit here to allow the
  1499. * next CPU to handle this correctly */
  1500. desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
  1501. }
  1502. #ifdef VOYAGER_DEBUG
  1503. isr = vic_read_isr();
  1504. if((isr & (1<<irq)) != 0)
  1505. printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
  1506. irq, isr);
  1507. #endif /* VOYAGER_DEBUG */
  1508. }
  1509. _raw_spin_unlock(&vic_irq_lock);
  1510. /* All code after this point is out of the main path - the IRQ
  1511. * may be intercepted by another CPU if reasserted */
  1512. }
  1513. /* Linux processor - interrupt affinity manipulations.
  1514. *
  1515. * For each processor, we maintain a 32 bit irq affinity mask.
  1516. * Initially it is set to all 1's so every processor accepts every
  1517. * interrupt. In this call, we change the processor's affinity mask:
  1518. *
  1519. * Change from enable to disable:
  1520. *
  1521. * If the interrupt ever comes in to the processor, we will disable it
  1522. * and ack it to push it off to another CPU, so just accept the mask here.
  1523. *
  1524. * Change from disable to enable:
  1525. *
  1526. * change the mask and then do an interrupt enable CPI to re-enable on
  1527. * the selected processors */
  1528. void
  1529. set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
  1530. {
  1531. /* Only extended processors handle interrupts */
  1532. unsigned long real_mask;
  1533. unsigned long irq_mask = 1 << irq;
  1534. int cpu;
  1535. real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
  1536. if(cpus_addr(mask)[0] == 0)
  1537. /* can't have no cpu's to accept the interrupt -- extremely
  1538. * bad things will happen */
  1539. return;
  1540. if(irq == 0)
  1541. /* can't change the affinity of the timer IRQ. This
  1542. * is due to the constraint in the voyager
  1543. * architecture that the CPI also comes in on and IRQ
  1544. * line and we have chosen IRQ0 for this. If you
  1545. * raise the mask on this interrupt, the processor
  1546. * will no-longer be able to accept VIC CPIs */
  1547. return;
  1548. if(irq >= 32)
  1549. /* You can only have 32 interrupts in a voyager system
  1550. * (and 32 only if you have a secondary microchannel
  1551. * bus) */
  1552. return;
  1553. for_each_online_cpu(cpu) {
  1554. unsigned long cpu_mask = 1 << cpu;
  1555. if(cpu_mask & real_mask) {
  1556. /* enable the interrupt for this cpu */
  1557. cpu_irq_affinity[cpu] |= irq_mask;
  1558. } else {
  1559. /* disable the interrupt for this cpu */
  1560. cpu_irq_affinity[cpu] &= ~irq_mask;
  1561. }
  1562. }
  1563. /* this is magic, we now have the correct affinity maps, so
  1564. * enable the interrupt. This will send an enable CPI to
  1565. * those cpu's who need to enable it in their local masks,
  1566. * causing them to correct for the new affinity . If the
  1567. * interrupt is currently globally disabled, it will simply be
  1568. * disabled again as it comes in (voyager lazy disable). If
  1569. * the affinity map is tightened to disable the interrupt on a
  1570. * cpu, it will be pushed off when it comes in */
  1571. unmask_vic_irq(irq);
  1572. }
  1573. static void
  1574. ack_vic_irq(unsigned int irq)
  1575. {
  1576. if (irq & 8) {
  1577. outb(0x62,0x20); /* Specific EOI to cascade */
  1578. outb(0x60|(irq & 7),0xA0);
  1579. } else {
  1580. outb(0x60 | (irq & 7),0x20);
  1581. }
  1582. }
  1583. /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
  1584. * but are not vectored by it. This means that the 8259 mask must be
  1585. * lowered to receive them */
  1586. static __init void
  1587. vic_enable_cpi(void)
  1588. {
  1589. __u8 cpu = smp_processor_id();
  1590. /* just take a copy of the current mask (nop for boot cpu) */
  1591. vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
  1592. enable_local_vic_irq(VIC_CPI_LEVEL0);
  1593. enable_local_vic_irq(VIC_CPI_LEVEL1);
  1594. /* for sys int and cmn int */
  1595. enable_local_vic_irq(7);
  1596. if(is_cpu_quad()) {
  1597. outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
  1598. outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
  1599. VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
  1600. cpu, QIC_CPI_ENABLE));
  1601. }
  1602. VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
  1603. cpu, vic_irq_mask[cpu]));
  1604. }
  1605. void
  1606. voyager_smp_dump()
  1607. {
  1608. int old_cpu = smp_processor_id(), cpu;
  1609. /* dump the interrupt masks of each processor */
  1610. for_each_online_cpu(cpu) {
  1611. __u16 imr, isr, irr;
  1612. unsigned long flags;
  1613. local_irq_save(flags);
  1614. outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
  1615. imr = (inb(0xa1) << 8) | inb(0x21);
  1616. outb(0x0a, 0xa0);
  1617. irr = inb(0xa0) << 8;
  1618. outb(0x0a, 0x20);
  1619. irr |= inb(0x20);
  1620. outb(0x0b, 0xa0);
  1621. isr = inb(0xa0) << 8;
  1622. outb(0x0b, 0x20);
  1623. isr |= inb(0x20);
  1624. outb(old_cpu, VIC_PROCESSOR_ID);
  1625. local_irq_restore(flags);
  1626. printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
  1627. cpu, vic_irq_mask[cpu], imr, irr, isr);
  1628. #if 0
  1629. /* These lines are put in to try to unstick an un ack'd irq */
  1630. if(isr != 0) {
  1631. int irq;
  1632. for(irq=0; irq<16; irq++) {
  1633. if(isr & (1<<irq)) {
  1634. printk("\tCPU%d: ack irq %d\n",
  1635. cpu, irq);
  1636. local_irq_save(flags);
  1637. outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
  1638. VIC_PROCESSOR_ID);
  1639. ack_vic_irq(irq);
  1640. outb(old_cpu, VIC_PROCESSOR_ID);
  1641. local_irq_restore(flags);
  1642. }
  1643. }
  1644. }
  1645. #endif
  1646. }
  1647. }
  1648. void
  1649. smp_voyager_power_off(void *dummy)
  1650. {
  1651. if(smp_processor_id() == boot_cpu_id)
  1652. voyager_power_off();
  1653. else
  1654. smp_stop_cpu_function(NULL);
  1655. }
  1656. void __init
  1657. smp_prepare_cpus(unsigned int max_cpus)
  1658. {
  1659. /* FIXME: ignore max_cpus for now */
  1660. smp_boot_cpus();
  1661. }
  1662. void __devinit smp_prepare_boot_cpu(void)
  1663. {
  1664. cpu_set(smp_processor_id(), cpu_online_map);
  1665. cpu_set(smp_processor_id(), cpu_callout_map);
  1666. cpu_set(smp_processor_id(), cpu_possible_map);
  1667. cpu_set(smp_processor_id(), cpu_present_map);
  1668. }
  1669. int __devinit
  1670. __cpu_up(unsigned int cpu)
  1671. {
  1672. /* This only works at boot for x86. See "rewrite" above. */
  1673. if (cpu_isset(cpu, smp_commenced_mask))
  1674. return -ENOSYS;
  1675. /* In case one didn't come up */
  1676. if (!cpu_isset(cpu, cpu_callin_map))
  1677. return -EIO;
  1678. /* Unleash the CPU! */
  1679. cpu_set(cpu, smp_commenced_mask);
  1680. while (!cpu_isset(cpu, cpu_online_map))
  1681. mb();
  1682. return 0;
  1683. }
  1684. void __init
  1685. smp_cpus_done(unsigned int max_cpus)
  1686. {
  1687. zap_low_mappings();
  1688. }
  1689. void __init
  1690. smp_setup_processor_id(void)
  1691. {
  1692. current_thread_info()->cpu = hard_smp_processor_id();
  1693. write_pda(cpu_number, hard_smp_processor_id());
  1694. }