lmb.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/bitops.h>
  15. #include <linux/lmb.h>
  16. #define LMB_ALLOC_ANYWHERE 0
  17. struct lmb lmb;
  18. static int lmb_debug;
  19. static int __init early_lmb(char *p)
  20. {
  21. if (p && strstr(p, "debug"))
  22. lmb_debug = 1;
  23. return 0;
  24. }
  25. early_param("lmb", early_lmb);
  26. void lmb_dump_all(void)
  27. {
  28. unsigned long i;
  29. if (!lmb_debug)
  30. return;
  31. pr_info("lmb_dump_all:\n");
  32. pr_info(" memory.cnt = 0x%lx\n", lmb.memory.cnt);
  33. pr_info(" memory.size = 0x%llx\n",
  34. (unsigned long long)lmb.memory.size);
  35. for (i=0; i < lmb.memory.cnt ;i++) {
  36. pr_info(" memory.region[0x%lx].base = 0x%llx\n",
  37. i, (unsigned long long)lmb.memory.region[i].base);
  38. pr_info(" .size = 0x%llx\n",
  39. (unsigned long long)lmb.memory.region[i].size);
  40. }
  41. pr_info(" reserved.cnt = 0x%lx\n", lmb.reserved.cnt);
  42. pr_info(" reserved.size = 0x%lx\n", lmb.reserved.size);
  43. for (i=0; i < lmb.reserved.cnt ;i++) {
  44. pr_info(" reserved.region[0x%lx].base = 0x%llx\n",
  45. i, (unsigned long long)lmb.reserved.region[i].base);
  46. pr_info(" .size = 0x%llx\n",
  47. (unsigned long long)lmb.reserved.region[i].size);
  48. }
  49. }
  50. static unsigned long lmb_addrs_overlap(u64 base1, u64 size1, u64 base2,
  51. u64 size2)
  52. {
  53. return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  54. }
  55. static long lmb_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
  56. {
  57. if (base2 == base1 + size1)
  58. return 1;
  59. else if (base1 == base2 + size2)
  60. return -1;
  61. return 0;
  62. }
  63. static long lmb_regions_adjacent(struct lmb_region *rgn,
  64. unsigned long r1, unsigned long r2)
  65. {
  66. u64 base1 = rgn->region[r1].base;
  67. u64 size1 = rgn->region[r1].size;
  68. u64 base2 = rgn->region[r2].base;
  69. u64 size2 = rgn->region[r2].size;
  70. return lmb_addrs_adjacent(base1, size1, base2, size2);
  71. }
  72. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  73. {
  74. unsigned long i;
  75. for (i = r; i < rgn->cnt - 1; i++) {
  76. rgn->region[i].base = rgn->region[i + 1].base;
  77. rgn->region[i].size = rgn->region[i + 1].size;
  78. }
  79. rgn->cnt--;
  80. }
  81. /* Assumption: base addr of region 1 < base addr of region 2 */
  82. static void lmb_coalesce_regions(struct lmb_region *rgn,
  83. unsigned long r1, unsigned long r2)
  84. {
  85. rgn->region[r1].size += rgn->region[r2].size;
  86. lmb_remove_region(rgn, r2);
  87. }
  88. void __init lmb_init(void)
  89. {
  90. /* Create a dummy zero size LMB which will get coalesced away later.
  91. * This simplifies the lmb_add() code below...
  92. */
  93. lmb.memory.region[0].base = 0;
  94. lmb.memory.region[0].size = 0;
  95. lmb.memory.cnt = 1;
  96. /* Ditto. */
  97. lmb.reserved.region[0].base = 0;
  98. lmb.reserved.region[0].size = 0;
  99. lmb.reserved.cnt = 1;
  100. }
  101. void __init lmb_analyze(void)
  102. {
  103. int i;
  104. lmb.memory.size = 0;
  105. for (i = 0; i < lmb.memory.cnt; i++)
  106. lmb.memory.size += lmb.memory.region[i].size;
  107. }
  108. static long lmb_add_region(struct lmb_region *rgn, u64 base, u64 size)
  109. {
  110. unsigned long coalesced = 0;
  111. long adjacent, i;
  112. if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
  113. rgn->region[0].base = base;
  114. rgn->region[0].size = size;
  115. return 0;
  116. }
  117. /* First try and coalesce this LMB with another. */
  118. for (i = 0; i < rgn->cnt; i++) {
  119. u64 rgnbase = rgn->region[i].base;
  120. u64 rgnsize = rgn->region[i].size;
  121. if ((rgnbase == base) && (rgnsize == size))
  122. /* Already have this region, so we're done */
  123. return 0;
  124. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  125. if (adjacent > 0) {
  126. rgn->region[i].base -= size;
  127. rgn->region[i].size += size;
  128. coalesced++;
  129. break;
  130. } else if (adjacent < 0) {
  131. rgn->region[i].size += size;
  132. coalesced++;
  133. break;
  134. }
  135. }
  136. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i+1)) {
  137. lmb_coalesce_regions(rgn, i, i+1);
  138. coalesced++;
  139. }
  140. if (coalesced)
  141. return coalesced;
  142. if (rgn->cnt >= MAX_LMB_REGIONS)
  143. return -1;
  144. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  145. for (i = rgn->cnt - 1; i >= 0; i--) {
  146. if (base < rgn->region[i].base) {
  147. rgn->region[i+1].base = rgn->region[i].base;
  148. rgn->region[i+1].size = rgn->region[i].size;
  149. } else {
  150. rgn->region[i+1].base = base;
  151. rgn->region[i+1].size = size;
  152. break;
  153. }
  154. }
  155. if (base < rgn->region[0].base) {
  156. rgn->region[0].base = base;
  157. rgn->region[0].size = size;
  158. }
  159. rgn->cnt++;
  160. return 0;
  161. }
  162. long lmb_add(u64 base, u64 size)
  163. {
  164. struct lmb_region *_rgn = &lmb.memory;
  165. /* On pSeries LPAR systems, the first LMB is our RMO region. */
  166. if (base == 0)
  167. lmb.rmo_size = size;
  168. return lmb_add_region(_rgn, base, size);
  169. }
  170. long lmb_remove(u64 base, u64 size)
  171. {
  172. struct lmb_region *rgn = &(lmb.memory);
  173. u64 rgnbegin, rgnend;
  174. u64 end = base + size;
  175. int i;
  176. rgnbegin = rgnend = 0; /* supress gcc warnings */
  177. /* Find the region where (base, size) belongs to */
  178. for (i=0; i < rgn->cnt; i++) {
  179. rgnbegin = rgn->region[i].base;
  180. rgnend = rgnbegin + rgn->region[i].size;
  181. if ((rgnbegin <= base) && (end <= rgnend))
  182. break;
  183. }
  184. /* Didn't find the region */
  185. if (i == rgn->cnt)
  186. return -1;
  187. /* Check to see if we are removing entire region */
  188. if ((rgnbegin == base) && (rgnend == end)) {
  189. lmb_remove_region(rgn, i);
  190. return 0;
  191. }
  192. /* Check to see if region is matching at the front */
  193. if (rgnbegin == base) {
  194. rgn->region[i].base = end;
  195. rgn->region[i].size -= size;
  196. return 0;
  197. }
  198. /* Check to see if the region is matching at the end */
  199. if (rgnend == end) {
  200. rgn->region[i].size -= size;
  201. return 0;
  202. }
  203. /*
  204. * We need to split the entry - adjust the current one to the
  205. * beginging of the hole and add the region after hole.
  206. */
  207. rgn->region[i].size = base - rgn->region[i].base;
  208. return lmb_add_region(rgn, end, rgnend - end);
  209. }
  210. long __init lmb_reserve(u64 base, u64 size)
  211. {
  212. struct lmb_region *_rgn = &lmb.reserved;
  213. BUG_ON(0 == size);
  214. return lmb_add_region(_rgn, base, size);
  215. }
  216. long __init lmb_overlaps_region(struct lmb_region *rgn, u64 base, u64 size)
  217. {
  218. unsigned long i;
  219. for (i = 0; i < rgn->cnt; i++) {
  220. u64 rgnbase = rgn->region[i].base;
  221. u64 rgnsize = rgn->region[i].size;
  222. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  223. break;
  224. }
  225. return (i < rgn->cnt) ? i : -1;
  226. }
  227. static u64 lmb_align_down(u64 addr, u64 size)
  228. {
  229. return addr & ~(size - 1);
  230. }
  231. static u64 lmb_align_up(u64 addr, u64 size)
  232. {
  233. return (addr + (size - 1)) & ~(size - 1);
  234. }
  235. static u64 __init lmb_alloc_nid_unreserved(u64 start, u64 end,
  236. u64 size, u64 align)
  237. {
  238. u64 base, res_base;
  239. long j;
  240. base = lmb_align_down((end - size), align);
  241. while (start <= base) {
  242. j = lmb_overlaps_region(&lmb.reserved, base, size);
  243. if (j < 0) {
  244. /* this area isn't reserved, take it */
  245. if (lmb_add_region(&lmb.reserved, base, size) < 0)
  246. base = ~(u64)0;
  247. return base;
  248. }
  249. res_base = lmb.reserved.region[j].base;
  250. if (res_base < size)
  251. break;
  252. base = lmb_align_down(res_base - size, align);
  253. }
  254. return ~(u64)0;
  255. }
  256. static u64 __init lmb_alloc_nid_region(struct lmb_property *mp,
  257. u64 (*nid_range)(u64, u64, int *),
  258. u64 size, u64 align, int nid)
  259. {
  260. u64 start, end;
  261. start = mp->base;
  262. end = start + mp->size;
  263. start = lmb_align_up(start, align);
  264. while (start < end) {
  265. u64 this_end;
  266. int this_nid;
  267. this_end = nid_range(start, end, &this_nid);
  268. if (this_nid == nid) {
  269. u64 ret = lmb_alloc_nid_unreserved(start, this_end,
  270. size, align);
  271. if (ret != ~(u64)0)
  272. return ret;
  273. }
  274. start = this_end;
  275. }
  276. return ~(u64)0;
  277. }
  278. u64 __init lmb_alloc_nid(u64 size, u64 align, int nid,
  279. u64 (*nid_range)(u64 start, u64 end, int *nid))
  280. {
  281. struct lmb_region *mem = &lmb.memory;
  282. int i;
  283. BUG_ON(0 == size);
  284. size = lmb_align_up(size, align);
  285. for (i = 0; i < mem->cnt; i++) {
  286. u64 ret = lmb_alloc_nid_region(&mem->region[i],
  287. nid_range,
  288. size, align, nid);
  289. if (ret != ~(u64)0)
  290. return ret;
  291. }
  292. return lmb_alloc(size, align);
  293. }
  294. u64 __init lmb_alloc(u64 size, u64 align)
  295. {
  296. return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
  297. }
  298. u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr)
  299. {
  300. u64 alloc;
  301. alloc = __lmb_alloc_base(size, align, max_addr);
  302. if (alloc == 0)
  303. panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
  304. (unsigned long long) size, (unsigned long long) max_addr);
  305. return alloc;
  306. }
  307. u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr)
  308. {
  309. long i, j;
  310. u64 base = 0;
  311. u64 res_base;
  312. BUG_ON(0 == size);
  313. size = lmb_align_up(size, align);
  314. /* On some platforms, make sure we allocate lowmem */
  315. /* Note that LMB_REAL_LIMIT may be LMB_ALLOC_ANYWHERE */
  316. if (max_addr == LMB_ALLOC_ANYWHERE)
  317. max_addr = LMB_REAL_LIMIT;
  318. for (i = lmb.memory.cnt - 1; i >= 0; i--) {
  319. u64 lmbbase = lmb.memory.region[i].base;
  320. u64 lmbsize = lmb.memory.region[i].size;
  321. if (lmbsize < size)
  322. continue;
  323. if (max_addr == LMB_ALLOC_ANYWHERE)
  324. base = lmb_align_down(lmbbase + lmbsize - size, align);
  325. else if (lmbbase < max_addr) {
  326. base = min(lmbbase + lmbsize, max_addr);
  327. base = lmb_align_down(base - size, align);
  328. } else
  329. continue;
  330. while (base && lmbbase <= base) {
  331. j = lmb_overlaps_region(&lmb.reserved, base, size);
  332. if (j < 0) {
  333. /* this area isn't reserved, take it */
  334. if (lmb_add_region(&lmb.reserved, base, size) < 0)
  335. return 0;
  336. return base;
  337. }
  338. res_base = lmb.reserved.region[j].base;
  339. if (res_base < size)
  340. break;
  341. base = lmb_align_down(res_base - size, align);
  342. }
  343. }
  344. return 0;
  345. }
  346. /* You must call lmb_analyze() before this. */
  347. u64 __init lmb_phys_mem_size(void)
  348. {
  349. return lmb.memory.size;
  350. }
  351. u64 __init lmb_end_of_DRAM(void)
  352. {
  353. int idx = lmb.memory.cnt - 1;
  354. return (lmb.memory.region[idx].base + lmb.memory.region[idx].size);
  355. }
  356. /* You must call lmb_analyze() after this. */
  357. void __init lmb_enforce_memory_limit(u64 memory_limit)
  358. {
  359. unsigned long i;
  360. u64 limit;
  361. struct lmb_property *p;
  362. if (!memory_limit)
  363. return;
  364. /* Truncate the lmb regions to satisfy the memory limit. */
  365. limit = memory_limit;
  366. for (i = 0; i < lmb.memory.cnt; i++) {
  367. if (limit > lmb.memory.region[i].size) {
  368. limit -= lmb.memory.region[i].size;
  369. continue;
  370. }
  371. lmb.memory.region[i].size = limit;
  372. lmb.memory.cnt = i + 1;
  373. break;
  374. }
  375. if (lmb.memory.region[0].size < lmb.rmo_size)
  376. lmb.rmo_size = lmb.memory.region[0].size;
  377. /* And truncate any reserves above the limit also. */
  378. for (i = 0; i < lmb.reserved.cnt; i++) {
  379. p = &lmb.reserved.region[i];
  380. if (p->base > memory_limit)
  381. p->size = 0;
  382. else if ((p->base + p->size) > memory_limit)
  383. p->size = memory_limit - p->base;
  384. if (p->size == 0) {
  385. lmb_remove_region(&lmb.reserved, i);
  386. i--;
  387. }
  388. }
  389. }
  390. int __init lmb_is_reserved(u64 addr)
  391. {
  392. int i;
  393. for (i = 0; i < lmb.reserved.cnt; i++) {
  394. u64 upper = lmb.reserved.region[i].base +
  395. lmb.reserved.region[i].size - 1;
  396. if ((addr >= lmb.reserved.region[i].base) && (addr <= upper))
  397. return 1;
  398. }
  399. return 0;
  400. }
  401. /*
  402. * Given a <base, len>, find which memory regions belong to this range.
  403. * Adjust the request and return a contiguous chunk.
  404. */
  405. int lmb_find(struct lmb_property *res)
  406. {
  407. int i;
  408. u64 rstart, rend;
  409. rstart = res->base;
  410. rend = rstart + res->size - 1;
  411. for (i = 0; i < lmb.memory.cnt; i++) {
  412. u64 start = lmb.memory.region[i].base;
  413. u64 end = start + lmb.memory.region[i].size - 1;
  414. if (start > rend)
  415. return -1;
  416. if ((end >= rstart) && (start < rend)) {
  417. /* adjust the request */
  418. if (rstart < start)
  419. rstart = start;
  420. if (rend > end)
  421. rend = end;
  422. res->base = rstart;
  423. res->size = rend - rstart + 1;
  424. return 0;
  425. }
  426. }
  427. return -1;
  428. }