dumpstack.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4. */
  5. #include <linux/kallsyms.h>
  6. #include <linux/kprobes.h>
  7. #include <linux/uaccess.h>
  8. #include <linux/utsname.h>
  9. #include <linux/hardirq.h>
  10. #include <linux/kdebug.h>
  11. #include <linux/module.h>
  12. #include <linux/ptrace.h>
  13. #include <linux/ftrace.h>
  14. #include <linux/kexec.h>
  15. #include <linux/bug.h>
  16. #include <linux/nmi.h>
  17. #include <linux/sysfs.h>
  18. #include <asm/stacktrace.h>
  19. #include "dumpstack.h"
  20. int panic_on_unrecovered_nmi;
  21. int panic_on_io_nmi;
  22. unsigned int code_bytes = 64;
  23. int kstack_depth_to_print = 3 * STACKSLOTS_PER_LINE;
  24. static int die_counter;
  25. void printk_address(unsigned long address, int reliable)
  26. {
  27. printk(" [<%p>] %s%pS\n", (void *) address,
  28. reliable ? "" : "? ", (void *) address);
  29. }
  30. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  31. static void
  32. print_ftrace_graph_addr(unsigned long addr, void *data,
  33. const struct stacktrace_ops *ops,
  34. struct thread_info *tinfo, int *graph)
  35. {
  36. struct task_struct *task = tinfo->task;
  37. unsigned long ret_addr;
  38. int index = task->curr_ret_stack;
  39. if (addr != (unsigned long)return_to_handler)
  40. return;
  41. if (!task->ret_stack || index < *graph)
  42. return;
  43. index -= *graph;
  44. ret_addr = task->ret_stack[index].ret;
  45. ops->address(data, ret_addr, 1);
  46. (*graph)++;
  47. }
  48. #else
  49. static inline void
  50. print_ftrace_graph_addr(unsigned long addr, void *data,
  51. const struct stacktrace_ops *ops,
  52. struct thread_info *tinfo, int *graph)
  53. { }
  54. #endif
  55. /*
  56. * x86-64 can have up to three kernel stacks:
  57. * process stack
  58. * interrupt stack
  59. * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
  60. */
  61. static inline int valid_stack_ptr(struct thread_info *tinfo,
  62. void *p, unsigned int size, void *end)
  63. {
  64. void *t = tinfo;
  65. if (end) {
  66. if (p < end && p >= (end-THREAD_SIZE))
  67. return 1;
  68. else
  69. return 0;
  70. }
  71. return p > t && p < t + THREAD_SIZE - size;
  72. }
  73. unsigned long
  74. print_context_stack(struct thread_info *tinfo,
  75. unsigned long *stack, unsigned long bp,
  76. const struct stacktrace_ops *ops, void *data,
  77. unsigned long *end, int *graph)
  78. {
  79. struct stack_frame *frame = (struct stack_frame *)bp;
  80. while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
  81. unsigned long addr;
  82. addr = *stack;
  83. if (__kernel_text_address(addr)) {
  84. if ((unsigned long) stack == bp + sizeof(long)) {
  85. ops->address(data, addr, 1);
  86. frame = frame->next_frame;
  87. bp = (unsigned long) frame;
  88. } else {
  89. ops->address(data, addr, 0);
  90. }
  91. print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
  92. }
  93. stack++;
  94. }
  95. return bp;
  96. }
  97. EXPORT_SYMBOL_GPL(print_context_stack);
  98. unsigned long
  99. print_context_stack_bp(struct thread_info *tinfo,
  100. unsigned long *stack, unsigned long bp,
  101. const struct stacktrace_ops *ops, void *data,
  102. unsigned long *end, int *graph)
  103. {
  104. struct stack_frame *frame = (struct stack_frame *)bp;
  105. unsigned long *ret_addr = &frame->return_address;
  106. while (valid_stack_ptr(tinfo, ret_addr, sizeof(*ret_addr), end)) {
  107. unsigned long addr = *ret_addr;
  108. if (!__kernel_text_address(addr))
  109. break;
  110. ops->address(data, addr, 1);
  111. frame = frame->next_frame;
  112. ret_addr = &frame->return_address;
  113. print_ftrace_graph_addr(addr, data, ops, tinfo, graph);
  114. }
  115. return (unsigned long)frame;
  116. }
  117. EXPORT_SYMBOL_GPL(print_context_stack_bp);
  118. static void
  119. print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
  120. {
  121. printk(data);
  122. print_symbol(msg, symbol);
  123. printk("\n");
  124. }
  125. static void print_trace_warning(void *data, char *msg)
  126. {
  127. printk("%s%s\n", (char *)data, msg);
  128. }
  129. static int print_trace_stack(void *data, char *name)
  130. {
  131. printk("%s <%s> ", (char *)data, name);
  132. return 0;
  133. }
  134. /*
  135. * Print one address/symbol entries per line.
  136. */
  137. static void print_trace_address(void *data, unsigned long addr, int reliable)
  138. {
  139. touch_nmi_watchdog();
  140. printk(data);
  141. printk_address(addr, reliable);
  142. }
  143. static const struct stacktrace_ops print_trace_ops = {
  144. .warning = print_trace_warning,
  145. .warning_symbol = print_trace_warning_symbol,
  146. .stack = print_trace_stack,
  147. .address = print_trace_address,
  148. .walk_stack = print_context_stack,
  149. };
  150. void
  151. show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
  152. unsigned long *stack, unsigned long bp, char *log_lvl)
  153. {
  154. printk("%sCall Trace:\n", log_lvl);
  155. dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
  156. }
  157. void show_trace(struct task_struct *task, struct pt_regs *regs,
  158. unsigned long *stack, unsigned long bp)
  159. {
  160. show_trace_log_lvl(task, regs, stack, bp, "");
  161. }
  162. void show_stack(struct task_struct *task, unsigned long *sp)
  163. {
  164. show_stack_log_lvl(task, NULL, sp, 0, "");
  165. }
  166. /*
  167. * The architecture-independent dump_stack generator
  168. */
  169. void dump_stack(void)
  170. {
  171. unsigned long bp = 0;
  172. unsigned long stack;
  173. #ifdef CONFIG_FRAME_POINTER
  174. if (!bp)
  175. get_bp(bp);
  176. #endif
  177. printk("Pid: %d, comm: %.20s %s %s %.*s\n",
  178. current->pid, current->comm, print_tainted(),
  179. init_utsname()->release,
  180. (int)strcspn(init_utsname()->version, " "),
  181. init_utsname()->version);
  182. show_trace(NULL, NULL, &stack, bp);
  183. }
  184. EXPORT_SYMBOL(dump_stack);
  185. static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
  186. static int die_owner = -1;
  187. static unsigned int die_nest_count;
  188. unsigned __kprobes long oops_begin(void)
  189. {
  190. int cpu;
  191. unsigned long flags;
  192. oops_enter();
  193. /* racy, but better than risking deadlock. */
  194. raw_local_irq_save(flags);
  195. cpu = smp_processor_id();
  196. if (!arch_spin_trylock(&die_lock)) {
  197. if (cpu == die_owner)
  198. /* nested oops. should stop eventually */;
  199. else
  200. arch_spin_lock(&die_lock);
  201. }
  202. die_nest_count++;
  203. die_owner = cpu;
  204. console_verbose();
  205. bust_spinlocks(1);
  206. return flags;
  207. }
  208. void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
  209. {
  210. if (regs && kexec_should_crash(current))
  211. crash_kexec(regs);
  212. bust_spinlocks(0);
  213. die_owner = -1;
  214. add_taint(TAINT_DIE);
  215. die_nest_count--;
  216. if (!die_nest_count)
  217. /* Nest count reaches zero, release the lock. */
  218. arch_spin_unlock(&die_lock);
  219. raw_local_irq_restore(flags);
  220. oops_exit();
  221. if (!signr)
  222. return;
  223. if (in_interrupt())
  224. panic("Fatal exception in interrupt");
  225. if (panic_on_oops)
  226. panic("Fatal exception");
  227. do_exit(signr);
  228. }
  229. int __kprobes __die(const char *str, struct pt_regs *regs, long err)
  230. {
  231. #ifdef CONFIG_X86_32
  232. unsigned short ss;
  233. unsigned long sp;
  234. #endif
  235. printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
  236. #ifdef CONFIG_PREEMPT
  237. printk("PREEMPT ");
  238. #endif
  239. #ifdef CONFIG_SMP
  240. printk("SMP ");
  241. #endif
  242. #ifdef CONFIG_DEBUG_PAGEALLOC
  243. printk("DEBUG_PAGEALLOC");
  244. #endif
  245. printk("\n");
  246. sysfs_printk_last_file();
  247. if (notify_die(DIE_OOPS, str, regs, err,
  248. current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
  249. return 1;
  250. show_registers(regs);
  251. #ifdef CONFIG_X86_32
  252. if (user_mode_vm(regs)) {
  253. sp = regs->sp;
  254. ss = regs->ss & 0xffff;
  255. } else {
  256. sp = kernel_stack_pointer(regs);
  257. savesegment(ss, ss);
  258. }
  259. printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
  260. print_symbol("%s", regs->ip);
  261. printk(" SS:ESP %04x:%08lx\n", ss, sp);
  262. #else
  263. /* Executive summary in case the oops scrolled away */
  264. printk(KERN_ALERT "RIP ");
  265. printk_address(regs->ip, 1);
  266. printk(" RSP <%016lx>\n", regs->sp);
  267. #endif
  268. return 0;
  269. }
  270. /*
  271. * This is gone through when something in the kernel has done something bad
  272. * and is about to be terminated:
  273. */
  274. void die(const char *str, struct pt_regs *regs, long err)
  275. {
  276. unsigned long flags = oops_begin();
  277. int sig = SIGSEGV;
  278. if (!user_mode_vm(regs))
  279. report_bug(regs->ip, regs);
  280. if (__die(str, regs, err))
  281. sig = 0;
  282. oops_end(flags, regs, sig);
  283. }
  284. void notrace __kprobes
  285. die_nmi(char *str, struct pt_regs *regs, int do_panic)
  286. {
  287. unsigned long flags;
  288. if (notify_die(DIE_NMIWATCHDOG, str, regs, 0, 2, SIGINT) == NOTIFY_STOP)
  289. return;
  290. /*
  291. * We are in trouble anyway, lets at least try
  292. * to get a message out.
  293. */
  294. flags = oops_begin();
  295. printk(KERN_EMERG "%s", str);
  296. printk(" on CPU%d, ip %08lx, registers:\n",
  297. smp_processor_id(), regs->ip);
  298. show_registers(regs);
  299. oops_end(flags, regs, 0);
  300. if (do_panic || panic_on_oops)
  301. panic("Non maskable interrupt");
  302. nmi_exit();
  303. local_irq_enable();
  304. do_exit(SIGBUS);
  305. }
  306. static int __init oops_setup(char *s)
  307. {
  308. if (!s)
  309. return -EINVAL;
  310. if (!strcmp(s, "panic"))
  311. panic_on_oops = 1;
  312. return 0;
  313. }
  314. early_param("oops", oops_setup);
  315. static int __init kstack_setup(char *s)
  316. {
  317. if (!s)
  318. return -EINVAL;
  319. kstack_depth_to_print = simple_strtoul(s, NULL, 0);
  320. return 0;
  321. }
  322. early_param("kstack", kstack_setup);
  323. static int __init code_bytes_setup(char *s)
  324. {
  325. code_bytes = simple_strtoul(s, NULL, 0);
  326. if (code_bytes > 8192)
  327. code_bytes = 8192;
  328. return 1;
  329. }
  330. __setup("code_bytes=", code_bytes_setup);