sched.c 224 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. #ifdef CONFIG_SMP
  112. /*
  113. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  114. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  115. */
  116. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  117. {
  118. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  119. }
  120. /*
  121. * Each time a sched group cpu_power is changed,
  122. * we must compute its reciprocal value
  123. */
  124. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  125. {
  126. sg->__cpu_power += val;
  127. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  128. }
  129. #endif
  130. static inline int rt_policy(int policy)
  131. {
  132. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  133. return 1;
  134. return 0;
  135. }
  136. static inline int task_has_rt_policy(struct task_struct *p)
  137. {
  138. return rt_policy(p->policy);
  139. }
  140. /*
  141. * This is the priority-queue data structure of the RT scheduling class:
  142. */
  143. struct rt_prio_array {
  144. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  145. struct list_head queue[MAX_RT_PRIO];
  146. };
  147. struct rt_bandwidth {
  148. /* nests inside the rq lock: */
  149. spinlock_t rt_runtime_lock;
  150. ktime_t rt_period;
  151. u64 rt_runtime;
  152. struct hrtimer rt_period_timer;
  153. };
  154. static struct rt_bandwidth def_rt_bandwidth;
  155. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  156. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  157. {
  158. struct rt_bandwidth *rt_b =
  159. container_of(timer, struct rt_bandwidth, rt_period_timer);
  160. ktime_t now;
  161. int overrun;
  162. int idle = 0;
  163. for (;;) {
  164. now = hrtimer_cb_get_time(timer);
  165. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  166. if (!overrun)
  167. break;
  168. idle = do_sched_rt_period_timer(rt_b, overrun);
  169. }
  170. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  171. }
  172. static
  173. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  174. {
  175. rt_b->rt_period = ns_to_ktime(period);
  176. rt_b->rt_runtime = runtime;
  177. spin_lock_init(&rt_b->rt_runtime_lock);
  178. hrtimer_init(&rt_b->rt_period_timer,
  179. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  180. rt_b->rt_period_timer.function = sched_rt_period_timer;
  181. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  182. }
  183. static inline int rt_bandwidth_enabled(void)
  184. {
  185. return sysctl_sched_rt_runtime >= 0;
  186. }
  187. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  188. {
  189. ktime_t now;
  190. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  191. return;
  192. if (hrtimer_active(&rt_b->rt_period_timer))
  193. return;
  194. spin_lock(&rt_b->rt_runtime_lock);
  195. for (;;) {
  196. if (hrtimer_active(&rt_b->rt_period_timer))
  197. break;
  198. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  199. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  200. hrtimer_start_expires(&rt_b->rt_period_timer,
  201. HRTIMER_MODE_ABS);
  202. }
  203. spin_unlock(&rt_b->rt_runtime_lock);
  204. }
  205. #ifdef CONFIG_RT_GROUP_SCHED
  206. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  207. {
  208. hrtimer_cancel(&rt_b->rt_period_timer);
  209. }
  210. #endif
  211. /*
  212. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  213. * detach_destroy_domains and partition_sched_domains.
  214. */
  215. static DEFINE_MUTEX(sched_domains_mutex);
  216. #ifdef CONFIG_GROUP_SCHED
  217. #include <linux/cgroup.h>
  218. struct cfs_rq;
  219. static LIST_HEAD(task_groups);
  220. /* task group related information */
  221. struct task_group {
  222. #ifdef CONFIG_CGROUP_SCHED
  223. struct cgroup_subsys_state css;
  224. #endif
  225. #ifdef CONFIG_FAIR_GROUP_SCHED
  226. /* schedulable entities of this group on each cpu */
  227. struct sched_entity **se;
  228. /* runqueue "owned" by this group on each cpu */
  229. struct cfs_rq **cfs_rq;
  230. unsigned long shares;
  231. #endif
  232. #ifdef CONFIG_RT_GROUP_SCHED
  233. struct sched_rt_entity **rt_se;
  234. struct rt_rq **rt_rq;
  235. struct rt_bandwidth rt_bandwidth;
  236. #endif
  237. struct rcu_head rcu;
  238. struct list_head list;
  239. struct task_group *parent;
  240. struct list_head siblings;
  241. struct list_head children;
  242. };
  243. #ifdef CONFIG_USER_SCHED
  244. /*
  245. * Root task group.
  246. * Every UID task group (including init_task_group aka UID-0) will
  247. * be a child to this group.
  248. */
  249. struct task_group root_task_group;
  250. #ifdef CONFIG_FAIR_GROUP_SCHED
  251. /* Default task group's sched entity on each cpu */
  252. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  253. /* Default task group's cfs_rq on each cpu */
  254. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  256. #ifdef CONFIG_RT_GROUP_SCHED
  257. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  258. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  259. #endif /* CONFIG_RT_GROUP_SCHED */
  260. #else /* !CONFIG_USER_SCHED */
  261. #define root_task_group init_task_group
  262. #endif /* CONFIG_USER_SCHED */
  263. /* task_group_lock serializes add/remove of task groups and also changes to
  264. * a task group's cpu shares.
  265. */
  266. static DEFINE_SPINLOCK(task_group_lock);
  267. #ifdef CONFIG_FAIR_GROUP_SCHED
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. tg = p->user->tg;
  295. #elif defined(CONFIG_CGROUP_SCHED)
  296. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  297. struct task_group, css);
  298. #else
  299. tg = &init_task_group;
  300. #endif
  301. return tg;
  302. }
  303. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  304. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  305. {
  306. #ifdef CONFIG_FAIR_GROUP_SCHED
  307. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  308. p->se.parent = task_group(p)->se[cpu];
  309. #endif
  310. #ifdef CONFIG_RT_GROUP_SCHED
  311. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  312. p->rt.parent = task_group(p)->rt_se[cpu];
  313. #endif
  314. }
  315. #else
  316. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  317. static inline struct task_group *task_group(struct task_struct *p)
  318. {
  319. return NULL;
  320. }
  321. #endif /* CONFIG_GROUP_SCHED */
  322. /* CFS-related fields in a runqueue */
  323. struct cfs_rq {
  324. struct load_weight load;
  325. unsigned long nr_running;
  326. u64 exec_clock;
  327. u64 min_vruntime;
  328. struct rb_root tasks_timeline;
  329. struct rb_node *rb_leftmost;
  330. struct list_head tasks;
  331. struct list_head *balance_iterator;
  332. /*
  333. * 'curr' points to currently running entity on this cfs_rq.
  334. * It is set to NULL otherwise (i.e when none are currently running).
  335. */
  336. struct sched_entity *curr, *next;
  337. unsigned long nr_spread_over;
  338. #ifdef CONFIG_FAIR_GROUP_SCHED
  339. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  340. /*
  341. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  342. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  343. * (like users, containers etc.)
  344. *
  345. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  346. * list is used during load balance.
  347. */
  348. struct list_head leaf_cfs_rq_list;
  349. struct task_group *tg; /* group that "owns" this runqueue */
  350. #ifdef CONFIG_SMP
  351. /*
  352. * the part of load.weight contributed by tasks
  353. */
  354. unsigned long task_weight;
  355. /*
  356. * h_load = weight * f(tg)
  357. *
  358. * Where f(tg) is the recursive weight fraction assigned to
  359. * this group.
  360. */
  361. unsigned long h_load;
  362. /*
  363. * this cpu's part of tg->shares
  364. */
  365. unsigned long shares;
  366. /*
  367. * load.weight at the time we set shares
  368. */
  369. unsigned long rq_weight;
  370. #endif
  371. #endif
  372. };
  373. /* Real-Time classes' related field in a runqueue: */
  374. struct rt_rq {
  375. struct rt_prio_array active;
  376. unsigned long rt_nr_running;
  377. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  378. int highest_prio; /* highest queued rt task prio */
  379. #endif
  380. #ifdef CONFIG_SMP
  381. unsigned long rt_nr_migratory;
  382. int overloaded;
  383. #endif
  384. int rt_throttled;
  385. u64 rt_time;
  386. u64 rt_runtime;
  387. /* Nests inside the rq lock: */
  388. spinlock_t rt_runtime_lock;
  389. #ifdef CONFIG_RT_GROUP_SCHED
  390. unsigned long rt_nr_boosted;
  391. struct rq *rq;
  392. struct list_head leaf_rt_rq_list;
  393. struct task_group *tg;
  394. struct sched_rt_entity *rt_se;
  395. #endif
  396. };
  397. #ifdef CONFIG_SMP
  398. /*
  399. * We add the notion of a root-domain which will be used to define per-domain
  400. * variables. Each exclusive cpuset essentially defines an island domain by
  401. * fully partitioning the member cpus from any other cpuset. Whenever a new
  402. * exclusive cpuset is created, we also create and attach a new root-domain
  403. * object.
  404. *
  405. */
  406. struct root_domain {
  407. atomic_t refcount;
  408. cpumask_t span;
  409. cpumask_t online;
  410. /*
  411. * The "RT overload" flag: it gets set if a CPU has more than
  412. * one runnable RT task.
  413. */
  414. cpumask_t rto_mask;
  415. atomic_t rto_count;
  416. #ifdef CONFIG_SMP
  417. struct cpupri cpupri;
  418. #endif
  419. };
  420. /*
  421. * By default the system creates a single root-domain with all cpus as
  422. * members (mimicking the global state we have today).
  423. */
  424. static struct root_domain def_root_domain;
  425. #endif
  426. /*
  427. * This is the main, per-CPU runqueue data structure.
  428. *
  429. * Locking rule: those places that want to lock multiple runqueues
  430. * (such as the load balancing or the thread migration code), lock
  431. * acquire operations must be ordered by ascending &runqueue.
  432. */
  433. struct rq {
  434. /* runqueue lock: */
  435. spinlock_t lock;
  436. /*
  437. * nr_running and cpu_load should be in the same cacheline because
  438. * remote CPUs use both these fields when doing load calculation.
  439. */
  440. unsigned long nr_running;
  441. #define CPU_LOAD_IDX_MAX 5
  442. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  443. unsigned char idle_at_tick;
  444. #ifdef CONFIG_NO_HZ
  445. unsigned long last_tick_seen;
  446. unsigned char in_nohz_recently;
  447. #endif
  448. /* capture load from *all* tasks on this cpu: */
  449. struct load_weight load;
  450. unsigned long nr_load_updates;
  451. u64 nr_switches;
  452. struct cfs_rq cfs;
  453. struct rt_rq rt;
  454. #ifdef CONFIG_FAIR_GROUP_SCHED
  455. /* list of leaf cfs_rq on this cpu: */
  456. struct list_head leaf_cfs_rq_list;
  457. #endif
  458. #ifdef CONFIG_RT_GROUP_SCHED
  459. struct list_head leaf_rt_rq_list;
  460. #endif
  461. /*
  462. * This is part of a global counter where only the total sum
  463. * over all CPUs matters. A task can increase this counter on
  464. * one CPU and if it got migrated afterwards it may decrease
  465. * it on another CPU. Always updated under the runqueue lock:
  466. */
  467. unsigned long nr_uninterruptible;
  468. struct task_struct *curr, *idle;
  469. unsigned long next_balance;
  470. struct mm_struct *prev_mm;
  471. u64 clock;
  472. atomic_t nr_iowait;
  473. #ifdef CONFIG_SMP
  474. struct root_domain *rd;
  475. struct sched_domain *sd;
  476. /* For active balancing */
  477. int active_balance;
  478. int push_cpu;
  479. /* cpu of this runqueue: */
  480. int cpu;
  481. int online;
  482. unsigned long avg_load_per_task;
  483. struct task_struct *migration_thread;
  484. struct list_head migration_queue;
  485. #endif
  486. #ifdef CONFIG_SCHED_HRTICK
  487. #ifdef CONFIG_SMP
  488. int hrtick_csd_pending;
  489. struct call_single_data hrtick_csd;
  490. #endif
  491. struct hrtimer hrtick_timer;
  492. #endif
  493. #ifdef CONFIG_SCHEDSTATS
  494. /* latency stats */
  495. struct sched_info rq_sched_info;
  496. /* sys_sched_yield() stats */
  497. unsigned int yld_exp_empty;
  498. unsigned int yld_act_empty;
  499. unsigned int yld_both_empty;
  500. unsigned int yld_count;
  501. /* schedule() stats */
  502. unsigned int sched_switch;
  503. unsigned int sched_count;
  504. unsigned int sched_goidle;
  505. /* try_to_wake_up() stats */
  506. unsigned int ttwu_count;
  507. unsigned int ttwu_local;
  508. /* BKL stats */
  509. unsigned int bkl_count;
  510. #endif
  511. };
  512. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  513. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  514. {
  515. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  516. }
  517. static inline int cpu_of(struct rq *rq)
  518. {
  519. #ifdef CONFIG_SMP
  520. return rq->cpu;
  521. #else
  522. return 0;
  523. #endif
  524. }
  525. /*
  526. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  527. * See detach_destroy_domains: synchronize_sched for details.
  528. *
  529. * The domain tree of any CPU may only be accessed from within
  530. * preempt-disabled sections.
  531. */
  532. #define for_each_domain(cpu, __sd) \
  533. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  534. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  535. #define this_rq() (&__get_cpu_var(runqueues))
  536. #define task_rq(p) cpu_rq(task_cpu(p))
  537. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  538. static inline void update_rq_clock(struct rq *rq)
  539. {
  540. rq->clock = sched_clock_cpu(cpu_of(rq));
  541. }
  542. /*
  543. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  544. */
  545. #ifdef CONFIG_SCHED_DEBUG
  546. # define const_debug __read_mostly
  547. #else
  548. # define const_debug static const
  549. #endif
  550. /**
  551. * runqueue_is_locked
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(void)
  558. {
  559. int cpu = get_cpu();
  560. struct rq *rq = cpu_rq(cpu);
  561. int ret;
  562. ret = spin_is_locked(&rq->lock);
  563. put_cpu();
  564. return ret;
  565. }
  566. /*
  567. * Debugging: various feature bits
  568. */
  569. #define SCHED_FEAT(name, enabled) \
  570. __SCHED_FEAT_##name ,
  571. enum {
  572. #include "sched_features.h"
  573. };
  574. #undef SCHED_FEAT
  575. #define SCHED_FEAT(name, enabled) \
  576. (1UL << __SCHED_FEAT_##name) * enabled |
  577. const_debug unsigned int sysctl_sched_features =
  578. #include "sched_features.h"
  579. 0;
  580. #undef SCHED_FEAT
  581. #ifdef CONFIG_SCHED_DEBUG
  582. #define SCHED_FEAT(name, enabled) \
  583. #name ,
  584. static __read_mostly char *sched_feat_names[] = {
  585. #include "sched_features.h"
  586. NULL
  587. };
  588. #undef SCHED_FEAT
  589. static int sched_feat_show(struct seq_file *m, void *v)
  590. {
  591. int i;
  592. for (i = 0; sched_feat_names[i]; i++) {
  593. if (!(sysctl_sched_features & (1UL << i)))
  594. seq_puts(m, "NO_");
  595. seq_printf(m, "%s ", sched_feat_names[i]);
  596. }
  597. seq_puts(m, "\n");
  598. return 0;
  599. }
  600. static ssize_t
  601. sched_feat_write(struct file *filp, const char __user *ubuf,
  602. size_t cnt, loff_t *ppos)
  603. {
  604. char buf[64];
  605. char *cmp = buf;
  606. int neg = 0;
  607. int i;
  608. if (cnt > 63)
  609. cnt = 63;
  610. if (copy_from_user(&buf, ubuf, cnt))
  611. return -EFAULT;
  612. buf[cnt] = 0;
  613. if (strncmp(buf, "NO_", 3) == 0) {
  614. neg = 1;
  615. cmp += 3;
  616. }
  617. for (i = 0; sched_feat_names[i]; i++) {
  618. int len = strlen(sched_feat_names[i]);
  619. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  620. if (neg)
  621. sysctl_sched_features &= ~(1UL << i);
  622. else
  623. sysctl_sched_features |= (1UL << i);
  624. break;
  625. }
  626. }
  627. if (!sched_feat_names[i])
  628. return -EINVAL;
  629. filp->f_pos += cnt;
  630. return cnt;
  631. }
  632. static int sched_feat_open(struct inode *inode, struct file *filp)
  633. {
  634. return single_open(filp, sched_feat_show, NULL);
  635. }
  636. static struct file_operations sched_feat_fops = {
  637. .open = sched_feat_open,
  638. .write = sched_feat_write,
  639. .read = seq_read,
  640. .llseek = seq_lseek,
  641. .release = single_release,
  642. };
  643. static __init int sched_init_debug(void)
  644. {
  645. debugfs_create_file("sched_features", 0644, NULL, NULL,
  646. &sched_feat_fops);
  647. return 0;
  648. }
  649. late_initcall(sched_init_debug);
  650. #endif
  651. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  652. /*
  653. * Number of tasks to iterate in a single balance run.
  654. * Limited because this is done with IRQs disabled.
  655. */
  656. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  657. /*
  658. * ratelimit for updating the group shares.
  659. * default: 0.25ms
  660. */
  661. unsigned int sysctl_sched_shares_ratelimit = 250000;
  662. /*
  663. * Inject some fuzzyness into changing the per-cpu group shares
  664. * this avoids remote rq-locks at the expense of fairness.
  665. * default: 4
  666. */
  667. unsigned int sysctl_sched_shares_thresh = 4;
  668. /*
  669. * period over which we measure -rt task cpu usage in us.
  670. * default: 1s
  671. */
  672. unsigned int sysctl_sched_rt_period = 1000000;
  673. static __read_mostly int scheduler_running;
  674. /*
  675. * part of the period that we allow rt tasks to run in us.
  676. * default: 0.95s
  677. */
  678. int sysctl_sched_rt_runtime = 950000;
  679. static inline u64 global_rt_period(void)
  680. {
  681. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  682. }
  683. static inline u64 global_rt_runtime(void)
  684. {
  685. if (sysctl_sched_rt_runtime < 0)
  686. return RUNTIME_INF;
  687. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  688. }
  689. #ifndef prepare_arch_switch
  690. # define prepare_arch_switch(next) do { } while (0)
  691. #endif
  692. #ifndef finish_arch_switch
  693. # define finish_arch_switch(prev) do { } while (0)
  694. #endif
  695. static inline int task_current(struct rq *rq, struct task_struct *p)
  696. {
  697. return rq->curr == p;
  698. }
  699. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  700. static inline int task_running(struct rq *rq, struct task_struct *p)
  701. {
  702. return task_current(rq, p);
  703. }
  704. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  705. {
  706. }
  707. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  708. {
  709. #ifdef CONFIG_DEBUG_SPINLOCK
  710. /* this is a valid case when another task releases the spinlock */
  711. rq->lock.owner = current;
  712. #endif
  713. /*
  714. * If we are tracking spinlock dependencies then we have to
  715. * fix up the runqueue lock - which gets 'carried over' from
  716. * prev into current:
  717. */
  718. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  719. spin_unlock_irq(&rq->lock);
  720. }
  721. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  722. static inline int task_running(struct rq *rq, struct task_struct *p)
  723. {
  724. #ifdef CONFIG_SMP
  725. return p->oncpu;
  726. #else
  727. return task_current(rq, p);
  728. #endif
  729. }
  730. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  731. {
  732. #ifdef CONFIG_SMP
  733. /*
  734. * We can optimise this out completely for !SMP, because the
  735. * SMP rebalancing from interrupt is the only thing that cares
  736. * here.
  737. */
  738. next->oncpu = 1;
  739. #endif
  740. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  741. spin_unlock_irq(&rq->lock);
  742. #else
  743. spin_unlock(&rq->lock);
  744. #endif
  745. }
  746. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  747. {
  748. #ifdef CONFIG_SMP
  749. /*
  750. * After ->oncpu is cleared, the task can be moved to a different CPU.
  751. * We must ensure this doesn't happen until the switch is completely
  752. * finished.
  753. */
  754. smp_wmb();
  755. prev->oncpu = 0;
  756. #endif
  757. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  758. local_irq_enable();
  759. #endif
  760. }
  761. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  762. /*
  763. * __task_rq_lock - lock the runqueue a given task resides on.
  764. * Must be called interrupts disabled.
  765. */
  766. static inline struct rq *__task_rq_lock(struct task_struct *p)
  767. __acquires(rq->lock)
  768. {
  769. for (;;) {
  770. struct rq *rq = task_rq(p);
  771. spin_lock(&rq->lock);
  772. if (likely(rq == task_rq(p)))
  773. return rq;
  774. spin_unlock(&rq->lock);
  775. }
  776. }
  777. /*
  778. * task_rq_lock - lock the runqueue a given task resides on and disable
  779. * interrupts. Note the ordering: we can safely lookup the task_rq without
  780. * explicitly disabling preemption.
  781. */
  782. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  783. __acquires(rq->lock)
  784. {
  785. struct rq *rq;
  786. for (;;) {
  787. local_irq_save(*flags);
  788. rq = task_rq(p);
  789. spin_lock(&rq->lock);
  790. if (likely(rq == task_rq(p)))
  791. return rq;
  792. spin_unlock_irqrestore(&rq->lock, *flags);
  793. }
  794. }
  795. static void __task_rq_unlock(struct rq *rq)
  796. __releases(rq->lock)
  797. {
  798. spin_unlock(&rq->lock);
  799. }
  800. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  801. __releases(rq->lock)
  802. {
  803. spin_unlock_irqrestore(&rq->lock, *flags);
  804. }
  805. /*
  806. * this_rq_lock - lock this runqueue and disable interrupts.
  807. */
  808. static struct rq *this_rq_lock(void)
  809. __acquires(rq->lock)
  810. {
  811. struct rq *rq;
  812. local_irq_disable();
  813. rq = this_rq();
  814. spin_lock(&rq->lock);
  815. return rq;
  816. }
  817. #ifdef CONFIG_SCHED_HRTICK
  818. /*
  819. * Use HR-timers to deliver accurate preemption points.
  820. *
  821. * Its all a bit involved since we cannot program an hrt while holding the
  822. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  823. * reschedule event.
  824. *
  825. * When we get rescheduled we reprogram the hrtick_timer outside of the
  826. * rq->lock.
  827. */
  828. /*
  829. * Use hrtick when:
  830. * - enabled by features
  831. * - hrtimer is actually high res
  832. */
  833. static inline int hrtick_enabled(struct rq *rq)
  834. {
  835. if (!sched_feat(HRTICK))
  836. return 0;
  837. if (!cpu_active(cpu_of(rq)))
  838. return 0;
  839. return hrtimer_is_hres_active(&rq->hrtick_timer);
  840. }
  841. static void hrtick_clear(struct rq *rq)
  842. {
  843. if (hrtimer_active(&rq->hrtick_timer))
  844. hrtimer_cancel(&rq->hrtick_timer);
  845. }
  846. /*
  847. * High-resolution timer tick.
  848. * Runs from hardirq context with interrupts disabled.
  849. */
  850. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  851. {
  852. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  853. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  854. spin_lock(&rq->lock);
  855. update_rq_clock(rq);
  856. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  857. spin_unlock(&rq->lock);
  858. return HRTIMER_NORESTART;
  859. }
  860. #ifdef CONFIG_SMP
  861. /*
  862. * called from hardirq (IPI) context
  863. */
  864. static void __hrtick_start(void *arg)
  865. {
  866. struct rq *rq = arg;
  867. spin_lock(&rq->lock);
  868. hrtimer_restart(&rq->hrtick_timer);
  869. rq->hrtick_csd_pending = 0;
  870. spin_unlock(&rq->lock);
  871. }
  872. /*
  873. * Called to set the hrtick timer state.
  874. *
  875. * called with rq->lock held and irqs disabled
  876. */
  877. static void hrtick_start(struct rq *rq, u64 delay)
  878. {
  879. struct hrtimer *timer = &rq->hrtick_timer;
  880. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  881. hrtimer_set_expires(timer, time);
  882. if (rq == this_rq()) {
  883. hrtimer_restart(timer);
  884. } else if (!rq->hrtick_csd_pending) {
  885. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  886. rq->hrtick_csd_pending = 1;
  887. }
  888. }
  889. static int
  890. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  891. {
  892. int cpu = (int)(long)hcpu;
  893. switch (action) {
  894. case CPU_UP_CANCELED:
  895. case CPU_UP_CANCELED_FROZEN:
  896. case CPU_DOWN_PREPARE:
  897. case CPU_DOWN_PREPARE_FROZEN:
  898. case CPU_DEAD:
  899. case CPU_DEAD_FROZEN:
  900. hrtick_clear(cpu_rq(cpu));
  901. return NOTIFY_OK;
  902. }
  903. return NOTIFY_DONE;
  904. }
  905. static __init void init_hrtick(void)
  906. {
  907. hotcpu_notifier(hotplug_hrtick, 0);
  908. }
  909. #else
  910. /*
  911. * Called to set the hrtick timer state.
  912. *
  913. * called with rq->lock held and irqs disabled
  914. */
  915. static void hrtick_start(struct rq *rq, u64 delay)
  916. {
  917. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  918. }
  919. static inline void init_hrtick(void)
  920. {
  921. }
  922. #endif /* CONFIG_SMP */
  923. static void init_rq_hrtick(struct rq *rq)
  924. {
  925. #ifdef CONFIG_SMP
  926. rq->hrtick_csd_pending = 0;
  927. rq->hrtick_csd.flags = 0;
  928. rq->hrtick_csd.func = __hrtick_start;
  929. rq->hrtick_csd.info = rq;
  930. #endif
  931. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  932. rq->hrtick_timer.function = hrtick;
  933. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  934. }
  935. #else /* CONFIG_SCHED_HRTICK */
  936. static inline void hrtick_clear(struct rq *rq)
  937. {
  938. }
  939. static inline void init_rq_hrtick(struct rq *rq)
  940. {
  941. }
  942. static inline void init_hrtick(void)
  943. {
  944. }
  945. #endif /* CONFIG_SCHED_HRTICK */
  946. /*
  947. * resched_task - mark a task 'to be rescheduled now'.
  948. *
  949. * On UP this means the setting of the need_resched flag, on SMP it
  950. * might also involve a cross-CPU call to trigger the scheduler on
  951. * the target CPU.
  952. */
  953. #ifdef CONFIG_SMP
  954. #ifndef tsk_is_polling
  955. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  956. #endif
  957. static void resched_task(struct task_struct *p)
  958. {
  959. int cpu;
  960. assert_spin_locked(&task_rq(p)->lock);
  961. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  962. return;
  963. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  964. cpu = task_cpu(p);
  965. if (cpu == smp_processor_id())
  966. return;
  967. /* NEED_RESCHED must be visible before we test polling */
  968. smp_mb();
  969. if (!tsk_is_polling(p))
  970. smp_send_reschedule(cpu);
  971. }
  972. static void resched_cpu(int cpu)
  973. {
  974. struct rq *rq = cpu_rq(cpu);
  975. unsigned long flags;
  976. if (!spin_trylock_irqsave(&rq->lock, flags))
  977. return;
  978. resched_task(cpu_curr(cpu));
  979. spin_unlock_irqrestore(&rq->lock, flags);
  980. }
  981. #ifdef CONFIG_NO_HZ
  982. /*
  983. * When add_timer_on() enqueues a timer into the timer wheel of an
  984. * idle CPU then this timer might expire before the next timer event
  985. * which is scheduled to wake up that CPU. In case of a completely
  986. * idle system the next event might even be infinite time into the
  987. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  988. * leaves the inner idle loop so the newly added timer is taken into
  989. * account when the CPU goes back to idle and evaluates the timer
  990. * wheel for the next timer event.
  991. */
  992. void wake_up_idle_cpu(int cpu)
  993. {
  994. struct rq *rq = cpu_rq(cpu);
  995. if (cpu == smp_processor_id())
  996. return;
  997. /*
  998. * This is safe, as this function is called with the timer
  999. * wheel base lock of (cpu) held. When the CPU is on the way
  1000. * to idle and has not yet set rq->curr to idle then it will
  1001. * be serialized on the timer wheel base lock and take the new
  1002. * timer into account automatically.
  1003. */
  1004. if (rq->curr != rq->idle)
  1005. return;
  1006. /*
  1007. * We can set TIF_RESCHED on the idle task of the other CPU
  1008. * lockless. The worst case is that the other CPU runs the
  1009. * idle task through an additional NOOP schedule()
  1010. */
  1011. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1012. /* NEED_RESCHED must be visible before we test polling */
  1013. smp_mb();
  1014. if (!tsk_is_polling(rq->idle))
  1015. smp_send_reschedule(cpu);
  1016. }
  1017. #endif /* CONFIG_NO_HZ */
  1018. #else /* !CONFIG_SMP */
  1019. static void resched_task(struct task_struct *p)
  1020. {
  1021. assert_spin_locked(&task_rq(p)->lock);
  1022. set_tsk_need_resched(p);
  1023. }
  1024. #endif /* CONFIG_SMP */
  1025. #if BITS_PER_LONG == 32
  1026. # define WMULT_CONST (~0UL)
  1027. #else
  1028. # define WMULT_CONST (1UL << 32)
  1029. #endif
  1030. #define WMULT_SHIFT 32
  1031. /*
  1032. * Shift right and round:
  1033. */
  1034. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1035. /*
  1036. * delta *= weight / lw
  1037. */
  1038. static unsigned long
  1039. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1040. struct load_weight *lw)
  1041. {
  1042. u64 tmp;
  1043. if (!lw->inv_weight) {
  1044. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1045. lw->inv_weight = 1;
  1046. else
  1047. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1048. / (lw->weight+1);
  1049. }
  1050. tmp = (u64)delta_exec * weight;
  1051. /*
  1052. * Check whether we'd overflow the 64-bit multiplication:
  1053. */
  1054. if (unlikely(tmp > WMULT_CONST))
  1055. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1056. WMULT_SHIFT/2);
  1057. else
  1058. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1059. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1060. }
  1061. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1062. {
  1063. lw->weight += inc;
  1064. lw->inv_weight = 0;
  1065. }
  1066. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1067. {
  1068. lw->weight -= dec;
  1069. lw->inv_weight = 0;
  1070. }
  1071. /*
  1072. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1073. * of tasks with abnormal "nice" values across CPUs the contribution that
  1074. * each task makes to its run queue's load is weighted according to its
  1075. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1076. * scaled version of the new time slice allocation that they receive on time
  1077. * slice expiry etc.
  1078. */
  1079. #define WEIGHT_IDLEPRIO 2
  1080. #define WMULT_IDLEPRIO (1 << 31)
  1081. /*
  1082. * Nice levels are multiplicative, with a gentle 10% change for every
  1083. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1084. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1085. * that remained on nice 0.
  1086. *
  1087. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1088. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1089. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1090. * If a task goes up by ~10% and another task goes down by ~10% then
  1091. * the relative distance between them is ~25%.)
  1092. */
  1093. static const int prio_to_weight[40] = {
  1094. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1095. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1096. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1097. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1098. /* 0 */ 1024, 820, 655, 526, 423,
  1099. /* 5 */ 335, 272, 215, 172, 137,
  1100. /* 10 */ 110, 87, 70, 56, 45,
  1101. /* 15 */ 36, 29, 23, 18, 15,
  1102. };
  1103. /*
  1104. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1105. *
  1106. * In cases where the weight does not change often, we can use the
  1107. * precalculated inverse to speed up arithmetics by turning divisions
  1108. * into multiplications:
  1109. */
  1110. static const u32 prio_to_wmult[40] = {
  1111. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1112. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1113. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1114. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1115. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1116. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1117. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1118. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1119. };
  1120. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1121. /*
  1122. * runqueue iterator, to support SMP load-balancing between different
  1123. * scheduling classes, without having to expose their internal data
  1124. * structures to the load-balancing proper:
  1125. */
  1126. struct rq_iterator {
  1127. void *arg;
  1128. struct task_struct *(*start)(void *);
  1129. struct task_struct *(*next)(void *);
  1130. };
  1131. #ifdef CONFIG_SMP
  1132. static unsigned long
  1133. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1134. unsigned long max_load_move, struct sched_domain *sd,
  1135. enum cpu_idle_type idle, int *all_pinned,
  1136. int *this_best_prio, struct rq_iterator *iterator);
  1137. static int
  1138. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1139. struct sched_domain *sd, enum cpu_idle_type idle,
  1140. struct rq_iterator *iterator);
  1141. #endif
  1142. #ifdef CONFIG_CGROUP_CPUACCT
  1143. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1144. #else
  1145. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1146. #endif
  1147. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1148. {
  1149. update_load_add(&rq->load, load);
  1150. }
  1151. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1152. {
  1153. update_load_sub(&rq->load, load);
  1154. }
  1155. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1156. typedef int (*tg_visitor)(struct task_group *, void *);
  1157. /*
  1158. * Iterate the full tree, calling @down when first entering a node and @up when
  1159. * leaving it for the final time.
  1160. */
  1161. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1162. {
  1163. struct task_group *parent, *child;
  1164. int ret;
  1165. rcu_read_lock();
  1166. parent = &root_task_group;
  1167. down:
  1168. ret = (*down)(parent, data);
  1169. if (ret)
  1170. goto out_unlock;
  1171. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1172. parent = child;
  1173. goto down;
  1174. up:
  1175. continue;
  1176. }
  1177. ret = (*up)(parent, data);
  1178. if (ret)
  1179. goto out_unlock;
  1180. child = parent;
  1181. parent = parent->parent;
  1182. if (parent)
  1183. goto up;
  1184. out_unlock:
  1185. rcu_read_unlock();
  1186. return ret;
  1187. }
  1188. static int tg_nop(struct task_group *tg, void *data)
  1189. {
  1190. return 0;
  1191. }
  1192. #endif
  1193. #ifdef CONFIG_SMP
  1194. static unsigned long source_load(int cpu, int type);
  1195. static unsigned long target_load(int cpu, int type);
  1196. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1197. static unsigned long cpu_avg_load_per_task(int cpu)
  1198. {
  1199. struct rq *rq = cpu_rq(cpu);
  1200. if (rq->nr_running)
  1201. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1202. return rq->avg_load_per_task;
  1203. }
  1204. #ifdef CONFIG_FAIR_GROUP_SCHED
  1205. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1206. /*
  1207. * Calculate and set the cpu's group shares.
  1208. */
  1209. static void
  1210. update_group_shares_cpu(struct task_group *tg, int cpu,
  1211. unsigned long sd_shares, unsigned long sd_rq_weight)
  1212. {
  1213. int boost = 0;
  1214. unsigned long shares;
  1215. unsigned long rq_weight;
  1216. if (!tg->se[cpu])
  1217. return;
  1218. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1219. /*
  1220. * If there are currently no tasks on the cpu pretend there is one of
  1221. * average load so that when a new task gets to run here it will not
  1222. * get delayed by group starvation.
  1223. */
  1224. if (!rq_weight) {
  1225. boost = 1;
  1226. rq_weight = NICE_0_LOAD;
  1227. }
  1228. if (unlikely(rq_weight > sd_rq_weight))
  1229. rq_weight = sd_rq_weight;
  1230. /*
  1231. * \Sum shares * rq_weight
  1232. * shares = -----------------------
  1233. * \Sum rq_weight
  1234. *
  1235. */
  1236. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1237. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1238. if (abs(shares - tg->se[cpu]->load.weight) >
  1239. sysctl_sched_shares_thresh) {
  1240. struct rq *rq = cpu_rq(cpu);
  1241. unsigned long flags;
  1242. spin_lock_irqsave(&rq->lock, flags);
  1243. /*
  1244. * record the actual number of shares, not the boosted amount.
  1245. */
  1246. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1247. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1248. __set_se_shares(tg->se[cpu], shares);
  1249. spin_unlock_irqrestore(&rq->lock, flags);
  1250. }
  1251. }
  1252. /*
  1253. * Re-compute the task group their per cpu shares over the given domain.
  1254. * This needs to be done in a bottom-up fashion because the rq weight of a
  1255. * parent group depends on the shares of its child groups.
  1256. */
  1257. static int tg_shares_up(struct task_group *tg, void *data)
  1258. {
  1259. unsigned long rq_weight = 0;
  1260. unsigned long shares = 0;
  1261. struct sched_domain *sd = data;
  1262. int i;
  1263. for_each_cpu_mask(i, sd->span) {
  1264. rq_weight += tg->cfs_rq[i]->load.weight;
  1265. shares += tg->cfs_rq[i]->shares;
  1266. }
  1267. if ((!shares && rq_weight) || shares > tg->shares)
  1268. shares = tg->shares;
  1269. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1270. shares = tg->shares;
  1271. if (!rq_weight)
  1272. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1273. for_each_cpu_mask(i, sd->span)
  1274. update_group_shares_cpu(tg, i, shares, rq_weight);
  1275. return 0;
  1276. }
  1277. /*
  1278. * Compute the cpu's hierarchical load factor for each task group.
  1279. * This needs to be done in a top-down fashion because the load of a child
  1280. * group is a fraction of its parents load.
  1281. */
  1282. static int tg_load_down(struct task_group *tg, void *data)
  1283. {
  1284. unsigned long load;
  1285. long cpu = (long)data;
  1286. if (!tg->parent) {
  1287. load = cpu_rq(cpu)->load.weight;
  1288. } else {
  1289. load = tg->parent->cfs_rq[cpu]->h_load;
  1290. load *= tg->cfs_rq[cpu]->shares;
  1291. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1292. }
  1293. tg->cfs_rq[cpu]->h_load = load;
  1294. return 0;
  1295. }
  1296. static void update_shares(struct sched_domain *sd)
  1297. {
  1298. u64 now = cpu_clock(raw_smp_processor_id());
  1299. s64 elapsed = now - sd->last_update;
  1300. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1301. sd->last_update = now;
  1302. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1303. }
  1304. }
  1305. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1306. {
  1307. spin_unlock(&rq->lock);
  1308. update_shares(sd);
  1309. spin_lock(&rq->lock);
  1310. }
  1311. static void update_h_load(long cpu)
  1312. {
  1313. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1314. }
  1315. #else
  1316. static inline void update_shares(struct sched_domain *sd)
  1317. {
  1318. }
  1319. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1320. {
  1321. }
  1322. #endif
  1323. #endif
  1324. #ifdef CONFIG_FAIR_GROUP_SCHED
  1325. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1326. {
  1327. #ifdef CONFIG_SMP
  1328. cfs_rq->shares = shares;
  1329. #endif
  1330. }
  1331. #endif
  1332. #include "sched_stats.h"
  1333. #include "sched_idletask.c"
  1334. #include "sched_fair.c"
  1335. #include "sched_rt.c"
  1336. #ifdef CONFIG_SCHED_DEBUG
  1337. # include "sched_debug.c"
  1338. #endif
  1339. #define sched_class_highest (&rt_sched_class)
  1340. #define for_each_class(class) \
  1341. for (class = sched_class_highest; class; class = class->next)
  1342. static void inc_nr_running(struct rq *rq)
  1343. {
  1344. rq->nr_running++;
  1345. }
  1346. static void dec_nr_running(struct rq *rq)
  1347. {
  1348. rq->nr_running--;
  1349. }
  1350. static void set_load_weight(struct task_struct *p)
  1351. {
  1352. if (task_has_rt_policy(p)) {
  1353. p->se.load.weight = prio_to_weight[0] * 2;
  1354. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1355. return;
  1356. }
  1357. /*
  1358. * SCHED_IDLE tasks get minimal weight:
  1359. */
  1360. if (p->policy == SCHED_IDLE) {
  1361. p->se.load.weight = WEIGHT_IDLEPRIO;
  1362. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1363. return;
  1364. }
  1365. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1366. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1367. }
  1368. static void update_avg(u64 *avg, u64 sample)
  1369. {
  1370. s64 diff = sample - *avg;
  1371. *avg += diff >> 3;
  1372. }
  1373. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1374. {
  1375. sched_info_queued(p);
  1376. p->sched_class->enqueue_task(rq, p, wakeup);
  1377. p->se.on_rq = 1;
  1378. }
  1379. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1380. {
  1381. if (sleep && p->se.last_wakeup) {
  1382. update_avg(&p->se.avg_overlap,
  1383. p->se.sum_exec_runtime - p->se.last_wakeup);
  1384. p->se.last_wakeup = 0;
  1385. }
  1386. sched_info_dequeued(p);
  1387. p->sched_class->dequeue_task(rq, p, sleep);
  1388. p->se.on_rq = 0;
  1389. }
  1390. /*
  1391. * __normal_prio - return the priority that is based on the static prio
  1392. */
  1393. static inline int __normal_prio(struct task_struct *p)
  1394. {
  1395. return p->static_prio;
  1396. }
  1397. /*
  1398. * Calculate the expected normal priority: i.e. priority
  1399. * without taking RT-inheritance into account. Might be
  1400. * boosted by interactivity modifiers. Changes upon fork,
  1401. * setprio syscalls, and whenever the interactivity
  1402. * estimator recalculates.
  1403. */
  1404. static inline int normal_prio(struct task_struct *p)
  1405. {
  1406. int prio;
  1407. if (task_has_rt_policy(p))
  1408. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1409. else
  1410. prio = __normal_prio(p);
  1411. return prio;
  1412. }
  1413. /*
  1414. * Calculate the current priority, i.e. the priority
  1415. * taken into account by the scheduler. This value might
  1416. * be boosted by RT tasks, or might be boosted by
  1417. * interactivity modifiers. Will be RT if the task got
  1418. * RT-boosted. If not then it returns p->normal_prio.
  1419. */
  1420. static int effective_prio(struct task_struct *p)
  1421. {
  1422. p->normal_prio = normal_prio(p);
  1423. /*
  1424. * If we are RT tasks or we were boosted to RT priority,
  1425. * keep the priority unchanged. Otherwise, update priority
  1426. * to the normal priority:
  1427. */
  1428. if (!rt_prio(p->prio))
  1429. return p->normal_prio;
  1430. return p->prio;
  1431. }
  1432. /*
  1433. * activate_task - move a task to the runqueue.
  1434. */
  1435. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1436. {
  1437. if (task_contributes_to_load(p))
  1438. rq->nr_uninterruptible--;
  1439. enqueue_task(rq, p, wakeup);
  1440. inc_nr_running(rq);
  1441. }
  1442. /*
  1443. * deactivate_task - remove a task from the runqueue.
  1444. */
  1445. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1446. {
  1447. if (task_contributes_to_load(p))
  1448. rq->nr_uninterruptible++;
  1449. dequeue_task(rq, p, sleep);
  1450. dec_nr_running(rq);
  1451. }
  1452. /**
  1453. * task_curr - is this task currently executing on a CPU?
  1454. * @p: the task in question.
  1455. */
  1456. inline int task_curr(const struct task_struct *p)
  1457. {
  1458. return cpu_curr(task_cpu(p)) == p;
  1459. }
  1460. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1461. {
  1462. set_task_rq(p, cpu);
  1463. #ifdef CONFIG_SMP
  1464. /*
  1465. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1466. * successfuly executed on another CPU. We must ensure that updates of
  1467. * per-task data have been completed by this moment.
  1468. */
  1469. smp_wmb();
  1470. task_thread_info(p)->cpu = cpu;
  1471. #endif
  1472. }
  1473. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1474. const struct sched_class *prev_class,
  1475. int oldprio, int running)
  1476. {
  1477. if (prev_class != p->sched_class) {
  1478. if (prev_class->switched_from)
  1479. prev_class->switched_from(rq, p, running);
  1480. p->sched_class->switched_to(rq, p, running);
  1481. } else
  1482. p->sched_class->prio_changed(rq, p, oldprio, running);
  1483. }
  1484. #ifdef CONFIG_SMP
  1485. /* Used instead of source_load when we know the type == 0 */
  1486. static unsigned long weighted_cpuload(const int cpu)
  1487. {
  1488. return cpu_rq(cpu)->load.weight;
  1489. }
  1490. /*
  1491. * Is this task likely cache-hot:
  1492. */
  1493. static int
  1494. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1495. {
  1496. s64 delta;
  1497. /*
  1498. * Buddy candidates are cache hot:
  1499. */
  1500. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1501. return 1;
  1502. if (p->sched_class != &fair_sched_class)
  1503. return 0;
  1504. if (sysctl_sched_migration_cost == -1)
  1505. return 1;
  1506. if (sysctl_sched_migration_cost == 0)
  1507. return 0;
  1508. delta = now - p->se.exec_start;
  1509. return delta < (s64)sysctl_sched_migration_cost;
  1510. }
  1511. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1512. {
  1513. int old_cpu = task_cpu(p);
  1514. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1515. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1516. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1517. u64 clock_offset;
  1518. clock_offset = old_rq->clock - new_rq->clock;
  1519. #ifdef CONFIG_SCHEDSTATS
  1520. if (p->se.wait_start)
  1521. p->se.wait_start -= clock_offset;
  1522. if (p->se.sleep_start)
  1523. p->se.sleep_start -= clock_offset;
  1524. if (p->se.block_start)
  1525. p->se.block_start -= clock_offset;
  1526. if (old_cpu != new_cpu) {
  1527. schedstat_inc(p, se.nr_migrations);
  1528. if (task_hot(p, old_rq->clock, NULL))
  1529. schedstat_inc(p, se.nr_forced2_migrations);
  1530. }
  1531. #endif
  1532. p->se.vruntime -= old_cfsrq->min_vruntime -
  1533. new_cfsrq->min_vruntime;
  1534. __set_task_cpu(p, new_cpu);
  1535. }
  1536. struct migration_req {
  1537. struct list_head list;
  1538. struct task_struct *task;
  1539. int dest_cpu;
  1540. struct completion done;
  1541. };
  1542. /*
  1543. * The task's runqueue lock must be held.
  1544. * Returns true if you have to wait for migration thread.
  1545. */
  1546. static int
  1547. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1548. {
  1549. struct rq *rq = task_rq(p);
  1550. /*
  1551. * If the task is not on a runqueue (and not running), then
  1552. * it is sufficient to simply update the task's cpu field.
  1553. */
  1554. if (!p->se.on_rq && !task_running(rq, p)) {
  1555. set_task_cpu(p, dest_cpu);
  1556. return 0;
  1557. }
  1558. init_completion(&req->done);
  1559. req->task = p;
  1560. req->dest_cpu = dest_cpu;
  1561. list_add(&req->list, &rq->migration_queue);
  1562. return 1;
  1563. }
  1564. /*
  1565. * wait_task_inactive - wait for a thread to unschedule.
  1566. *
  1567. * If @match_state is nonzero, it's the @p->state value just checked and
  1568. * not expected to change. If it changes, i.e. @p might have woken up,
  1569. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1570. * we return a positive number (its total switch count). If a second call
  1571. * a short while later returns the same number, the caller can be sure that
  1572. * @p has remained unscheduled the whole time.
  1573. *
  1574. * The caller must ensure that the task *will* unschedule sometime soon,
  1575. * else this function might spin for a *long* time. This function can't
  1576. * be called with interrupts off, or it may introduce deadlock with
  1577. * smp_call_function() if an IPI is sent by the same process we are
  1578. * waiting to become inactive.
  1579. */
  1580. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1581. {
  1582. unsigned long flags;
  1583. int running, on_rq;
  1584. unsigned long ncsw;
  1585. struct rq *rq;
  1586. for (;;) {
  1587. /*
  1588. * We do the initial early heuristics without holding
  1589. * any task-queue locks at all. We'll only try to get
  1590. * the runqueue lock when things look like they will
  1591. * work out!
  1592. */
  1593. rq = task_rq(p);
  1594. /*
  1595. * If the task is actively running on another CPU
  1596. * still, just relax and busy-wait without holding
  1597. * any locks.
  1598. *
  1599. * NOTE! Since we don't hold any locks, it's not
  1600. * even sure that "rq" stays as the right runqueue!
  1601. * But we don't care, since "task_running()" will
  1602. * return false if the runqueue has changed and p
  1603. * is actually now running somewhere else!
  1604. */
  1605. while (task_running(rq, p)) {
  1606. if (match_state && unlikely(p->state != match_state))
  1607. return 0;
  1608. cpu_relax();
  1609. }
  1610. /*
  1611. * Ok, time to look more closely! We need the rq
  1612. * lock now, to be *sure*. If we're wrong, we'll
  1613. * just go back and repeat.
  1614. */
  1615. rq = task_rq_lock(p, &flags);
  1616. trace_sched_wait_task(rq, p);
  1617. running = task_running(rq, p);
  1618. on_rq = p->se.on_rq;
  1619. ncsw = 0;
  1620. if (!match_state || p->state == match_state)
  1621. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1622. task_rq_unlock(rq, &flags);
  1623. /*
  1624. * If it changed from the expected state, bail out now.
  1625. */
  1626. if (unlikely(!ncsw))
  1627. break;
  1628. /*
  1629. * Was it really running after all now that we
  1630. * checked with the proper locks actually held?
  1631. *
  1632. * Oops. Go back and try again..
  1633. */
  1634. if (unlikely(running)) {
  1635. cpu_relax();
  1636. continue;
  1637. }
  1638. /*
  1639. * It's not enough that it's not actively running,
  1640. * it must be off the runqueue _entirely_, and not
  1641. * preempted!
  1642. *
  1643. * So if it wa still runnable (but just not actively
  1644. * running right now), it's preempted, and we should
  1645. * yield - it could be a while.
  1646. */
  1647. if (unlikely(on_rq)) {
  1648. schedule_timeout_uninterruptible(1);
  1649. continue;
  1650. }
  1651. /*
  1652. * Ahh, all good. It wasn't running, and it wasn't
  1653. * runnable, which means that it will never become
  1654. * running in the future either. We're all done!
  1655. */
  1656. break;
  1657. }
  1658. return ncsw;
  1659. }
  1660. /***
  1661. * kick_process - kick a running thread to enter/exit the kernel
  1662. * @p: the to-be-kicked thread
  1663. *
  1664. * Cause a process which is running on another CPU to enter
  1665. * kernel-mode, without any delay. (to get signals handled.)
  1666. *
  1667. * NOTE: this function doesnt have to take the runqueue lock,
  1668. * because all it wants to ensure is that the remote task enters
  1669. * the kernel. If the IPI races and the task has been migrated
  1670. * to another CPU then no harm is done and the purpose has been
  1671. * achieved as well.
  1672. */
  1673. void kick_process(struct task_struct *p)
  1674. {
  1675. int cpu;
  1676. preempt_disable();
  1677. cpu = task_cpu(p);
  1678. if ((cpu != smp_processor_id()) && task_curr(p))
  1679. smp_send_reschedule(cpu);
  1680. preempt_enable();
  1681. }
  1682. /*
  1683. * Return a low guess at the load of a migration-source cpu weighted
  1684. * according to the scheduling class and "nice" value.
  1685. *
  1686. * We want to under-estimate the load of migration sources, to
  1687. * balance conservatively.
  1688. */
  1689. static unsigned long source_load(int cpu, int type)
  1690. {
  1691. struct rq *rq = cpu_rq(cpu);
  1692. unsigned long total = weighted_cpuload(cpu);
  1693. if (type == 0 || !sched_feat(LB_BIAS))
  1694. return total;
  1695. return min(rq->cpu_load[type-1], total);
  1696. }
  1697. /*
  1698. * Return a high guess at the load of a migration-target cpu weighted
  1699. * according to the scheduling class and "nice" value.
  1700. */
  1701. static unsigned long target_load(int cpu, int type)
  1702. {
  1703. struct rq *rq = cpu_rq(cpu);
  1704. unsigned long total = weighted_cpuload(cpu);
  1705. if (type == 0 || !sched_feat(LB_BIAS))
  1706. return total;
  1707. return max(rq->cpu_load[type-1], total);
  1708. }
  1709. /*
  1710. * find_idlest_group finds and returns the least busy CPU group within the
  1711. * domain.
  1712. */
  1713. static struct sched_group *
  1714. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1715. {
  1716. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1717. unsigned long min_load = ULONG_MAX, this_load = 0;
  1718. int load_idx = sd->forkexec_idx;
  1719. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1720. do {
  1721. unsigned long load, avg_load;
  1722. int local_group;
  1723. int i;
  1724. /* Skip over this group if it has no CPUs allowed */
  1725. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1726. continue;
  1727. local_group = cpu_isset(this_cpu, group->cpumask);
  1728. /* Tally up the load of all CPUs in the group */
  1729. avg_load = 0;
  1730. for_each_cpu_mask_nr(i, group->cpumask) {
  1731. /* Bias balancing toward cpus of our domain */
  1732. if (local_group)
  1733. load = source_load(i, load_idx);
  1734. else
  1735. load = target_load(i, load_idx);
  1736. avg_load += load;
  1737. }
  1738. /* Adjust by relative CPU power of the group */
  1739. avg_load = sg_div_cpu_power(group,
  1740. avg_load * SCHED_LOAD_SCALE);
  1741. if (local_group) {
  1742. this_load = avg_load;
  1743. this = group;
  1744. } else if (avg_load < min_load) {
  1745. min_load = avg_load;
  1746. idlest = group;
  1747. }
  1748. } while (group = group->next, group != sd->groups);
  1749. if (!idlest || 100*this_load < imbalance*min_load)
  1750. return NULL;
  1751. return idlest;
  1752. }
  1753. /*
  1754. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1755. */
  1756. static int
  1757. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1758. cpumask_t *tmp)
  1759. {
  1760. unsigned long load, min_load = ULONG_MAX;
  1761. int idlest = -1;
  1762. int i;
  1763. /* Traverse only the allowed CPUs */
  1764. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1765. for_each_cpu_mask_nr(i, *tmp) {
  1766. load = weighted_cpuload(i);
  1767. if (load < min_load || (load == min_load && i == this_cpu)) {
  1768. min_load = load;
  1769. idlest = i;
  1770. }
  1771. }
  1772. return idlest;
  1773. }
  1774. /*
  1775. * sched_balance_self: balance the current task (running on cpu) in domains
  1776. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1777. * SD_BALANCE_EXEC.
  1778. *
  1779. * Balance, ie. select the least loaded group.
  1780. *
  1781. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1782. *
  1783. * preempt must be disabled.
  1784. */
  1785. static int sched_balance_self(int cpu, int flag)
  1786. {
  1787. struct task_struct *t = current;
  1788. struct sched_domain *tmp, *sd = NULL;
  1789. for_each_domain(cpu, tmp) {
  1790. /*
  1791. * If power savings logic is enabled for a domain, stop there.
  1792. */
  1793. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1794. break;
  1795. if (tmp->flags & flag)
  1796. sd = tmp;
  1797. }
  1798. if (sd)
  1799. update_shares(sd);
  1800. while (sd) {
  1801. cpumask_t span, tmpmask;
  1802. struct sched_group *group;
  1803. int new_cpu, weight;
  1804. if (!(sd->flags & flag)) {
  1805. sd = sd->child;
  1806. continue;
  1807. }
  1808. span = sd->span;
  1809. group = find_idlest_group(sd, t, cpu);
  1810. if (!group) {
  1811. sd = sd->child;
  1812. continue;
  1813. }
  1814. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1815. if (new_cpu == -1 || new_cpu == cpu) {
  1816. /* Now try balancing at a lower domain level of cpu */
  1817. sd = sd->child;
  1818. continue;
  1819. }
  1820. /* Now try balancing at a lower domain level of new_cpu */
  1821. cpu = new_cpu;
  1822. sd = NULL;
  1823. weight = cpus_weight(span);
  1824. for_each_domain(cpu, tmp) {
  1825. if (weight <= cpus_weight(tmp->span))
  1826. break;
  1827. if (tmp->flags & flag)
  1828. sd = tmp;
  1829. }
  1830. /* while loop will break here if sd == NULL */
  1831. }
  1832. return cpu;
  1833. }
  1834. #endif /* CONFIG_SMP */
  1835. /***
  1836. * try_to_wake_up - wake up a thread
  1837. * @p: the to-be-woken-up thread
  1838. * @state: the mask of task states that can be woken
  1839. * @sync: do a synchronous wakeup?
  1840. *
  1841. * Put it on the run-queue if it's not already there. The "current"
  1842. * thread is always on the run-queue (except when the actual
  1843. * re-schedule is in progress), and as such you're allowed to do
  1844. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1845. * runnable without the overhead of this.
  1846. *
  1847. * returns failure only if the task is already active.
  1848. */
  1849. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1850. {
  1851. int cpu, orig_cpu, this_cpu, success = 0;
  1852. unsigned long flags;
  1853. long old_state;
  1854. struct rq *rq;
  1855. if (!sched_feat(SYNC_WAKEUPS))
  1856. sync = 0;
  1857. #ifdef CONFIG_SMP
  1858. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1859. struct sched_domain *sd;
  1860. this_cpu = raw_smp_processor_id();
  1861. cpu = task_cpu(p);
  1862. for_each_domain(this_cpu, sd) {
  1863. if (cpu_isset(cpu, sd->span)) {
  1864. update_shares(sd);
  1865. break;
  1866. }
  1867. }
  1868. }
  1869. #endif
  1870. smp_wmb();
  1871. rq = task_rq_lock(p, &flags);
  1872. old_state = p->state;
  1873. if (!(old_state & state))
  1874. goto out;
  1875. if (p->se.on_rq)
  1876. goto out_running;
  1877. cpu = task_cpu(p);
  1878. orig_cpu = cpu;
  1879. this_cpu = smp_processor_id();
  1880. #ifdef CONFIG_SMP
  1881. if (unlikely(task_running(rq, p)))
  1882. goto out_activate;
  1883. cpu = p->sched_class->select_task_rq(p, sync);
  1884. if (cpu != orig_cpu) {
  1885. set_task_cpu(p, cpu);
  1886. task_rq_unlock(rq, &flags);
  1887. /* might preempt at this point */
  1888. rq = task_rq_lock(p, &flags);
  1889. old_state = p->state;
  1890. if (!(old_state & state))
  1891. goto out;
  1892. if (p->se.on_rq)
  1893. goto out_running;
  1894. this_cpu = smp_processor_id();
  1895. cpu = task_cpu(p);
  1896. }
  1897. #ifdef CONFIG_SCHEDSTATS
  1898. schedstat_inc(rq, ttwu_count);
  1899. if (cpu == this_cpu)
  1900. schedstat_inc(rq, ttwu_local);
  1901. else {
  1902. struct sched_domain *sd;
  1903. for_each_domain(this_cpu, sd) {
  1904. if (cpu_isset(cpu, sd->span)) {
  1905. schedstat_inc(sd, ttwu_wake_remote);
  1906. break;
  1907. }
  1908. }
  1909. }
  1910. #endif /* CONFIG_SCHEDSTATS */
  1911. out_activate:
  1912. #endif /* CONFIG_SMP */
  1913. schedstat_inc(p, se.nr_wakeups);
  1914. if (sync)
  1915. schedstat_inc(p, se.nr_wakeups_sync);
  1916. if (orig_cpu != cpu)
  1917. schedstat_inc(p, se.nr_wakeups_migrate);
  1918. if (cpu == this_cpu)
  1919. schedstat_inc(p, se.nr_wakeups_local);
  1920. else
  1921. schedstat_inc(p, se.nr_wakeups_remote);
  1922. update_rq_clock(rq);
  1923. activate_task(rq, p, 1);
  1924. success = 1;
  1925. out_running:
  1926. trace_sched_wakeup(rq, p);
  1927. check_preempt_curr(rq, p, sync);
  1928. p->state = TASK_RUNNING;
  1929. #ifdef CONFIG_SMP
  1930. if (p->sched_class->task_wake_up)
  1931. p->sched_class->task_wake_up(rq, p);
  1932. #endif
  1933. out:
  1934. current->se.last_wakeup = current->se.sum_exec_runtime;
  1935. task_rq_unlock(rq, &flags);
  1936. return success;
  1937. }
  1938. int wake_up_process(struct task_struct *p)
  1939. {
  1940. return try_to_wake_up(p, TASK_ALL, 0);
  1941. }
  1942. EXPORT_SYMBOL(wake_up_process);
  1943. int wake_up_state(struct task_struct *p, unsigned int state)
  1944. {
  1945. return try_to_wake_up(p, state, 0);
  1946. }
  1947. /*
  1948. * Perform scheduler related setup for a newly forked process p.
  1949. * p is forked by current.
  1950. *
  1951. * __sched_fork() is basic setup used by init_idle() too:
  1952. */
  1953. static void __sched_fork(struct task_struct *p)
  1954. {
  1955. p->se.exec_start = 0;
  1956. p->se.sum_exec_runtime = 0;
  1957. p->se.prev_sum_exec_runtime = 0;
  1958. p->se.last_wakeup = 0;
  1959. p->se.avg_overlap = 0;
  1960. #ifdef CONFIG_SCHEDSTATS
  1961. p->se.wait_start = 0;
  1962. p->se.sum_sleep_runtime = 0;
  1963. p->se.sleep_start = 0;
  1964. p->se.block_start = 0;
  1965. p->se.sleep_max = 0;
  1966. p->se.block_max = 0;
  1967. p->se.exec_max = 0;
  1968. p->se.slice_max = 0;
  1969. p->se.wait_max = 0;
  1970. #endif
  1971. INIT_LIST_HEAD(&p->rt.run_list);
  1972. p->se.on_rq = 0;
  1973. INIT_LIST_HEAD(&p->se.group_node);
  1974. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1975. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1976. #endif
  1977. /*
  1978. * We mark the process as running here, but have not actually
  1979. * inserted it onto the runqueue yet. This guarantees that
  1980. * nobody will actually run it, and a signal or other external
  1981. * event cannot wake it up and insert it on the runqueue either.
  1982. */
  1983. p->state = TASK_RUNNING;
  1984. }
  1985. /*
  1986. * fork()/clone()-time setup:
  1987. */
  1988. void sched_fork(struct task_struct *p, int clone_flags)
  1989. {
  1990. int cpu = get_cpu();
  1991. __sched_fork(p);
  1992. #ifdef CONFIG_SMP
  1993. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1994. #endif
  1995. set_task_cpu(p, cpu);
  1996. /*
  1997. * Make sure we do not leak PI boosting priority to the child:
  1998. */
  1999. p->prio = current->normal_prio;
  2000. if (!rt_prio(p->prio))
  2001. p->sched_class = &fair_sched_class;
  2002. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2003. if (likely(sched_info_on()))
  2004. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2005. #endif
  2006. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2007. p->oncpu = 0;
  2008. #endif
  2009. #ifdef CONFIG_PREEMPT
  2010. /* Want to start with kernel preemption disabled. */
  2011. task_thread_info(p)->preempt_count = 1;
  2012. #endif
  2013. put_cpu();
  2014. }
  2015. /*
  2016. * wake_up_new_task - wake up a newly created task for the first time.
  2017. *
  2018. * This function will do some initial scheduler statistics housekeeping
  2019. * that must be done for every newly created context, then puts the task
  2020. * on the runqueue and wakes it.
  2021. */
  2022. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2023. {
  2024. unsigned long flags;
  2025. struct rq *rq;
  2026. rq = task_rq_lock(p, &flags);
  2027. BUG_ON(p->state != TASK_RUNNING);
  2028. update_rq_clock(rq);
  2029. p->prio = effective_prio(p);
  2030. if (!p->sched_class->task_new || !current->se.on_rq) {
  2031. activate_task(rq, p, 0);
  2032. } else {
  2033. /*
  2034. * Let the scheduling class do new task startup
  2035. * management (if any):
  2036. */
  2037. p->sched_class->task_new(rq, p);
  2038. inc_nr_running(rq);
  2039. }
  2040. trace_sched_wakeup_new(rq, p);
  2041. check_preempt_curr(rq, p, 0);
  2042. #ifdef CONFIG_SMP
  2043. if (p->sched_class->task_wake_up)
  2044. p->sched_class->task_wake_up(rq, p);
  2045. #endif
  2046. task_rq_unlock(rq, &flags);
  2047. }
  2048. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2049. /**
  2050. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2051. * @notifier: notifier struct to register
  2052. */
  2053. void preempt_notifier_register(struct preempt_notifier *notifier)
  2054. {
  2055. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2056. }
  2057. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2058. /**
  2059. * preempt_notifier_unregister - no longer interested in preemption notifications
  2060. * @notifier: notifier struct to unregister
  2061. *
  2062. * This is safe to call from within a preemption notifier.
  2063. */
  2064. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2065. {
  2066. hlist_del(&notifier->link);
  2067. }
  2068. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2069. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2070. {
  2071. struct preempt_notifier *notifier;
  2072. struct hlist_node *node;
  2073. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2074. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2075. }
  2076. static void
  2077. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2078. struct task_struct *next)
  2079. {
  2080. struct preempt_notifier *notifier;
  2081. struct hlist_node *node;
  2082. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2083. notifier->ops->sched_out(notifier, next);
  2084. }
  2085. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2086. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2087. {
  2088. }
  2089. static void
  2090. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2091. struct task_struct *next)
  2092. {
  2093. }
  2094. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2095. /**
  2096. * prepare_task_switch - prepare to switch tasks
  2097. * @rq: the runqueue preparing to switch
  2098. * @prev: the current task that is being switched out
  2099. * @next: the task we are going to switch to.
  2100. *
  2101. * This is called with the rq lock held and interrupts off. It must
  2102. * be paired with a subsequent finish_task_switch after the context
  2103. * switch.
  2104. *
  2105. * prepare_task_switch sets up locking and calls architecture specific
  2106. * hooks.
  2107. */
  2108. static inline void
  2109. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2110. struct task_struct *next)
  2111. {
  2112. fire_sched_out_preempt_notifiers(prev, next);
  2113. prepare_lock_switch(rq, next);
  2114. prepare_arch_switch(next);
  2115. }
  2116. /**
  2117. * finish_task_switch - clean up after a task-switch
  2118. * @rq: runqueue associated with task-switch
  2119. * @prev: the thread we just switched away from.
  2120. *
  2121. * finish_task_switch must be called after the context switch, paired
  2122. * with a prepare_task_switch call before the context switch.
  2123. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2124. * and do any other architecture-specific cleanup actions.
  2125. *
  2126. * Note that we may have delayed dropping an mm in context_switch(). If
  2127. * so, we finish that here outside of the runqueue lock. (Doing it
  2128. * with the lock held can cause deadlocks; see schedule() for
  2129. * details.)
  2130. */
  2131. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2132. __releases(rq->lock)
  2133. {
  2134. struct mm_struct *mm = rq->prev_mm;
  2135. long prev_state;
  2136. rq->prev_mm = NULL;
  2137. /*
  2138. * A task struct has one reference for the use as "current".
  2139. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2140. * schedule one last time. The schedule call will never return, and
  2141. * the scheduled task must drop that reference.
  2142. * The test for TASK_DEAD must occur while the runqueue locks are
  2143. * still held, otherwise prev could be scheduled on another cpu, die
  2144. * there before we look at prev->state, and then the reference would
  2145. * be dropped twice.
  2146. * Manfred Spraul <manfred@colorfullife.com>
  2147. */
  2148. prev_state = prev->state;
  2149. finish_arch_switch(prev);
  2150. finish_lock_switch(rq, prev);
  2151. #ifdef CONFIG_SMP
  2152. if (current->sched_class->post_schedule)
  2153. current->sched_class->post_schedule(rq);
  2154. #endif
  2155. fire_sched_in_preempt_notifiers(current);
  2156. if (mm)
  2157. mmdrop(mm);
  2158. if (unlikely(prev_state == TASK_DEAD)) {
  2159. /*
  2160. * Remove function-return probe instances associated with this
  2161. * task and put them back on the free list.
  2162. */
  2163. kprobe_flush_task(prev);
  2164. put_task_struct(prev);
  2165. }
  2166. }
  2167. /**
  2168. * schedule_tail - first thing a freshly forked thread must call.
  2169. * @prev: the thread we just switched away from.
  2170. */
  2171. asmlinkage void schedule_tail(struct task_struct *prev)
  2172. __releases(rq->lock)
  2173. {
  2174. struct rq *rq = this_rq();
  2175. finish_task_switch(rq, prev);
  2176. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2177. /* In this case, finish_task_switch does not reenable preemption */
  2178. preempt_enable();
  2179. #endif
  2180. if (current->set_child_tid)
  2181. put_user(task_pid_vnr(current), current->set_child_tid);
  2182. }
  2183. /*
  2184. * context_switch - switch to the new MM and the new
  2185. * thread's register state.
  2186. */
  2187. static inline void
  2188. context_switch(struct rq *rq, struct task_struct *prev,
  2189. struct task_struct *next)
  2190. {
  2191. struct mm_struct *mm, *oldmm;
  2192. prepare_task_switch(rq, prev, next);
  2193. trace_sched_switch(rq, prev, next);
  2194. mm = next->mm;
  2195. oldmm = prev->active_mm;
  2196. /*
  2197. * For paravirt, this is coupled with an exit in switch_to to
  2198. * combine the page table reload and the switch backend into
  2199. * one hypercall.
  2200. */
  2201. arch_enter_lazy_cpu_mode();
  2202. if (unlikely(!mm)) {
  2203. next->active_mm = oldmm;
  2204. atomic_inc(&oldmm->mm_count);
  2205. enter_lazy_tlb(oldmm, next);
  2206. } else
  2207. switch_mm(oldmm, mm, next);
  2208. if (unlikely(!prev->mm)) {
  2209. prev->active_mm = NULL;
  2210. rq->prev_mm = oldmm;
  2211. }
  2212. /*
  2213. * Since the runqueue lock will be released by the next
  2214. * task (which is an invalid locking op but in the case
  2215. * of the scheduler it's an obvious special-case), so we
  2216. * do an early lockdep release here:
  2217. */
  2218. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2219. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2220. #endif
  2221. /* Here we just switch the register state and the stack. */
  2222. switch_to(prev, next, prev);
  2223. barrier();
  2224. /*
  2225. * this_rq must be evaluated again because prev may have moved
  2226. * CPUs since it called schedule(), thus the 'rq' on its stack
  2227. * frame will be invalid.
  2228. */
  2229. finish_task_switch(this_rq(), prev);
  2230. }
  2231. /*
  2232. * nr_running, nr_uninterruptible and nr_context_switches:
  2233. *
  2234. * externally visible scheduler statistics: current number of runnable
  2235. * threads, current number of uninterruptible-sleeping threads, total
  2236. * number of context switches performed since bootup.
  2237. */
  2238. unsigned long nr_running(void)
  2239. {
  2240. unsigned long i, sum = 0;
  2241. for_each_online_cpu(i)
  2242. sum += cpu_rq(i)->nr_running;
  2243. return sum;
  2244. }
  2245. unsigned long nr_uninterruptible(void)
  2246. {
  2247. unsigned long i, sum = 0;
  2248. for_each_possible_cpu(i)
  2249. sum += cpu_rq(i)->nr_uninterruptible;
  2250. /*
  2251. * Since we read the counters lockless, it might be slightly
  2252. * inaccurate. Do not allow it to go below zero though:
  2253. */
  2254. if (unlikely((long)sum < 0))
  2255. sum = 0;
  2256. return sum;
  2257. }
  2258. unsigned long long nr_context_switches(void)
  2259. {
  2260. int i;
  2261. unsigned long long sum = 0;
  2262. for_each_possible_cpu(i)
  2263. sum += cpu_rq(i)->nr_switches;
  2264. return sum;
  2265. }
  2266. unsigned long nr_iowait(void)
  2267. {
  2268. unsigned long i, sum = 0;
  2269. for_each_possible_cpu(i)
  2270. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2271. return sum;
  2272. }
  2273. unsigned long nr_active(void)
  2274. {
  2275. unsigned long i, running = 0, uninterruptible = 0;
  2276. for_each_online_cpu(i) {
  2277. running += cpu_rq(i)->nr_running;
  2278. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2279. }
  2280. if (unlikely((long)uninterruptible < 0))
  2281. uninterruptible = 0;
  2282. return running + uninterruptible;
  2283. }
  2284. /*
  2285. * Update rq->cpu_load[] statistics. This function is usually called every
  2286. * scheduler tick (TICK_NSEC).
  2287. */
  2288. static void update_cpu_load(struct rq *this_rq)
  2289. {
  2290. unsigned long this_load = this_rq->load.weight;
  2291. int i, scale;
  2292. this_rq->nr_load_updates++;
  2293. /* Update our load: */
  2294. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2295. unsigned long old_load, new_load;
  2296. /* scale is effectively 1 << i now, and >> i divides by scale */
  2297. old_load = this_rq->cpu_load[i];
  2298. new_load = this_load;
  2299. /*
  2300. * Round up the averaging division if load is increasing. This
  2301. * prevents us from getting stuck on 9 if the load is 10, for
  2302. * example.
  2303. */
  2304. if (new_load > old_load)
  2305. new_load += scale-1;
  2306. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2307. }
  2308. }
  2309. #ifdef CONFIG_SMP
  2310. /*
  2311. * double_rq_lock - safely lock two runqueues
  2312. *
  2313. * Note this does not disable interrupts like task_rq_lock,
  2314. * you need to do so manually before calling.
  2315. */
  2316. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2317. __acquires(rq1->lock)
  2318. __acquires(rq2->lock)
  2319. {
  2320. BUG_ON(!irqs_disabled());
  2321. if (rq1 == rq2) {
  2322. spin_lock(&rq1->lock);
  2323. __acquire(rq2->lock); /* Fake it out ;) */
  2324. } else {
  2325. if (rq1 < rq2) {
  2326. spin_lock(&rq1->lock);
  2327. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2328. } else {
  2329. spin_lock(&rq2->lock);
  2330. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2331. }
  2332. }
  2333. update_rq_clock(rq1);
  2334. update_rq_clock(rq2);
  2335. }
  2336. /*
  2337. * double_rq_unlock - safely unlock two runqueues
  2338. *
  2339. * Note this does not restore interrupts like task_rq_unlock,
  2340. * you need to do so manually after calling.
  2341. */
  2342. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2343. __releases(rq1->lock)
  2344. __releases(rq2->lock)
  2345. {
  2346. spin_unlock(&rq1->lock);
  2347. if (rq1 != rq2)
  2348. spin_unlock(&rq2->lock);
  2349. else
  2350. __release(rq2->lock);
  2351. }
  2352. /*
  2353. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2354. */
  2355. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2356. __releases(this_rq->lock)
  2357. __acquires(busiest->lock)
  2358. __acquires(this_rq->lock)
  2359. {
  2360. int ret = 0;
  2361. if (unlikely(!irqs_disabled())) {
  2362. /* printk() doesn't work good under rq->lock */
  2363. spin_unlock(&this_rq->lock);
  2364. BUG_ON(1);
  2365. }
  2366. if (unlikely(!spin_trylock(&busiest->lock))) {
  2367. if (busiest < this_rq) {
  2368. spin_unlock(&this_rq->lock);
  2369. spin_lock(&busiest->lock);
  2370. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2371. ret = 1;
  2372. } else
  2373. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2374. }
  2375. return ret;
  2376. }
  2377. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2378. __releases(busiest->lock)
  2379. {
  2380. spin_unlock(&busiest->lock);
  2381. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2382. }
  2383. /*
  2384. * If dest_cpu is allowed for this process, migrate the task to it.
  2385. * This is accomplished by forcing the cpu_allowed mask to only
  2386. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2387. * the cpu_allowed mask is restored.
  2388. */
  2389. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2390. {
  2391. struct migration_req req;
  2392. unsigned long flags;
  2393. struct rq *rq;
  2394. rq = task_rq_lock(p, &flags);
  2395. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2396. || unlikely(!cpu_active(dest_cpu)))
  2397. goto out;
  2398. trace_sched_migrate_task(rq, p, dest_cpu);
  2399. /* force the process onto the specified CPU */
  2400. if (migrate_task(p, dest_cpu, &req)) {
  2401. /* Need to wait for migration thread (might exit: take ref). */
  2402. struct task_struct *mt = rq->migration_thread;
  2403. get_task_struct(mt);
  2404. task_rq_unlock(rq, &flags);
  2405. wake_up_process(mt);
  2406. put_task_struct(mt);
  2407. wait_for_completion(&req.done);
  2408. return;
  2409. }
  2410. out:
  2411. task_rq_unlock(rq, &flags);
  2412. }
  2413. /*
  2414. * sched_exec - execve() is a valuable balancing opportunity, because at
  2415. * this point the task has the smallest effective memory and cache footprint.
  2416. */
  2417. void sched_exec(void)
  2418. {
  2419. int new_cpu, this_cpu = get_cpu();
  2420. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2421. put_cpu();
  2422. if (new_cpu != this_cpu)
  2423. sched_migrate_task(current, new_cpu);
  2424. }
  2425. /*
  2426. * pull_task - move a task from a remote runqueue to the local runqueue.
  2427. * Both runqueues must be locked.
  2428. */
  2429. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2430. struct rq *this_rq, int this_cpu)
  2431. {
  2432. deactivate_task(src_rq, p, 0);
  2433. set_task_cpu(p, this_cpu);
  2434. activate_task(this_rq, p, 0);
  2435. /*
  2436. * Note that idle threads have a prio of MAX_PRIO, for this test
  2437. * to be always true for them.
  2438. */
  2439. check_preempt_curr(this_rq, p, 0);
  2440. }
  2441. /*
  2442. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2443. */
  2444. static
  2445. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2446. struct sched_domain *sd, enum cpu_idle_type idle,
  2447. int *all_pinned)
  2448. {
  2449. /*
  2450. * We do not migrate tasks that are:
  2451. * 1) running (obviously), or
  2452. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2453. * 3) are cache-hot on their current CPU.
  2454. */
  2455. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2456. schedstat_inc(p, se.nr_failed_migrations_affine);
  2457. return 0;
  2458. }
  2459. *all_pinned = 0;
  2460. if (task_running(rq, p)) {
  2461. schedstat_inc(p, se.nr_failed_migrations_running);
  2462. return 0;
  2463. }
  2464. /*
  2465. * Aggressive migration if:
  2466. * 1) task is cache cold, or
  2467. * 2) too many balance attempts have failed.
  2468. */
  2469. if (!task_hot(p, rq->clock, sd) ||
  2470. sd->nr_balance_failed > sd->cache_nice_tries) {
  2471. #ifdef CONFIG_SCHEDSTATS
  2472. if (task_hot(p, rq->clock, sd)) {
  2473. schedstat_inc(sd, lb_hot_gained[idle]);
  2474. schedstat_inc(p, se.nr_forced_migrations);
  2475. }
  2476. #endif
  2477. return 1;
  2478. }
  2479. if (task_hot(p, rq->clock, sd)) {
  2480. schedstat_inc(p, se.nr_failed_migrations_hot);
  2481. return 0;
  2482. }
  2483. return 1;
  2484. }
  2485. static unsigned long
  2486. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2487. unsigned long max_load_move, struct sched_domain *sd,
  2488. enum cpu_idle_type idle, int *all_pinned,
  2489. int *this_best_prio, struct rq_iterator *iterator)
  2490. {
  2491. int loops = 0, pulled = 0, pinned = 0;
  2492. struct task_struct *p;
  2493. long rem_load_move = max_load_move;
  2494. if (max_load_move == 0)
  2495. goto out;
  2496. pinned = 1;
  2497. /*
  2498. * Start the load-balancing iterator:
  2499. */
  2500. p = iterator->start(iterator->arg);
  2501. next:
  2502. if (!p || loops++ > sysctl_sched_nr_migrate)
  2503. goto out;
  2504. if ((p->se.load.weight >> 1) > rem_load_move ||
  2505. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2506. p = iterator->next(iterator->arg);
  2507. goto next;
  2508. }
  2509. pull_task(busiest, p, this_rq, this_cpu);
  2510. pulled++;
  2511. rem_load_move -= p->se.load.weight;
  2512. /*
  2513. * We only want to steal up to the prescribed amount of weighted load.
  2514. */
  2515. if (rem_load_move > 0) {
  2516. if (p->prio < *this_best_prio)
  2517. *this_best_prio = p->prio;
  2518. p = iterator->next(iterator->arg);
  2519. goto next;
  2520. }
  2521. out:
  2522. /*
  2523. * Right now, this is one of only two places pull_task() is called,
  2524. * so we can safely collect pull_task() stats here rather than
  2525. * inside pull_task().
  2526. */
  2527. schedstat_add(sd, lb_gained[idle], pulled);
  2528. if (all_pinned)
  2529. *all_pinned = pinned;
  2530. return max_load_move - rem_load_move;
  2531. }
  2532. /*
  2533. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2534. * this_rq, as part of a balancing operation within domain "sd".
  2535. * Returns 1 if successful and 0 otherwise.
  2536. *
  2537. * Called with both runqueues locked.
  2538. */
  2539. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2540. unsigned long max_load_move,
  2541. struct sched_domain *sd, enum cpu_idle_type idle,
  2542. int *all_pinned)
  2543. {
  2544. const struct sched_class *class = sched_class_highest;
  2545. unsigned long total_load_moved = 0;
  2546. int this_best_prio = this_rq->curr->prio;
  2547. do {
  2548. total_load_moved +=
  2549. class->load_balance(this_rq, this_cpu, busiest,
  2550. max_load_move - total_load_moved,
  2551. sd, idle, all_pinned, &this_best_prio);
  2552. class = class->next;
  2553. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2554. break;
  2555. } while (class && max_load_move > total_load_moved);
  2556. return total_load_moved > 0;
  2557. }
  2558. static int
  2559. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2560. struct sched_domain *sd, enum cpu_idle_type idle,
  2561. struct rq_iterator *iterator)
  2562. {
  2563. struct task_struct *p = iterator->start(iterator->arg);
  2564. int pinned = 0;
  2565. while (p) {
  2566. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2567. pull_task(busiest, p, this_rq, this_cpu);
  2568. /*
  2569. * Right now, this is only the second place pull_task()
  2570. * is called, so we can safely collect pull_task()
  2571. * stats here rather than inside pull_task().
  2572. */
  2573. schedstat_inc(sd, lb_gained[idle]);
  2574. return 1;
  2575. }
  2576. p = iterator->next(iterator->arg);
  2577. }
  2578. return 0;
  2579. }
  2580. /*
  2581. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2582. * part of active balancing operations within "domain".
  2583. * Returns 1 if successful and 0 otherwise.
  2584. *
  2585. * Called with both runqueues locked.
  2586. */
  2587. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2588. struct sched_domain *sd, enum cpu_idle_type idle)
  2589. {
  2590. const struct sched_class *class;
  2591. for (class = sched_class_highest; class; class = class->next)
  2592. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2593. return 1;
  2594. return 0;
  2595. }
  2596. /*
  2597. * find_busiest_group finds and returns the busiest CPU group within the
  2598. * domain. It calculates and returns the amount of weighted load which
  2599. * should be moved to restore balance via the imbalance parameter.
  2600. */
  2601. static struct sched_group *
  2602. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2603. unsigned long *imbalance, enum cpu_idle_type idle,
  2604. int *sd_idle, const cpumask_t *cpus, int *balance)
  2605. {
  2606. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2607. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2608. unsigned long max_pull;
  2609. unsigned long busiest_load_per_task, busiest_nr_running;
  2610. unsigned long this_load_per_task, this_nr_running;
  2611. int load_idx, group_imb = 0;
  2612. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2613. int power_savings_balance = 1;
  2614. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2615. unsigned long min_nr_running = ULONG_MAX;
  2616. struct sched_group *group_min = NULL, *group_leader = NULL;
  2617. #endif
  2618. max_load = this_load = total_load = total_pwr = 0;
  2619. busiest_load_per_task = busiest_nr_running = 0;
  2620. this_load_per_task = this_nr_running = 0;
  2621. if (idle == CPU_NOT_IDLE)
  2622. load_idx = sd->busy_idx;
  2623. else if (idle == CPU_NEWLY_IDLE)
  2624. load_idx = sd->newidle_idx;
  2625. else
  2626. load_idx = sd->idle_idx;
  2627. do {
  2628. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2629. int local_group;
  2630. int i;
  2631. int __group_imb = 0;
  2632. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2633. unsigned long sum_nr_running, sum_weighted_load;
  2634. unsigned long sum_avg_load_per_task;
  2635. unsigned long avg_load_per_task;
  2636. local_group = cpu_isset(this_cpu, group->cpumask);
  2637. if (local_group)
  2638. balance_cpu = first_cpu(group->cpumask);
  2639. /* Tally up the load of all CPUs in the group */
  2640. sum_weighted_load = sum_nr_running = avg_load = 0;
  2641. sum_avg_load_per_task = avg_load_per_task = 0;
  2642. max_cpu_load = 0;
  2643. min_cpu_load = ~0UL;
  2644. for_each_cpu_mask_nr(i, group->cpumask) {
  2645. struct rq *rq;
  2646. if (!cpu_isset(i, *cpus))
  2647. continue;
  2648. rq = cpu_rq(i);
  2649. if (*sd_idle && rq->nr_running)
  2650. *sd_idle = 0;
  2651. /* Bias balancing toward cpus of our domain */
  2652. if (local_group) {
  2653. if (idle_cpu(i) && !first_idle_cpu) {
  2654. first_idle_cpu = 1;
  2655. balance_cpu = i;
  2656. }
  2657. load = target_load(i, load_idx);
  2658. } else {
  2659. load = source_load(i, load_idx);
  2660. if (load > max_cpu_load)
  2661. max_cpu_load = load;
  2662. if (min_cpu_load > load)
  2663. min_cpu_load = load;
  2664. }
  2665. avg_load += load;
  2666. sum_nr_running += rq->nr_running;
  2667. sum_weighted_load += weighted_cpuload(i);
  2668. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2669. }
  2670. /*
  2671. * First idle cpu or the first cpu(busiest) in this sched group
  2672. * is eligible for doing load balancing at this and above
  2673. * domains. In the newly idle case, we will allow all the cpu's
  2674. * to do the newly idle load balance.
  2675. */
  2676. if (idle != CPU_NEWLY_IDLE && local_group &&
  2677. balance_cpu != this_cpu && balance) {
  2678. *balance = 0;
  2679. goto ret;
  2680. }
  2681. total_load += avg_load;
  2682. total_pwr += group->__cpu_power;
  2683. /* Adjust by relative CPU power of the group */
  2684. avg_load = sg_div_cpu_power(group,
  2685. avg_load * SCHED_LOAD_SCALE);
  2686. /*
  2687. * Consider the group unbalanced when the imbalance is larger
  2688. * than the average weight of two tasks.
  2689. *
  2690. * APZ: with cgroup the avg task weight can vary wildly and
  2691. * might not be a suitable number - should we keep a
  2692. * normalized nr_running number somewhere that negates
  2693. * the hierarchy?
  2694. */
  2695. avg_load_per_task = sg_div_cpu_power(group,
  2696. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2697. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2698. __group_imb = 1;
  2699. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2700. if (local_group) {
  2701. this_load = avg_load;
  2702. this = group;
  2703. this_nr_running = sum_nr_running;
  2704. this_load_per_task = sum_weighted_load;
  2705. } else if (avg_load > max_load &&
  2706. (sum_nr_running > group_capacity || __group_imb)) {
  2707. max_load = avg_load;
  2708. busiest = group;
  2709. busiest_nr_running = sum_nr_running;
  2710. busiest_load_per_task = sum_weighted_load;
  2711. group_imb = __group_imb;
  2712. }
  2713. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2714. /*
  2715. * Busy processors will not participate in power savings
  2716. * balance.
  2717. */
  2718. if (idle == CPU_NOT_IDLE ||
  2719. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2720. goto group_next;
  2721. /*
  2722. * If the local group is idle or completely loaded
  2723. * no need to do power savings balance at this domain
  2724. */
  2725. if (local_group && (this_nr_running >= group_capacity ||
  2726. !this_nr_running))
  2727. power_savings_balance = 0;
  2728. /*
  2729. * If a group is already running at full capacity or idle,
  2730. * don't include that group in power savings calculations
  2731. */
  2732. if (!power_savings_balance || sum_nr_running >= group_capacity
  2733. || !sum_nr_running)
  2734. goto group_next;
  2735. /*
  2736. * Calculate the group which has the least non-idle load.
  2737. * This is the group from where we need to pick up the load
  2738. * for saving power
  2739. */
  2740. if ((sum_nr_running < min_nr_running) ||
  2741. (sum_nr_running == min_nr_running &&
  2742. first_cpu(group->cpumask) <
  2743. first_cpu(group_min->cpumask))) {
  2744. group_min = group;
  2745. min_nr_running = sum_nr_running;
  2746. min_load_per_task = sum_weighted_load /
  2747. sum_nr_running;
  2748. }
  2749. /*
  2750. * Calculate the group which is almost near its
  2751. * capacity but still has some space to pick up some load
  2752. * from other group and save more power
  2753. */
  2754. if (sum_nr_running <= group_capacity - 1) {
  2755. if (sum_nr_running > leader_nr_running ||
  2756. (sum_nr_running == leader_nr_running &&
  2757. first_cpu(group->cpumask) >
  2758. first_cpu(group_leader->cpumask))) {
  2759. group_leader = group;
  2760. leader_nr_running = sum_nr_running;
  2761. }
  2762. }
  2763. group_next:
  2764. #endif
  2765. group = group->next;
  2766. } while (group != sd->groups);
  2767. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2768. goto out_balanced;
  2769. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2770. if (this_load >= avg_load ||
  2771. 100*max_load <= sd->imbalance_pct*this_load)
  2772. goto out_balanced;
  2773. busiest_load_per_task /= busiest_nr_running;
  2774. if (group_imb)
  2775. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2776. /*
  2777. * We're trying to get all the cpus to the average_load, so we don't
  2778. * want to push ourselves above the average load, nor do we wish to
  2779. * reduce the max loaded cpu below the average load, as either of these
  2780. * actions would just result in more rebalancing later, and ping-pong
  2781. * tasks around. Thus we look for the minimum possible imbalance.
  2782. * Negative imbalances (*we* are more loaded than anyone else) will
  2783. * be counted as no imbalance for these purposes -- we can't fix that
  2784. * by pulling tasks to us. Be careful of negative numbers as they'll
  2785. * appear as very large values with unsigned longs.
  2786. */
  2787. if (max_load <= busiest_load_per_task)
  2788. goto out_balanced;
  2789. /*
  2790. * In the presence of smp nice balancing, certain scenarios can have
  2791. * max load less than avg load(as we skip the groups at or below
  2792. * its cpu_power, while calculating max_load..)
  2793. */
  2794. if (max_load < avg_load) {
  2795. *imbalance = 0;
  2796. goto small_imbalance;
  2797. }
  2798. /* Don't want to pull so many tasks that a group would go idle */
  2799. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2800. /* How much load to actually move to equalise the imbalance */
  2801. *imbalance = min(max_pull * busiest->__cpu_power,
  2802. (avg_load - this_load) * this->__cpu_power)
  2803. / SCHED_LOAD_SCALE;
  2804. /*
  2805. * if *imbalance is less than the average load per runnable task
  2806. * there is no gaurantee that any tasks will be moved so we'll have
  2807. * a think about bumping its value to force at least one task to be
  2808. * moved
  2809. */
  2810. if (*imbalance < busiest_load_per_task) {
  2811. unsigned long tmp, pwr_now, pwr_move;
  2812. unsigned int imbn;
  2813. small_imbalance:
  2814. pwr_move = pwr_now = 0;
  2815. imbn = 2;
  2816. if (this_nr_running) {
  2817. this_load_per_task /= this_nr_running;
  2818. if (busiest_load_per_task > this_load_per_task)
  2819. imbn = 1;
  2820. } else
  2821. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2822. if (max_load - this_load + busiest_load_per_task >=
  2823. busiest_load_per_task * imbn) {
  2824. *imbalance = busiest_load_per_task;
  2825. return busiest;
  2826. }
  2827. /*
  2828. * OK, we don't have enough imbalance to justify moving tasks,
  2829. * however we may be able to increase total CPU power used by
  2830. * moving them.
  2831. */
  2832. pwr_now += busiest->__cpu_power *
  2833. min(busiest_load_per_task, max_load);
  2834. pwr_now += this->__cpu_power *
  2835. min(this_load_per_task, this_load);
  2836. pwr_now /= SCHED_LOAD_SCALE;
  2837. /* Amount of load we'd subtract */
  2838. tmp = sg_div_cpu_power(busiest,
  2839. busiest_load_per_task * SCHED_LOAD_SCALE);
  2840. if (max_load > tmp)
  2841. pwr_move += busiest->__cpu_power *
  2842. min(busiest_load_per_task, max_load - tmp);
  2843. /* Amount of load we'd add */
  2844. if (max_load * busiest->__cpu_power <
  2845. busiest_load_per_task * SCHED_LOAD_SCALE)
  2846. tmp = sg_div_cpu_power(this,
  2847. max_load * busiest->__cpu_power);
  2848. else
  2849. tmp = sg_div_cpu_power(this,
  2850. busiest_load_per_task * SCHED_LOAD_SCALE);
  2851. pwr_move += this->__cpu_power *
  2852. min(this_load_per_task, this_load + tmp);
  2853. pwr_move /= SCHED_LOAD_SCALE;
  2854. /* Move if we gain throughput */
  2855. if (pwr_move > pwr_now)
  2856. *imbalance = busiest_load_per_task;
  2857. }
  2858. return busiest;
  2859. out_balanced:
  2860. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2861. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2862. goto ret;
  2863. if (this == group_leader && group_leader != group_min) {
  2864. *imbalance = min_load_per_task;
  2865. return group_min;
  2866. }
  2867. #endif
  2868. ret:
  2869. *imbalance = 0;
  2870. return NULL;
  2871. }
  2872. /*
  2873. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2874. */
  2875. static struct rq *
  2876. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2877. unsigned long imbalance, const cpumask_t *cpus)
  2878. {
  2879. struct rq *busiest = NULL, *rq;
  2880. unsigned long max_load = 0;
  2881. int i;
  2882. for_each_cpu_mask_nr(i, group->cpumask) {
  2883. unsigned long wl;
  2884. if (!cpu_isset(i, *cpus))
  2885. continue;
  2886. rq = cpu_rq(i);
  2887. wl = weighted_cpuload(i);
  2888. if (rq->nr_running == 1 && wl > imbalance)
  2889. continue;
  2890. if (wl > max_load) {
  2891. max_load = wl;
  2892. busiest = rq;
  2893. }
  2894. }
  2895. return busiest;
  2896. }
  2897. /*
  2898. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2899. * so long as it is large enough.
  2900. */
  2901. #define MAX_PINNED_INTERVAL 512
  2902. /*
  2903. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2904. * tasks if there is an imbalance.
  2905. */
  2906. static int load_balance(int this_cpu, struct rq *this_rq,
  2907. struct sched_domain *sd, enum cpu_idle_type idle,
  2908. int *balance, cpumask_t *cpus)
  2909. {
  2910. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2911. struct sched_group *group;
  2912. unsigned long imbalance;
  2913. struct rq *busiest;
  2914. unsigned long flags;
  2915. cpus_setall(*cpus);
  2916. /*
  2917. * When power savings policy is enabled for the parent domain, idle
  2918. * sibling can pick up load irrespective of busy siblings. In this case,
  2919. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2920. * portraying it as CPU_NOT_IDLE.
  2921. */
  2922. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2923. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2924. sd_idle = 1;
  2925. schedstat_inc(sd, lb_count[idle]);
  2926. redo:
  2927. update_shares(sd);
  2928. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2929. cpus, balance);
  2930. if (*balance == 0)
  2931. goto out_balanced;
  2932. if (!group) {
  2933. schedstat_inc(sd, lb_nobusyg[idle]);
  2934. goto out_balanced;
  2935. }
  2936. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2937. if (!busiest) {
  2938. schedstat_inc(sd, lb_nobusyq[idle]);
  2939. goto out_balanced;
  2940. }
  2941. BUG_ON(busiest == this_rq);
  2942. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2943. ld_moved = 0;
  2944. if (busiest->nr_running > 1) {
  2945. /*
  2946. * Attempt to move tasks. If find_busiest_group has found
  2947. * an imbalance but busiest->nr_running <= 1, the group is
  2948. * still unbalanced. ld_moved simply stays zero, so it is
  2949. * correctly treated as an imbalance.
  2950. */
  2951. local_irq_save(flags);
  2952. double_rq_lock(this_rq, busiest);
  2953. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2954. imbalance, sd, idle, &all_pinned);
  2955. double_rq_unlock(this_rq, busiest);
  2956. local_irq_restore(flags);
  2957. /*
  2958. * some other cpu did the load balance for us.
  2959. */
  2960. if (ld_moved && this_cpu != smp_processor_id())
  2961. resched_cpu(this_cpu);
  2962. /* All tasks on this runqueue were pinned by CPU affinity */
  2963. if (unlikely(all_pinned)) {
  2964. cpu_clear(cpu_of(busiest), *cpus);
  2965. if (!cpus_empty(*cpus))
  2966. goto redo;
  2967. goto out_balanced;
  2968. }
  2969. }
  2970. if (!ld_moved) {
  2971. schedstat_inc(sd, lb_failed[idle]);
  2972. sd->nr_balance_failed++;
  2973. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2974. spin_lock_irqsave(&busiest->lock, flags);
  2975. /* don't kick the migration_thread, if the curr
  2976. * task on busiest cpu can't be moved to this_cpu
  2977. */
  2978. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2979. spin_unlock_irqrestore(&busiest->lock, flags);
  2980. all_pinned = 1;
  2981. goto out_one_pinned;
  2982. }
  2983. if (!busiest->active_balance) {
  2984. busiest->active_balance = 1;
  2985. busiest->push_cpu = this_cpu;
  2986. active_balance = 1;
  2987. }
  2988. spin_unlock_irqrestore(&busiest->lock, flags);
  2989. if (active_balance)
  2990. wake_up_process(busiest->migration_thread);
  2991. /*
  2992. * We've kicked active balancing, reset the failure
  2993. * counter.
  2994. */
  2995. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2996. }
  2997. } else
  2998. sd->nr_balance_failed = 0;
  2999. if (likely(!active_balance)) {
  3000. /* We were unbalanced, so reset the balancing interval */
  3001. sd->balance_interval = sd->min_interval;
  3002. } else {
  3003. /*
  3004. * If we've begun active balancing, start to back off. This
  3005. * case may not be covered by the all_pinned logic if there
  3006. * is only 1 task on the busy runqueue (because we don't call
  3007. * move_tasks).
  3008. */
  3009. if (sd->balance_interval < sd->max_interval)
  3010. sd->balance_interval *= 2;
  3011. }
  3012. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3013. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3014. ld_moved = -1;
  3015. goto out;
  3016. out_balanced:
  3017. schedstat_inc(sd, lb_balanced[idle]);
  3018. sd->nr_balance_failed = 0;
  3019. out_one_pinned:
  3020. /* tune up the balancing interval */
  3021. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3022. (sd->balance_interval < sd->max_interval))
  3023. sd->balance_interval *= 2;
  3024. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3025. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3026. ld_moved = -1;
  3027. else
  3028. ld_moved = 0;
  3029. out:
  3030. if (ld_moved)
  3031. update_shares(sd);
  3032. return ld_moved;
  3033. }
  3034. /*
  3035. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3036. * tasks if there is an imbalance.
  3037. *
  3038. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3039. * this_rq is locked.
  3040. */
  3041. static int
  3042. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3043. cpumask_t *cpus)
  3044. {
  3045. struct sched_group *group;
  3046. struct rq *busiest = NULL;
  3047. unsigned long imbalance;
  3048. int ld_moved = 0;
  3049. int sd_idle = 0;
  3050. int all_pinned = 0;
  3051. cpus_setall(*cpus);
  3052. /*
  3053. * When power savings policy is enabled for the parent domain, idle
  3054. * sibling can pick up load irrespective of busy siblings. In this case,
  3055. * let the state of idle sibling percolate up as IDLE, instead of
  3056. * portraying it as CPU_NOT_IDLE.
  3057. */
  3058. if (sd->flags & SD_SHARE_CPUPOWER &&
  3059. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3060. sd_idle = 1;
  3061. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3062. redo:
  3063. update_shares_locked(this_rq, sd);
  3064. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3065. &sd_idle, cpus, NULL);
  3066. if (!group) {
  3067. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3068. goto out_balanced;
  3069. }
  3070. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3071. if (!busiest) {
  3072. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3073. goto out_balanced;
  3074. }
  3075. BUG_ON(busiest == this_rq);
  3076. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3077. ld_moved = 0;
  3078. if (busiest->nr_running > 1) {
  3079. /* Attempt to move tasks */
  3080. double_lock_balance(this_rq, busiest);
  3081. /* this_rq->clock is already updated */
  3082. update_rq_clock(busiest);
  3083. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3084. imbalance, sd, CPU_NEWLY_IDLE,
  3085. &all_pinned);
  3086. double_unlock_balance(this_rq, busiest);
  3087. if (unlikely(all_pinned)) {
  3088. cpu_clear(cpu_of(busiest), *cpus);
  3089. if (!cpus_empty(*cpus))
  3090. goto redo;
  3091. }
  3092. }
  3093. if (!ld_moved) {
  3094. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3095. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3096. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3097. return -1;
  3098. } else
  3099. sd->nr_balance_failed = 0;
  3100. update_shares_locked(this_rq, sd);
  3101. return ld_moved;
  3102. out_balanced:
  3103. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3104. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3105. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3106. return -1;
  3107. sd->nr_balance_failed = 0;
  3108. return 0;
  3109. }
  3110. /*
  3111. * idle_balance is called by schedule() if this_cpu is about to become
  3112. * idle. Attempts to pull tasks from other CPUs.
  3113. */
  3114. static void idle_balance(int this_cpu, struct rq *this_rq)
  3115. {
  3116. struct sched_domain *sd;
  3117. int pulled_task = -1;
  3118. unsigned long next_balance = jiffies + HZ;
  3119. cpumask_t tmpmask;
  3120. for_each_domain(this_cpu, sd) {
  3121. unsigned long interval;
  3122. if (!(sd->flags & SD_LOAD_BALANCE))
  3123. continue;
  3124. if (sd->flags & SD_BALANCE_NEWIDLE)
  3125. /* If we've pulled tasks over stop searching: */
  3126. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3127. sd, &tmpmask);
  3128. interval = msecs_to_jiffies(sd->balance_interval);
  3129. if (time_after(next_balance, sd->last_balance + interval))
  3130. next_balance = sd->last_balance + interval;
  3131. if (pulled_task)
  3132. break;
  3133. }
  3134. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3135. /*
  3136. * We are going idle. next_balance may be set based on
  3137. * a busy processor. So reset next_balance.
  3138. */
  3139. this_rq->next_balance = next_balance;
  3140. }
  3141. }
  3142. /*
  3143. * active_load_balance is run by migration threads. It pushes running tasks
  3144. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3145. * running on each physical CPU where possible, and avoids physical /
  3146. * logical imbalances.
  3147. *
  3148. * Called with busiest_rq locked.
  3149. */
  3150. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3151. {
  3152. int target_cpu = busiest_rq->push_cpu;
  3153. struct sched_domain *sd;
  3154. struct rq *target_rq;
  3155. /* Is there any task to move? */
  3156. if (busiest_rq->nr_running <= 1)
  3157. return;
  3158. target_rq = cpu_rq(target_cpu);
  3159. /*
  3160. * This condition is "impossible", if it occurs
  3161. * we need to fix it. Originally reported by
  3162. * Bjorn Helgaas on a 128-cpu setup.
  3163. */
  3164. BUG_ON(busiest_rq == target_rq);
  3165. /* move a task from busiest_rq to target_rq */
  3166. double_lock_balance(busiest_rq, target_rq);
  3167. update_rq_clock(busiest_rq);
  3168. update_rq_clock(target_rq);
  3169. /* Search for an sd spanning us and the target CPU. */
  3170. for_each_domain(target_cpu, sd) {
  3171. if ((sd->flags & SD_LOAD_BALANCE) &&
  3172. cpu_isset(busiest_cpu, sd->span))
  3173. break;
  3174. }
  3175. if (likely(sd)) {
  3176. schedstat_inc(sd, alb_count);
  3177. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3178. sd, CPU_IDLE))
  3179. schedstat_inc(sd, alb_pushed);
  3180. else
  3181. schedstat_inc(sd, alb_failed);
  3182. }
  3183. double_unlock_balance(busiest_rq, target_rq);
  3184. }
  3185. #ifdef CONFIG_NO_HZ
  3186. static struct {
  3187. atomic_t load_balancer;
  3188. cpumask_t cpu_mask;
  3189. } nohz ____cacheline_aligned = {
  3190. .load_balancer = ATOMIC_INIT(-1),
  3191. .cpu_mask = CPU_MASK_NONE,
  3192. };
  3193. /*
  3194. * This routine will try to nominate the ilb (idle load balancing)
  3195. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3196. * load balancing on behalf of all those cpus. If all the cpus in the system
  3197. * go into this tickless mode, then there will be no ilb owner (as there is
  3198. * no need for one) and all the cpus will sleep till the next wakeup event
  3199. * arrives...
  3200. *
  3201. * For the ilb owner, tick is not stopped. And this tick will be used
  3202. * for idle load balancing. ilb owner will still be part of
  3203. * nohz.cpu_mask..
  3204. *
  3205. * While stopping the tick, this cpu will become the ilb owner if there
  3206. * is no other owner. And will be the owner till that cpu becomes busy
  3207. * or if all cpus in the system stop their ticks at which point
  3208. * there is no need for ilb owner.
  3209. *
  3210. * When the ilb owner becomes busy, it nominates another owner, during the
  3211. * next busy scheduler_tick()
  3212. */
  3213. int select_nohz_load_balancer(int stop_tick)
  3214. {
  3215. int cpu = smp_processor_id();
  3216. if (stop_tick) {
  3217. cpu_set(cpu, nohz.cpu_mask);
  3218. cpu_rq(cpu)->in_nohz_recently = 1;
  3219. /*
  3220. * If we are going offline and still the leader, give up!
  3221. */
  3222. if (!cpu_active(cpu) &&
  3223. atomic_read(&nohz.load_balancer) == cpu) {
  3224. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3225. BUG();
  3226. return 0;
  3227. }
  3228. /* time for ilb owner also to sleep */
  3229. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3230. if (atomic_read(&nohz.load_balancer) == cpu)
  3231. atomic_set(&nohz.load_balancer, -1);
  3232. return 0;
  3233. }
  3234. if (atomic_read(&nohz.load_balancer) == -1) {
  3235. /* make me the ilb owner */
  3236. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3237. return 1;
  3238. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3239. return 1;
  3240. } else {
  3241. if (!cpu_isset(cpu, nohz.cpu_mask))
  3242. return 0;
  3243. cpu_clear(cpu, nohz.cpu_mask);
  3244. if (atomic_read(&nohz.load_balancer) == cpu)
  3245. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3246. BUG();
  3247. }
  3248. return 0;
  3249. }
  3250. #endif
  3251. static DEFINE_SPINLOCK(balancing);
  3252. /*
  3253. * It checks each scheduling domain to see if it is due to be balanced,
  3254. * and initiates a balancing operation if so.
  3255. *
  3256. * Balancing parameters are set up in arch_init_sched_domains.
  3257. */
  3258. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3259. {
  3260. int balance = 1;
  3261. struct rq *rq = cpu_rq(cpu);
  3262. unsigned long interval;
  3263. struct sched_domain *sd;
  3264. /* Earliest time when we have to do rebalance again */
  3265. unsigned long next_balance = jiffies + 60*HZ;
  3266. int update_next_balance = 0;
  3267. int need_serialize;
  3268. cpumask_t tmp;
  3269. for_each_domain(cpu, sd) {
  3270. if (!(sd->flags & SD_LOAD_BALANCE))
  3271. continue;
  3272. interval = sd->balance_interval;
  3273. if (idle != CPU_IDLE)
  3274. interval *= sd->busy_factor;
  3275. /* scale ms to jiffies */
  3276. interval = msecs_to_jiffies(interval);
  3277. if (unlikely(!interval))
  3278. interval = 1;
  3279. if (interval > HZ*NR_CPUS/10)
  3280. interval = HZ*NR_CPUS/10;
  3281. need_serialize = sd->flags & SD_SERIALIZE;
  3282. if (need_serialize) {
  3283. if (!spin_trylock(&balancing))
  3284. goto out;
  3285. }
  3286. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3287. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3288. /*
  3289. * We've pulled tasks over so either we're no
  3290. * longer idle, or one of our SMT siblings is
  3291. * not idle.
  3292. */
  3293. idle = CPU_NOT_IDLE;
  3294. }
  3295. sd->last_balance = jiffies;
  3296. }
  3297. if (need_serialize)
  3298. spin_unlock(&balancing);
  3299. out:
  3300. if (time_after(next_balance, sd->last_balance + interval)) {
  3301. next_balance = sd->last_balance + interval;
  3302. update_next_balance = 1;
  3303. }
  3304. /*
  3305. * Stop the load balance at this level. There is another
  3306. * CPU in our sched group which is doing load balancing more
  3307. * actively.
  3308. */
  3309. if (!balance)
  3310. break;
  3311. }
  3312. /*
  3313. * next_balance will be updated only when there is a need.
  3314. * When the cpu is attached to null domain for ex, it will not be
  3315. * updated.
  3316. */
  3317. if (likely(update_next_balance))
  3318. rq->next_balance = next_balance;
  3319. }
  3320. /*
  3321. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3322. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3323. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3324. */
  3325. static void run_rebalance_domains(struct softirq_action *h)
  3326. {
  3327. int this_cpu = smp_processor_id();
  3328. struct rq *this_rq = cpu_rq(this_cpu);
  3329. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3330. CPU_IDLE : CPU_NOT_IDLE;
  3331. rebalance_domains(this_cpu, idle);
  3332. #ifdef CONFIG_NO_HZ
  3333. /*
  3334. * If this cpu is the owner for idle load balancing, then do the
  3335. * balancing on behalf of the other idle cpus whose ticks are
  3336. * stopped.
  3337. */
  3338. if (this_rq->idle_at_tick &&
  3339. atomic_read(&nohz.load_balancer) == this_cpu) {
  3340. cpumask_t cpus = nohz.cpu_mask;
  3341. struct rq *rq;
  3342. int balance_cpu;
  3343. cpu_clear(this_cpu, cpus);
  3344. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3345. /*
  3346. * If this cpu gets work to do, stop the load balancing
  3347. * work being done for other cpus. Next load
  3348. * balancing owner will pick it up.
  3349. */
  3350. if (need_resched())
  3351. break;
  3352. rebalance_domains(balance_cpu, CPU_IDLE);
  3353. rq = cpu_rq(balance_cpu);
  3354. if (time_after(this_rq->next_balance, rq->next_balance))
  3355. this_rq->next_balance = rq->next_balance;
  3356. }
  3357. }
  3358. #endif
  3359. }
  3360. /*
  3361. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3362. *
  3363. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3364. * idle load balancing owner or decide to stop the periodic load balancing,
  3365. * if the whole system is idle.
  3366. */
  3367. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3368. {
  3369. #ifdef CONFIG_NO_HZ
  3370. /*
  3371. * If we were in the nohz mode recently and busy at the current
  3372. * scheduler tick, then check if we need to nominate new idle
  3373. * load balancer.
  3374. */
  3375. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3376. rq->in_nohz_recently = 0;
  3377. if (atomic_read(&nohz.load_balancer) == cpu) {
  3378. cpu_clear(cpu, nohz.cpu_mask);
  3379. atomic_set(&nohz.load_balancer, -1);
  3380. }
  3381. if (atomic_read(&nohz.load_balancer) == -1) {
  3382. /*
  3383. * simple selection for now: Nominate the
  3384. * first cpu in the nohz list to be the next
  3385. * ilb owner.
  3386. *
  3387. * TBD: Traverse the sched domains and nominate
  3388. * the nearest cpu in the nohz.cpu_mask.
  3389. */
  3390. int ilb = first_cpu(nohz.cpu_mask);
  3391. if (ilb < nr_cpu_ids)
  3392. resched_cpu(ilb);
  3393. }
  3394. }
  3395. /*
  3396. * If this cpu is idle and doing idle load balancing for all the
  3397. * cpus with ticks stopped, is it time for that to stop?
  3398. */
  3399. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3400. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3401. resched_cpu(cpu);
  3402. return;
  3403. }
  3404. /*
  3405. * If this cpu is idle and the idle load balancing is done by
  3406. * someone else, then no need raise the SCHED_SOFTIRQ
  3407. */
  3408. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3409. cpu_isset(cpu, nohz.cpu_mask))
  3410. return;
  3411. #endif
  3412. if (time_after_eq(jiffies, rq->next_balance))
  3413. raise_softirq(SCHED_SOFTIRQ);
  3414. }
  3415. #else /* CONFIG_SMP */
  3416. /*
  3417. * on UP we do not need to balance between CPUs:
  3418. */
  3419. static inline void idle_balance(int cpu, struct rq *rq)
  3420. {
  3421. }
  3422. #endif
  3423. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3424. EXPORT_PER_CPU_SYMBOL(kstat);
  3425. /*
  3426. * Return any ns on the sched_clock that have not yet been banked in
  3427. * @p in case that task is currently running.
  3428. */
  3429. unsigned long long task_delta_exec(struct task_struct *p)
  3430. {
  3431. unsigned long flags;
  3432. struct rq *rq;
  3433. u64 ns = 0;
  3434. rq = task_rq_lock(p, &flags);
  3435. if (task_current(rq, p)) {
  3436. u64 delta_exec;
  3437. update_rq_clock(rq);
  3438. delta_exec = rq->clock - p->se.exec_start;
  3439. if ((s64)delta_exec > 0)
  3440. ns = delta_exec;
  3441. }
  3442. task_rq_unlock(rq, &flags);
  3443. return ns;
  3444. }
  3445. /*
  3446. * Account user cpu time to a process.
  3447. * @p: the process that the cpu time gets accounted to
  3448. * @cputime: the cpu time spent in user space since the last update
  3449. */
  3450. void account_user_time(struct task_struct *p, cputime_t cputime)
  3451. {
  3452. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3453. cputime64_t tmp;
  3454. p->utime = cputime_add(p->utime, cputime);
  3455. account_group_user_time(p, cputime);
  3456. /* Add user time to cpustat. */
  3457. tmp = cputime_to_cputime64(cputime);
  3458. if (TASK_NICE(p) > 0)
  3459. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3460. else
  3461. cpustat->user = cputime64_add(cpustat->user, tmp);
  3462. /* Account for user time used */
  3463. acct_update_integrals(p);
  3464. }
  3465. /*
  3466. * Account guest cpu time to a process.
  3467. * @p: the process that the cpu time gets accounted to
  3468. * @cputime: the cpu time spent in virtual machine since the last update
  3469. */
  3470. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3471. {
  3472. cputime64_t tmp;
  3473. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3474. tmp = cputime_to_cputime64(cputime);
  3475. p->utime = cputime_add(p->utime, cputime);
  3476. account_group_user_time(p, cputime);
  3477. p->gtime = cputime_add(p->gtime, cputime);
  3478. cpustat->user = cputime64_add(cpustat->user, tmp);
  3479. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3480. }
  3481. /*
  3482. * Account scaled user cpu time to a process.
  3483. * @p: the process that the cpu time gets accounted to
  3484. * @cputime: the cpu time spent in user space since the last update
  3485. */
  3486. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3487. {
  3488. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3489. }
  3490. /*
  3491. * Account system cpu time to a process.
  3492. * @p: the process that the cpu time gets accounted to
  3493. * @hardirq_offset: the offset to subtract from hardirq_count()
  3494. * @cputime: the cpu time spent in kernel space since the last update
  3495. */
  3496. void account_system_time(struct task_struct *p, int hardirq_offset,
  3497. cputime_t cputime)
  3498. {
  3499. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3500. struct rq *rq = this_rq();
  3501. cputime64_t tmp;
  3502. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3503. account_guest_time(p, cputime);
  3504. return;
  3505. }
  3506. p->stime = cputime_add(p->stime, cputime);
  3507. account_group_system_time(p, cputime);
  3508. /* Add system time to cpustat. */
  3509. tmp = cputime_to_cputime64(cputime);
  3510. if (hardirq_count() - hardirq_offset)
  3511. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3512. else if (softirq_count())
  3513. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3514. else if (p != rq->idle)
  3515. cpustat->system = cputime64_add(cpustat->system, tmp);
  3516. else if (atomic_read(&rq->nr_iowait) > 0)
  3517. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3518. else
  3519. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3520. /* Account for system time used */
  3521. acct_update_integrals(p);
  3522. }
  3523. /*
  3524. * Account scaled system cpu time to a process.
  3525. * @p: the process that the cpu time gets accounted to
  3526. * @hardirq_offset: the offset to subtract from hardirq_count()
  3527. * @cputime: the cpu time spent in kernel space since the last update
  3528. */
  3529. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3530. {
  3531. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3532. }
  3533. /*
  3534. * Account for involuntary wait time.
  3535. * @p: the process from which the cpu time has been stolen
  3536. * @steal: the cpu time spent in involuntary wait
  3537. */
  3538. void account_steal_time(struct task_struct *p, cputime_t steal)
  3539. {
  3540. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3541. cputime64_t tmp = cputime_to_cputime64(steal);
  3542. struct rq *rq = this_rq();
  3543. if (p == rq->idle) {
  3544. p->stime = cputime_add(p->stime, steal);
  3545. account_group_system_time(p, steal);
  3546. if (atomic_read(&rq->nr_iowait) > 0)
  3547. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3548. else
  3549. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3550. } else
  3551. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3552. }
  3553. /*
  3554. * Use precise platform statistics if available:
  3555. */
  3556. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3557. cputime_t task_utime(struct task_struct *p)
  3558. {
  3559. return p->utime;
  3560. }
  3561. cputime_t task_stime(struct task_struct *p)
  3562. {
  3563. return p->stime;
  3564. }
  3565. #else
  3566. cputime_t task_utime(struct task_struct *p)
  3567. {
  3568. clock_t utime = cputime_to_clock_t(p->utime),
  3569. total = utime + cputime_to_clock_t(p->stime);
  3570. u64 temp;
  3571. /*
  3572. * Use CFS's precise accounting:
  3573. */
  3574. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3575. if (total) {
  3576. temp *= utime;
  3577. do_div(temp, total);
  3578. }
  3579. utime = (clock_t)temp;
  3580. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3581. return p->prev_utime;
  3582. }
  3583. cputime_t task_stime(struct task_struct *p)
  3584. {
  3585. clock_t stime;
  3586. /*
  3587. * Use CFS's precise accounting. (we subtract utime from
  3588. * the total, to make sure the total observed by userspace
  3589. * grows monotonically - apps rely on that):
  3590. */
  3591. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3592. cputime_to_clock_t(task_utime(p));
  3593. if (stime >= 0)
  3594. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3595. return p->prev_stime;
  3596. }
  3597. #endif
  3598. inline cputime_t task_gtime(struct task_struct *p)
  3599. {
  3600. return p->gtime;
  3601. }
  3602. /*
  3603. * This function gets called by the timer code, with HZ frequency.
  3604. * We call it with interrupts disabled.
  3605. *
  3606. * It also gets called by the fork code, when changing the parent's
  3607. * timeslices.
  3608. */
  3609. void scheduler_tick(void)
  3610. {
  3611. int cpu = smp_processor_id();
  3612. struct rq *rq = cpu_rq(cpu);
  3613. struct task_struct *curr = rq->curr;
  3614. sched_clock_tick();
  3615. spin_lock(&rq->lock);
  3616. update_rq_clock(rq);
  3617. update_cpu_load(rq);
  3618. curr->sched_class->task_tick(rq, curr, 0);
  3619. spin_unlock(&rq->lock);
  3620. #ifdef CONFIG_SMP
  3621. rq->idle_at_tick = idle_cpu(cpu);
  3622. trigger_load_balance(rq, cpu);
  3623. #endif
  3624. }
  3625. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3626. defined(CONFIG_PREEMPT_TRACER))
  3627. static inline unsigned long get_parent_ip(unsigned long addr)
  3628. {
  3629. if (in_lock_functions(addr)) {
  3630. addr = CALLER_ADDR2;
  3631. if (in_lock_functions(addr))
  3632. addr = CALLER_ADDR3;
  3633. }
  3634. return addr;
  3635. }
  3636. void __kprobes add_preempt_count(int val)
  3637. {
  3638. #ifdef CONFIG_DEBUG_PREEMPT
  3639. /*
  3640. * Underflow?
  3641. */
  3642. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3643. return;
  3644. #endif
  3645. preempt_count() += val;
  3646. #ifdef CONFIG_DEBUG_PREEMPT
  3647. /*
  3648. * Spinlock count overflowing soon?
  3649. */
  3650. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3651. PREEMPT_MASK - 10);
  3652. #endif
  3653. if (preempt_count() == val)
  3654. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3655. }
  3656. EXPORT_SYMBOL(add_preempt_count);
  3657. void __kprobes sub_preempt_count(int val)
  3658. {
  3659. #ifdef CONFIG_DEBUG_PREEMPT
  3660. /*
  3661. * Underflow?
  3662. */
  3663. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3664. return;
  3665. /*
  3666. * Is the spinlock portion underflowing?
  3667. */
  3668. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3669. !(preempt_count() & PREEMPT_MASK)))
  3670. return;
  3671. #endif
  3672. if (preempt_count() == val)
  3673. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3674. preempt_count() -= val;
  3675. }
  3676. EXPORT_SYMBOL(sub_preempt_count);
  3677. #endif
  3678. /*
  3679. * Print scheduling while atomic bug:
  3680. */
  3681. static noinline void __schedule_bug(struct task_struct *prev)
  3682. {
  3683. struct pt_regs *regs = get_irq_regs();
  3684. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3685. prev->comm, prev->pid, preempt_count());
  3686. debug_show_held_locks(prev);
  3687. print_modules();
  3688. if (irqs_disabled())
  3689. print_irqtrace_events(prev);
  3690. if (regs)
  3691. show_regs(regs);
  3692. else
  3693. dump_stack();
  3694. }
  3695. /*
  3696. * Various schedule()-time debugging checks and statistics:
  3697. */
  3698. static inline void schedule_debug(struct task_struct *prev)
  3699. {
  3700. /*
  3701. * Test if we are atomic. Since do_exit() needs to call into
  3702. * schedule() atomically, we ignore that path for now.
  3703. * Otherwise, whine if we are scheduling when we should not be.
  3704. */
  3705. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3706. __schedule_bug(prev);
  3707. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3708. schedstat_inc(this_rq(), sched_count);
  3709. #ifdef CONFIG_SCHEDSTATS
  3710. if (unlikely(prev->lock_depth >= 0)) {
  3711. schedstat_inc(this_rq(), bkl_count);
  3712. schedstat_inc(prev, sched_info.bkl_count);
  3713. }
  3714. #endif
  3715. }
  3716. /*
  3717. * Pick up the highest-prio task:
  3718. */
  3719. static inline struct task_struct *
  3720. pick_next_task(struct rq *rq, struct task_struct *prev)
  3721. {
  3722. const struct sched_class *class;
  3723. struct task_struct *p;
  3724. /*
  3725. * Optimization: we know that if all tasks are in
  3726. * the fair class we can call that function directly:
  3727. */
  3728. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3729. p = fair_sched_class.pick_next_task(rq);
  3730. if (likely(p))
  3731. return p;
  3732. }
  3733. class = sched_class_highest;
  3734. for ( ; ; ) {
  3735. p = class->pick_next_task(rq);
  3736. if (p)
  3737. return p;
  3738. /*
  3739. * Will never be NULL as the idle class always
  3740. * returns a non-NULL p:
  3741. */
  3742. class = class->next;
  3743. }
  3744. }
  3745. /*
  3746. * schedule() is the main scheduler function.
  3747. */
  3748. asmlinkage void __sched schedule(void)
  3749. {
  3750. struct task_struct *prev, *next;
  3751. unsigned long *switch_count;
  3752. struct rq *rq;
  3753. int cpu;
  3754. need_resched:
  3755. preempt_disable();
  3756. cpu = smp_processor_id();
  3757. rq = cpu_rq(cpu);
  3758. rcu_qsctr_inc(cpu);
  3759. prev = rq->curr;
  3760. switch_count = &prev->nivcsw;
  3761. release_kernel_lock(prev);
  3762. need_resched_nonpreemptible:
  3763. schedule_debug(prev);
  3764. if (sched_feat(HRTICK))
  3765. hrtick_clear(rq);
  3766. spin_lock_irq(&rq->lock);
  3767. update_rq_clock(rq);
  3768. clear_tsk_need_resched(prev);
  3769. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3770. if (unlikely(signal_pending_state(prev->state, prev)))
  3771. prev->state = TASK_RUNNING;
  3772. else
  3773. deactivate_task(rq, prev, 1);
  3774. switch_count = &prev->nvcsw;
  3775. }
  3776. #ifdef CONFIG_SMP
  3777. if (prev->sched_class->pre_schedule)
  3778. prev->sched_class->pre_schedule(rq, prev);
  3779. #endif
  3780. if (unlikely(!rq->nr_running))
  3781. idle_balance(cpu, rq);
  3782. prev->sched_class->put_prev_task(rq, prev);
  3783. next = pick_next_task(rq, prev);
  3784. if (likely(prev != next)) {
  3785. sched_info_switch(prev, next);
  3786. rq->nr_switches++;
  3787. rq->curr = next;
  3788. ++*switch_count;
  3789. context_switch(rq, prev, next); /* unlocks the rq */
  3790. /*
  3791. * the context switch might have flipped the stack from under
  3792. * us, hence refresh the local variables.
  3793. */
  3794. cpu = smp_processor_id();
  3795. rq = cpu_rq(cpu);
  3796. } else
  3797. spin_unlock_irq(&rq->lock);
  3798. if (unlikely(reacquire_kernel_lock(current) < 0))
  3799. goto need_resched_nonpreemptible;
  3800. preempt_enable_no_resched();
  3801. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3802. goto need_resched;
  3803. }
  3804. EXPORT_SYMBOL(schedule);
  3805. #ifdef CONFIG_PREEMPT
  3806. /*
  3807. * this is the entry point to schedule() from in-kernel preemption
  3808. * off of preempt_enable. Kernel preemptions off return from interrupt
  3809. * occur there and call schedule directly.
  3810. */
  3811. asmlinkage void __sched preempt_schedule(void)
  3812. {
  3813. struct thread_info *ti = current_thread_info();
  3814. /*
  3815. * If there is a non-zero preempt_count or interrupts are disabled,
  3816. * we do not want to preempt the current task. Just return..
  3817. */
  3818. if (likely(ti->preempt_count || irqs_disabled()))
  3819. return;
  3820. do {
  3821. add_preempt_count(PREEMPT_ACTIVE);
  3822. schedule();
  3823. sub_preempt_count(PREEMPT_ACTIVE);
  3824. /*
  3825. * Check again in case we missed a preemption opportunity
  3826. * between schedule and now.
  3827. */
  3828. barrier();
  3829. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3830. }
  3831. EXPORT_SYMBOL(preempt_schedule);
  3832. /*
  3833. * this is the entry point to schedule() from kernel preemption
  3834. * off of irq context.
  3835. * Note, that this is called and return with irqs disabled. This will
  3836. * protect us against recursive calling from irq.
  3837. */
  3838. asmlinkage void __sched preempt_schedule_irq(void)
  3839. {
  3840. struct thread_info *ti = current_thread_info();
  3841. /* Catch callers which need to be fixed */
  3842. BUG_ON(ti->preempt_count || !irqs_disabled());
  3843. do {
  3844. add_preempt_count(PREEMPT_ACTIVE);
  3845. local_irq_enable();
  3846. schedule();
  3847. local_irq_disable();
  3848. sub_preempt_count(PREEMPT_ACTIVE);
  3849. /*
  3850. * Check again in case we missed a preemption opportunity
  3851. * between schedule and now.
  3852. */
  3853. barrier();
  3854. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3855. }
  3856. #endif /* CONFIG_PREEMPT */
  3857. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3858. void *key)
  3859. {
  3860. return try_to_wake_up(curr->private, mode, sync);
  3861. }
  3862. EXPORT_SYMBOL(default_wake_function);
  3863. /*
  3864. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3865. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3866. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3867. *
  3868. * There are circumstances in which we can try to wake a task which has already
  3869. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3870. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3871. */
  3872. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3873. int nr_exclusive, int sync, void *key)
  3874. {
  3875. wait_queue_t *curr, *next;
  3876. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3877. unsigned flags = curr->flags;
  3878. if (curr->func(curr, mode, sync, key) &&
  3879. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3880. break;
  3881. }
  3882. }
  3883. /**
  3884. * __wake_up - wake up threads blocked on a waitqueue.
  3885. * @q: the waitqueue
  3886. * @mode: which threads
  3887. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3888. * @key: is directly passed to the wakeup function
  3889. */
  3890. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3891. int nr_exclusive, void *key)
  3892. {
  3893. unsigned long flags;
  3894. spin_lock_irqsave(&q->lock, flags);
  3895. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3896. spin_unlock_irqrestore(&q->lock, flags);
  3897. }
  3898. EXPORT_SYMBOL(__wake_up);
  3899. /*
  3900. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3901. */
  3902. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3903. {
  3904. __wake_up_common(q, mode, 1, 0, NULL);
  3905. }
  3906. /**
  3907. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3908. * @q: the waitqueue
  3909. * @mode: which threads
  3910. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3911. *
  3912. * The sync wakeup differs that the waker knows that it will schedule
  3913. * away soon, so while the target thread will be woken up, it will not
  3914. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3915. * with each other. This can prevent needless bouncing between CPUs.
  3916. *
  3917. * On UP it can prevent extra preemption.
  3918. */
  3919. void
  3920. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3921. {
  3922. unsigned long flags;
  3923. int sync = 1;
  3924. if (unlikely(!q))
  3925. return;
  3926. if (unlikely(!nr_exclusive))
  3927. sync = 0;
  3928. spin_lock_irqsave(&q->lock, flags);
  3929. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3930. spin_unlock_irqrestore(&q->lock, flags);
  3931. }
  3932. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3933. /**
  3934. * complete: - signals a single thread waiting on this completion
  3935. * @x: holds the state of this particular completion
  3936. *
  3937. * This will wake up a single thread waiting on this completion. Threads will be
  3938. * awakened in the same order in which they were queued.
  3939. *
  3940. * See also complete_all(), wait_for_completion() and related routines.
  3941. */
  3942. void complete(struct completion *x)
  3943. {
  3944. unsigned long flags;
  3945. spin_lock_irqsave(&x->wait.lock, flags);
  3946. x->done++;
  3947. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3948. spin_unlock_irqrestore(&x->wait.lock, flags);
  3949. }
  3950. EXPORT_SYMBOL(complete);
  3951. /**
  3952. * complete_all: - signals all threads waiting on this completion
  3953. * @x: holds the state of this particular completion
  3954. *
  3955. * This will wake up all threads waiting on this particular completion event.
  3956. */
  3957. void complete_all(struct completion *x)
  3958. {
  3959. unsigned long flags;
  3960. spin_lock_irqsave(&x->wait.lock, flags);
  3961. x->done += UINT_MAX/2;
  3962. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3963. spin_unlock_irqrestore(&x->wait.lock, flags);
  3964. }
  3965. EXPORT_SYMBOL(complete_all);
  3966. static inline long __sched
  3967. do_wait_for_common(struct completion *x, long timeout, int state)
  3968. {
  3969. if (!x->done) {
  3970. DECLARE_WAITQUEUE(wait, current);
  3971. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3972. __add_wait_queue_tail(&x->wait, &wait);
  3973. do {
  3974. if (signal_pending_state(state, current)) {
  3975. timeout = -ERESTARTSYS;
  3976. break;
  3977. }
  3978. __set_current_state(state);
  3979. spin_unlock_irq(&x->wait.lock);
  3980. timeout = schedule_timeout(timeout);
  3981. spin_lock_irq(&x->wait.lock);
  3982. } while (!x->done && timeout);
  3983. __remove_wait_queue(&x->wait, &wait);
  3984. if (!x->done)
  3985. return timeout;
  3986. }
  3987. x->done--;
  3988. return timeout ?: 1;
  3989. }
  3990. static long __sched
  3991. wait_for_common(struct completion *x, long timeout, int state)
  3992. {
  3993. might_sleep();
  3994. spin_lock_irq(&x->wait.lock);
  3995. timeout = do_wait_for_common(x, timeout, state);
  3996. spin_unlock_irq(&x->wait.lock);
  3997. return timeout;
  3998. }
  3999. /**
  4000. * wait_for_completion: - waits for completion of a task
  4001. * @x: holds the state of this particular completion
  4002. *
  4003. * This waits to be signaled for completion of a specific task. It is NOT
  4004. * interruptible and there is no timeout.
  4005. *
  4006. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4007. * and interrupt capability. Also see complete().
  4008. */
  4009. void __sched wait_for_completion(struct completion *x)
  4010. {
  4011. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4012. }
  4013. EXPORT_SYMBOL(wait_for_completion);
  4014. /**
  4015. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4016. * @x: holds the state of this particular completion
  4017. * @timeout: timeout value in jiffies
  4018. *
  4019. * This waits for either a completion of a specific task to be signaled or for a
  4020. * specified timeout to expire. The timeout is in jiffies. It is not
  4021. * interruptible.
  4022. */
  4023. unsigned long __sched
  4024. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4025. {
  4026. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4027. }
  4028. EXPORT_SYMBOL(wait_for_completion_timeout);
  4029. /**
  4030. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4031. * @x: holds the state of this particular completion
  4032. *
  4033. * This waits for completion of a specific task to be signaled. It is
  4034. * interruptible.
  4035. */
  4036. int __sched wait_for_completion_interruptible(struct completion *x)
  4037. {
  4038. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4039. if (t == -ERESTARTSYS)
  4040. return t;
  4041. return 0;
  4042. }
  4043. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4044. /**
  4045. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4046. * @x: holds the state of this particular completion
  4047. * @timeout: timeout value in jiffies
  4048. *
  4049. * This waits for either a completion of a specific task to be signaled or for a
  4050. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4051. */
  4052. unsigned long __sched
  4053. wait_for_completion_interruptible_timeout(struct completion *x,
  4054. unsigned long timeout)
  4055. {
  4056. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4057. }
  4058. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4059. /**
  4060. * wait_for_completion_killable: - waits for completion of a task (killable)
  4061. * @x: holds the state of this particular completion
  4062. *
  4063. * This waits to be signaled for completion of a specific task. It can be
  4064. * interrupted by a kill signal.
  4065. */
  4066. int __sched wait_for_completion_killable(struct completion *x)
  4067. {
  4068. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4069. if (t == -ERESTARTSYS)
  4070. return t;
  4071. return 0;
  4072. }
  4073. EXPORT_SYMBOL(wait_for_completion_killable);
  4074. /**
  4075. * try_wait_for_completion - try to decrement a completion without blocking
  4076. * @x: completion structure
  4077. *
  4078. * Returns: 0 if a decrement cannot be done without blocking
  4079. * 1 if a decrement succeeded.
  4080. *
  4081. * If a completion is being used as a counting completion,
  4082. * attempt to decrement the counter without blocking. This
  4083. * enables us to avoid waiting if the resource the completion
  4084. * is protecting is not available.
  4085. */
  4086. bool try_wait_for_completion(struct completion *x)
  4087. {
  4088. int ret = 1;
  4089. spin_lock_irq(&x->wait.lock);
  4090. if (!x->done)
  4091. ret = 0;
  4092. else
  4093. x->done--;
  4094. spin_unlock_irq(&x->wait.lock);
  4095. return ret;
  4096. }
  4097. EXPORT_SYMBOL(try_wait_for_completion);
  4098. /**
  4099. * completion_done - Test to see if a completion has any waiters
  4100. * @x: completion structure
  4101. *
  4102. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4103. * 1 if there are no waiters.
  4104. *
  4105. */
  4106. bool completion_done(struct completion *x)
  4107. {
  4108. int ret = 1;
  4109. spin_lock_irq(&x->wait.lock);
  4110. if (!x->done)
  4111. ret = 0;
  4112. spin_unlock_irq(&x->wait.lock);
  4113. return ret;
  4114. }
  4115. EXPORT_SYMBOL(completion_done);
  4116. static long __sched
  4117. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4118. {
  4119. unsigned long flags;
  4120. wait_queue_t wait;
  4121. init_waitqueue_entry(&wait, current);
  4122. __set_current_state(state);
  4123. spin_lock_irqsave(&q->lock, flags);
  4124. __add_wait_queue(q, &wait);
  4125. spin_unlock(&q->lock);
  4126. timeout = schedule_timeout(timeout);
  4127. spin_lock_irq(&q->lock);
  4128. __remove_wait_queue(q, &wait);
  4129. spin_unlock_irqrestore(&q->lock, flags);
  4130. return timeout;
  4131. }
  4132. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4133. {
  4134. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4135. }
  4136. EXPORT_SYMBOL(interruptible_sleep_on);
  4137. long __sched
  4138. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4139. {
  4140. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4141. }
  4142. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4143. void __sched sleep_on(wait_queue_head_t *q)
  4144. {
  4145. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4146. }
  4147. EXPORT_SYMBOL(sleep_on);
  4148. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4149. {
  4150. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4151. }
  4152. EXPORT_SYMBOL(sleep_on_timeout);
  4153. #ifdef CONFIG_RT_MUTEXES
  4154. /*
  4155. * rt_mutex_setprio - set the current priority of a task
  4156. * @p: task
  4157. * @prio: prio value (kernel-internal form)
  4158. *
  4159. * This function changes the 'effective' priority of a task. It does
  4160. * not touch ->normal_prio like __setscheduler().
  4161. *
  4162. * Used by the rt_mutex code to implement priority inheritance logic.
  4163. */
  4164. void rt_mutex_setprio(struct task_struct *p, int prio)
  4165. {
  4166. unsigned long flags;
  4167. int oldprio, on_rq, running;
  4168. struct rq *rq;
  4169. const struct sched_class *prev_class = p->sched_class;
  4170. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4171. rq = task_rq_lock(p, &flags);
  4172. update_rq_clock(rq);
  4173. oldprio = p->prio;
  4174. on_rq = p->se.on_rq;
  4175. running = task_current(rq, p);
  4176. if (on_rq)
  4177. dequeue_task(rq, p, 0);
  4178. if (running)
  4179. p->sched_class->put_prev_task(rq, p);
  4180. if (rt_prio(prio))
  4181. p->sched_class = &rt_sched_class;
  4182. else
  4183. p->sched_class = &fair_sched_class;
  4184. p->prio = prio;
  4185. if (running)
  4186. p->sched_class->set_curr_task(rq);
  4187. if (on_rq) {
  4188. enqueue_task(rq, p, 0);
  4189. check_class_changed(rq, p, prev_class, oldprio, running);
  4190. }
  4191. task_rq_unlock(rq, &flags);
  4192. }
  4193. #endif
  4194. void set_user_nice(struct task_struct *p, long nice)
  4195. {
  4196. int old_prio, delta, on_rq;
  4197. unsigned long flags;
  4198. struct rq *rq;
  4199. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4200. return;
  4201. /*
  4202. * We have to be careful, if called from sys_setpriority(),
  4203. * the task might be in the middle of scheduling on another CPU.
  4204. */
  4205. rq = task_rq_lock(p, &flags);
  4206. update_rq_clock(rq);
  4207. /*
  4208. * The RT priorities are set via sched_setscheduler(), but we still
  4209. * allow the 'normal' nice value to be set - but as expected
  4210. * it wont have any effect on scheduling until the task is
  4211. * SCHED_FIFO/SCHED_RR:
  4212. */
  4213. if (task_has_rt_policy(p)) {
  4214. p->static_prio = NICE_TO_PRIO(nice);
  4215. goto out_unlock;
  4216. }
  4217. on_rq = p->se.on_rq;
  4218. if (on_rq)
  4219. dequeue_task(rq, p, 0);
  4220. p->static_prio = NICE_TO_PRIO(nice);
  4221. set_load_weight(p);
  4222. old_prio = p->prio;
  4223. p->prio = effective_prio(p);
  4224. delta = p->prio - old_prio;
  4225. if (on_rq) {
  4226. enqueue_task(rq, p, 0);
  4227. /*
  4228. * If the task increased its priority or is running and
  4229. * lowered its priority, then reschedule its CPU:
  4230. */
  4231. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4232. resched_task(rq->curr);
  4233. }
  4234. out_unlock:
  4235. task_rq_unlock(rq, &flags);
  4236. }
  4237. EXPORT_SYMBOL(set_user_nice);
  4238. /*
  4239. * can_nice - check if a task can reduce its nice value
  4240. * @p: task
  4241. * @nice: nice value
  4242. */
  4243. int can_nice(const struct task_struct *p, const int nice)
  4244. {
  4245. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4246. int nice_rlim = 20 - nice;
  4247. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4248. capable(CAP_SYS_NICE));
  4249. }
  4250. #ifdef __ARCH_WANT_SYS_NICE
  4251. /*
  4252. * sys_nice - change the priority of the current process.
  4253. * @increment: priority increment
  4254. *
  4255. * sys_setpriority is a more generic, but much slower function that
  4256. * does similar things.
  4257. */
  4258. asmlinkage long sys_nice(int increment)
  4259. {
  4260. long nice, retval;
  4261. /*
  4262. * Setpriority might change our priority at the same moment.
  4263. * We don't have to worry. Conceptually one call occurs first
  4264. * and we have a single winner.
  4265. */
  4266. if (increment < -40)
  4267. increment = -40;
  4268. if (increment > 40)
  4269. increment = 40;
  4270. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4271. if (nice < -20)
  4272. nice = -20;
  4273. if (nice > 19)
  4274. nice = 19;
  4275. if (increment < 0 && !can_nice(current, nice))
  4276. return -EPERM;
  4277. retval = security_task_setnice(current, nice);
  4278. if (retval)
  4279. return retval;
  4280. set_user_nice(current, nice);
  4281. return 0;
  4282. }
  4283. #endif
  4284. /**
  4285. * task_prio - return the priority value of a given task.
  4286. * @p: the task in question.
  4287. *
  4288. * This is the priority value as seen by users in /proc.
  4289. * RT tasks are offset by -200. Normal tasks are centered
  4290. * around 0, value goes from -16 to +15.
  4291. */
  4292. int task_prio(const struct task_struct *p)
  4293. {
  4294. return p->prio - MAX_RT_PRIO;
  4295. }
  4296. /**
  4297. * task_nice - return the nice value of a given task.
  4298. * @p: the task in question.
  4299. */
  4300. int task_nice(const struct task_struct *p)
  4301. {
  4302. return TASK_NICE(p);
  4303. }
  4304. EXPORT_SYMBOL(task_nice);
  4305. /**
  4306. * idle_cpu - is a given cpu idle currently?
  4307. * @cpu: the processor in question.
  4308. */
  4309. int idle_cpu(int cpu)
  4310. {
  4311. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4312. }
  4313. /**
  4314. * idle_task - return the idle task for a given cpu.
  4315. * @cpu: the processor in question.
  4316. */
  4317. struct task_struct *idle_task(int cpu)
  4318. {
  4319. return cpu_rq(cpu)->idle;
  4320. }
  4321. /**
  4322. * find_process_by_pid - find a process with a matching PID value.
  4323. * @pid: the pid in question.
  4324. */
  4325. static struct task_struct *find_process_by_pid(pid_t pid)
  4326. {
  4327. return pid ? find_task_by_vpid(pid) : current;
  4328. }
  4329. /* Actually do priority change: must hold rq lock. */
  4330. static void
  4331. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4332. {
  4333. BUG_ON(p->se.on_rq);
  4334. p->policy = policy;
  4335. switch (p->policy) {
  4336. case SCHED_NORMAL:
  4337. case SCHED_BATCH:
  4338. case SCHED_IDLE:
  4339. p->sched_class = &fair_sched_class;
  4340. break;
  4341. case SCHED_FIFO:
  4342. case SCHED_RR:
  4343. p->sched_class = &rt_sched_class;
  4344. break;
  4345. }
  4346. p->rt_priority = prio;
  4347. p->normal_prio = normal_prio(p);
  4348. /* we are holding p->pi_lock already */
  4349. p->prio = rt_mutex_getprio(p);
  4350. set_load_weight(p);
  4351. }
  4352. static int __sched_setscheduler(struct task_struct *p, int policy,
  4353. struct sched_param *param, bool user)
  4354. {
  4355. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4356. unsigned long flags;
  4357. const struct sched_class *prev_class = p->sched_class;
  4358. struct rq *rq;
  4359. /* may grab non-irq protected spin_locks */
  4360. BUG_ON(in_interrupt());
  4361. recheck:
  4362. /* double check policy once rq lock held */
  4363. if (policy < 0)
  4364. policy = oldpolicy = p->policy;
  4365. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4366. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4367. policy != SCHED_IDLE)
  4368. return -EINVAL;
  4369. /*
  4370. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4371. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4372. * SCHED_BATCH and SCHED_IDLE is 0.
  4373. */
  4374. if (param->sched_priority < 0 ||
  4375. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4376. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4377. return -EINVAL;
  4378. if (rt_policy(policy) != (param->sched_priority != 0))
  4379. return -EINVAL;
  4380. /*
  4381. * Allow unprivileged RT tasks to decrease priority:
  4382. */
  4383. if (user && !capable(CAP_SYS_NICE)) {
  4384. if (rt_policy(policy)) {
  4385. unsigned long rlim_rtprio;
  4386. if (!lock_task_sighand(p, &flags))
  4387. return -ESRCH;
  4388. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4389. unlock_task_sighand(p, &flags);
  4390. /* can't set/change the rt policy */
  4391. if (policy != p->policy && !rlim_rtprio)
  4392. return -EPERM;
  4393. /* can't increase priority */
  4394. if (param->sched_priority > p->rt_priority &&
  4395. param->sched_priority > rlim_rtprio)
  4396. return -EPERM;
  4397. }
  4398. /*
  4399. * Like positive nice levels, dont allow tasks to
  4400. * move out of SCHED_IDLE either:
  4401. */
  4402. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4403. return -EPERM;
  4404. /* can't change other user's priorities */
  4405. if ((current->euid != p->euid) &&
  4406. (current->euid != p->uid))
  4407. return -EPERM;
  4408. }
  4409. if (user) {
  4410. #ifdef CONFIG_RT_GROUP_SCHED
  4411. /*
  4412. * Do not allow realtime tasks into groups that have no runtime
  4413. * assigned.
  4414. */
  4415. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4416. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4417. return -EPERM;
  4418. #endif
  4419. retval = security_task_setscheduler(p, policy, param);
  4420. if (retval)
  4421. return retval;
  4422. }
  4423. /*
  4424. * make sure no PI-waiters arrive (or leave) while we are
  4425. * changing the priority of the task:
  4426. */
  4427. spin_lock_irqsave(&p->pi_lock, flags);
  4428. /*
  4429. * To be able to change p->policy safely, the apropriate
  4430. * runqueue lock must be held.
  4431. */
  4432. rq = __task_rq_lock(p);
  4433. /* recheck policy now with rq lock held */
  4434. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4435. policy = oldpolicy = -1;
  4436. __task_rq_unlock(rq);
  4437. spin_unlock_irqrestore(&p->pi_lock, flags);
  4438. goto recheck;
  4439. }
  4440. update_rq_clock(rq);
  4441. on_rq = p->se.on_rq;
  4442. running = task_current(rq, p);
  4443. if (on_rq)
  4444. deactivate_task(rq, p, 0);
  4445. if (running)
  4446. p->sched_class->put_prev_task(rq, p);
  4447. oldprio = p->prio;
  4448. __setscheduler(rq, p, policy, param->sched_priority);
  4449. if (running)
  4450. p->sched_class->set_curr_task(rq);
  4451. if (on_rq) {
  4452. activate_task(rq, p, 0);
  4453. check_class_changed(rq, p, prev_class, oldprio, running);
  4454. }
  4455. __task_rq_unlock(rq);
  4456. spin_unlock_irqrestore(&p->pi_lock, flags);
  4457. rt_mutex_adjust_pi(p);
  4458. return 0;
  4459. }
  4460. /**
  4461. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4462. * @p: the task in question.
  4463. * @policy: new policy.
  4464. * @param: structure containing the new RT priority.
  4465. *
  4466. * NOTE that the task may be already dead.
  4467. */
  4468. int sched_setscheduler(struct task_struct *p, int policy,
  4469. struct sched_param *param)
  4470. {
  4471. return __sched_setscheduler(p, policy, param, true);
  4472. }
  4473. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4474. /**
  4475. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4476. * @p: the task in question.
  4477. * @policy: new policy.
  4478. * @param: structure containing the new RT priority.
  4479. *
  4480. * Just like sched_setscheduler, only don't bother checking if the
  4481. * current context has permission. For example, this is needed in
  4482. * stop_machine(): we create temporary high priority worker threads,
  4483. * but our caller might not have that capability.
  4484. */
  4485. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4486. struct sched_param *param)
  4487. {
  4488. return __sched_setscheduler(p, policy, param, false);
  4489. }
  4490. static int
  4491. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4492. {
  4493. struct sched_param lparam;
  4494. struct task_struct *p;
  4495. int retval;
  4496. if (!param || pid < 0)
  4497. return -EINVAL;
  4498. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4499. return -EFAULT;
  4500. rcu_read_lock();
  4501. retval = -ESRCH;
  4502. p = find_process_by_pid(pid);
  4503. if (p != NULL)
  4504. retval = sched_setscheduler(p, policy, &lparam);
  4505. rcu_read_unlock();
  4506. return retval;
  4507. }
  4508. /**
  4509. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4510. * @pid: the pid in question.
  4511. * @policy: new policy.
  4512. * @param: structure containing the new RT priority.
  4513. */
  4514. asmlinkage long
  4515. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4516. {
  4517. /* negative values for policy are not valid */
  4518. if (policy < 0)
  4519. return -EINVAL;
  4520. return do_sched_setscheduler(pid, policy, param);
  4521. }
  4522. /**
  4523. * sys_sched_setparam - set/change the RT priority of a thread
  4524. * @pid: the pid in question.
  4525. * @param: structure containing the new RT priority.
  4526. */
  4527. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4528. {
  4529. return do_sched_setscheduler(pid, -1, param);
  4530. }
  4531. /**
  4532. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4533. * @pid: the pid in question.
  4534. */
  4535. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4536. {
  4537. struct task_struct *p;
  4538. int retval;
  4539. if (pid < 0)
  4540. return -EINVAL;
  4541. retval = -ESRCH;
  4542. read_lock(&tasklist_lock);
  4543. p = find_process_by_pid(pid);
  4544. if (p) {
  4545. retval = security_task_getscheduler(p);
  4546. if (!retval)
  4547. retval = p->policy;
  4548. }
  4549. read_unlock(&tasklist_lock);
  4550. return retval;
  4551. }
  4552. /**
  4553. * sys_sched_getscheduler - get the RT priority of a thread
  4554. * @pid: the pid in question.
  4555. * @param: structure containing the RT priority.
  4556. */
  4557. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4558. {
  4559. struct sched_param lp;
  4560. struct task_struct *p;
  4561. int retval;
  4562. if (!param || pid < 0)
  4563. return -EINVAL;
  4564. read_lock(&tasklist_lock);
  4565. p = find_process_by_pid(pid);
  4566. retval = -ESRCH;
  4567. if (!p)
  4568. goto out_unlock;
  4569. retval = security_task_getscheduler(p);
  4570. if (retval)
  4571. goto out_unlock;
  4572. lp.sched_priority = p->rt_priority;
  4573. read_unlock(&tasklist_lock);
  4574. /*
  4575. * This one might sleep, we cannot do it with a spinlock held ...
  4576. */
  4577. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4578. return retval;
  4579. out_unlock:
  4580. read_unlock(&tasklist_lock);
  4581. return retval;
  4582. }
  4583. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4584. {
  4585. cpumask_t cpus_allowed;
  4586. cpumask_t new_mask = *in_mask;
  4587. struct task_struct *p;
  4588. int retval;
  4589. get_online_cpus();
  4590. read_lock(&tasklist_lock);
  4591. p = find_process_by_pid(pid);
  4592. if (!p) {
  4593. read_unlock(&tasklist_lock);
  4594. put_online_cpus();
  4595. return -ESRCH;
  4596. }
  4597. /*
  4598. * It is not safe to call set_cpus_allowed with the
  4599. * tasklist_lock held. We will bump the task_struct's
  4600. * usage count and then drop tasklist_lock.
  4601. */
  4602. get_task_struct(p);
  4603. read_unlock(&tasklist_lock);
  4604. retval = -EPERM;
  4605. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4606. !capable(CAP_SYS_NICE))
  4607. goto out_unlock;
  4608. retval = security_task_setscheduler(p, 0, NULL);
  4609. if (retval)
  4610. goto out_unlock;
  4611. cpuset_cpus_allowed(p, &cpus_allowed);
  4612. cpus_and(new_mask, new_mask, cpus_allowed);
  4613. again:
  4614. retval = set_cpus_allowed_ptr(p, &new_mask);
  4615. if (!retval) {
  4616. cpuset_cpus_allowed(p, &cpus_allowed);
  4617. if (!cpus_subset(new_mask, cpus_allowed)) {
  4618. /*
  4619. * We must have raced with a concurrent cpuset
  4620. * update. Just reset the cpus_allowed to the
  4621. * cpuset's cpus_allowed
  4622. */
  4623. new_mask = cpus_allowed;
  4624. goto again;
  4625. }
  4626. }
  4627. out_unlock:
  4628. put_task_struct(p);
  4629. put_online_cpus();
  4630. return retval;
  4631. }
  4632. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4633. cpumask_t *new_mask)
  4634. {
  4635. if (len < sizeof(cpumask_t)) {
  4636. memset(new_mask, 0, sizeof(cpumask_t));
  4637. } else if (len > sizeof(cpumask_t)) {
  4638. len = sizeof(cpumask_t);
  4639. }
  4640. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4641. }
  4642. /**
  4643. * sys_sched_setaffinity - set the cpu affinity of a process
  4644. * @pid: pid of the process
  4645. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4646. * @user_mask_ptr: user-space pointer to the new cpu mask
  4647. */
  4648. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4649. unsigned long __user *user_mask_ptr)
  4650. {
  4651. cpumask_t new_mask;
  4652. int retval;
  4653. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4654. if (retval)
  4655. return retval;
  4656. return sched_setaffinity(pid, &new_mask);
  4657. }
  4658. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4659. {
  4660. struct task_struct *p;
  4661. int retval;
  4662. get_online_cpus();
  4663. read_lock(&tasklist_lock);
  4664. retval = -ESRCH;
  4665. p = find_process_by_pid(pid);
  4666. if (!p)
  4667. goto out_unlock;
  4668. retval = security_task_getscheduler(p);
  4669. if (retval)
  4670. goto out_unlock;
  4671. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4672. out_unlock:
  4673. read_unlock(&tasklist_lock);
  4674. put_online_cpus();
  4675. return retval;
  4676. }
  4677. /**
  4678. * sys_sched_getaffinity - get the cpu affinity of a process
  4679. * @pid: pid of the process
  4680. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4681. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4682. */
  4683. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4684. unsigned long __user *user_mask_ptr)
  4685. {
  4686. int ret;
  4687. cpumask_t mask;
  4688. if (len < sizeof(cpumask_t))
  4689. return -EINVAL;
  4690. ret = sched_getaffinity(pid, &mask);
  4691. if (ret < 0)
  4692. return ret;
  4693. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4694. return -EFAULT;
  4695. return sizeof(cpumask_t);
  4696. }
  4697. /**
  4698. * sys_sched_yield - yield the current processor to other threads.
  4699. *
  4700. * This function yields the current CPU to other tasks. If there are no
  4701. * other threads running on this CPU then this function will return.
  4702. */
  4703. asmlinkage long sys_sched_yield(void)
  4704. {
  4705. struct rq *rq = this_rq_lock();
  4706. schedstat_inc(rq, yld_count);
  4707. current->sched_class->yield_task(rq);
  4708. /*
  4709. * Since we are going to call schedule() anyway, there's
  4710. * no need to preempt or enable interrupts:
  4711. */
  4712. __release(rq->lock);
  4713. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4714. _raw_spin_unlock(&rq->lock);
  4715. preempt_enable_no_resched();
  4716. schedule();
  4717. return 0;
  4718. }
  4719. static void __cond_resched(void)
  4720. {
  4721. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4722. __might_sleep(__FILE__, __LINE__);
  4723. #endif
  4724. /*
  4725. * The BKS might be reacquired before we have dropped
  4726. * PREEMPT_ACTIVE, which could trigger a second
  4727. * cond_resched() call.
  4728. */
  4729. do {
  4730. add_preempt_count(PREEMPT_ACTIVE);
  4731. schedule();
  4732. sub_preempt_count(PREEMPT_ACTIVE);
  4733. } while (need_resched());
  4734. }
  4735. int __sched _cond_resched(void)
  4736. {
  4737. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4738. system_state == SYSTEM_RUNNING) {
  4739. __cond_resched();
  4740. return 1;
  4741. }
  4742. return 0;
  4743. }
  4744. EXPORT_SYMBOL(_cond_resched);
  4745. /*
  4746. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4747. * call schedule, and on return reacquire the lock.
  4748. *
  4749. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4750. * operations here to prevent schedule() from being called twice (once via
  4751. * spin_unlock(), once by hand).
  4752. */
  4753. int cond_resched_lock(spinlock_t *lock)
  4754. {
  4755. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4756. int ret = 0;
  4757. if (spin_needbreak(lock) || resched) {
  4758. spin_unlock(lock);
  4759. if (resched && need_resched())
  4760. __cond_resched();
  4761. else
  4762. cpu_relax();
  4763. ret = 1;
  4764. spin_lock(lock);
  4765. }
  4766. return ret;
  4767. }
  4768. EXPORT_SYMBOL(cond_resched_lock);
  4769. int __sched cond_resched_softirq(void)
  4770. {
  4771. BUG_ON(!in_softirq());
  4772. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4773. local_bh_enable();
  4774. __cond_resched();
  4775. local_bh_disable();
  4776. return 1;
  4777. }
  4778. return 0;
  4779. }
  4780. EXPORT_SYMBOL(cond_resched_softirq);
  4781. /**
  4782. * yield - yield the current processor to other threads.
  4783. *
  4784. * This is a shortcut for kernel-space yielding - it marks the
  4785. * thread runnable and calls sys_sched_yield().
  4786. */
  4787. void __sched yield(void)
  4788. {
  4789. set_current_state(TASK_RUNNING);
  4790. sys_sched_yield();
  4791. }
  4792. EXPORT_SYMBOL(yield);
  4793. /*
  4794. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4795. * that process accounting knows that this is a task in IO wait state.
  4796. *
  4797. * But don't do that if it is a deliberate, throttling IO wait (this task
  4798. * has set its backing_dev_info: the queue against which it should throttle)
  4799. */
  4800. void __sched io_schedule(void)
  4801. {
  4802. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4803. delayacct_blkio_start();
  4804. atomic_inc(&rq->nr_iowait);
  4805. schedule();
  4806. atomic_dec(&rq->nr_iowait);
  4807. delayacct_blkio_end();
  4808. }
  4809. EXPORT_SYMBOL(io_schedule);
  4810. long __sched io_schedule_timeout(long timeout)
  4811. {
  4812. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4813. long ret;
  4814. delayacct_blkio_start();
  4815. atomic_inc(&rq->nr_iowait);
  4816. ret = schedule_timeout(timeout);
  4817. atomic_dec(&rq->nr_iowait);
  4818. delayacct_blkio_end();
  4819. return ret;
  4820. }
  4821. /**
  4822. * sys_sched_get_priority_max - return maximum RT priority.
  4823. * @policy: scheduling class.
  4824. *
  4825. * this syscall returns the maximum rt_priority that can be used
  4826. * by a given scheduling class.
  4827. */
  4828. asmlinkage long sys_sched_get_priority_max(int policy)
  4829. {
  4830. int ret = -EINVAL;
  4831. switch (policy) {
  4832. case SCHED_FIFO:
  4833. case SCHED_RR:
  4834. ret = MAX_USER_RT_PRIO-1;
  4835. break;
  4836. case SCHED_NORMAL:
  4837. case SCHED_BATCH:
  4838. case SCHED_IDLE:
  4839. ret = 0;
  4840. break;
  4841. }
  4842. return ret;
  4843. }
  4844. /**
  4845. * sys_sched_get_priority_min - return minimum RT priority.
  4846. * @policy: scheduling class.
  4847. *
  4848. * this syscall returns the minimum rt_priority that can be used
  4849. * by a given scheduling class.
  4850. */
  4851. asmlinkage long sys_sched_get_priority_min(int policy)
  4852. {
  4853. int ret = -EINVAL;
  4854. switch (policy) {
  4855. case SCHED_FIFO:
  4856. case SCHED_RR:
  4857. ret = 1;
  4858. break;
  4859. case SCHED_NORMAL:
  4860. case SCHED_BATCH:
  4861. case SCHED_IDLE:
  4862. ret = 0;
  4863. }
  4864. return ret;
  4865. }
  4866. /**
  4867. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4868. * @pid: pid of the process.
  4869. * @interval: userspace pointer to the timeslice value.
  4870. *
  4871. * this syscall writes the default timeslice value of a given process
  4872. * into the user-space timespec buffer. A value of '0' means infinity.
  4873. */
  4874. asmlinkage
  4875. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4876. {
  4877. struct task_struct *p;
  4878. unsigned int time_slice;
  4879. int retval;
  4880. struct timespec t;
  4881. if (pid < 0)
  4882. return -EINVAL;
  4883. retval = -ESRCH;
  4884. read_lock(&tasklist_lock);
  4885. p = find_process_by_pid(pid);
  4886. if (!p)
  4887. goto out_unlock;
  4888. retval = security_task_getscheduler(p);
  4889. if (retval)
  4890. goto out_unlock;
  4891. /*
  4892. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4893. * tasks that are on an otherwise idle runqueue:
  4894. */
  4895. time_slice = 0;
  4896. if (p->policy == SCHED_RR) {
  4897. time_slice = DEF_TIMESLICE;
  4898. } else if (p->policy != SCHED_FIFO) {
  4899. struct sched_entity *se = &p->se;
  4900. unsigned long flags;
  4901. struct rq *rq;
  4902. rq = task_rq_lock(p, &flags);
  4903. if (rq->cfs.load.weight)
  4904. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4905. task_rq_unlock(rq, &flags);
  4906. }
  4907. read_unlock(&tasklist_lock);
  4908. jiffies_to_timespec(time_slice, &t);
  4909. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4910. return retval;
  4911. out_unlock:
  4912. read_unlock(&tasklist_lock);
  4913. return retval;
  4914. }
  4915. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4916. void sched_show_task(struct task_struct *p)
  4917. {
  4918. unsigned long free = 0;
  4919. unsigned state;
  4920. state = p->state ? __ffs(p->state) + 1 : 0;
  4921. printk(KERN_INFO "%-13.13s %c", p->comm,
  4922. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4923. #if BITS_PER_LONG == 32
  4924. if (state == TASK_RUNNING)
  4925. printk(KERN_CONT " running ");
  4926. else
  4927. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4928. #else
  4929. if (state == TASK_RUNNING)
  4930. printk(KERN_CONT " running task ");
  4931. else
  4932. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4933. #endif
  4934. #ifdef CONFIG_DEBUG_STACK_USAGE
  4935. {
  4936. unsigned long *n = end_of_stack(p);
  4937. while (!*n)
  4938. n++;
  4939. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4940. }
  4941. #endif
  4942. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4943. task_pid_nr(p), task_pid_nr(p->real_parent));
  4944. show_stack(p, NULL);
  4945. }
  4946. void show_state_filter(unsigned long state_filter)
  4947. {
  4948. struct task_struct *g, *p;
  4949. #if BITS_PER_LONG == 32
  4950. printk(KERN_INFO
  4951. " task PC stack pid father\n");
  4952. #else
  4953. printk(KERN_INFO
  4954. " task PC stack pid father\n");
  4955. #endif
  4956. read_lock(&tasklist_lock);
  4957. do_each_thread(g, p) {
  4958. /*
  4959. * reset the NMI-timeout, listing all files on a slow
  4960. * console might take alot of time:
  4961. */
  4962. touch_nmi_watchdog();
  4963. if (!state_filter || (p->state & state_filter))
  4964. sched_show_task(p);
  4965. } while_each_thread(g, p);
  4966. touch_all_softlockup_watchdogs();
  4967. #ifdef CONFIG_SCHED_DEBUG
  4968. sysrq_sched_debug_show();
  4969. #endif
  4970. read_unlock(&tasklist_lock);
  4971. /*
  4972. * Only show locks if all tasks are dumped:
  4973. */
  4974. if (state_filter == -1)
  4975. debug_show_all_locks();
  4976. }
  4977. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4978. {
  4979. idle->sched_class = &idle_sched_class;
  4980. }
  4981. /**
  4982. * init_idle - set up an idle thread for a given CPU
  4983. * @idle: task in question
  4984. * @cpu: cpu the idle task belongs to
  4985. *
  4986. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4987. * flag, to make booting more robust.
  4988. */
  4989. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4990. {
  4991. struct rq *rq = cpu_rq(cpu);
  4992. unsigned long flags;
  4993. __sched_fork(idle);
  4994. idle->se.exec_start = sched_clock();
  4995. idle->prio = idle->normal_prio = MAX_PRIO;
  4996. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4997. __set_task_cpu(idle, cpu);
  4998. spin_lock_irqsave(&rq->lock, flags);
  4999. rq->curr = rq->idle = idle;
  5000. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5001. idle->oncpu = 1;
  5002. #endif
  5003. spin_unlock_irqrestore(&rq->lock, flags);
  5004. /* Set the preempt count _outside_ the spinlocks! */
  5005. #if defined(CONFIG_PREEMPT)
  5006. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5007. #else
  5008. task_thread_info(idle)->preempt_count = 0;
  5009. #endif
  5010. /*
  5011. * The idle tasks have their own, simple scheduling class:
  5012. */
  5013. idle->sched_class = &idle_sched_class;
  5014. }
  5015. /*
  5016. * In a system that switches off the HZ timer nohz_cpu_mask
  5017. * indicates which cpus entered this state. This is used
  5018. * in the rcu update to wait only for active cpus. For system
  5019. * which do not switch off the HZ timer nohz_cpu_mask should
  5020. * always be CPU_MASK_NONE.
  5021. */
  5022. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5023. /*
  5024. * Increase the granularity value when there are more CPUs,
  5025. * because with more CPUs the 'effective latency' as visible
  5026. * to users decreases. But the relationship is not linear,
  5027. * so pick a second-best guess by going with the log2 of the
  5028. * number of CPUs.
  5029. *
  5030. * This idea comes from the SD scheduler of Con Kolivas:
  5031. */
  5032. static inline void sched_init_granularity(void)
  5033. {
  5034. unsigned int factor = 1 + ilog2(num_online_cpus());
  5035. const unsigned long limit = 200000000;
  5036. sysctl_sched_min_granularity *= factor;
  5037. if (sysctl_sched_min_granularity > limit)
  5038. sysctl_sched_min_granularity = limit;
  5039. sysctl_sched_latency *= factor;
  5040. if (sysctl_sched_latency > limit)
  5041. sysctl_sched_latency = limit;
  5042. sysctl_sched_wakeup_granularity *= factor;
  5043. sysctl_sched_shares_ratelimit *= factor;
  5044. }
  5045. #ifdef CONFIG_SMP
  5046. /*
  5047. * This is how migration works:
  5048. *
  5049. * 1) we queue a struct migration_req structure in the source CPU's
  5050. * runqueue and wake up that CPU's migration thread.
  5051. * 2) we down() the locked semaphore => thread blocks.
  5052. * 3) migration thread wakes up (implicitly it forces the migrated
  5053. * thread off the CPU)
  5054. * 4) it gets the migration request and checks whether the migrated
  5055. * task is still in the wrong runqueue.
  5056. * 5) if it's in the wrong runqueue then the migration thread removes
  5057. * it and puts it into the right queue.
  5058. * 6) migration thread up()s the semaphore.
  5059. * 7) we wake up and the migration is done.
  5060. */
  5061. /*
  5062. * Change a given task's CPU affinity. Migrate the thread to a
  5063. * proper CPU and schedule it away if the CPU it's executing on
  5064. * is removed from the allowed bitmask.
  5065. *
  5066. * NOTE: the caller must have a valid reference to the task, the
  5067. * task must not exit() & deallocate itself prematurely. The
  5068. * call is not atomic; no spinlocks may be held.
  5069. */
  5070. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5071. {
  5072. struct migration_req req;
  5073. unsigned long flags;
  5074. struct rq *rq;
  5075. int ret = 0;
  5076. rq = task_rq_lock(p, &flags);
  5077. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5078. ret = -EINVAL;
  5079. goto out;
  5080. }
  5081. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5082. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5083. ret = -EINVAL;
  5084. goto out;
  5085. }
  5086. if (p->sched_class->set_cpus_allowed)
  5087. p->sched_class->set_cpus_allowed(p, new_mask);
  5088. else {
  5089. p->cpus_allowed = *new_mask;
  5090. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5091. }
  5092. /* Can the task run on the task's current CPU? If so, we're done */
  5093. if (cpu_isset(task_cpu(p), *new_mask))
  5094. goto out;
  5095. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5096. /* Need help from migration thread: drop lock and wait. */
  5097. task_rq_unlock(rq, &flags);
  5098. wake_up_process(rq->migration_thread);
  5099. wait_for_completion(&req.done);
  5100. tlb_migrate_finish(p->mm);
  5101. return 0;
  5102. }
  5103. out:
  5104. task_rq_unlock(rq, &flags);
  5105. return ret;
  5106. }
  5107. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5108. /*
  5109. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5110. * this because either it can't run here any more (set_cpus_allowed()
  5111. * away from this CPU, or CPU going down), or because we're
  5112. * attempting to rebalance this task on exec (sched_exec).
  5113. *
  5114. * So we race with normal scheduler movements, but that's OK, as long
  5115. * as the task is no longer on this CPU.
  5116. *
  5117. * Returns non-zero if task was successfully migrated.
  5118. */
  5119. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5120. {
  5121. struct rq *rq_dest, *rq_src;
  5122. int ret = 0, on_rq;
  5123. if (unlikely(!cpu_active(dest_cpu)))
  5124. return ret;
  5125. rq_src = cpu_rq(src_cpu);
  5126. rq_dest = cpu_rq(dest_cpu);
  5127. double_rq_lock(rq_src, rq_dest);
  5128. /* Already moved. */
  5129. if (task_cpu(p) != src_cpu)
  5130. goto done;
  5131. /* Affinity changed (again). */
  5132. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5133. goto fail;
  5134. on_rq = p->se.on_rq;
  5135. if (on_rq)
  5136. deactivate_task(rq_src, p, 0);
  5137. set_task_cpu(p, dest_cpu);
  5138. if (on_rq) {
  5139. activate_task(rq_dest, p, 0);
  5140. check_preempt_curr(rq_dest, p, 0);
  5141. }
  5142. done:
  5143. ret = 1;
  5144. fail:
  5145. double_rq_unlock(rq_src, rq_dest);
  5146. return ret;
  5147. }
  5148. /*
  5149. * migration_thread - this is a highprio system thread that performs
  5150. * thread migration by bumping thread off CPU then 'pushing' onto
  5151. * another runqueue.
  5152. */
  5153. static int migration_thread(void *data)
  5154. {
  5155. int cpu = (long)data;
  5156. struct rq *rq;
  5157. rq = cpu_rq(cpu);
  5158. BUG_ON(rq->migration_thread != current);
  5159. set_current_state(TASK_INTERRUPTIBLE);
  5160. while (!kthread_should_stop()) {
  5161. struct migration_req *req;
  5162. struct list_head *head;
  5163. spin_lock_irq(&rq->lock);
  5164. if (cpu_is_offline(cpu)) {
  5165. spin_unlock_irq(&rq->lock);
  5166. goto wait_to_die;
  5167. }
  5168. if (rq->active_balance) {
  5169. active_load_balance(rq, cpu);
  5170. rq->active_balance = 0;
  5171. }
  5172. head = &rq->migration_queue;
  5173. if (list_empty(head)) {
  5174. spin_unlock_irq(&rq->lock);
  5175. schedule();
  5176. set_current_state(TASK_INTERRUPTIBLE);
  5177. continue;
  5178. }
  5179. req = list_entry(head->next, struct migration_req, list);
  5180. list_del_init(head->next);
  5181. spin_unlock(&rq->lock);
  5182. __migrate_task(req->task, cpu, req->dest_cpu);
  5183. local_irq_enable();
  5184. complete(&req->done);
  5185. }
  5186. __set_current_state(TASK_RUNNING);
  5187. return 0;
  5188. wait_to_die:
  5189. /* Wait for kthread_stop */
  5190. set_current_state(TASK_INTERRUPTIBLE);
  5191. while (!kthread_should_stop()) {
  5192. schedule();
  5193. set_current_state(TASK_INTERRUPTIBLE);
  5194. }
  5195. __set_current_state(TASK_RUNNING);
  5196. return 0;
  5197. }
  5198. #ifdef CONFIG_HOTPLUG_CPU
  5199. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5200. {
  5201. int ret;
  5202. local_irq_disable();
  5203. ret = __migrate_task(p, src_cpu, dest_cpu);
  5204. local_irq_enable();
  5205. return ret;
  5206. }
  5207. /*
  5208. * Figure out where task on dead CPU should go, use force if necessary.
  5209. * NOTE: interrupts should be disabled by the caller
  5210. */
  5211. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5212. {
  5213. unsigned long flags;
  5214. cpumask_t mask;
  5215. struct rq *rq;
  5216. int dest_cpu;
  5217. do {
  5218. /* On same node? */
  5219. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5220. cpus_and(mask, mask, p->cpus_allowed);
  5221. dest_cpu = any_online_cpu(mask);
  5222. /* On any allowed CPU? */
  5223. if (dest_cpu >= nr_cpu_ids)
  5224. dest_cpu = any_online_cpu(p->cpus_allowed);
  5225. /* No more Mr. Nice Guy. */
  5226. if (dest_cpu >= nr_cpu_ids) {
  5227. cpumask_t cpus_allowed;
  5228. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5229. /*
  5230. * Try to stay on the same cpuset, where the
  5231. * current cpuset may be a subset of all cpus.
  5232. * The cpuset_cpus_allowed_locked() variant of
  5233. * cpuset_cpus_allowed() will not block. It must be
  5234. * called within calls to cpuset_lock/cpuset_unlock.
  5235. */
  5236. rq = task_rq_lock(p, &flags);
  5237. p->cpus_allowed = cpus_allowed;
  5238. dest_cpu = any_online_cpu(p->cpus_allowed);
  5239. task_rq_unlock(rq, &flags);
  5240. /*
  5241. * Don't tell them about moving exiting tasks or
  5242. * kernel threads (both mm NULL), since they never
  5243. * leave kernel.
  5244. */
  5245. if (p->mm && printk_ratelimit()) {
  5246. printk(KERN_INFO "process %d (%s) no "
  5247. "longer affine to cpu%d\n",
  5248. task_pid_nr(p), p->comm, dead_cpu);
  5249. }
  5250. }
  5251. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5252. }
  5253. /*
  5254. * While a dead CPU has no uninterruptible tasks queued at this point,
  5255. * it might still have a nonzero ->nr_uninterruptible counter, because
  5256. * for performance reasons the counter is not stricly tracking tasks to
  5257. * their home CPUs. So we just add the counter to another CPU's counter,
  5258. * to keep the global sum constant after CPU-down:
  5259. */
  5260. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5261. {
  5262. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5263. unsigned long flags;
  5264. local_irq_save(flags);
  5265. double_rq_lock(rq_src, rq_dest);
  5266. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5267. rq_src->nr_uninterruptible = 0;
  5268. double_rq_unlock(rq_src, rq_dest);
  5269. local_irq_restore(flags);
  5270. }
  5271. /* Run through task list and migrate tasks from the dead cpu. */
  5272. static void migrate_live_tasks(int src_cpu)
  5273. {
  5274. struct task_struct *p, *t;
  5275. read_lock(&tasklist_lock);
  5276. do_each_thread(t, p) {
  5277. if (p == current)
  5278. continue;
  5279. if (task_cpu(p) == src_cpu)
  5280. move_task_off_dead_cpu(src_cpu, p);
  5281. } while_each_thread(t, p);
  5282. read_unlock(&tasklist_lock);
  5283. }
  5284. /*
  5285. * Schedules idle task to be the next runnable task on current CPU.
  5286. * It does so by boosting its priority to highest possible.
  5287. * Used by CPU offline code.
  5288. */
  5289. void sched_idle_next(void)
  5290. {
  5291. int this_cpu = smp_processor_id();
  5292. struct rq *rq = cpu_rq(this_cpu);
  5293. struct task_struct *p = rq->idle;
  5294. unsigned long flags;
  5295. /* cpu has to be offline */
  5296. BUG_ON(cpu_online(this_cpu));
  5297. /*
  5298. * Strictly not necessary since rest of the CPUs are stopped by now
  5299. * and interrupts disabled on the current cpu.
  5300. */
  5301. spin_lock_irqsave(&rq->lock, flags);
  5302. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5303. update_rq_clock(rq);
  5304. activate_task(rq, p, 0);
  5305. spin_unlock_irqrestore(&rq->lock, flags);
  5306. }
  5307. /*
  5308. * Ensures that the idle task is using init_mm right before its cpu goes
  5309. * offline.
  5310. */
  5311. void idle_task_exit(void)
  5312. {
  5313. struct mm_struct *mm = current->active_mm;
  5314. BUG_ON(cpu_online(smp_processor_id()));
  5315. if (mm != &init_mm)
  5316. switch_mm(mm, &init_mm, current);
  5317. mmdrop(mm);
  5318. }
  5319. /* called under rq->lock with disabled interrupts */
  5320. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5321. {
  5322. struct rq *rq = cpu_rq(dead_cpu);
  5323. /* Must be exiting, otherwise would be on tasklist. */
  5324. BUG_ON(!p->exit_state);
  5325. /* Cannot have done final schedule yet: would have vanished. */
  5326. BUG_ON(p->state == TASK_DEAD);
  5327. get_task_struct(p);
  5328. /*
  5329. * Drop lock around migration; if someone else moves it,
  5330. * that's OK. No task can be added to this CPU, so iteration is
  5331. * fine.
  5332. */
  5333. spin_unlock_irq(&rq->lock);
  5334. move_task_off_dead_cpu(dead_cpu, p);
  5335. spin_lock_irq(&rq->lock);
  5336. put_task_struct(p);
  5337. }
  5338. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5339. static void migrate_dead_tasks(unsigned int dead_cpu)
  5340. {
  5341. struct rq *rq = cpu_rq(dead_cpu);
  5342. struct task_struct *next;
  5343. for ( ; ; ) {
  5344. if (!rq->nr_running)
  5345. break;
  5346. update_rq_clock(rq);
  5347. next = pick_next_task(rq, rq->curr);
  5348. if (!next)
  5349. break;
  5350. next->sched_class->put_prev_task(rq, next);
  5351. migrate_dead(dead_cpu, next);
  5352. }
  5353. }
  5354. #endif /* CONFIG_HOTPLUG_CPU */
  5355. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5356. static struct ctl_table sd_ctl_dir[] = {
  5357. {
  5358. .procname = "sched_domain",
  5359. .mode = 0555,
  5360. },
  5361. {0, },
  5362. };
  5363. static struct ctl_table sd_ctl_root[] = {
  5364. {
  5365. .ctl_name = CTL_KERN,
  5366. .procname = "kernel",
  5367. .mode = 0555,
  5368. .child = sd_ctl_dir,
  5369. },
  5370. {0, },
  5371. };
  5372. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5373. {
  5374. struct ctl_table *entry =
  5375. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5376. return entry;
  5377. }
  5378. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5379. {
  5380. struct ctl_table *entry;
  5381. /*
  5382. * In the intermediate directories, both the child directory and
  5383. * procname are dynamically allocated and could fail but the mode
  5384. * will always be set. In the lowest directory the names are
  5385. * static strings and all have proc handlers.
  5386. */
  5387. for (entry = *tablep; entry->mode; entry++) {
  5388. if (entry->child)
  5389. sd_free_ctl_entry(&entry->child);
  5390. if (entry->proc_handler == NULL)
  5391. kfree(entry->procname);
  5392. }
  5393. kfree(*tablep);
  5394. *tablep = NULL;
  5395. }
  5396. static void
  5397. set_table_entry(struct ctl_table *entry,
  5398. const char *procname, void *data, int maxlen,
  5399. mode_t mode, proc_handler *proc_handler)
  5400. {
  5401. entry->procname = procname;
  5402. entry->data = data;
  5403. entry->maxlen = maxlen;
  5404. entry->mode = mode;
  5405. entry->proc_handler = proc_handler;
  5406. }
  5407. static struct ctl_table *
  5408. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5409. {
  5410. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5411. if (table == NULL)
  5412. return NULL;
  5413. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5414. sizeof(long), 0644, proc_doulongvec_minmax);
  5415. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5416. sizeof(long), 0644, proc_doulongvec_minmax);
  5417. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5418. sizeof(int), 0644, proc_dointvec_minmax);
  5419. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5420. sizeof(int), 0644, proc_dointvec_minmax);
  5421. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5422. sizeof(int), 0644, proc_dointvec_minmax);
  5423. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5424. sizeof(int), 0644, proc_dointvec_minmax);
  5425. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5426. sizeof(int), 0644, proc_dointvec_minmax);
  5427. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5428. sizeof(int), 0644, proc_dointvec_minmax);
  5429. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5430. sizeof(int), 0644, proc_dointvec_minmax);
  5431. set_table_entry(&table[9], "cache_nice_tries",
  5432. &sd->cache_nice_tries,
  5433. sizeof(int), 0644, proc_dointvec_minmax);
  5434. set_table_entry(&table[10], "flags", &sd->flags,
  5435. sizeof(int), 0644, proc_dointvec_minmax);
  5436. set_table_entry(&table[11], "name", sd->name,
  5437. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5438. /* &table[12] is terminator */
  5439. return table;
  5440. }
  5441. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5442. {
  5443. struct ctl_table *entry, *table;
  5444. struct sched_domain *sd;
  5445. int domain_num = 0, i;
  5446. char buf[32];
  5447. for_each_domain(cpu, sd)
  5448. domain_num++;
  5449. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5450. if (table == NULL)
  5451. return NULL;
  5452. i = 0;
  5453. for_each_domain(cpu, sd) {
  5454. snprintf(buf, 32, "domain%d", i);
  5455. entry->procname = kstrdup(buf, GFP_KERNEL);
  5456. entry->mode = 0555;
  5457. entry->child = sd_alloc_ctl_domain_table(sd);
  5458. entry++;
  5459. i++;
  5460. }
  5461. return table;
  5462. }
  5463. static struct ctl_table_header *sd_sysctl_header;
  5464. static void register_sched_domain_sysctl(void)
  5465. {
  5466. int i, cpu_num = num_online_cpus();
  5467. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5468. char buf[32];
  5469. WARN_ON(sd_ctl_dir[0].child);
  5470. sd_ctl_dir[0].child = entry;
  5471. if (entry == NULL)
  5472. return;
  5473. for_each_online_cpu(i) {
  5474. snprintf(buf, 32, "cpu%d", i);
  5475. entry->procname = kstrdup(buf, GFP_KERNEL);
  5476. entry->mode = 0555;
  5477. entry->child = sd_alloc_ctl_cpu_table(i);
  5478. entry++;
  5479. }
  5480. WARN_ON(sd_sysctl_header);
  5481. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5482. }
  5483. /* may be called multiple times per register */
  5484. static void unregister_sched_domain_sysctl(void)
  5485. {
  5486. if (sd_sysctl_header)
  5487. unregister_sysctl_table(sd_sysctl_header);
  5488. sd_sysctl_header = NULL;
  5489. if (sd_ctl_dir[0].child)
  5490. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5491. }
  5492. #else
  5493. static void register_sched_domain_sysctl(void)
  5494. {
  5495. }
  5496. static void unregister_sched_domain_sysctl(void)
  5497. {
  5498. }
  5499. #endif
  5500. static void set_rq_online(struct rq *rq)
  5501. {
  5502. if (!rq->online) {
  5503. const struct sched_class *class;
  5504. cpu_set(rq->cpu, rq->rd->online);
  5505. rq->online = 1;
  5506. for_each_class(class) {
  5507. if (class->rq_online)
  5508. class->rq_online(rq);
  5509. }
  5510. }
  5511. }
  5512. static void set_rq_offline(struct rq *rq)
  5513. {
  5514. if (rq->online) {
  5515. const struct sched_class *class;
  5516. for_each_class(class) {
  5517. if (class->rq_offline)
  5518. class->rq_offline(rq);
  5519. }
  5520. cpu_clear(rq->cpu, rq->rd->online);
  5521. rq->online = 0;
  5522. }
  5523. }
  5524. /*
  5525. * migration_call - callback that gets triggered when a CPU is added.
  5526. * Here we can start up the necessary migration thread for the new CPU.
  5527. */
  5528. static int __cpuinit
  5529. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5530. {
  5531. struct task_struct *p;
  5532. int cpu = (long)hcpu;
  5533. unsigned long flags;
  5534. struct rq *rq;
  5535. switch (action) {
  5536. case CPU_UP_PREPARE:
  5537. case CPU_UP_PREPARE_FROZEN:
  5538. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5539. if (IS_ERR(p))
  5540. return NOTIFY_BAD;
  5541. kthread_bind(p, cpu);
  5542. /* Must be high prio: stop_machine expects to yield to it. */
  5543. rq = task_rq_lock(p, &flags);
  5544. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5545. task_rq_unlock(rq, &flags);
  5546. cpu_rq(cpu)->migration_thread = p;
  5547. break;
  5548. case CPU_ONLINE:
  5549. case CPU_ONLINE_FROZEN:
  5550. /* Strictly unnecessary, as first user will wake it. */
  5551. wake_up_process(cpu_rq(cpu)->migration_thread);
  5552. /* Update our root-domain */
  5553. rq = cpu_rq(cpu);
  5554. spin_lock_irqsave(&rq->lock, flags);
  5555. if (rq->rd) {
  5556. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5557. set_rq_online(rq);
  5558. }
  5559. spin_unlock_irqrestore(&rq->lock, flags);
  5560. break;
  5561. #ifdef CONFIG_HOTPLUG_CPU
  5562. case CPU_UP_CANCELED:
  5563. case CPU_UP_CANCELED_FROZEN:
  5564. if (!cpu_rq(cpu)->migration_thread)
  5565. break;
  5566. /* Unbind it from offline cpu so it can run. Fall thru. */
  5567. kthread_bind(cpu_rq(cpu)->migration_thread,
  5568. any_online_cpu(cpu_online_map));
  5569. kthread_stop(cpu_rq(cpu)->migration_thread);
  5570. cpu_rq(cpu)->migration_thread = NULL;
  5571. break;
  5572. case CPU_DEAD:
  5573. case CPU_DEAD_FROZEN:
  5574. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5575. migrate_live_tasks(cpu);
  5576. rq = cpu_rq(cpu);
  5577. kthread_stop(rq->migration_thread);
  5578. rq->migration_thread = NULL;
  5579. /* Idle task back to normal (off runqueue, low prio) */
  5580. spin_lock_irq(&rq->lock);
  5581. update_rq_clock(rq);
  5582. deactivate_task(rq, rq->idle, 0);
  5583. rq->idle->static_prio = MAX_PRIO;
  5584. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5585. rq->idle->sched_class = &idle_sched_class;
  5586. migrate_dead_tasks(cpu);
  5587. spin_unlock_irq(&rq->lock);
  5588. cpuset_unlock();
  5589. migrate_nr_uninterruptible(rq);
  5590. BUG_ON(rq->nr_running != 0);
  5591. /*
  5592. * No need to migrate the tasks: it was best-effort if
  5593. * they didn't take sched_hotcpu_mutex. Just wake up
  5594. * the requestors.
  5595. */
  5596. spin_lock_irq(&rq->lock);
  5597. while (!list_empty(&rq->migration_queue)) {
  5598. struct migration_req *req;
  5599. req = list_entry(rq->migration_queue.next,
  5600. struct migration_req, list);
  5601. list_del_init(&req->list);
  5602. complete(&req->done);
  5603. }
  5604. spin_unlock_irq(&rq->lock);
  5605. break;
  5606. case CPU_DYING:
  5607. case CPU_DYING_FROZEN:
  5608. /* Update our root-domain */
  5609. rq = cpu_rq(cpu);
  5610. spin_lock_irqsave(&rq->lock, flags);
  5611. if (rq->rd) {
  5612. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5613. set_rq_offline(rq);
  5614. }
  5615. spin_unlock_irqrestore(&rq->lock, flags);
  5616. break;
  5617. #endif
  5618. }
  5619. return NOTIFY_OK;
  5620. }
  5621. /* Register at highest priority so that task migration (migrate_all_tasks)
  5622. * happens before everything else.
  5623. */
  5624. static struct notifier_block __cpuinitdata migration_notifier = {
  5625. .notifier_call = migration_call,
  5626. .priority = 10
  5627. };
  5628. static int __init migration_init(void)
  5629. {
  5630. void *cpu = (void *)(long)smp_processor_id();
  5631. int err;
  5632. /* Start one for the boot CPU: */
  5633. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5634. BUG_ON(err == NOTIFY_BAD);
  5635. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5636. register_cpu_notifier(&migration_notifier);
  5637. return err;
  5638. }
  5639. early_initcall(migration_init);
  5640. #endif
  5641. #ifdef CONFIG_SMP
  5642. #ifdef CONFIG_SCHED_DEBUG
  5643. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5644. cpumask_t *groupmask)
  5645. {
  5646. struct sched_group *group = sd->groups;
  5647. char str[256];
  5648. cpulist_scnprintf(str, sizeof(str), sd->span);
  5649. cpus_clear(*groupmask);
  5650. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5651. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5652. printk("does not load-balance\n");
  5653. if (sd->parent)
  5654. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5655. " has parent");
  5656. return -1;
  5657. }
  5658. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5659. if (!cpu_isset(cpu, sd->span)) {
  5660. printk(KERN_ERR "ERROR: domain->span does not contain "
  5661. "CPU%d\n", cpu);
  5662. }
  5663. if (!cpu_isset(cpu, group->cpumask)) {
  5664. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5665. " CPU%d\n", cpu);
  5666. }
  5667. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5668. do {
  5669. if (!group) {
  5670. printk("\n");
  5671. printk(KERN_ERR "ERROR: group is NULL\n");
  5672. break;
  5673. }
  5674. if (!group->__cpu_power) {
  5675. printk(KERN_CONT "\n");
  5676. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5677. "set\n");
  5678. break;
  5679. }
  5680. if (!cpus_weight(group->cpumask)) {
  5681. printk(KERN_CONT "\n");
  5682. printk(KERN_ERR "ERROR: empty group\n");
  5683. break;
  5684. }
  5685. if (cpus_intersects(*groupmask, group->cpumask)) {
  5686. printk(KERN_CONT "\n");
  5687. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5688. break;
  5689. }
  5690. cpus_or(*groupmask, *groupmask, group->cpumask);
  5691. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5692. printk(KERN_CONT " %s", str);
  5693. group = group->next;
  5694. } while (group != sd->groups);
  5695. printk(KERN_CONT "\n");
  5696. if (!cpus_equal(sd->span, *groupmask))
  5697. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5698. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5699. printk(KERN_ERR "ERROR: parent span is not a superset "
  5700. "of domain->span\n");
  5701. return 0;
  5702. }
  5703. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5704. {
  5705. cpumask_t *groupmask;
  5706. int level = 0;
  5707. if (!sd) {
  5708. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5709. return;
  5710. }
  5711. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5712. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5713. if (!groupmask) {
  5714. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5715. return;
  5716. }
  5717. for (;;) {
  5718. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5719. break;
  5720. level++;
  5721. sd = sd->parent;
  5722. if (!sd)
  5723. break;
  5724. }
  5725. kfree(groupmask);
  5726. }
  5727. #else /* !CONFIG_SCHED_DEBUG */
  5728. # define sched_domain_debug(sd, cpu) do { } while (0)
  5729. #endif /* CONFIG_SCHED_DEBUG */
  5730. static int sd_degenerate(struct sched_domain *sd)
  5731. {
  5732. if (cpus_weight(sd->span) == 1)
  5733. return 1;
  5734. /* Following flags need at least 2 groups */
  5735. if (sd->flags & (SD_LOAD_BALANCE |
  5736. SD_BALANCE_NEWIDLE |
  5737. SD_BALANCE_FORK |
  5738. SD_BALANCE_EXEC |
  5739. SD_SHARE_CPUPOWER |
  5740. SD_SHARE_PKG_RESOURCES)) {
  5741. if (sd->groups != sd->groups->next)
  5742. return 0;
  5743. }
  5744. /* Following flags don't use groups */
  5745. if (sd->flags & (SD_WAKE_IDLE |
  5746. SD_WAKE_AFFINE |
  5747. SD_WAKE_BALANCE))
  5748. return 0;
  5749. return 1;
  5750. }
  5751. static int
  5752. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5753. {
  5754. unsigned long cflags = sd->flags, pflags = parent->flags;
  5755. if (sd_degenerate(parent))
  5756. return 1;
  5757. if (!cpus_equal(sd->span, parent->span))
  5758. return 0;
  5759. /* Does parent contain flags not in child? */
  5760. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5761. if (cflags & SD_WAKE_AFFINE)
  5762. pflags &= ~SD_WAKE_BALANCE;
  5763. /* Flags needing groups don't count if only 1 group in parent */
  5764. if (parent->groups == parent->groups->next) {
  5765. pflags &= ~(SD_LOAD_BALANCE |
  5766. SD_BALANCE_NEWIDLE |
  5767. SD_BALANCE_FORK |
  5768. SD_BALANCE_EXEC |
  5769. SD_SHARE_CPUPOWER |
  5770. SD_SHARE_PKG_RESOURCES);
  5771. }
  5772. if (~cflags & pflags)
  5773. return 0;
  5774. return 1;
  5775. }
  5776. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5777. {
  5778. unsigned long flags;
  5779. spin_lock_irqsave(&rq->lock, flags);
  5780. if (rq->rd) {
  5781. struct root_domain *old_rd = rq->rd;
  5782. if (cpu_isset(rq->cpu, old_rd->online))
  5783. set_rq_offline(rq);
  5784. cpu_clear(rq->cpu, old_rd->span);
  5785. if (atomic_dec_and_test(&old_rd->refcount))
  5786. kfree(old_rd);
  5787. }
  5788. atomic_inc(&rd->refcount);
  5789. rq->rd = rd;
  5790. cpu_set(rq->cpu, rd->span);
  5791. if (cpu_isset(rq->cpu, cpu_online_map))
  5792. set_rq_online(rq);
  5793. spin_unlock_irqrestore(&rq->lock, flags);
  5794. }
  5795. static void init_rootdomain(struct root_domain *rd)
  5796. {
  5797. memset(rd, 0, sizeof(*rd));
  5798. cpus_clear(rd->span);
  5799. cpus_clear(rd->online);
  5800. cpupri_init(&rd->cpupri);
  5801. }
  5802. static void init_defrootdomain(void)
  5803. {
  5804. init_rootdomain(&def_root_domain);
  5805. atomic_set(&def_root_domain.refcount, 1);
  5806. }
  5807. static struct root_domain *alloc_rootdomain(void)
  5808. {
  5809. struct root_domain *rd;
  5810. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5811. if (!rd)
  5812. return NULL;
  5813. init_rootdomain(rd);
  5814. return rd;
  5815. }
  5816. /*
  5817. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5818. * hold the hotplug lock.
  5819. */
  5820. static void
  5821. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5822. {
  5823. struct rq *rq = cpu_rq(cpu);
  5824. struct sched_domain *tmp;
  5825. /* Remove the sched domains which do not contribute to scheduling. */
  5826. for (tmp = sd; tmp; tmp = tmp->parent) {
  5827. struct sched_domain *parent = tmp->parent;
  5828. if (!parent)
  5829. break;
  5830. if (sd_parent_degenerate(tmp, parent)) {
  5831. tmp->parent = parent->parent;
  5832. if (parent->parent)
  5833. parent->parent->child = tmp;
  5834. }
  5835. }
  5836. if (sd && sd_degenerate(sd)) {
  5837. sd = sd->parent;
  5838. if (sd)
  5839. sd->child = NULL;
  5840. }
  5841. sched_domain_debug(sd, cpu);
  5842. rq_attach_root(rq, rd);
  5843. rcu_assign_pointer(rq->sd, sd);
  5844. }
  5845. /* cpus with isolated domains */
  5846. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5847. /* Setup the mask of cpus configured for isolated domains */
  5848. static int __init isolated_cpu_setup(char *str)
  5849. {
  5850. static int __initdata ints[NR_CPUS];
  5851. int i;
  5852. str = get_options(str, ARRAY_SIZE(ints), ints);
  5853. cpus_clear(cpu_isolated_map);
  5854. for (i = 1; i <= ints[0]; i++)
  5855. if (ints[i] < NR_CPUS)
  5856. cpu_set(ints[i], cpu_isolated_map);
  5857. return 1;
  5858. }
  5859. __setup("isolcpus=", isolated_cpu_setup);
  5860. /*
  5861. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5862. * to a function which identifies what group(along with sched group) a CPU
  5863. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5864. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5865. *
  5866. * init_sched_build_groups will build a circular linked list of the groups
  5867. * covered by the given span, and will set each group's ->cpumask correctly,
  5868. * and ->cpu_power to 0.
  5869. */
  5870. static void
  5871. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5872. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5873. struct sched_group **sg,
  5874. cpumask_t *tmpmask),
  5875. cpumask_t *covered, cpumask_t *tmpmask)
  5876. {
  5877. struct sched_group *first = NULL, *last = NULL;
  5878. int i;
  5879. cpus_clear(*covered);
  5880. for_each_cpu_mask_nr(i, *span) {
  5881. struct sched_group *sg;
  5882. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5883. int j;
  5884. if (cpu_isset(i, *covered))
  5885. continue;
  5886. cpus_clear(sg->cpumask);
  5887. sg->__cpu_power = 0;
  5888. for_each_cpu_mask_nr(j, *span) {
  5889. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5890. continue;
  5891. cpu_set(j, *covered);
  5892. cpu_set(j, sg->cpumask);
  5893. }
  5894. if (!first)
  5895. first = sg;
  5896. if (last)
  5897. last->next = sg;
  5898. last = sg;
  5899. }
  5900. last->next = first;
  5901. }
  5902. #define SD_NODES_PER_DOMAIN 16
  5903. #ifdef CONFIG_NUMA
  5904. /**
  5905. * find_next_best_node - find the next node to include in a sched_domain
  5906. * @node: node whose sched_domain we're building
  5907. * @used_nodes: nodes already in the sched_domain
  5908. *
  5909. * Find the next node to include in a given scheduling domain. Simply
  5910. * finds the closest node not already in the @used_nodes map.
  5911. *
  5912. * Should use nodemask_t.
  5913. */
  5914. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5915. {
  5916. int i, n, val, min_val, best_node = 0;
  5917. min_val = INT_MAX;
  5918. for (i = 0; i < nr_node_ids; i++) {
  5919. /* Start at @node */
  5920. n = (node + i) % nr_node_ids;
  5921. if (!nr_cpus_node(n))
  5922. continue;
  5923. /* Skip already used nodes */
  5924. if (node_isset(n, *used_nodes))
  5925. continue;
  5926. /* Simple min distance search */
  5927. val = node_distance(node, n);
  5928. if (val < min_val) {
  5929. min_val = val;
  5930. best_node = n;
  5931. }
  5932. }
  5933. node_set(best_node, *used_nodes);
  5934. return best_node;
  5935. }
  5936. /**
  5937. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5938. * @node: node whose cpumask we're constructing
  5939. * @span: resulting cpumask
  5940. *
  5941. * Given a node, construct a good cpumask for its sched_domain to span. It
  5942. * should be one that prevents unnecessary balancing, but also spreads tasks
  5943. * out optimally.
  5944. */
  5945. static void sched_domain_node_span(int node, cpumask_t *span)
  5946. {
  5947. nodemask_t used_nodes;
  5948. node_to_cpumask_ptr(nodemask, node);
  5949. int i;
  5950. cpus_clear(*span);
  5951. nodes_clear(used_nodes);
  5952. cpus_or(*span, *span, *nodemask);
  5953. node_set(node, used_nodes);
  5954. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5955. int next_node = find_next_best_node(node, &used_nodes);
  5956. node_to_cpumask_ptr_next(nodemask, next_node);
  5957. cpus_or(*span, *span, *nodemask);
  5958. }
  5959. }
  5960. #endif /* CONFIG_NUMA */
  5961. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5962. /*
  5963. * SMT sched-domains:
  5964. */
  5965. #ifdef CONFIG_SCHED_SMT
  5966. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5967. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5968. static int
  5969. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5970. cpumask_t *unused)
  5971. {
  5972. if (sg)
  5973. *sg = &per_cpu(sched_group_cpus, cpu);
  5974. return cpu;
  5975. }
  5976. #endif /* CONFIG_SCHED_SMT */
  5977. /*
  5978. * multi-core sched-domains:
  5979. */
  5980. #ifdef CONFIG_SCHED_MC
  5981. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5982. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5983. #endif /* CONFIG_SCHED_MC */
  5984. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5985. static int
  5986. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5987. cpumask_t *mask)
  5988. {
  5989. int group;
  5990. *mask = per_cpu(cpu_sibling_map, cpu);
  5991. cpus_and(*mask, *mask, *cpu_map);
  5992. group = first_cpu(*mask);
  5993. if (sg)
  5994. *sg = &per_cpu(sched_group_core, group);
  5995. return group;
  5996. }
  5997. #elif defined(CONFIG_SCHED_MC)
  5998. static int
  5999. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6000. cpumask_t *unused)
  6001. {
  6002. if (sg)
  6003. *sg = &per_cpu(sched_group_core, cpu);
  6004. return cpu;
  6005. }
  6006. #endif
  6007. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6008. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6009. static int
  6010. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6011. cpumask_t *mask)
  6012. {
  6013. int group;
  6014. #ifdef CONFIG_SCHED_MC
  6015. *mask = cpu_coregroup_map(cpu);
  6016. cpus_and(*mask, *mask, *cpu_map);
  6017. group = first_cpu(*mask);
  6018. #elif defined(CONFIG_SCHED_SMT)
  6019. *mask = per_cpu(cpu_sibling_map, cpu);
  6020. cpus_and(*mask, *mask, *cpu_map);
  6021. group = first_cpu(*mask);
  6022. #else
  6023. group = cpu;
  6024. #endif
  6025. if (sg)
  6026. *sg = &per_cpu(sched_group_phys, group);
  6027. return group;
  6028. }
  6029. #ifdef CONFIG_NUMA
  6030. /*
  6031. * The init_sched_build_groups can't handle what we want to do with node
  6032. * groups, so roll our own. Now each node has its own list of groups which
  6033. * gets dynamically allocated.
  6034. */
  6035. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6036. static struct sched_group ***sched_group_nodes_bycpu;
  6037. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6038. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6039. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6040. struct sched_group **sg, cpumask_t *nodemask)
  6041. {
  6042. int group;
  6043. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6044. cpus_and(*nodemask, *nodemask, *cpu_map);
  6045. group = first_cpu(*nodemask);
  6046. if (sg)
  6047. *sg = &per_cpu(sched_group_allnodes, group);
  6048. return group;
  6049. }
  6050. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6051. {
  6052. struct sched_group *sg = group_head;
  6053. int j;
  6054. if (!sg)
  6055. return;
  6056. do {
  6057. for_each_cpu_mask_nr(j, sg->cpumask) {
  6058. struct sched_domain *sd;
  6059. sd = &per_cpu(phys_domains, j);
  6060. if (j != first_cpu(sd->groups->cpumask)) {
  6061. /*
  6062. * Only add "power" once for each
  6063. * physical package.
  6064. */
  6065. continue;
  6066. }
  6067. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6068. }
  6069. sg = sg->next;
  6070. } while (sg != group_head);
  6071. }
  6072. #endif /* CONFIG_NUMA */
  6073. #ifdef CONFIG_NUMA
  6074. /* Free memory allocated for various sched_group structures */
  6075. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6076. {
  6077. int cpu, i;
  6078. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6079. struct sched_group **sched_group_nodes
  6080. = sched_group_nodes_bycpu[cpu];
  6081. if (!sched_group_nodes)
  6082. continue;
  6083. for (i = 0; i < nr_node_ids; i++) {
  6084. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6085. *nodemask = node_to_cpumask(i);
  6086. cpus_and(*nodemask, *nodemask, *cpu_map);
  6087. if (cpus_empty(*nodemask))
  6088. continue;
  6089. if (sg == NULL)
  6090. continue;
  6091. sg = sg->next;
  6092. next_sg:
  6093. oldsg = sg;
  6094. sg = sg->next;
  6095. kfree(oldsg);
  6096. if (oldsg != sched_group_nodes[i])
  6097. goto next_sg;
  6098. }
  6099. kfree(sched_group_nodes);
  6100. sched_group_nodes_bycpu[cpu] = NULL;
  6101. }
  6102. }
  6103. #else /* !CONFIG_NUMA */
  6104. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6105. {
  6106. }
  6107. #endif /* CONFIG_NUMA */
  6108. /*
  6109. * Initialize sched groups cpu_power.
  6110. *
  6111. * cpu_power indicates the capacity of sched group, which is used while
  6112. * distributing the load between different sched groups in a sched domain.
  6113. * Typically cpu_power for all the groups in a sched domain will be same unless
  6114. * there are asymmetries in the topology. If there are asymmetries, group
  6115. * having more cpu_power will pickup more load compared to the group having
  6116. * less cpu_power.
  6117. *
  6118. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6119. * the maximum number of tasks a group can handle in the presence of other idle
  6120. * or lightly loaded groups in the same sched domain.
  6121. */
  6122. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6123. {
  6124. struct sched_domain *child;
  6125. struct sched_group *group;
  6126. WARN_ON(!sd || !sd->groups);
  6127. if (cpu != first_cpu(sd->groups->cpumask))
  6128. return;
  6129. child = sd->child;
  6130. sd->groups->__cpu_power = 0;
  6131. /*
  6132. * For perf policy, if the groups in child domain share resources
  6133. * (for example cores sharing some portions of the cache hierarchy
  6134. * or SMT), then set this domain groups cpu_power such that each group
  6135. * can handle only one task, when there are other idle groups in the
  6136. * same sched domain.
  6137. */
  6138. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6139. (child->flags &
  6140. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6141. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6142. return;
  6143. }
  6144. /*
  6145. * add cpu_power of each child group to this groups cpu_power
  6146. */
  6147. group = child->groups;
  6148. do {
  6149. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6150. group = group->next;
  6151. } while (group != child->groups);
  6152. }
  6153. /*
  6154. * Initializers for schedule domains
  6155. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6156. */
  6157. #ifdef CONFIG_SCHED_DEBUG
  6158. # define SD_INIT_NAME(sd, type) sd->name = #type
  6159. #else
  6160. # define SD_INIT_NAME(sd, type) do { } while (0)
  6161. #endif
  6162. #define SD_INIT(sd, type) sd_init_##type(sd)
  6163. #define SD_INIT_FUNC(type) \
  6164. static noinline void sd_init_##type(struct sched_domain *sd) \
  6165. { \
  6166. memset(sd, 0, sizeof(*sd)); \
  6167. *sd = SD_##type##_INIT; \
  6168. sd->level = SD_LV_##type; \
  6169. SD_INIT_NAME(sd, type); \
  6170. }
  6171. SD_INIT_FUNC(CPU)
  6172. #ifdef CONFIG_NUMA
  6173. SD_INIT_FUNC(ALLNODES)
  6174. SD_INIT_FUNC(NODE)
  6175. #endif
  6176. #ifdef CONFIG_SCHED_SMT
  6177. SD_INIT_FUNC(SIBLING)
  6178. #endif
  6179. #ifdef CONFIG_SCHED_MC
  6180. SD_INIT_FUNC(MC)
  6181. #endif
  6182. /*
  6183. * To minimize stack usage kmalloc room for cpumasks and share the
  6184. * space as the usage in build_sched_domains() dictates. Used only
  6185. * if the amount of space is significant.
  6186. */
  6187. struct allmasks {
  6188. cpumask_t tmpmask; /* make this one first */
  6189. union {
  6190. cpumask_t nodemask;
  6191. cpumask_t this_sibling_map;
  6192. cpumask_t this_core_map;
  6193. };
  6194. cpumask_t send_covered;
  6195. #ifdef CONFIG_NUMA
  6196. cpumask_t domainspan;
  6197. cpumask_t covered;
  6198. cpumask_t notcovered;
  6199. #endif
  6200. };
  6201. #if NR_CPUS > 128
  6202. #define SCHED_CPUMASK_ALLOC 1
  6203. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6204. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6205. #else
  6206. #define SCHED_CPUMASK_ALLOC 0
  6207. #define SCHED_CPUMASK_FREE(v)
  6208. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6209. #endif
  6210. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6211. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6212. static int default_relax_domain_level = -1;
  6213. static int __init setup_relax_domain_level(char *str)
  6214. {
  6215. unsigned long val;
  6216. val = simple_strtoul(str, NULL, 0);
  6217. if (val < SD_LV_MAX)
  6218. default_relax_domain_level = val;
  6219. return 1;
  6220. }
  6221. __setup("relax_domain_level=", setup_relax_domain_level);
  6222. static void set_domain_attribute(struct sched_domain *sd,
  6223. struct sched_domain_attr *attr)
  6224. {
  6225. int request;
  6226. if (!attr || attr->relax_domain_level < 0) {
  6227. if (default_relax_domain_level < 0)
  6228. return;
  6229. else
  6230. request = default_relax_domain_level;
  6231. } else
  6232. request = attr->relax_domain_level;
  6233. if (request < sd->level) {
  6234. /* turn off idle balance on this domain */
  6235. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6236. } else {
  6237. /* turn on idle balance on this domain */
  6238. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6239. }
  6240. }
  6241. /*
  6242. * Build sched domains for a given set of cpus and attach the sched domains
  6243. * to the individual cpus
  6244. */
  6245. static int __build_sched_domains(const cpumask_t *cpu_map,
  6246. struct sched_domain_attr *attr)
  6247. {
  6248. int i;
  6249. struct root_domain *rd;
  6250. SCHED_CPUMASK_DECLARE(allmasks);
  6251. cpumask_t *tmpmask;
  6252. #ifdef CONFIG_NUMA
  6253. struct sched_group **sched_group_nodes = NULL;
  6254. int sd_allnodes = 0;
  6255. /*
  6256. * Allocate the per-node list of sched groups
  6257. */
  6258. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6259. GFP_KERNEL);
  6260. if (!sched_group_nodes) {
  6261. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6262. return -ENOMEM;
  6263. }
  6264. #endif
  6265. rd = alloc_rootdomain();
  6266. if (!rd) {
  6267. printk(KERN_WARNING "Cannot alloc root domain\n");
  6268. #ifdef CONFIG_NUMA
  6269. kfree(sched_group_nodes);
  6270. #endif
  6271. return -ENOMEM;
  6272. }
  6273. #if SCHED_CPUMASK_ALLOC
  6274. /* get space for all scratch cpumask variables */
  6275. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6276. if (!allmasks) {
  6277. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6278. kfree(rd);
  6279. #ifdef CONFIG_NUMA
  6280. kfree(sched_group_nodes);
  6281. #endif
  6282. return -ENOMEM;
  6283. }
  6284. #endif
  6285. tmpmask = (cpumask_t *)allmasks;
  6286. #ifdef CONFIG_NUMA
  6287. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6288. #endif
  6289. /*
  6290. * Set up domains for cpus specified by the cpu_map.
  6291. */
  6292. for_each_cpu_mask_nr(i, *cpu_map) {
  6293. struct sched_domain *sd = NULL, *p;
  6294. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6295. *nodemask = node_to_cpumask(cpu_to_node(i));
  6296. cpus_and(*nodemask, *nodemask, *cpu_map);
  6297. #ifdef CONFIG_NUMA
  6298. if (cpus_weight(*cpu_map) >
  6299. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6300. sd = &per_cpu(allnodes_domains, i);
  6301. SD_INIT(sd, ALLNODES);
  6302. set_domain_attribute(sd, attr);
  6303. sd->span = *cpu_map;
  6304. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6305. p = sd;
  6306. sd_allnodes = 1;
  6307. } else
  6308. p = NULL;
  6309. sd = &per_cpu(node_domains, i);
  6310. SD_INIT(sd, NODE);
  6311. set_domain_attribute(sd, attr);
  6312. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6313. sd->parent = p;
  6314. if (p)
  6315. p->child = sd;
  6316. cpus_and(sd->span, sd->span, *cpu_map);
  6317. #endif
  6318. p = sd;
  6319. sd = &per_cpu(phys_domains, i);
  6320. SD_INIT(sd, CPU);
  6321. set_domain_attribute(sd, attr);
  6322. sd->span = *nodemask;
  6323. sd->parent = p;
  6324. if (p)
  6325. p->child = sd;
  6326. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6327. #ifdef CONFIG_SCHED_MC
  6328. p = sd;
  6329. sd = &per_cpu(core_domains, i);
  6330. SD_INIT(sd, MC);
  6331. set_domain_attribute(sd, attr);
  6332. sd->span = cpu_coregroup_map(i);
  6333. cpus_and(sd->span, sd->span, *cpu_map);
  6334. sd->parent = p;
  6335. p->child = sd;
  6336. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6337. #endif
  6338. #ifdef CONFIG_SCHED_SMT
  6339. p = sd;
  6340. sd = &per_cpu(cpu_domains, i);
  6341. SD_INIT(sd, SIBLING);
  6342. set_domain_attribute(sd, attr);
  6343. sd->span = per_cpu(cpu_sibling_map, i);
  6344. cpus_and(sd->span, sd->span, *cpu_map);
  6345. sd->parent = p;
  6346. p->child = sd;
  6347. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6348. #endif
  6349. }
  6350. #ifdef CONFIG_SCHED_SMT
  6351. /* Set up CPU (sibling) groups */
  6352. for_each_cpu_mask_nr(i, *cpu_map) {
  6353. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6354. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6355. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6356. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6357. if (i != first_cpu(*this_sibling_map))
  6358. continue;
  6359. init_sched_build_groups(this_sibling_map, cpu_map,
  6360. &cpu_to_cpu_group,
  6361. send_covered, tmpmask);
  6362. }
  6363. #endif
  6364. #ifdef CONFIG_SCHED_MC
  6365. /* Set up multi-core groups */
  6366. for_each_cpu_mask_nr(i, *cpu_map) {
  6367. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6368. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6369. *this_core_map = cpu_coregroup_map(i);
  6370. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6371. if (i != first_cpu(*this_core_map))
  6372. continue;
  6373. init_sched_build_groups(this_core_map, cpu_map,
  6374. &cpu_to_core_group,
  6375. send_covered, tmpmask);
  6376. }
  6377. #endif
  6378. /* Set up physical groups */
  6379. for (i = 0; i < nr_node_ids; i++) {
  6380. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6381. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6382. *nodemask = node_to_cpumask(i);
  6383. cpus_and(*nodemask, *nodemask, *cpu_map);
  6384. if (cpus_empty(*nodemask))
  6385. continue;
  6386. init_sched_build_groups(nodemask, cpu_map,
  6387. &cpu_to_phys_group,
  6388. send_covered, tmpmask);
  6389. }
  6390. #ifdef CONFIG_NUMA
  6391. /* Set up node groups */
  6392. if (sd_allnodes) {
  6393. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6394. init_sched_build_groups(cpu_map, cpu_map,
  6395. &cpu_to_allnodes_group,
  6396. send_covered, tmpmask);
  6397. }
  6398. for (i = 0; i < nr_node_ids; i++) {
  6399. /* Set up node groups */
  6400. struct sched_group *sg, *prev;
  6401. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6402. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6403. SCHED_CPUMASK_VAR(covered, allmasks);
  6404. int j;
  6405. *nodemask = node_to_cpumask(i);
  6406. cpus_clear(*covered);
  6407. cpus_and(*nodemask, *nodemask, *cpu_map);
  6408. if (cpus_empty(*nodemask)) {
  6409. sched_group_nodes[i] = NULL;
  6410. continue;
  6411. }
  6412. sched_domain_node_span(i, domainspan);
  6413. cpus_and(*domainspan, *domainspan, *cpu_map);
  6414. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6415. if (!sg) {
  6416. printk(KERN_WARNING "Can not alloc domain group for "
  6417. "node %d\n", i);
  6418. goto error;
  6419. }
  6420. sched_group_nodes[i] = sg;
  6421. for_each_cpu_mask_nr(j, *nodemask) {
  6422. struct sched_domain *sd;
  6423. sd = &per_cpu(node_domains, j);
  6424. sd->groups = sg;
  6425. }
  6426. sg->__cpu_power = 0;
  6427. sg->cpumask = *nodemask;
  6428. sg->next = sg;
  6429. cpus_or(*covered, *covered, *nodemask);
  6430. prev = sg;
  6431. for (j = 0; j < nr_node_ids; j++) {
  6432. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6433. int n = (i + j) % nr_node_ids;
  6434. node_to_cpumask_ptr(pnodemask, n);
  6435. cpus_complement(*notcovered, *covered);
  6436. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6437. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6438. if (cpus_empty(*tmpmask))
  6439. break;
  6440. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6441. if (cpus_empty(*tmpmask))
  6442. continue;
  6443. sg = kmalloc_node(sizeof(struct sched_group),
  6444. GFP_KERNEL, i);
  6445. if (!sg) {
  6446. printk(KERN_WARNING
  6447. "Can not alloc domain group for node %d\n", j);
  6448. goto error;
  6449. }
  6450. sg->__cpu_power = 0;
  6451. sg->cpumask = *tmpmask;
  6452. sg->next = prev->next;
  6453. cpus_or(*covered, *covered, *tmpmask);
  6454. prev->next = sg;
  6455. prev = sg;
  6456. }
  6457. }
  6458. #endif
  6459. /* Calculate CPU power for physical packages and nodes */
  6460. #ifdef CONFIG_SCHED_SMT
  6461. for_each_cpu_mask_nr(i, *cpu_map) {
  6462. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6463. init_sched_groups_power(i, sd);
  6464. }
  6465. #endif
  6466. #ifdef CONFIG_SCHED_MC
  6467. for_each_cpu_mask_nr(i, *cpu_map) {
  6468. struct sched_domain *sd = &per_cpu(core_domains, i);
  6469. init_sched_groups_power(i, sd);
  6470. }
  6471. #endif
  6472. for_each_cpu_mask_nr(i, *cpu_map) {
  6473. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6474. init_sched_groups_power(i, sd);
  6475. }
  6476. #ifdef CONFIG_NUMA
  6477. for (i = 0; i < nr_node_ids; i++)
  6478. init_numa_sched_groups_power(sched_group_nodes[i]);
  6479. if (sd_allnodes) {
  6480. struct sched_group *sg;
  6481. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6482. tmpmask);
  6483. init_numa_sched_groups_power(sg);
  6484. }
  6485. #endif
  6486. /* Attach the domains */
  6487. for_each_cpu_mask_nr(i, *cpu_map) {
  6488. struct sched_domain *sd;
  6489. #ifdef CONFIG_SCHED_SMT
  6490. sd = &per_cpu(cpu_domains, i);
  6491. #elif defined(CONFIG_SCHED_MC)
  6492. sd = &per_cpu(core_domains, i);
  6493. #else
  6494. sd = &per_cpu(phys_domains, i);
  6495. #endif
  6496. cpu_attach_domain(sd, rd, i);
  6497. }
  6498. SCHED_CPUMASK_FREE((void *)allmasks);
  6499. return 0;
  6500. #ifdef CONFIG_NUMA
  6501. error:
  6502. free_sched_groups(cpu_map, tmpmask);
  6503. SCHED_CPUMASK_FREE((void *)allmasks);
  6504. return -ENOMEM;
  6505. #endif
  6506. }
  6507. static int build_sched_domains(const cpumask_t *cpu_map)
  6508. {
  6509. return __build_sched_domains(cpu_map, NULL);
  6510. }
  6511. static cpumask_t *doms_cur; /* current sched domains */
  6512. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6513. static struct sched_domain_attr *dattr_cur;
  6514. /* attribues of custom domains in 'doms_cur' */
  6515. /*
  6516. * Special case: If a kmalloc of a doms_cur partition (array of
  6517. * cpumask_t) fails, then fallback to a single sched domain,
  6518. * as determined by the single cpumask_t fallback_doms.
  6519. */
  6520. static cpumask_t fallback_doms;
  6521. void __attribute__((weak)) arch_update_cpu_topology(void)
  6522. {
  6523. }
  6524. /*
  6525. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6526. * For now this just excludes isolated cpus, but could be used to
  6527. * exclude other special cases in the future.
  6528. */
  6529. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6530. {
  6531. int err;
  6532. arch_update_cpu_topology();
  6533. ndoms_cur = 1;
  6534. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6535. if (!doms_cur)
  6536. doms_cur = &fallback_doms;
  6537. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6538. dattr_cur = NULL;
  6539. err = build_sched_domains(doms_cur);
  6540. register_sched_domain_sysctl();
  6541. return err;
  6542. }
  6543. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6544. cpumask_t *tmpmask)
  6545. {
  6546. free_sched_groups(cpu_map, tmpmask);
  6547. }
  6548. /*
  6549. * Detach sched domains from a group of cpus specified in cpu_map
  6550. * These cpus will now be attached to the NULL domain
  6551. */
  6552. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6553. {
  6554. cpumask_t tmpmask;
  6555. int i;
  6556. for_each_cpu_mask_nr(i, *cpu_map)
  6557. cpu_attach_domain(NULL, &def_root_domain, i);
  6558. synchronize_sched();
  6559. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6560. }
  6561. /* handle null as "default" */
  6562. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6563. struct sched_domain_attr *new, int idx_new)
  6564. {
  6565. struct sched_domain_attr tmp;
  6566. /* fast path */
  6567. if (!new && !cur)
  6568. return 1;
  6569. tmp = SD_ATTR_INIT;
  6570. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6571. new ? (new + idx_new) : &tmp,
  6572. sizeof(struct sched_domain_attr));
  6573. }
  6574. /*
  6575. * Partition sched domains as specified by the 'ndoms_new'
  6576. * cpumasks in the array doms_new[] of cpumasks. This compares
  6577. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6578. * It destroys each deleted domain and builds each new domain.
  6579. *
  6580. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6581. * The masks don't intersect (don't overlap.) We should setup one
  6582. * sched domain for each mask. CPUs not in any of the cpumasks will
  6583. * not be load balanced. If the same cpumask appears both in the
  6584. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6585. * it as it is.
  6586. *
  6587. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6588. * ownership of it and will kfree it when done with it. If the caller
  6589. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6590. * and partition_sched_domains() will fallback to the single partition
  6591. * 'fallback_doms', it also forces the domains to be rebuilt.
  6592. *
  6593. * If doms_new==NULL it will be replaced with cpu_online_map.
  6594. * ndoms_new==0 is a special case for destroying existing domains.
  6595. * It will not create the default domain.
  6596. *
  6597. * Call with hotplug lock held
  6598. */
  6599. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6600. struct sched_domain_attr *dattr_new)
  6601. {
  6602. int i, j, n;
  6603. mutex_lock(&sched_domains_mutex);
  6604. /* always unregister in case we don't destroy any domains */
  6605. unregister_sched_domain_sysctl();
  6606. n = doms_new ? ndoms_new : 0;
  6607. /* Destroy deleted domains */
  6608. for (i = 0; i < ndoms_cur; i++) {
  6609. for (j = 0; j < n; j++) {
  6610. if (cpus_equal(doms_cur[i], doms_new[j])
  6611. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6612. goto match1;
  6613. }
  6614. /* no match - a current sched domain not in new doms_new[] */
  6615. detach_destroy_domains(doms_cur + i);
  6616. match1:
  6617. ;
  6618. }
  6619. if (doms_new == NULL) {
  6620. ndoms_cur = 0;
  6621. doms_new = &fallback_doms;
  6622. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6623. WARN_ON_ONCE(dattr_new);
  6624. }
  6625. /* Build new domains */
  6626. for (i = 0; i < ndoms_new; i++) {
  6627. for (j = 0; j < ndoms_cur; j++) {
  6628. if (cpus_equal(doms_new[i], doms_cur[j])
  6629. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6630. goto match2;
  6631. }
  6632. /* no match - add a new doms_new */
  6633. __build_sched_domains(doms_new + i,
  6634. dattr_new ? dattr_new + i : NULL);
  6635. match2:
  6636. ;
  6637. }
  6638. /* Remember the new sched domains */
  6639. if (doms_cur != &fallback_doms)
  6640. kfree(doms_cur);
  6641. kfree(dattr_cur); /* kfree(NULL) is safe */
  6642. doms_cur = doms_new;
  6643. dattr_cur = dattr_new;
  6644. ndoms_cur = ndoms_new;
  6645. register_sched_domain_sysctl();
  6646. mutex_unlock(&sched_domains_mutex);
  6647. }
  6648. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6649. int arch_reinit_sched_domains(void)
  6650. {
  6651. get_online_cpus();
  6652. /* Destroy domains first to force the rebuild */
  6653. partition_sched_domains(0, NULL, NULL);
  6654. rebuild_sched_domains();
  6655. put_online_cpus();
  6656. return 0;
  6657. }
  6658. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6659. {
  6660. int ret;
  6661. if (buf[0] != '0' && buf[0] != '1')
  6662. return -EINVAL;
  6663. if (smt)
  6664. sched_smt_power_savings = (buf[0] == '1');
  6665. else
  6666. sched_mc_power_savings = (buf[0] == '1');
  6667. ret = arch_reinit_sched_domains();
  6668. return ret ? ret : count;
  6669. }
  6670. #ifdef CONFIG_SCHED_MC
  6671. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6672. char *page)
  6673. {
  6674. return sprintf(page, "%u\n", sched_mc_power_savings);
  6675. }
  6676. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6677. const char *buf, size_t count)
  6678. {
  6679. return sched_power_savings_store(buf, count, 0);
  6680. }
  6681. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6682. sched_mc_power_savings_show,
  6683. sched_mc_power_savings_store);
  6684. #endif
  6685. #ifdef CONFIG_SCHED_SMT
  6686. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6687. char *page)
  6688. {
  6689. return sprintf(page, "%u\n", sched_smt_power_savings);
  6690. }
  6691. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6692. const char *buf, size_t count)
  6693. {
  6694. return sched_power_savings_store(buf, count, 1);
  6695. }
  6696. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6697. sched_smt_power_savings_show,
  6698. sched_smt_power_savings_store);
  6699. #endif
  6700. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6701. {
  6702. int err = 0;
  6703. #ifdef CONFIG_SCHED_SMT
  6704. if (smt_capable())
  6705. err = sysfs_create_file(&cls->kset.kobj,
  6706. &attr_sched_smt_power_savings.attr);
  6707. #endif
  6708. #ifdef CONFIG_SCHED_MC
  6709. if (!err && mc_capable())
  6710. err = sysfs_create_file(&cls->kset.kobj,
  6711. &attr_sched_mc_power_savings.attr);
  6712. #endif
  6713. return err;
  6714. }
  6715. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6716. #ifndef CONFIG_CPUSETS
  6717. /*
  6718. * Add online and remove offline CPUs from the scheduler domains.
  6719. * When cpusets are enabled they take over this function.
  6720. */
  6721. static int update_sched_domains(struct notifier_block *nfb,
  6722. unsigned long action, void *hcpu)
  6723. {
  6724. switch (action) {
  6725. case CPU_ONLINE:
  6726. case CPU_ONLINE_FROZEN:
  6727. case CPU_DEAD:
  6728. case CPU_DEAD_FROZEN:
  6729. partition_sched_domains(1, NULL, NULL);
  6730. return NOTIFY_OK;
  6731. default:
  6732. return NOTIFY_DONE;
  6733. }
  6734. }
  6735. #endif
  6736. static int update_runtime(struct notifier_block *nfb,
  6737. unsigned long action, void *hcpu)
  6738. {
  6739. int cpu = (int)(long)hcpu;
  6740. switch (action) {
  6741. case CPU_DOWN_PREPARE:
  6742. case CPU_DOWN_PREPARE_FROZEN:
  6743. disable_runtime(cpu_rq(cpu));
  6744. return NOTIFY_OK;
  6745. case CPU_DOWN_FAILED:
  6746. case CPU_DOWN_FAILED_FROZEN:
  6747. case CPU_ONLINE:
  6748. case CPU_ONLINE_FROZEN:
  6749. enable_runtime(cpu_rq(cpu));
  6750. return NOTIFY_OK;
  6751. default:
  6752. return NOTIFY_DONE;
  6753. }
  6754. }
  6755. void __init sched_init_smp(void)
  6756. {
  6757. cpumask_t non_isolated_cpus;
  6758. #if defined(CONFIG_NUMA)
  6759. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6760. GFP_KERNEL);
  6761. BUG_ON(sched_group_nodes_bycpu == NULL);
  6762. #endif
  6763. get_online_cpus();
  6764. mutex_lock(&sched_domains_mutex);
  6765. arch_init_sched_domains(&cpu_online_map);
  6766. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6767. if (cpus_empty(non_isolated_cpus))
  6768. cpu_set(smp_processor_id(), non_isolated_cpus);
  6769. mutex_unlock(&sched_domains_mutex);
  6770. put_online_cpus();
  6771. #ifndef CONFIG_CPUSETS
  6772. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6773. hotcpu_notifier(update_sched_domains, 0);
  6774. #endif
  6775. /* RT runtime code needs to handle some hotplug events */
  6776. hotcpu_notifier(update_runtime, 0);
  6777. init_hrtick();
  6778. /* Move init over to a non-isolated CPU */
  6779. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6780. BUG();
  6781. sched_init_granularity();
  6782. }
  6783. #else
  6784. void __init sched_init_smp(void)
  6785. {
  6786. sched_init_granularity();
  6787. }
  6788. #endif /* CONFIG_SMP */
  6789. int in_sched_functions(unsigned long addr)
  6790. {
  6791. return in_lock_functions(addr) ||
  6792. (addr >= (unsigned long)__sched_text_start
  6793. && addr < (unsigned long)__sched_text_end);
  6794. }
  6795. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6796. {
  6797. cfs_rq->tasks_timeline = RB_ROOT;
  6798. INIT_LIST_HEAD(&cfs_rq->tasks);
  6799. #ifdef CONFIG_FAIR_GROUP_SCHED
  6800. cfs_rq->rq = rq;
  6801. #endif
  6802. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6803. }
  6804. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6805. {
  6806. struct rt_prio_array *array;
  6807. int i;
  6808. array = &rt_rq->active;
  6809. for (i = 0; i < MAX_RT_PRIO; i++) {
  6810. INIT_LIST_HEAD(array->queue + i);
  6811. __clear_bit(i, array->bitmap);
  6812. }
  6813. /* delimiter for bitsearch: */
  6814. __set_bit(MAX_RT_PRIO, array->bitmap);
  6815. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6816. rt_rq->highest_prio = MAX_RT_PRIO;
  6817. #endif
  6818. #ifdef CONFIG_SMP
  6819. rt_rq->rt_nr_migratory = 0;
  6820. rt_rq->overloaded = 0;
  6821. #endif
  6822. rt_rq->rt_time = 0;
  6823. rt_rq->rt_throttled = 0;
  6824. rt_rq->rt_runtime = 0;
  6825. spin_lock_init(&rt_rq->rt_runtime_lock);
  6826. #ifdef CONFIG_RT_GROUP_SCHED
  6827. rt_rq->rt_nr_boosted = 0;
  6828. rt_rq->rq = rq;
  6829. #endif
  6830. }
  6831. #ifdef CONFIG_FAIR_GROUP_SCHED
  6832. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6833. struct sched_entity *se, int cpu, int add,
  6834. struct sched_entity *parent)
  6835. {
  6836. struct rq *rq = cpu_rq(cpu);
  6837. tg->cfs_rq[cpu] = cfs_rq;
  6838. init_cfs_rq(cfs_rq, rq);
  6839. cfs_rq->tg = tg;
  6840. if (add)
  6841. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6842. tg->se[cpu] = se;
  6843. /* se could be NULL for init_task_group */
  6844. if (!se)
  6845. return;
  6846. if (!parent)
  6847. se->cfs_rq = &rq->cfs;
  6848. else
  6849. se->cfs_rq = parent->my_q;
  6850. se->my_q = cfs_rq;
  6851. se->load.weight = tg->shares;
  6852. se->load.inv_weight = 0;
  6853. se->parent = parent;
  6854. }
  6855. #endif
  6856. #ifdef CONFIG_RT_GROUP_SCHED
  6857. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6858. struct sched_rt_entity *rt_se, int cpu, int add,
  6859. struct sched_rt_entity *parent)
  6860. {
  6861. struct rq *rq = cpu_rq(cpu);
  6862. tg->rt_rq[cpu] = rt_rq;
  6863. init_rt_rq(rt_rq, rq);
  6864. rt_rq->tg = tg;
  6865. rt_rq->rt_se = rt_se;
  6866. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6867. if (add)
  6868. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6869. tg->rt_se[cpu] = rt_se;
  6870. if (!rt_se)
  6871. return;
  6872. if (!parent)
  6873. rt_se->rt_rq = &rq->rt;
  6874. else
  6875. rt_se->rt_rq = parent->my_q;
  6876. rt_se->my_q = rt_rq;
  6877. rt_se->parent = parent;
  6878. INIT_LIST_HEAD(&rt_se->run_list);
  6879. }
  6880. #endif
  6881. void __init sched_init(void)
  6882. {
  6883. int i, j;
  6884. unsigned long alloc_size = 0, ptr;
  6885. #ifdef CONFIG_FAIR_GROUP_SCHED
  6886. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6887. #endif
  6888. #ifdef CONFIG_RT_GROUP_SCHED
  6889. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6890. #endif
  6891. #ifdef CONFIG_USER_SCHED
  6892. alloc_size *= 2;
  6893. #endif
  6894. /*
  6895. * As sched_init() is called before page_alloc is setup,
  6896. * we use alloc_bootmem().
  6897. */
  6898. if (alloc_size) {
  6899. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6900. #ifdef CONFIG_FAIR_GROUP_SCHED
  6901. init_task_group.se = (struct sched_entity **)ptr;
  6902. ptr += nr_cpu_ids * sizeof(void **);
  6903. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6904. ptr += nr_cpu_ids * sizeof(void **);
  6905. #ifdef CONFIG_USER_SCHED
  6906. root_task_group.se = (struct sched_entity **)ptr;
  6907. ptr += nr_cpu_ids * sizeof(void **);
  6908. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6909. ptr += nr_cpu_ids * sizeof(void **);
  6910. #endif /* CONFIG_USER_SCHED */
  6911. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6912. #ifdef CONFIG_RT_GROUP_SCHED
  6913. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6914. ptr += nr_cpu_ids * sizeof(void **);
  6915. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6916. ptr += nr_cpu_ids * sizeof(void **);
  6917. #ifdef CONFIG_USER_SCHED
  6918. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6919. ptr += nr_cpu_ids * sizeof(void **);
  6920. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6921. ptr += nr_cpu_ids * sizeof(void **);
  6922. #endif /* CONFIG_USER_SCHED */
  6923. #endif /* CONFIG_RT_GROUP_SCHED */
  6924. }
  6925. #ifdef CONFIG_SMP
  6926. init_defrootdomain();
  6927. #endif
  6928. init_rt_bandwidth(&def_rt_bandwidth,
  6929. global_rt_period(), global_rt_runtime());
  6930. #ifdef CONFIG_RT_GROUP_SCHED
  6931. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6932. global_rt_period(), global_rt_runtime());
  6933. #ifdef CONFIG_USER_SCHED
  6934. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6935. global_rt_period(), RUNTIME_INF);
  6936. #endif /* CONFIG_USER_SCHED */
  6937. #endif /* CONFIG_RT_GROUP_SCHED */
  6938. #ifdef CONFIG_GROUP_SCHED
  6939. list_add(&init_task_group.list, &task_groups);
  6940. INIT_LIST_HEAD(&init_task_group.children);
  6941. #ifdef CONFIG_USER_SCHED
  6942. INIT_LIST_HEAD(&root_task_group.children);
  6943. init_task_group.parent = &root_task_group;
  6944. list_add(&init_task_group.siblings, &root_task_group.children);
  6945. #endif /* CONFIG_USER_SCHED */
  6946. #endif /* CONFIG_GROUP_SCHED */
  6947. for_each_possible_cpu(i) {
  6948. struct rq *rq;
  6949. rq = cpu_rq(i);
  6950. spin_lock_init(&rq->lock);
  6951. rq->nr_running = 0;
  6952. init_cfs_rq(&rq->cfs, rq);
  6953. init_rt_rq(&rq->rt, rq);
  6954. #ifdef CONFIG_FAIR_GROUP_SCHED
  6955. init_task_group.shares = init_task_group_load;
  6956. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6957. #ifdef CONFIG_CGROUP_SCHED
  6958. /*
  6959. * How much cpu bandwidth does init_task_group get?
  6960. *
  6961. * In case of task-groups formed thr' the cgroup filesystem, it
  6962. * gets 100% of the cpu resources in the system. This overall
  6963. * system cpu resource is divided among the tasks of
  6964. * init_task_group and its child task-groups in a fair manner,
  6965. * based on each entity's (task or task-group's) weight
  6966. * (se->load.weight).
  6967. *
  6968. * In other words, if init_task_group has 10 tasks of weight
  6969. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6970. * then A0's share of the cpu resource is:
  6971. *
  6972. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6973. *
  6974. * We achieve this by letting init_task_group's tasks sit
  6975. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6976. */
  6977. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6978. #elif defined CONFIG_USER_SCHED
  6979. root_task_group.shares = NICE_0_LOAD;
  6980. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6981. /*
  6982. * In case of task-groups formed thr' the user id of tasks,
  6983. * init_task_group represents tasks belonging to root user.
  6984. * Hence it forms a sibling of all subsequent groups formed.
  6985. * In this case, init_task_group gets only a fraction of overall
  6986. * system cpu resource, based on the weight assigned to root
  6987. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6988. * by letting tasks of init_task_group sit in a separate cfs_rq
  6989. * (init_cfs_rq) and having one entity represent this group of
  6990. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6991. */
  6992. init_tg_cfs_entry(&init_task_group,
  6993. &per_cpu(init_cfs_rq, i),
  6994. &per_cpu(init_sched_entity, i), i, 1,
  6995. root_task_group.se[i]);
  6996. #endif
  6997. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6998. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6999. #ifdef CONFIG_RT_GROUP_SCHED
  7000. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7001. #ifdef CONFIG_CGROUP_SCHED
  7002. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7003. #elif defined CONFIG_USER_SCHED
  7004. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7005. init_tg_rt_entry(&init_task_group,
  7006. &per_cpu(init_rt_rq, i),
  7007. &per_cpu(init_sched_rt_entity, i), i, 1,
  7008. root_task_group.rt_se[i]);
  7009. #endif
  7010. #endif
  7011. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7012. rq->cpu_load[j] = 0;
  7013. #ifdef CONFIG_SMP
  7014. rq->sd = NULL;
  7015. rq->rd = NULL;
  7016. rq->active_balance = 0;
  7017. rq->next_balance = jiffies;
  7018. rq->push_cpu = 0;
  7019. rq->cpu = i;
  7020. rq->online = 0;
  7021. rq->migration_thread = NULL;
  7022. INIT_LIST_HEAD(&rq->migration_queue);
  7023. rq_attach_root(rq, &def_root_domain);
  7024. #endif
  7025. init_rq_hrtick(rq);
  7026. atomic_set(&rq->nr_iowait, 0);
  7027. }
  7028. set_load_weight(&init_task);
  7029. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7030. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7031. #endif
  7032. #ifdef CONFIG_SMP
  7033. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7034. #endif
  7035. #ifdef CONFIG_RT_MUTEXES
  7036. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7037. #endif
  7038. /*
  7039. * The boot idle thread does lazy MMU switching as well:
  7040. */
  7041. atomic_inc(&init_mm.mm_count);
  7042. enter_lazy_tlb(&init_mm, current);
  7043. /*
  7044. * Make us the idle thread. Technically, schedule() should not be
  7045. * called from this thread, however somewhere below it might be,
  7046. * but because we are the idle thread, we just pick up running again
  7047. * when this runqueue becomes "idle".
  7048. */
  7049. init_idle(current, smp_processor_id());
  7050. /*
  7051. * During early bootup we pretend to be a normal task:
  7052. */
  7053. current->sched_class = &fair_sched_class;
  7054. scheduler_running = 1;
  7055. }
  7056. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7057. void __might_sleep(char *file, int line)
  7058. {
  7059. #ifdef in_atomic
  7060. static unsigned long prev_jiffy; /* ratelimiting */
  7061. if ((!in_atomic() && !irqs_disabled()) ||
  7062. system_state != SYSTEM_RUNNING || oops_in_progress)
  7063. return;
  7064. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7065. return;
  7066. prev_jiffy = jiffies;
  7067. printk(KERN_ERR
  7068. "BUG: sleeping function called from invalid context at %s:%d\n",
  7069. file, line);
  7070. printk(KERN_ERR
  7071. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7072. in_atomic(), irqs_disabled(),
  7073. current->pid, current->comm);
  7074. debug_show_held_locks(current);
  7075. if (irqs_disabled())
  7076. print_irqtrace_events(current);
  7077. dump_stack();
  7078. #endif
  7079. }
  7080. EXPORT_SYMBOL(__might_sleep);
  7081. #endif
  7082. #ifdef CONFIG_MAGIC_SYSRQ
  7083. static void normalize_task(struct rq *rq, struct task_struct *p)
  7084. {
  7085. int on_rq;
  7086. update_rq_clock(rq);
  7087. on_rq = p->se.on_rq;
  7088. if (on_rq)
  7089. deactivate_task(rq, p, 0);
  7090. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7091. if (on_rq) {
  7092. activate_task(rq, p, 0);
  7093. resched_task(rq->curr);
  7094. }
  7095. }
  7096. void normalize_rt_tasks(void)
  7097. {
  7098. struct task_struct *g, *p;
  7099. unsigned long flags;
  7100. struct rq *rq;
  7101. read_lock_irqsave(&tasklist_lock, flags);
  7102. do_each_thread(g, p) {
  7103. /*
  7104. * Only normalize user tasks:
  7105. */
  7106. if (!p->mm)
  7107. continue;
  7108. p->se.exec_start = 0;
  7109. #ifdef CONFIG_SCHEDSTATS
  7110. p->se.wait_start = 0;
  7111. p->se.sleep_start = 0;
  7112. p->se.block_start = 0;
  7113. #endif
  7114. if (!rt_task(p)) {
  7115. /*
  7116. * Renice negative nice level userspace
  7117. * tasks back to 0:
  7118. */
  7119. if (TASK_NICE(p) < 0 && p->mm)
  7120. set_user_nice(p, 0);
  7121. continue;
  7122. }
  7123. spin_lock(&p->pi_lock);
  7124. rq = __task_rq_lock(p);
  7125. normalize_task(rq, p);
  7126. __task_rq_unlock(rq);
  7127. spin_unlock(&p->pi_lock);
  7128. } while_each_thread(g, p);
  7129. read_unlock_irqrestore(&tasklist_lock, flags);
  7130. }
  7131. #endif /* CONFIG_MAGIC_SYSRQ */
  7132. #ifdef CONFIG_IA64
  7133. /*
  7134. * These functions are only useful for the IA64 MCA handling.
  7135. *
  7136. * They can only be called when the whole system has been
  7137. * stopped - every CPU needs to be quiescent, and no scheduling
  7138. * activity can take place. Using them for anything else would
  7139. * be a serious bug, and as a result, they aren't even visible
  7140. * under any other configuration.
  7141. */
  7142. /**
  7143. * curr_task - return the current task for a given cpu.
  7144. * @cpu: the processor in question.
  7145. *
  7146. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7147. */
  7148. struct task_struct *curr_task(int cpu)
  7149. {
  7150. return cpu_curr(cpu);
  7151. }
  7152. /**
  7153. * set_curr_task - set the current task for a given cpu.
  7154. * @cpu: the processor in question.
  7155. * @p: the task pointer to set.
  7156. *
  7157. * Description: This function must only be used when non-maskable interrupts
  7158. * are serviced on a separate stack. It allows the architecture to switch the
  7159. * notion of the current task on a cpu in a non-blocking manner. This function
  7160. * must be called with all CPU's synchronized, and interrupts disabled, the
  7161. * and caller must save the original value of the current task (see
  7162. * curr_task() above) and restore that value before reenabling interrupts and
  7163. * re-starting the system.
  7164. *
  7165. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7166. */
  7167. void set_curr_task(int cpu, struct task_struct *p)
  7168. {
  7169. cpu_curr(cpu) = p;
  7170. }
  7171. #endif
  7172. #ifdef CONFIG_FAIR_GROUP_SCHED
  7173. static void free_fair_sched_group(struct task_group *tg)
  7174. {
  7175. int i;
  7176. for_each_possible_cpu(i) {
  7177. if (tg->cfs_rq)
  7178. kfree(tg->cfs_rq[i]);
  7179. if (tg->se)
  7180. kfree(tg->se[i]);
  7181. }
  7182. kfree(tg->cfs_rq);
  7183. kfree(tg->se);
  7184. }
  7185. static
  7186. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7187. {
  7188. struct cfs_rq *cfs_rq;
  7189. struct sched_entity *se;
  7190. struct rq *rq;
  7191. int i;
  7192. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7193. if (!tg->cfs_rq)
  7194. goto err;
  7195. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7196. if (!tg->se)
  7197. goto err;
  7198. tg->shares = NICE_0_LOAD;
  7199. for_each_possible_cpu(i) {
  7200. rq = cpu_rq(i);
  7201. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7202. GFP_KERNEL, cpu_to_node(i));
  7203. if (!cfs_rq)
  7204. goto err;
  7205. se = kzalloc_node(sizeof(struct sched_entity),
  7206. GFP_KERNEL, cpu_to_node(i));
  7207. if (!se)
  7208. goto err;
  7209. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7210. }
  7211. return 1;
  7212. err:
  7213. return 0;
  7214. }
  7215. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7216. {
  7217. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7218. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7219. }
  7220. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7221. {
  7222. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7223. }
  7224. #else /* !CONFG_FAIR_GROUP_SCHED */
  7225. static inline void free_fair_sched_group(struct task_group *tg)
  7226. {
  7227. }
  7228. static inline
  7229. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7230. {
  7231. return 1;
  7232. }
  7233. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7234. {
  7235. }
  7236. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7237. {
  7238. }
  7239. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7240. #ifdef CONFIG_RT_GROUP_SCHED
  7241. static void free_rt_sched_group(struct task_group *tg)
  7242. {
  7243. int i;
  7244. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7245. for_each_possible_cpu(i) {
  7246. if (tg->rt_rq)
  7247. kfree(tg->rt_rq[i]);
  7248. if (tg->rt_se)
  7249. kfree(tg->rt_se[i]);
  7250. }
  7251. kfree(tg->rt_rq);
  7252. kfree(tg->rt_se);
  7253. }
  7254. static
  7255. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7256. {
  7257. struct rt_rq *rt_rq;
  7258. struct sched_rt_entity *rt_se;
  7259. struct rq *rq;
  7260. int i;
  7261. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7262. if (!tg->rt_rq)
  7263. goto err;
  7264. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7265. if (!tg->rt_se)
  7266. goto err;
  7267. init_rt_bandwidth(&tg->rt_bandwidth,
  7268. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7269. for_each_possible_cpu(i) {
  7270. rq = cpu_rq(i);
  7271. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7272. GFP_KERNEL, cpu_to_node(i));
  7273. if (!rt_rq)
  7274. goto err;
  7275. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7276. GFP_KERNEL, cpu_to_node(i));
  7277. if (!rt_se)
  7278. goto err;
  7279. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7280. }
  7281. return 1;
  7282. err:
  7283. return 0;
  7284. }
  7285. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7286. {
  7287. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7288. &cpu_rq(cpu)->leaf_rt_rq_list);
  7289. }
  7290. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7291. {
  7292. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7293. }
  7294. #else /* !CONFIG_RT_GROUP_SCHED */
  7295. static inline void free_rt_sched_group(struct task_group *tg)
  7296. {
  7297. }
  7298. static inline
  7299. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7300. {
  7301. return 1;
  7302. }
  7303. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7304. {
  7305. }
  7306. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7307. {
  7308. }
  7309. #endif /* CONFIG_RT_GROUP_SCHED */
  7310. #ifdef CONFIG_GROUP_SCHED
  7311. static void free_sched_group(struct task_group *tg)
  7312. {
  7313. free_fair_sched_group(tg);
  7314. free_rt_sched_group(tg);
  7315. kfree(tg);
  7316. }
  7317. /* allocate runqueue etc for a new task group */
  7318. struct task_group *sched_create_group(struct task_group *parent)
  7319. {
  7320. struct task_group *tg;
  7321. unsigned long flags;
  7322. int i;
  7323. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7324. if (!tg)
  7325. return ERR_PTR(-ENOMEM);
  7326. if (!alloc_fair_sched_group(tg, parent))
  7327. goto err;
  7328. if (!alloc_rt_sched_group(tg, parent))
  7329. goto err;
  7330. spin_lock_irqsave(&task_group_lock, flags);
  7331. for_each_possible_cpu(i) {
  7332. register_fair_sched_group(tg, i);
  7333. register_rt_sched_group(tg, i);
  7334. }
  7335. list_add_rcu(&tg->list, &task_groups);
  7336. WARN_ON(!parent); /* root should already exist */
  7337. tg->parent = parent;
  7338. INIT_LIST_HEAD(&tg->children);
  7339. list_add_rcu(&tg->siblings, &parent->children);
  7340. spin_unlock_irqrestore(&task_group_lock, flags);
  7341. return tg;
  7342. err:
  7343. free_sched_group(tg);
  7344. return ERR_PTR(-ENOMEM);
  7345. }
  7346. /* rcu callback to free various structures associated with a task group */
  7347. static void free_sched_group_rcu(struct rcu_head *rhp)
  7348. {
  7349. /* now it should be safe to free those cfs_rqs */
  7350. free_sched_group(container_of(rhp, struct task_group, rcu));
  7351. }
  7352. /* Destroy runqueue etc associated with a task group */
  7353. void sched_destroy_group(struct task_group *tg)
  7354. {
  7355. unsigned long flags;
  7356. int i;
  7357. spin_lock_irqsave(&task_group_lock, flags);
  7358. for_each_possible_cpu(i) {
  7359. unregister_fair_sched_group(tg, i);
  7360. unregister_rt_sched_group(tg, i);
  7361. }
  7362. list_del_rcu(&tg->list);
  7363. list_del_rcu(&tg->siblings);
  7364. spin_unlock_irqrestore(&task_group_lock, flags);
  7365. /* wait for possible concurrent references to cfs_rqs complete */
  7366. call_rcu(&tg->rcu, free_sched_group_rcu);
  7367. }
  7368. /* change task's runqueue when it moves between groups.
  7369. * The caller of this function should have put the task in its new group
  7370. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7371. * reflect its new group.
  7372. */
  7373. void sched_move_task(struct task_struct *tsk)
  7374. {
  7375. int on_rq, running;
  7376. unsigned long flags;
  7377. struct rq *rq;
  7378. rq = task_rq_lock(tsk, &flags);
  7379. update_rq_clock(rq);
  7380. running = task_current(rq, tsk);
  7381. on_rq = tsk->se.on_rq;
  7382. if (on_rq)
  7383. dequeue_task(rq, tsk, 0);
  7384. if (unlikely(running))
  7385. tsk->sched_class->put_prev_task(rq, tsk);
  7386. set_task_rq(tsk, task_cpu(tsk));
  7387. #ifdef CONFIG_FAIR_GROUP_SCHED
  7388. if (tsk->sched_class->moved_group)
  7389. tsk->sched_class->moved_group(tsk);
  7390. #endif
  7391. if (unlikely(running))
  7392. tsk->sched_class->set_curr_task(rq);
  7393. if (on_rq)
  7394. enqueue_task(rq, tsk, 0);
  7395. task_rq_unlock(rq, &flags);
  7396. }
  7397. #endif /* CONFIG_GROUP_SCHED */
  7398. #ifdef CONFIG_FAIR_GROUP_SCHED
  7399. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7400. {
  7401. struct cfs_rq *cfs_rq = se->cfs_rq;
  7402. int on_rq;
  7403. on_rq = se->on_rq;
  7404. if (on_rq)
  7405. dequeue_entity(cfs_rq, se, 0);
  7406. se->load.weight = shares;
  7407. se->load.inv_weight = 0;
  7408. if (on_rq)
  7409. enqueue_entity(cfs_rq, se, 0);
  7410. }
  7411. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7412. {
  7413. struct cfs_rq *cfs_rq = se->cfs_rq;
  7414. struct rq *rq = cfs_rq->rq;
  7415. unsigned long flags;
  7416. spin_lock_irqsave(&rq->lock, flags);
  7417. __set_se_shares(se, shares);
  7418. spin_unlock_irqrestore(&rq->lock, flags);
  7419. }
  7420. static DEFINE_MUTEX(shares_mutex);
  7421. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7422. {
  7423. int i;
  7424. unsigned long flags;
  7425. /*
  7426. * We can't change the weight of the root cgroup.
  7427. */
  7428. if (!tg->se[0])
  7429. return -EINVAL;
  7430. if (shares < MIN_SHARES)
  7431. shares = MIN_SHARES;
  7432. else if (shares > MAX_SHARES)
  7433. shares = MAX_SHARES;
  7434. mutex_lock(&shares_mutex);
  7435. if (tg->shares == shares)
  7436. goto done;
  7437. spin_lock_irqsave(&task_group_lock, flags);
  7438. for_each_possible_cpu(i)
  7439. unregister_fair_sched_group(tg, i);
  7440. list_del_rcu(&tg->siblings);
  7441. spin_unlock_irqrestore(&task_group_lock, flags);
  7442. /* wait for any ongoing reference to this group to finish */
  7443. synchronize_sched();
  7444. /*
  7445. * Now we are free to modify the group's share on each cpu
  7446. * w/o tripping rebalance_share or load_balance_fair.
  7447. */
  7448. tg->shares = shares;
  7449. for_each_possible_cpu(i) {
  7450. /*
  7451. * force a rebalance
  7452. */
  7453. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7454. set_se_shares(tg->se[i], shares);
  7455. }
  7456. /*
  7457. * Enable load balance activity on this group, by inserting it back on
  7458. * each cpu's rq->leaf_cfs_rq_list.
  7459. */
  7460. spin_lock_irqsave(&task_group_lock, flags);
  7461. for_each_possible_cpu(i)
  7462. register_fair_sched_group(tg, i);
  7463. list_add_rcu(&tg->siblings, &tg->parent->children);
  7464. spin_unlock_irqrestore(&task_group_lock, flags);
  7465. done:
  7466. mutex_unlock(&shares_mutex);
  7467. return 0;
  7468. }
  7469. unsigned long sched_group_shares(struct task_group *tg)
  7470. {
  7471. return tg->shares;
  7472. }
  7473. #endif
  7474. #ifdef CONFIG_RT_GROUP_SCHED
  7475. /*
  7476. * Ensure that the real time constraints are schedulable.
  7477. */
  7478. static DEFINE_MUTEX(rt_constraints_mutex);
  7479. static unsigned long to_ratio(u64 period, u64 runtime)
  7480. {
  7481. if (runtime == RUNTIME_INF)
  7482. return 1ULL << 20;
  7483. return div64_u64(runtime << 20, period);
  7484. }
  7485. /* Must be called with tasklist_lock held */
  7486. static inline int tg_has_rt_tasks(struct task_group *tg)
  7487. {
  7488. struct task_struct *g, *p;
  7489. do_each_thread(g, p) {
  7490. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7491. return 1;
  7492. } while_each_thread(g, p);
  7493. return 0;
  7494. }
  7495. struct rt_schedulable_data {
  7496. struct task_group *tg;
  7497. u64 rt_period;
  7498. u64 rt_runtime;
  7499. };
  7500. static int tg_schedulable(struct task_group *tg, void *data)
  7501. {
  7502. struct rt_schedulable_data *d = data;
  7503. struct task_group *child;
  7504. unsigned long total, sum = 0;
  7505. u64 period, runtime;
  7506. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7507. runtime = tg->rt_bandwidth.rt_runtime;
  7508. if (tg == d->tg) {
  7509. period = d->rt_period;
  7510. runtime = d->rt_runtime;
  7511. }
  7512. /*
  7513. * Cannot have more runtime than the period.
  7514. */
  7515. if (runtime > period && runtime != RUNTIME_INF)
  7516. return -EINVAL;
  7517. /*
  7518. * Ensure we don't starve existing RT tasks.
  7519. */
  7520. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7521. return -EBUSY;
  7522. total = to_ratio(period, runtime);
  7523. /*
  7524. * Nobody can have more than the global setting allows.
  7525. */
  7526. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7527. return -EINVAL;
  7528. /*
  7529. * The sum of our children's runtime should not exceed our own.
  7530. */
  7531. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7532. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7533. runtime = child->rt_bandwidth.rt_runtime;
  7534. if (child == d->tg) {
  7535. period = d->rt_period;
  7536. runtime = d->rt_runtime;
  7537. }
  7538. sum += to_ratio(period, runtime);
  7539. }
  7540. if (sum > total)
  7541. return -EINVAL;
  7542. return 0;
  7543. }
  7544. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7545. {
  7546. struct rt_schedulable_data data = {
  7547. .tg = tg,
  7548. .rt_period = period,
  7549. .rt_runtime = runtime,
  7550. };
  7551. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7552. }
  7553. static int tg_set_bandwidth(struct task_group *tg,
  7554. u64 rt_period, u64 rt_runtime)
  7555. {
  7556. int i, err = 0;
  7557. mutex_lock(&rt_constraints_mutex);
  7558. read_lock(&tasklist_lock);
  7559. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7560. if (err)
  7561. goto unlock;
  7562. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7563. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7564. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7565. for_each_possible_cpu(i) {
  7566. struct rt_rq *rt_rq = tg->rt_rq[i];
  7567. spin_lock(&rt_rq->rt_runtime_lock);
  7568. rt_rq->rt_runtime = rt_runtime;
  7569. spin_unlock(&rt_rq->rt_runtime_lock);
  7570. }
  7571. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7572. unlock:
  7573. read_unlock(&tasklist_lock);
  7574. mutex_unlock(&rt_constraints_mutex);
  7575. return err;
  7576. }
  7577. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7578. {
  7579. u64 rt_runtime, rt_period;
  7580. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7581. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7582. if (rt_runtime_us < 0)
  7583. rt_runtime = RUNTIME_INF;
  7584. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7585. }
  7586. long sched_group_rt_runtime(struct task_group *tg)
  7587. {
  7588. u64 rt_runtime_us;
  7589. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7590. return -1;
  7591. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7592. do_div(rt_runtime_us, NSEC_PER_USEC);
  7593. return rt_runtime_us;
  7594. }
  7595. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7596. {
  7597. u64 rt_runtime, rt_period;
  7598. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7599. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7600. if (rt_period == 0)
  7601. return -EINVAL;
  7602. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7603. }
  7604. long sched_group_rt_period(struct task_group *tg)
  7605. {
  7606. u64 rt_period_us;
  7607. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7608. do_div(rt_period_us, NSEC_PER_USEC);
  7609. return rt_period_us;
  7610. }
  7611. static int sched_rt_global_constraints(void)
  7612. {
  7613. u64 runtime, period;
  7614. int ret = 0;
  7615. if (sysctl_sched_rt_period <= 0)
  7616. return -EINVAL;
  7617. runtime = global_rt_runtime();
  7618. period = global_rt_period();
  7619. /*
  7620. * Sanity check on the sysctl variables.
  7621. */
  7622. if (runtime > period && runtime != RUNTIME_INF)
  7623. return -EINVAL;
  7624. mutex_lock(&rt_constraints_mutex);
  7625. read_lock(&tasklist_lock);
  7626. ret = __rt_schedulable(NULL, 0, 0);
  7627. read_unlock(&tasklist_lock);
  7628. mutex_unlock(&rt_constraints_mutex);
  7629. return ret;
  7630. }
  7631. #else /* !CONFIG_RT_GROUP_SCHED */
  7632. static int sched_rt_global_constraints(void)
  7633. {
  7634. unsigned long flags;
  7635. int i;
  7636. if (sysctl_sched_rt_period <= 0)
  7637. return -EINVAL;
  7638. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7639. for_each_possible_cpu(i) {
  7640. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7641. spin_lock(&rt_rq->rt_runtime_lock);
  7642. rt_rq->rt_runtime = global_rt_runtime();
  7643. spin_unlock(&rt_rq->rt_runtime_lock);
  7644. }
  7645. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7646. return 0;
  7647. }
  7648. #endif /* CONFIG_RT_GROUP_SCHED */
  7649. int sched_rt_handler(struct ctl_table *table, int write,
  7650. struct file *filp, void __user *buffer, size_t *lenp,
  7651. loff_t *ppos)
  7652. {
  7653. int ret;
  7654. int old_period, old_runtime;
  7655. static DEFINE_MUTEX(mutex);
  7656. mutex_lock(&mutex);
  7657. old_period = sysctl_sched_rt_period;
  7658. old_runtime = sysctl_sched_rt_runtime;
  7659. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7660. if (!ret && write) {
  7661. ret = sched_rt_global_constraints();
  7662. if (ret) {
  7663. sysctl_sched_rt_period = old_period;
  7664. sysctl_sched_rt_runtime = old_runtime;
  7665. } else {
  7666. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7667. def_rt_bandwidth.rt_period =
  7668. ns_to_ktime(global_rt_period());
  7669. }
  7670. }
  7671. mutex_unlock(&mutex);
  7672. return ret;
  7673. }
  7674. #ifdef CONFIG_CGROUP_SCHED
  7675. /* return corresponding task_group object of a cgroup */
  7676. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7677. {
  7678. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7679. struct task_group, css);
  7680. }
  7681. static struct cgroup_subsys_state *
  7682. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7683. {
  7684. struct task_group *tg, *parent;
  7685. if (!cgrp->parent) {
  7686. /* This is early initialization for the top cgroup */
  7687. return &init_task_group.css;
  7688. }
  7689. parent = cgroup_tg(cgrp->parent);
  7690. tg = sched_create_group(parent);
  7691. if (IS_ERR(tg))
  7692. return ERR_PTR(-ENOMEM);
  7693. return &tg->css;
  7694. }
  7695. static void
  7696. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7697. {
  7698. struct task_group *tg = cgroup_tg(cgrp);
  7699. sched_destroy_group(tg);
  7700. }
  7701. static int
  7702. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7703. struct task_struct *tsk)
  7704. {
  7705. #ifdef CONFIG_RT_GROUP_SCHED
  7706. /* Don't accept realtime tasks when there is no way for them to run */
  7707. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7708. return -EINVAL;
  7709. #else
  7710. /* We don't support RT-tasks being in separate groups */
  7711. if (tsk->sched_class != &fair_sched_class)
  7712. return -EINVAL;
  7713. #endif
  7714. return 0;
  7715. }
  7716. static void
  7717. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7718. struct cgroup *old_cont, struct task_struct *tsk)
  7719. {
  7720. sched_move_task(tsk);
  7721. }
  7722. #ifdef CONFIG_FAIR_GROUP_SCHED
  7723. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7724. u64 shareval)
  7725. {
  7726. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7727. }
  7728. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7729. {
  7730. struct task_group *tg = cgroup_tg(cgrp);
  7731. return (u64) tg->shares;
  7732. }
  7733. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7734. #ifdef CONFIG_RT_GROUP_SCHED
  7735. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7736. s64 val)
  7737. {
  7738. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7739. }
  7740. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7741. {
  7742. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7743. }
  7744. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7745. u64 rt_period_us)
  7746. {
  7747. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7748. }
  7749. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7750. {
  7751. return sched_group_rt_period(cgroup_tg(cgrp));
  7752. }
  7753. #endif /* CONFIG_RT_GROUP_SCHED */
  7754. static struct cftype cpu_files[] = {
  7755. #ifdef CONFIG_FAIR_GROUP_SCHED
  7756. {
  7757. .name = "shares",
  7758. .read_u64 = cpu_shares_read_u64,
  7759. .write_u64 = cpu_shares_write_u64,
  7760. },
  7761. #endif
  7762. #ifdef CONFIG_RT_GROUP_SCHED
  7763. {
  7764. .name = "rt_runtime_us",
  7765. .read_s64 = cpu_rt_runtime_read,
  7766. .write_s64 = cpu_rt_runtime_write,
  7767. },
  7768. {
  7769. .name = "rt_period_us",
  7770. .read_u64 = cpu_rt_period_read_uint,
  7771. .write_u64 = cpu_rt_period_write_uint,
  7772. },
  7773. #endif
  7774. };
  7775. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7776. {
  7777. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7778. }
  7779. struct cgroup_subsys cpu_cgroup_subsys = {
  7780. .name = "cpu",
  7781. .create = cpu_cgroup_create,
  7782. .destroy = cpu_cgroup_destroy,
  7783. .can_attach = cpu_cgroup_can_attach,
  7784. .attach = cpu_cgroup_attach,
  7785. .populate = cpu_cgroup_populate,
  7786. .subsys_id = cpu_cgroup_subsys_id,
  7787. .early_init = 1,
  7788. };
  7789. #endif /* CONFIG_CGROUP_SCHED */
  7790. #ifdef CONFIG_CGROUP_CPUACCT
  7791. /*
  7792. * CPU accounting code for task groups.
  7793. *
  7794. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7795. * (balbir@in.ibm.com).
  7796. */
  7797. /* track cpu usage of a group of tasks */
  7798. struct cpuacct {
  7799. struct cgroup_subsys_state css;
  7800. /* cpuusage holds pointer to a u64-type object on every cpu */
  7801. u64 *cpuusage;
  7802. };
  7803. struct cgroup_subsys cpuacct_subsys;
  7804. /* return cpu accounting group corresponding to this container */
  7805. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7806. {
  7807. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7808. struct cpuacct, css);
  7809. }
  7810. /* return cpu accounting group to which this task belongs */
  7811. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7812. {
  7813. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7814. struct cpuacct, css);
  7815. }
  7816. /* create a new cpu accounting group */
  7817. static struct cgroup_subsys_state *cpuacct_create(
  7818. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7819. {
  7820. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7821. if (!ca)
  7822. return ERR_PTR(-ENOMEM);
  7823. ca->cpuusage = alloc_percpu(u64);
  7824. if (!ca->cpuusage) {
  7825. kfree(ca);
  7826. return ERR_PTR(-ENOMEM);
  7827. }
  7828. return &ca->css;
  7829. }
  7830. /* destroy an existing cpu accounting group */
  7831. static void
  7832. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7833. {
  7834. struct cpuacct *ca = cgroup_ca(cgrp);
  7835. free_percpu(ca->cpuusage);
  7836. kfree(ca);
  7837. }
  7838. /* return total cpu usage (in nanoseconds) of a group */
  7839. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7840. {
  7841. struct cpuacct *ca = cgroup_ca(cgrp);
  7842. u64 totalcpuusage = 0;
  7843. int i;
  7844. for_each_possible_cpu(i) {
  7845. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7846. /*
  7847. * Take rq->lock to make 64-bit addition safe on 32-bit
  7848. * platforms.
  7849. */
  7850. spin_lock_irq(&cpu_rq(i)->lock);
  7851. totalcpuusage += *cpuusage;
  7852. spin_unlock_irq(&cpu_rq(i)->lock);
  7853. }
  7854. return totalcpuusage;
  7855. }
  7856. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7857. u64 reset)
  7858. {
  7859. struct cpuacct *ca = cgroup_ca(cgrp);
  7860. int err = 0;
  7861. int i;
  7862. if (reset) {
  7863. err = -EINVAL;
  7864. goto out;
  7865. }
  7866. for_each_possible_cpu(i) {
  7867. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7868. spin_lock_irq(&cpu_rq(i)->lock);
  7869. *cpuusage = 0;
  7870. spin_unlock_irq(&cpu_rq(i)->lock);
  7871. }
  7872. out:
  7873. return err;
  7874. }
  7875. static struct cftype files[] = {
  7876. {
  7877. .name = "usage",
  7878. .read_u64 = cpuusage_read,
  7879. .write_u64 = cpuusage_write,
  7880. },
  7881. };
  7882. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7883. {
  7884. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7885. }
  7886. /*
  7887. * charge this task's execution time to its accounting group.
  7888. *
  7889. * called with rq->lock held.
  7890. */
  7891. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7892. {
  7893. struct cpuacct *ca;
  7894. if (!cpuacct_subsys.active)
  7895. return;
  7896. ca = task_ca(tsk);
  7897. if (ca) {
  7898. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7899. *cpuusage += cputime;
  7900. }
  7901. }
  7902. struct cgroup_subsys cpuacct_subsys = {
  7903. .name = "cpuacct",
  7904. .create = cpuacct_create,
  7905. .destroy = cpuacct_destroy,
  7906. .populate = cpuacct_populate,
  7907. .subsys_id = cpuacct_subsys_id,
  7908. };
  7909. #endif /* CONFIG_CGROUP_CPUACCT */