input.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/input.h>
  13. #include <linux/module.h>
  14. #include <linux/random.h>
  15. #include <linux/major.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/poll.h>
  19. #include <linux/device.h>
  20. #include <linux/mutex.h>
  21. #include <linux/rcupdate.h>
  22. #include <linux/smp_lock.h>
  23. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  24. MODULE_DESCRIPTION("Input core");
  25. MODULE_LICENSE("GPL");
  26. #define INPUT_DEVICES 256
  27. static LIST_HEAD(input_dev_list);
  28. static LIST_HEAD(input_handler_list);
  29. /*
  30. * input_mutex protects access to both input_dev_list and input_handler_list.
  31. * This also causes input_[un]register_device and input_[un]register_handler
  32. * be mutually exclusive which simplifies locking in drivers implementing
  33. * input handlers.
  34. */
  35. static DEFINE_MUTEX(input_mutex);
  36. static struct input_handler *input_table[8];
  37. static inline int is_event_supported(unsigned int code,
  38. unsigned long *bm, unsigned int max)
  39. {
  40. return code <= max && test_bit(code, bm);
  41. }
  42. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  43. {
  44. if (fuzz) {
  45. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  46. return old_val;
  47. if (value > old_val - fuzz && value < old_val + fuzz)
  48. return (old_val * 3 + value) / 4;
  49. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  50. return (old_val + value) / 2;
  51. }
  52. return value;
  53. }
  54. /*
  55. * Pass event through all open handles. This function is called with
  56. * dev->event_lock held and interrupts disabled.
  57. */
  58. static void input_pass_event(struct input_dev *dev,
  59. unsigned int type, unsigned int code, int value)
  60. {
  61. struct input_handle *handle;
  62. rcu_read_lock();
  63. handle = rcu_dereference(dev->grab);
  64. if (handle)
  65. handle->handler->event(handle, type, code, value);
  66. else
  67. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  68. if (handle->open)
  69. handle->handler->event(handle,
  70. type, code, value);
  71. rcu_read_unlock();
  72. }
  73. /*
  74. * Generate software autorepeat event. Note that we take
  75. * dev->event_lock here to avoid racing with input_event
  76. * which may cause keys get "stuck".
  77. */
  78. static void input_repeat_key(unsigned long data)
  79. {
  80. struct input_dev *dev = (void *) data;
  81. unsigned long flags;
  82. spin_lock_irqsave(&dev->event_lock, flags);
  83. if (test_bit(dev->repeat_key, dev->key) &&
  84. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  85. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  86. if (dev->sync) {
  87. /*
  88. * Only send SYN_REPORT if we are not in a middle
  89. * of driver parsing a new hardware packet.
  90. * Otherwise assume that the driver will send
  91. * SYN_REPORT once it's done.
  92. */
  93. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  94. }
  95. if (dev->rep[REP_PERIOD])
  96. mod_timer(&dev->timer, jiffies +
  97. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  98. }
  99. spin_unlock_irqrestore(&dev->event_lock, flags);
  100. }
  101. static void input_start_autorepeat(struct input_dev *dev, int code)
  102. {
  103. if (test_bit(EV_REP, dev->evbit) &&
  104. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  105. dev->timer.data) {
  106. dev->repeat_key = code;
  107. mod_timer(&dev->timer,
  108. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  109. }
  110. }
  111. static void input_stop_autorepeat(struct input_dev *dev)
  112. {
  113. del_timer(&dev->timer);
  114. }
  115. #define INPUT_IGNORE_EVENT 0
  116. #define INPUT_PASS_TO_HANDLERS 1
  117. #define INPUT_PASS_TO_DEVICE 2
  118. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  119. static void input_handle_event(struct input_dev *dev,
  120. unsigned int type, unsigned int code, int value)
  121. {
  122. int disposition = INPUT_IGNORE_EVENT;
  123. switch (type) {
  124. case EV_SYN:
  125. switch (code) {
  126. case SYN_CONFIG:
  127. disposition = INPUT_PASS_TO_ALL;
  128. break;
  129. case SYN_REPORT:
  130. if (!dev->sync) {
  131. dev->sync = 1;
  132. disposition = INPUT_PASS_TO_HANDLERS;
  133. }
  134. break;
  135. }
  136. break;
  137. case EV_KEY:
  138. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  139. !!test_bit(code, dev->key) != value) {
  140. if (value != 2) {
  141. __change_bit(code, dev->key);
  142. if (value)
  143. input_start_autorepeat(dev, code);
  144. else
  145. input_stop_autorepeat(dev);
  146. }
  147. disposition = INPUT_PASS_TO_HANDLERS;
  148. }
  149. break;
  150. case EV_SW:
  151. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  152. !!test_bit(code, dev->sw) != value) {
  153. __change_bit(code, dev->sw);
  154. disposition = INPUT_PASS_TO_HANDLERS;
  155. }
  156. break;
  157. case EV_ABS:
  158. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  159. value = input_defuzz_abs_event(value,
  160. dev->abs[code], dev->absfuzz[code]);
  161. if (dev->abs[code] != value) {
  162. dev->abs[code] = value;
  163. disposition = INPUT_PASS_TO_HANDLERS;
  164. }
  165. }
  166. break;
  167. case EV_REL:
  168. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  169. disposition = INPUT_PASS_TO_HANDLERS;
  170. break;
  171. case EV_MSC:
  172. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  173. disposition = INPUT_PASS_TO_ALL;
  174. break;
  175. case EV_LED:
  176. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  177. !!test_bit(code, dev->led) != value) {
  178. __change_bit(code, dev->led);
  179. disposition = INPUT_PASS_TO_ALL;
  180. }
  181. break;
  182. case EV_SND:
  183. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  184. if (!!test_bit(code, dev->snd) != !!value)
  185. __change_bit(code, dev->snd);
  186. disposition = INPUT_PASS_TO_ALL;
  187. }
  188. break;
  189. case EV_REP:
  190. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  191. dev->rep[code] = value;
  192. disposition = INPUT_PASS_TO_ALL;
  193. }
  194. break;
  195. case EV_FF:
  196. if (value >= 0)
  197. disposition = INPUT_PASS_TO_ALL;
  198. break;
  199. case EV_PWR:
  200. disposition = INPUT_PASS_TO_ALL;
  201. break;
  202. }
  203. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  204. dev->sync = 0;
  205. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  206. dev->event(dev, type, code, value);
  207. if (disposition & INPUT_PASS_TO_HANDLERS)
  208. input_pass_event(dev, type, code, value);
  209. }
  210. /**
  211. * input_event() - report new input event
  212. * @dev: device that generated the event
  213. * @type: type of the event
  214. * @code: event code
  215. * @value: value of the event
  216. *
  217. * This function should be used by drivers implementing various input
  218. * devices. See also input_inject_event().
  219. */
  220. void input_event(struct input_dev *dev,
  221. unsigned int type, unsigned int code, int value)
  222. {
  223. unsigned long flags;
  224. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  225. spin_lock_irqsave(&dev->event_lock, flags);
  226. add_input_randomness(type, code, value);
  227. input_handle_event(dev, type, code, value);
  228. spin_unlock_irqrestore(&dev->event_lock, flags);
  229. }
  230. }
  231. EXPORT_SYMBOL(input_event);
  232. /**
  233. * input_inject_event() - send input event from input handler
  234. * @handle: input handle to send event through
  235. * @type: type of the event
  236. * @code: event code
  237. * @value: value of the event
  238. *
  239. * Similar to input_event() but will ignore event if device is
  240. * "grabbed" and handle injecting event is not the one that owns
  241. * the device.
  242. */
  243. void input_inject_event(struct input_handle *handle,
  244. unsigned int type, unsigned int code, int value)
  245. {
  246. struct input_dev *dev = handle->dev;
  247. struct input_handle *grab;
  248. unsigned long flags;
  249. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  250. spin_lock_irqsave(&dev->event_lock, flags);
  251. rcu_read_lock();
  252. grab = rcu_dereference(dev->grab);
  253. if (!grab || grab == handle)
  254. input_handle_event(dev, type, code, value);
  255. rcu_read_unlock();
  256. spin_unlock_irqrestore(&dev->event_lock, flags);
  257. }
  258. }
  259. EXPORT_SYMBOL(input_inject_event);
  260. /**
  261. * input_grab_device - grabs device for exclusive use
  262. * @handle: input handle that wants to own the device
  263. *
  264. * When a device is grabbed by an input handle all events generated by
  265. * the device are delivered only to this handle. Also events injected
  266. * by other input handles are ignored while device is grabbed.
  267. */
  268. int input_grab_device(struct input_handle *handle)
  269. {
  270. struct input_dev *dev = handle->dev;
  271. int retval;
  272. retval = mutex_lock_interruptible(&dev->mutex);
  273. if (retval)
  274. return retval;
  275. if (dev->grab) {
  276. retval = -EBUSY;
  277. goto out;
  278. }
  279. rcu_assign_pointer(dev->grab, handle);
  280. synchronize_rcu();
  281. out:
  282. mutex_unlock(&dev->mutex);
  283. return retval;
  284. }
  285. EXPORT_SYMBOL(input_grab_device);
  286. static void __input_release_device(struct input_handle *handle)
  287. {
  288. struct input_dev *dev = handle->dev;
  289. if (dev->grab == handle) {
  290. rcu_assign_pointer(dev->grab, NULL);
  291. /* Make sure input_pass_event() notices that grab is gone */
  292. synchronize_rcu();
  293. list_for_each_entry(handle, &dev->h_list, d_node)
  294. if (handle->open && handle->handler->start)
  295. handle->handler->start(handle);
  296. }
  297. }
  298. /**
  299. * input_release_device - release previously grabbed device
  300. * @handle: input handle that owns the device
  301. *
  302. * Releases previously grabbed device so that other input handles can
  303. * start receiving input events. Upon release all handlers attached
  304. * to the device have their start() method called so they have a change
  305. * to synchronize device state with the rest of the system.
  306. */
  307. void input_release_device(struct input_handle *handle)
  308. {
  309. struct input_dev *dev = handle->dev;
  310. mutex_lock(&dev->mutex);
  311. __input_release_device(handle);
  312. mutex_unlock(&dev->mutex);
  313. }
  314. EXPORT_SYMBOL(input_release_device);
  315. /**
  316. * input_open_device - open input device
  317. * @handle: handle through which device is being accessed
  318. *
  319. * This function should be called by input handlers when they
  320. * want to start receive events from given input device.
  321. */
  322. int input_open_device(struct input_handle *handle)
  323. {
  324. struct input_dev *dev = handle->dev;
  325. int retval;
  326. retval = mutex_lock_interruptible(&dev->mutex);
  327. if (retval)
  328. return retval;
  329. if (dev->going_away) {
  330. retval = -ENODEV;
  331. goto out;
  332. }
  333. handle->open++;
  334. if (!dev->users++ && dev->open)
  335. retval = dev->open(dev);
  336. if (retval) {
  337. dev->users--;
  338. if (!--handle->open) {
  339. /*
  340. * Make sure we are not delivering any more events
  341. * through this handle
  342. */
  343. synchronize_rcu();
  344. }
  345. }
  346. out:
  347. mutex_unlock(&dev->mutex);
  348. return retval;
  349. }
  350. EXPORT_SYMBOL(input_open_device);
  351. int input_flush_device(struct input_handle *handle, struct file *file)
  352. {
  353. struct input_dev *dev = handle->dev;
  354. int retval;
  355. retval = mutex_lock_interruptible(&dev->mutex);
  356. if (retval)
  357. return retval;
  358. if (dev->flush)
  359. retval = dev->flush(dev, file);
  360. mutex_unlock(&dev->mutex);
  361. return retval;
  362. }
  363. EXPORT_SYMBOL(input_flush_device);
  364. /**
  365. * input_close_device - close input device
  366. * @handle: handle through which device is being accessed
  367. *
  368. * This function should be called by input handlers when they
  369. * want to stop receive events from given input device.
  370. */
  371. void input_close_device(struct input_handle *handle)
  372. {
  373. struct input_dev *dev = handle->dev;
  374. mutex_lock(&dev->mutex);
  375. __input_release_device(handle);
  376. if (!--dev->users && dev->close)
  377. dev->close(dev);
  378. if (!--handle->open) {
  379. /*
  380. * synchronize_rcu() makes sure that input_pass_event()
  381. * completed and that no more input events are delivered
  382. * through this handle
  383. */
  384. synchronize_rcu();
  385. }
  386. mutex_unlock(&dev->mutex);
  387. }
  388. EXPORT_SYMBOL(input_close_device);
  389. /*
  390. * Prepare device for unregistering
  391. */
  392. static void input_disconnect_device(struct input_dev *dev)
  393. {
  394. struct input_handle *handle;
  395. int code;
  396. /*
  397. * Mark device as going away. Note that we take dev->mutex here
  398. * not to protect access to dev->going_away but rather to ensure
  399. * that there are no threads in the middle of input_open_device()
  400. */
  401. mutex_lock(&dev->mutex);
  402. dev->going_away = 1;
  403. mutex_unlock(&dev->mutex);
  404. spin_lock_irq(&dev->event_lock);
  405. /*
  406. * Simulate keyup events for all pressed keys so that handlers
  407. * are not left with "stuck" keys. The driver may continue
  408. * generate events even after we done here but they will not
  409. * reach any handlers.
  410. */
  411. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  412. for (code = 0; code <= KEY_MAX; code++) {
  413. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  414. __test_and_clear_bit(code, dev->key)) {
  415. input_pass_event(dev, EV_KEY, code, 0);
  416. }
  417. }
  418. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  419. }
  420. list_for_each_entry(handle, &dev->h_list, d_node)
  421. handle->open = 0;
  422. spin_unlock_irq(&dev->event_lock);
  423. }
  424. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  425. {
  426. switch (dev->keycodesize) {
  427. case 1:
  428. return ((u8 *)dev->keycode)[scancode];
  429. case 2:
  430. return ((u16 *)dev->keycode)[scancode];
  431. default:
  432. return ((u32 *)dev->keycode)[scancode];
  433. }
  434. }
  435. static int input_default_getkeycode(struct input_dev *dev,
  436. int scancode, int *keycode)
  437. {
  438. if (!dev->keycodesize)
  439. return -EINVAL;
  440. if (scancode >= dev->keycodemax)
  441. return -EINVAL;
  442. *keycode = input_fetch_keycode(dev, scancode);
  443. return 0;
  444. }
  445. static int input_default_setkeycode(struct input_dev *dev,
  446. int scancode, int keycode)
  447. {
  448. int old_keycode;
  449. int i;
  450. if (scancode >= dev->keycodemax)
  451. return -EINVAL;
  452. if (!dev->keycodesize)
  453. return -EINVAL;
  454. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  455. return -EINVAL;
  456. switch (dev->keycodesize) {
  457. case 1: {
  458. u8 *k = (u8 *)dev->keycode;
  459. old_keycode = k[scancode];
  460. k[scancode] = keycode;
  461. break;
  462. }
  463. case 2: {
  464. u16 *k = (u16 *)dev->keycode;
  465. old_keycode = k[scancode];
  466. k[scancode] = keycode;
  467. break;
  468. }
  469. default: {
  470. u32 *k = (u32 *)dev->keycode;
  471. old_keycode = k[scancode];
  472. k[scancode] = keycode;
  473. break;
  474. }
  475. }
  476. clear_bit(old_keycode, dev->keybit);
  477. set_bit(keycode, dev->keybit);
  478. for (i = 0; i < dev->keycodemax; i++) {
  479. if (input_fetch_keycode(dev, i) == old_keycode) {
  480. set_bit(old_keycode, dev->keybit);
  481. break; /* Setting the bit twice is useless, so break */
  482. }
  483. }
  484. return 0;
  485. }
  486. /**
  487. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  488. * @dev: input device which keymap is being queried
  489. * @scancode: scancode (or its equivalent for device in question) for which
  490. * keycode is needed
  491. * @keycode: result
  492. *
  493. * This function should be called by anyone interested in retrieving current
  494. * keymap. Presently keyboard and evdev handlers use it.
  495. */
  496. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  497. {
  498. if (scancode < 0)
  499. return -EINVAL;
  500. return dev->getkeycode(dev, scancode, keycode);
  501. }
  502. EXPORT_SYMBOL(input_get_keycode);
  503. /**
  504. * input_get_keycode - assign new keycode to a given scancode
  505. * @dev: input device which keymap is being updated
  506. * @scancode: scancode (or its equivalent for device in question)
  507. * @keycode: new keycode to be assigned to the scancode
  508. *
  509. * This function should be called by anyone needing to update current
  510. * keymap. Presently keyboard and evdev handlers use it.
  511. */
  512. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  513. {
  514. unsigned long flags;
  515. int old_keycode;
  516. int retval;
  517. if (scancode < 0)
  518. return -EINVAL;
  519. if (keycode < 0 || keycode > KEY_MAX)
  520. return -EINVAL;
  521. spin_lock_irqsave(&dev->event_lock, flags);
  522. retval = dev->getkeycode(dev, scancode, &old_keycode);
  523. if (retval)
  524. goto out;
  525. retval = dev->setkeycode(dev, scancode, keycode);
  526. if (retval)
  527. goto out;
  528. /*
  529. * Simulate keyup event if keycode is not present
  530. * in the keymap anymore
  531. */
  532. if (test_bit(EV_KEY, dev->evbit) &&
  533. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  534. __test_and_clear_bit(old_keycode, dev->key)) {
  535. input_pass_event(dev, EV_KEY, old_keycode, 0);
  536. if (dev->sync)
  537. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  538. }
  539. out:
  540. spin_unlock_irqrestore(&dev->event_lock, flags);
  541. return retval;
  542. }
  543. EXPORT_SYMBOL(input_set_keycode);
  544. #define MATCH_BIT(bit, max) \
  545. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  546. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  547. break; \
  548. if (i != BITS_TO_LONGS(max)) \
  549. continue;
  550. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  551. struct input_dev *dev)
  552. {
  553. int i;
  554. for (; id->flags || id->driver_info; id++) {
  555. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  556. if (id->bustype != dev->id.bustype)
  557. continue;
  558. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  559. if (id->vendor != dev->id.vendor)
  560. continue;
  561. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  562. if (id->product != dev->id.product)
  563. continue;
  564. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  565. if (id->version != dev->id.version)
  566. continue;
  567. MATCH_BIT(evbit, EV_MAX);
  568. MATCH_BIT(keybit, KEY_MAX);
  569. MATCH_BIT(relbit, REL_MAX);
  570. MATCH_BIT(absbit, ABS_MAX);
  571. MATCH_BIT(mscbit, MSC_MAX);
  572. MATCH_BIT(ledbit, LED_MAX);
  573. MATCH_BIT(sndbit, SND_MAX);
  574. MATCH_BIT(ffbit, FF_MAX);
  575. MATCH_BIT(swbit, SW_MAX);
  576. return id;
  577. }
  578. return NULL;
  579. }
  580. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  581. {
  582. const struct input_device_id *id;
  583. int error;
  584. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  585. return -ENODEV;
  586. id = input_match_device(handler->id_table, dev);
  587. if (!id)
  588. return -ENODEV;
  589. error = handler->connect(handler, dev, id);
  590. if (error && error != -ENODEV)
  591. printk(KERN_ERR
  592. "input: failed to attach handler %s to device %s, "
  593. "error: %d\n",
  594. handler->name, kobject_name(&dev->dev.kobj), error);
  595. return error;
  596. }
  597. #ifdef CONFIG_PROC_FS
  598. static struct proc_dir_entry *proc_bus_input_dir;
  599. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  600. static int input_devices_state;
  601. static inline void input_wakeup_procfs_readers(void)
  602. {
  603. input_devices_state++;
  604. wake_up(&input_devices_poll_wait);
  605. }
  606. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  607. {
  608. poll_wait(file, &input_devices_poll_wait, wait);
  609. if (file->f_version != input_devices_state) {
  610. file->f_version = input_devices_state;
  611. return POLLIN | POLLRDNORM;
  612. }
  613. return 0;
  614. }
  615. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  616. {
  617. if (mutex_lock_interruptible(&input_mutex))
  618. return NULL;
  619. return seq_list_start(&input_dev_list, *pos);
  620. }
  621. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  622. {
  623. return seq_list_next(v, &input_dev_list, pos);
  624. }
  625. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  626. {
  627. mutex_unlock(&input_mutex);
  628. }
  629. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  630. unsigned long *bitmap, int max)
  631. {
  632. int i;
  633. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  634. if (bitmap[i])
  635. break;
  636. seq_printf(seq, "B: %s=", name);
  637. for (; i >= 0; i--)
  638. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  639. seq_putc(seq, '\n');
  640. }
  641. static int input_devices_seq_show(struct seq_file *seq, void *v)
  642. {
  643. struct input_dev *dev = container_of(v, struct input_dev, node);
  644. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  645. struct input_handle *handle;
  646. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  647. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  648. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  649. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  650. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  651. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  652. seq_printf(seq, "H: Handlers=");
  653. list_for_each_entry(handle, &dev->h_list, d_node)
  654. seq_printf(seq, "%s ", handle->name);
  655. seq_putc(seq, '\n');
  656. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  657. if (test_bit(EV_KEY, dev->evbit))
  658. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  659. if (test_bit(EV_REL, dev->evbit))
  660. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  661. if (test_bit(EV_ABS, dev->evbit))
  662. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  663. if (test_bit(EV_MSC, dev->evbit))
  664. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  665. if (test_bit(EV_LED, dev->evbit))
  666. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  667. if (test_bit(EV_SND, dev->evbit))
  668. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  669. if (test_bit(EV_FF, dev->evbit))
  670. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  671. if (test_bit(EV_SW, dev->evbit))
  672. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  673. seq_putc(seq, '\n');
  674. kfree(path);
  675. return 0;
  676. }
  677. static const struct seq_operations input_devices_seq_ops = {
  678. .start = input_devices_seq_start,
  679. .next = input_devices_seq_next,
  680. .stop = input_devices_seq_stop,
  681. .show = input_devices_seq_show,
  682. };
  683. static int input_proc_devices_open(struct inode *inode, struct file *file)
  684. {
  685. return seq_open(file, &input_devices_seq_ops);
  686. }
  687. static const struct file_operations input_devices_fileops = {
  688. .owner = THIS_MODULE,
  689. .open = input_proc_devices_open,
  690. .poll = input_proc_devices_poll,
  691. .read = seq_read,
  692. .llseek = seq_lseek,
  693. .release = seq_release,
  694. };
  695. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  696. {
  697. if (mutex_lock_interruptible(&input_mutex))
  698. return NULL;
  699. seq->private = (void *)(unsigned long)*pos;
  700. return seq_list_start(&input_handler_list, *pos);
  701. }
  702. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  703. {
  704. seq->private = (void *)(unsigned long)(*pos + 1);
  705. return seq_list_next(v, &input_handler_list, pos);
  706. }
  707. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  708. {
  709. mutex_unlock(&input_mutex);
  710. }
  711. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  712. {
  713. struct input_handler *handler = container_of(v, struct input_handler, node);
  714. seq_printf(seq, "N: Number=%ld Name=%s",
  715. (unsigned long)seq->private, handler->name);
  716. if (handler->fops)
  717. seq_printf(seq, " Minor=%d", handler->minor);
  718. seq_putc(seq, '\n');
  719. return 0;
  720. }
  721. static const struct seq_operations input_handlers_seq_ops = {
  722. .start = input_handlers_seq_start,
  723. .next = input_handlers_seq_next,
  724. .stop = input_handlers_seq_stop,
  725. .show = input_handlers_seq_show,
  726. };
  727. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  728. {
  729. return seq_open(file, &input_handlers_seq_ops);
  730. }
  731. static const struct file_operations input_handlers_fileops = {
  732. .owner = THIS_MODULE,
  733. .open = input_proc_handlers_open,
  734. .read = seq_read,
  735. .llseek = seq_lseek,
  736. .release = seq_release,
  737. };
  738. static int __init input_proc_init(void)
  739. {
  740. struct proc_dir_entry *entry;
  741. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  742. if (!proc_bus_input_dir)
  743. return -ENOMEM;
  744. proc_bus_input_dir->owner = THIS_MODULE;
  745. entry = proc_create("devices", 0, proc_bus_input_dir,
  746. &input_devices_fileops);
  747. if (!entry)
  748. goto fail1;
  749. entry = proc_create("handlers", 0, proc_bus_input_dir,
  750. &input_handlers_fileops);
  751. if (!entry)
  752. goto fail2;
  753. return 0;
  754. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  755. fail1: remove_proc_entry("bus/input", NULL);
  756. return -ENOMEM;
  757. }
  758. static void input_proc_exit(void)
  759. {
  760. remove_proc_entry("devices", proc_bus_input_dir);
  761. remove_proc_entry("handlers", proc_bus_input_dir);
  762. remove_proc_entry("bus/input", NULL);
  763. }
  764. #else /* !CONFIG_PROC_FS */
  765. static inline void input_wakeup_procfs_readers(void) { }
  766. static inline int input_proc_init(void) { return 0; }
  767. static inline void input_proc_exit(void) { }
  768. #endif
  769. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  770. static ssize_t input_dev_show_##name(struct device *dev, \
  771. struct device_attribute *attr, \
  772. char *buf) \
  773. { \
  774. struct input_dev *input_dev = to_input_dev(dev); \
  775. \
  776. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  777. input_dev->name ? input_dev->name : ""); \
  778. } \
  779. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  780. INPUT_DEV_STRING_ATTR_SHOW(name);
  781. INPUT_DEV_STRING_ATTR_SHOW(phys);
  782. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  783. static int input_print_modalias_bits(char *buf, int size,
  784. char name, unsigned long *bm,
  785. unsigned int min_bit, unsigned int max_bit)
  786. {
  787. int len = 0, i;
  788. len += snprintf(buf, max(size, 0), "%c", name);
  789. for (i = min_bit; i < max_bit; i++)
  790. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  791. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  792. return len;
  793. }
  794. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  795. int add_cr)
  796. {
  797. int len;
  798. len = snprintf(buf, max(size, 0),
  799. "input:b%04Xv%04Xp%04Xe%04X-",
  800. id->id.bustype, id->id.vendor,
  801. id->id.product, id->id.version);
  802. len += input_print_modalias_bits(buf + len, size - len,
  803. 'e', id->evbit, 0, EV_MAX);
  804. len += input_print_modalias_bits(buf + len, size - len,
  805. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  806. len += input_print_modalias_bits(buf + len, size - len,
  807. 'r', id->relbit, 0, REL_MAX);
  808. len += input_print_modalias_bits(buf + len, size - len,
  809. 'a', id->absbit, 0, ABS_MAX);
  810. len += input_print_modalias_bits(buf + len, size - len,
  811. 'm', id->mscbit, 0, MSC_MAX);
  812. len += input_print_modalias_bits(buf + len, size - len,
  813. 'l', id->ledbit, 0, LED_MAX);
  814. len += input_print_modalias_bits(buf + len, size - len,
  815. 's', id->sndbit, 0, SND_MAX);
  816. len += input_print_modalias_bits(buf + len, size - len,
  817. 'f', id->ffbit, 0, FF_MAX);
  818. len += input_print_modalias_bits(buf + len, size - len,
  819. 'w', id->swbit, 0, SW_MAX);
  820. if (add_cr)
  821. len += snprintf(buf + len, max(size - len, 0), "\n");
  822. return len;
  823. }
  824. static ssize_t input_dev_show_modalias(struct device *dev,
  825. struct device_attribute *attr,
  826. char *buf)
  827. {
  828. struct input_dev *id = to_input_dev(dev);
  829. ssize_t len;
  830. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  831. return min_t(int, len, PAGE_SIZE);
  832. }
  833. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  834. static struct attribute *input_dev_attrs[] = {
  835. &dev_attr_name.attr,
  836. &dev_attr_phys.attr,
  837. &dev_attr_uniq.attr,
  838. &dev_attr_modalias.attr,
  839. NULL
  840. };
  841. static struct attribute_group input_dev_attr_group = {
  842. .attrs = input_dev_attrs,
  843. };
  844. #define INPUT_DEV_ID_ATTR(name) \
  845. static ssize_t input_dev_show_id_##name(struct device *dev, \
  846. struct device_attribute *attr, \
  847. char *buf) \
  848. { \
  849. struct input_dev *input_dev = to_input_dev(dev); \
  850. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  851. } \
  852. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  853. INPUT_DEV_ID_ATTR(bustype);
  854. INPUT_DEV_ID_ATTR(vendor);
  855. INPUT_DEV_ID_ATTR(product);
  856. INPUT_DEV_ID_ATTR(version);
  857. static struct attribute *input_dev_id_attrs[] = {
  858. &dev_attr_bustype.attr,
  859. &dev_attr_vendor.attr,
  860. &dev_attr_product.attr,
  861. &dev_attr_version.attr,
  862. NULL
  863. };
  864. static struct attribute_group input_dev_id_attr_group = {
  865. .name = "id",
  866. .attrs = input_dev_id_attrs,
  867. };
  868. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  869. int max, int add_cr)
  870. {
  871. int i;
  872. int len = 0;
  873. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  874. if (bitmap[i])
  875. break;
  876. for (; i >= 0; i--)
  877. len += snprintf(buf + len, max(buf_size - len, 0),
  878. "%lx%s", bitmap[i], i > 0 ? " " : "");
  879. if (add_cr)
  880. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  881. return len;
  882. }
  883. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  884. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  885. struct device_attribute *attr, \
  886. char *buf) \
  887. { \
  888. struct input_dev *input_dev = to_input_dev(dev); \
  889. int len = input_print_bitmap(buf, PAGE_SIZE, \
  890. input_dev->bm##bit, ev##_MAX, 1); \
  891. return min_t(int, len, PAGE_SIZE); \
  892. } \
  893. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  894. INPUT_DEV_CAP_ATTR(EV, ev);
  895. INPUT_DEV_CAP_ATTR(KEY, key);
  896. INPUT_DEV_CAP_ATTR(REL, rel);
  897. INPUT_DEV_CAP_ATTR(ABS, abs);
  898. INPUT_DEV_CAP_ATTR(MSC, msc);
  899. INPUT_DEV_CAP_ATTR(LED, led);
  900. INPUT_DEV_CAP_ATTR(SND, snd);
  901. INPUT_DEV_CAP_ATTR(FF, ff);
  902. INPUT_DEV_CAP_ATTR(SW, sw);
  903. static struct attribute *input_dev_caps_attrs[] = {
  904. &dev_attr_ev.attr,
  905. &dev_attr_key.attr,
  906. &dev_attr_rel.attr,
  907. &dev_attr_abs.attr,
  908. &dev_attr_msc.attr,
  909. &dev_attr_led.attr,
  910. &dev_attr_snd.attr,
  911. &dev_attr_ff.attr,
  912. &dev_attr_sw.attr,
  913. NULL
  914. };
  915. static struct attribute_group input_dev_caps_attr_group = {
  916. .name = "capabilities",
  917. .attrs = input_dev_caps_attrs,
  918. };
  919. static struct attribute_group *input_dev_attr_groups[] = {
  920. &input_dev_attr_group,
  921. &input_dev_id_attr_group,
  922. &input_dev_caps_attr_group,
  923. NULL
  924. };
  925. static void input_dev_release(struct device *device)
  926. {
  927. struct input_dev *dev = to_input_dev(device);
  928. input_ff_destroy(dev);
  929. kfree(dev);
  930. module_put(THIS_MODULE);
  931. }
  932. /*
  933. * Input uevent interface - loading event handlers based on
  934. * device bitfields.
  935. */
  936. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  937. const char *name, unsigned long *bitmap, int max)
  938. {
  939. int len;
  940. if (add_uevent_var(env, "%s=", name))
  941. return -ENOMEM;
  942. len = input_print_bitmap(&env->buf[env->buflen - 1],
  943. sizeof(env->buf) - env->buflen,
  944. bitmap, max, 0);
  945. if (len >= (sizeof(env->buf) - env->buflen))
  946. return -ENOMEM;
  947. env->buflen += len;
  948. return 0;
  949. }
  950. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  951. struct input_dev *dev)
  952. {
  953. int len;
  954. if (add_uevent_var(env, "MODALIAS="))
  955. return -ENOMEM;
  956. len = input_print_modalias(&env->buf[env->buflen - 1],
  957. sizeof(env->buf) - env->buflen,
  958. dev, 0);
  959. if (len >= (sizeof(env->buf) - env->buflen))
  960. return -ENOMEM;
  961. env->buflen += len;
  962. return 0;
  963. }
  964. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  965. do { \
  966. int err = add_uevent_var(env, fmt, val); \
  967. if (err) \
  968. return err; \
  969. } while (0)
  970. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  971. do { \
  972. int err = input_add_uevent_bm_var(env, name, bm, max); \
  973. if (err) \
  974. return err; \
  975. } while (0)
  976. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  977. do { \
  978. int err = input_add_uevent_modalias_var(env, dev); \
  979. if (err) \
  980. return err; \
  981. } while (0)
  982. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  983. {
  984. struct input_dev *dev = to_input_dev(device);
  985. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  986. dev->id.bustype, dev->id.vendor,
  987. dev->id.product, dev->id.version);
  988. if (dev->name)
  989. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  990. if (dev->phys)
  991. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  992. if (dev->uniq)
  993. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  994. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  995. if (test_bit(EV_KEY, dev->evbit))
  996. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  997. if (test_bit(EV_REL, dev->evbit))
  998. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  999. if (test_bit(EV_ABS, dev->evbit))
  1000. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1001. if (test_bit(EV_MSC, dev->evbit))
  1002. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1003. if (test_bit(EV_LED, dev->evbit))
  1004. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1005. if (test_bit(EV_SND, dev->evbit))
  1006. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1007. if (test_bit(EV_FF, dev->evbit))
  1008. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1009. if (test_bit(EV_SW, dev->evbit))
  1010. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1011. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1012. return 0;
  1013. }
  1014. static struct device_type input_dev_type = {
  1015. .groups = input_dev_attr_groups,
  1016. .release = input_dev_release,
  1017. .uevent = input_dev_uevent,
  1018. };
  1019. struct class input_class = {
  1020. .name = "input",
  1021. };
  1022. EXPORT_SYMBOL_GPL(input_class);
  1023. /**
  1024. * input_allocate_device - allocate memory for new input device
  1025. *
  1026. * Returns prepared struct input_dev or NULL.
  1027. *
  1028. * NOTE: Use input_free_device() to free devices that have not been
  1029. * registered; input_unregister_device() should be used for already
  1030. * registered devices.
  1031. */
  1032. struct input_dev *input_allocate_device(void)
  1033. {
  1034. struct input_dev *dev;
  1035. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1036. if (dev) {
  1037. dev->dev.type = &input_dev_type;
  1038. dev->dev.class = &input_class;
  1039. device_initialize(&dev->dev);
  1040. mutex_init(&dev->mutex);
  1041. spin_lock_init(&dev->event_lock);
  1042. INIT_LIST_HEAD(&dev->h_list);
  1043. INIT_LIST_HEAD(&dev->node);
  1044. __module_get(THIS_MODULE);
  1045. }
  1046. return dev;
  1047. }
  1048. EXPORT_SYMBOL(input_allocate_device);
  1049. /**
  1050. * input_free_device - free memory occupied by input_dev structure
  1051. * @dev: input device to free
  1052. *
  1053. * This function should only be used if input_register_device()
  1054. * was not called yet or if it failed. Once device was registered
  1055. * use input_unregister_device() and memory will be freed once last
  1056. * reference to the device is dropped.
  1057. *
  1058. * Device should be allocated by input_allocate_device().
  1059. *
  1060. * NOTE: If there are references to the input device then memory
  1061. * will not be freed until last reference is dropped.
  1062. */
  1063. void input_free_device(struct input_dev *dev)
  1064. {
  1065. if (dev)
  1066. input_put_device(dev);
  1067. }
  1068. EXPORT_SYMBOL(input_free_device);
  1069. /**
  1070. * input_set_capability - mark device as capable of a certain event
  1071. * @dev: device that is capable of emitting or accepting event
  1072. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1073. * @code: event code
  1074. *
  1075. * In addition to setting up corresponding bit in appropriate capability
  1076. * bitmap the function also adjusts dev->evbit.
  1077. */
  1078. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1079. {
  1080. switch (type) {
  1081. case EV_KEY:
  1082. __set_bit(code, dev->keybit);
  1083. break;
  1084. case EV_REL:
  1085. __set_bit(code, dev->relbit);
  1086. break;
  1087. case EV_ABS:
  1088. __set_bit(code, dev->absbit);
  1089. break;
  1090. case EV_MSC:
  1091. __set_bit(code, dev->mscbit);
  1092. break;
  1093. case EV_SW:
  1094. __set_bit(code, dev->swbit);
  1095. break;
  1096. case EV_LED:
  1097. __set_bit(code, dev->ledbit);
  1098. break;
  1099. case EV_SND:
  1100. __set_bit(code, dev->sndbit);
  1101. break;
  1102. case EV_FF:
  1103. __set_bit(code, dev->ffbit);
  1104. break;
  1105. case EV_PWR:
  1106. /* do nothing */
  1107. break;
  1108. default:
  1109. printk(KERN_ERR
  1110. "input_set_capability: unknown type %u (code %u)\n",
  1111. type, code);
  1112. dump_stack();
  1113. return;
  1114. }
  1115. __set_bit(type, dev->evbit);
  1116. }
  1117. EXPORT_SYMBOL(input_set_capability);
  1118. /**
  1119. * input_register_device - register device with input core
  1120. * @dev: device to be registered
  1121. *
  1122. * This function registers device with input core. The device must be
  1123. * allocated with input_allocate_device() and all it's capabilities
  1124. * set up before registering.
  1125. * If function fails the device must be freed with input_free_device().
  1126. * Once device has been successfully registered it can be unregistered
  1127. * with input_unregister_device(); input_free_device() should not be
  1128. * called in this case.
  1129. */
  1130. int input_register_device(struct input_dev *dev)
  1131. {
  1132. static atomic_t input_no = ATOMIC_INIT(0);
  1133. struct input_handler *handler;
  1134. const char *path;
  1135. int error;
  1136. __set_bit(EV_SYN, dev->evbit);
  1137. /*
  1138. * If delay and period are pre-set by the driver, then autorepeating
  1139. * is handled by the driver itself and we don't do it in input.c.
  1140. */
  1141. init_timer(&dev->timer);
  1142. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1143. dev->timer.data = (long) dev;
  1144. dev->timer.function = input_repeat_key;
  1145. dev->rep[REP_DELAY] = 250;
  1146. dev->rep[REP_PERIOD] = 33;
  1147. }
  1148. if (!dev->getkeycode)
  1149. dev->getkeycode = input_default_getkeycode;
  1150. if (!dev->setkeycode)
  1151. dev->setkeycode = input_default_setkeycode;
  1152. dev_set_name(&dev->dev, "input%ld",
  1153. (unsigned long) atomic_inc_return(&input_no) - 1);
  1154. error = device_add(&dev->dev);
  1155. if (error)
  1156. return error;
  1157. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1158. printk(KERN_INFO "input: %s as %s\n",
  1159. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1160. kfree(path);
  1161. error = mutex_lock_interruptible(&input_mutex);
  1162. if (error) {
  1163. device_del(&dev->dev);
  1164. return error;
  1165. }
  1166. list_add_tail(&dev->node, &input_dev_list);
  1167. list_for_each_entry(handler, &input_handler_list, node)
  1168. input_attach_handler(dev, handler);
  1169. input_wakeup_procfs_readers();
  1170. mutex_unlock(&input_mutex);
  1171. return 0;
  1172. }
  1173. EXPORT_SYMBOL(input_register_device);
  1174. /**
  1175. * input_unregister_device - unregister previously registered device
  1176. * @dev: device to be unregistered
  1177. *
  1178. * This function unregisters an input device. Once device is unregistered
  1179. * the caller should not try to access it as it may get freed at any moment.
  1180. */
  1181. void input_unregister_device(struct input_dev *dev)
  1182. {
  1183. struct input_handle *handle, *next;
  1184. input_disconnect_device(dev);
  1185. mutex_lock(&input_mutex);
  1186. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1187. handle->handler->disconnect(handle);
  1188. WARN_ON(!list_empty(&dev->h_list));
  1189. del_timer_sync(&dev->timer);
  1190. list_del_init(&dev->node);
  1191. input_wakeup_procfs_readers();
  1192. mutex_unlock(&input_mutex);
  1193. device_unregister(&dev->dev);
  1194. }
  1195. EXPORT_SYMBOL(input_unregister_device);
  1196. /**
  1197. * input_register_handler - register a new input handler
  1198. * @handler: handler to be registered
  1199. *
  1200. * This function registers a new input handler (interface) for input
  1201. * devices in the system and attaches it to all input devices that
  1202. * are compatible with the handler.
  1203. */
  1204. int input_register_handler(struct input_handler *handler)
  1205. {
  1206. struct input_dev *dev;
  1207. int retval;
  1208. retval = mutex_lock_interruptible(&input_mutex);
  1209. if (retval)
  1210. return retval;
  1211. INIT_LIST_HEAD(&handler->h_list);
  1212. if (handler->fops != NULL) {
  1213. if (input_table[handler->minor >> 5]) {
  1214. retval = -EBUSY;
  1215. goto out;
  1216. }
  1217. input_table[handler->minor >> 5] = handler;
  1218. }
  1219. list_add_tail(&handler->node, &input_handler_list);
  1220. list_for_each_entry(dev, &input_dev_list, node)
  1221. input_attach_handler(dev, handler);
  1222. input_wakeup_procfs_readers();
  1223. out:
  1224. mutex_unlock(&input_mutex);
  1225. return retval;
  1226. }
  1227. EXPORT_SYMBOL(input_register_handler);
  1228. /**
  1229. * input_unregister_handler - unregisters an input handler
  1230. * @handler: handler to be unregistered
  1231. *
  1232. * This function disconnects a handler from its input devices and
  1233. * removes it from lists of known handlers.
  1234. */
  1235. void input_unregister_handler(struct input_handler *handler)
  1236. {
  1237. struct input_handle *handle, *next;
  1238. mutex_lock(&input_mutex);
  1239. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1240. handler->disconnect(handle);
  1241. WARN_ON(!list_empty(&handler->h_list));
  1242. list_del_init(&handler->node);
  1243. if (handler->fops != NULL)
  1244. input_table[handler->minor >> 5] = NULL;
  1245. input_wakeup_procfs_readers();
  1246. mutex_unlock(&input_mutex);
  1247. }
  1248. EXPORT_SYMBOL(input_unregister_handler);
  1249. /**
  1250. * input_register_handle - register a new input handle
  1251. * @handle: handle to register
  1252. *
  1253. * This function puts a new input handle onto device's
  1254. * and handler's lists so that events can flow through
  1255. * it once it is opened using input_open_device().
  1256. *
  1257. * This function is supposed to be called from handler's
  1258. * connect() method.
  1259. */
  1260. int input_register_handle(struct input_handle *handle)
  1261. {
  1262. struct input_handler *handler = handle->handler;
  1263. struct input_dev *dev = handle->dev;
  1264. int error;
  1265. /*
  1266. * We take dev->mutex here to prevent race with
  1267. * input_release_device().
  1268. */
  1269. error = mutex_lock_interruptible(&dev->mutex);
  1270. if (error)
  1271. return error;
  1272. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1273. mutex_unlock(&dev->mutex);
  1274. synchronize_rcu();
  1275. /*
  1276. * Since we are supposed to be called from ->connect()
  1277. * which is mutually exclusive with ->disconnect()
  1278. * we can't be racing with input_unregister_handle()
  1279. * and so separate lock is not needed here.
  1280. */
  1281. list_add_tail(&handle->h_node, &handler->h_list);
  1282. if (handler->start)
  1283. handler->start(handle);
  1284. return 0;
  1285. }
  1286. EXPORT_SYMBOL(input_register_handle);
  1287. /**
  1288. * input_unregister_handle - unregister an input handle
  1289. * @handle: handle to unregister
  1290. *
  1291. * This function removes input handle from device's
  1292. * and handler's lists.
  1293. *
  1294. * This function is supposed to be called from handler's
  1295. * disconnect() method.
  1296. */
  1297. void input_unregister_handle(struct input_handle *handle)
  1298. {
  1299. struct input_dev *dev = handle->dev;
  1300. list_del_init(&handle->h_node);
  1301. /*
  1302. * Take dev->mutex to prevent race with input_release_device().
  1303. */
  1304. mutex_lock(&dev->mutex);
  1305. list_del_rcu(&handle->d_node);
  1306. mutex_unlock(&dev->mutex);
  1307. synchronize_rcu();
  1308. }
  1309. EXPORT_SYMBOL(input_unregister_handle);
  1310. static int input_open_file(struct inode *inode, struct file *file)
  1311. {
  1312. struct input_handler *handler;
  1313. const struct file_operations *old_fops, *new_fops = NULL;
  1314. int err;
  1315. lock_kernel();
  1316. /* No load-on-demand here? */
  1317. handler = input_table[iminor(inode) >> 5];
  1318. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1319. err = -ENODEV;
  1320. goto out;
  1321. }
  1322. /*
  1323. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1324. * not "no device". Oh, well...
  1325. */
  1326. if (!new_fops->open) {
  1327. fops_put(new_fops);
  1328. err = -ENODEV;
  1329. goto out;
  1330. }
  1331. old_fops = file->f_op;
  1332. file->f_op = new_fops;
  1333. err = new_fops->open(inode, file);
  1334. if (err) {
  1335. fops_put(file->f_op);
  1336. file->f_op = fops_get(old_fops);
  1337. }
  1338. fops_put(old_fops);
  1339. out:
  1340. unlock_kernel();
  1341. return err;
  1342. }
  1343. static const struct file_operations input_fops = {
  1344. .owner = THIS_MODULE,
  1345. .open = input_open_file,
  1346. };
  1347. static int __init input_init(void)
  1348. {
  1349. int err;
  1350. err = class_register(&input_class);
  1351. if (err) {
  1352. printk(KERN_ERR "input: unable to register input_dev class\n");
  1353. return err;
  1354. }
  1355. err = input_proc_init();
  1356. if (err)
  1357. goto fail1;
  1358. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1359. if (err) {
  1360. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1361. goto fail2;
  1362. }
  1363. return 0;
  1364. fail2: input_proc_exit();
  1365. fail1: class_unregister(&input_class);
  1366. return err;
  1367. }
  1368. static void __exit input_exit(void)
  1369. {
  1370. input_proc_exit();
  1371. unregister_chrdev(INPUT_MAJOR, "input");
  1372. class_unregister(&input_class);
  1373. }
  1374. subsys_initcall(input_init);
  1375. module_exit(input_exit);