sched.h 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364
  1. #include <linux/sched.h>
  2. #include <linux/sched/sysctl.h>
  3. #include <linux/sched/rt.h>
  4. #include <linux/mutex.h>
  5. #include <linux/spinlock.h>
  6. #include <linux/stop_machine.h>
  7. #include <linux/tick.h>
  8. #include "cpupri.h"
  9. #include "cpuacct.h"
  10. struct rq;
  11. extern __read_mostly int scheduler_running;
  12. extern unsigned long calc_load_update;
  13. extern atomic_long_t calc_load_tasks;
  14. extern long calc_load_fold_active(struct rq *this_rq);
  15. extern void update_cpu_load_active(struct rq *this_rq);
  16. /*
  17. * Convert user-nice values [ -20 ... 0 ... 19 ]
  18. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  19. * and back.
  20. */
  21. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  22. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  23. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  24. /*
  25. * 'User priority' is the nice value converted to something we
  26. * can work with better when scaling various scheduler parameters,
  27. * it's a [ 0 ... 39 ] range.
  28. */
  29. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  30. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  31. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  32. /*
  33. * Helpers for converting nanosecond timing to jiffy resolution
  34. */
  35. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  36. /*
  37. * Increase resolution of nice-level calculations for 64-bit architectures.
  38. * The extra resolution improves shares distribution and load balancing of
  39. * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  40. * hierarchies, especially on larger systems. This is not a user-visible change
  41. * and does not change the user-interface for setting shares/weights.
  42. *
  43. * We increase resolution only if we have enough bits to allow this increased
  44. * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  45. * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  46. * increased costs.
  47. */
  48. #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
  49. # define SCHED_LOAD_RESOLUTION 10
  50. # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
  51. # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
  52. #else
  53. # define SCHED_LOAD_RESOLUTION 0
  54. # define scale_load(w) (w)
  55. # define scale_load_down(w) (w)
  56. #endif
  57. #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
  58. #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
  59. #define NICE_0_LOAD SCHED_LOAD_SCALE
  60. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  61. /*
  62. * These are the 'tuning knobs' of the scheduler:
  63. */
  64. /*
  65. * single value that denotes runtime == period, ie unlimited time.
  66. */
  67. #define RUNTIME_INF ((u64)~0ULL)
  68. static inline int rt_policy(int policy)
  69. {
  70. if (policy == SCHED_FIFO || policy == SCHED_RR)
  71. return 1;
  72. return 0;
  73. }
  74. static inline int task_has_rt_policy(struct task_struct *p)
  75. {
  76. return rt_policy(p->policy);
  77. }
  78. /*
  79. * This is the priority-queue data structure of the RT scheduling class:
  80. */
  81. struct rt_prio_array {
  82. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  83. struct list_head queue[MAX_RT_PRIO];
  84. };
  85. struct rt_bandwidth {
  86. /* nests inside the rq lock: */
  87. raw_spinlock_t rt_runtime_lock;
  88. ktime_t rt_period;
  89. u64 rt_runtime;
  90. struct hrtimer rt_period_timer;
  91. };
  92. extern struct mutex sched_domains_mutex;
  93. #ifdef CONFIG_CGROUP_SCHED
  94. #include <linux/cgroup.h>
  95. struct cfs_rq;
  96. struct rt_rq;
  97. extern struct list_head task_groups;
  98. struct cfs_bandwidth {
  99. #ifdef CONFIG_CFS_BANDWIDTH
  100. raw_spinlock_t lock;
  101. ktime_t period;
  102. u64 quota, runtime;
  103. s64 hierarchal_quota;
  104. u64 runtime_expires;
  105. int idle, timer_active;
  106. struct hrtimer period_timer, slack_timer;
  107. struct list_head throttled_cfs_rq;
  108. /* statistics */
  109. int nr_periods, nr_throttled;
  110. u64 throttled_time;
  111. #endif
  112. };
  113. /* task group related information */
  114. struct task_group {
  115. struct cgroup_subsys_state css;
  116. #ifdef CONFIG_FAIR_GROUP_SCHED
  117. /* schedulable entities of this group on each cpu */
  118. struct sched_entity **se;
  119. /* runqueue "owned" by this group on each cpu */
  120. struct cfs_rq **cfs_rq;
  121. unsigned long shares;
  122. atomic_t load_weight;
  123. #ifdef CONFIG_SMP
  124. atomic64_t load_avg;
  125. atomic_t runnable_avg;
  126. #endif
  127. #endif
  128. #ifdef CONFIG_RT_GROUP_SCHED
  129. struct sched_rt_entity **rt_se;
  130. struct rt_rq **rt_rq;
  131. struct rt_bandwidth rt_bandwidth;
  132. #endif
  133. struct rcu_head rcu;
  134. struct list_head list;
  135. struct task_group *parent;
  136. struct list_head siblings;
  137. struct list_head children;
  138. #ifdef CONFIG_SCHED_AUTOGROUP
  139. struct autogroup *autogroup;
  140. #endif
  141. struct cfs_bandwidth cfs_bandwidth;
  142. };
  143. #ifdef CONFIG_FAIR_GROUP_SCHED
  144. #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  145. /*
  146. * A weight of 0 or 1 can cause arithmetics problems.
  147. * A weight of a cfs_rq is the sum of weights of which entities
  148. * are queued on this cfs_rq, so a weight of a entity should not be
  149. * too large, so as the shares value of a task group.
  150. * (The default weight is 1024 - so there's no practical
  151. * limitation from this.)
  152. */
  153. #define MIN_SHARES (1UL << 1)
  154. #define MAX_SHARES (1UL << 18)
  155. #endif
  156. typedef int (*tg_visitor)(struct task_group *, void *);
  157. extern int walk_tg_tree_from(struct task_group *from,
  158. tg_visitor down, tg_visitor up, void *data);
  159. /*
  160. * Iterate the full tree, calling @down when first entering a node and @up when
  161. * leaving it for the final time.
  162. *
  163. * Caller must hold rcu_lock or sufficient equivalent.
  164. */
  165. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  166. {
  167. return walk_tg_tree_from(&root_task_group, down, up, data);
  168. }
  169. extern int tg_nop(struct task_group *tg, void *data);
  170. extern void free_fair_sched_group(struct task_group *tg);
  171. extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
  172. extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
  173. extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  174. struct sched_entity *se, int cpu,
  175. struct sched_entity *parent);
  176. extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  177. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  178. extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
  179. extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  180. extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
  181. extern void free_rt_sched_group(struct task_group *tg);
  182. extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
  183. extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  184. struct sched_rt_entity *rt_se, int cpu,
  185. struct sched_rt_entity *parent);
  186. extern struct task_group *sched_create_group(struct task_group *parent);
  187. extern void sched_online_group(struct task_group *tg,
  188. struct task_group *parent);
  189. extern void sched_destroy_group(struct task_group *tg);
  190. extern void sched_offline_group(struct task_group *tg);
  191. extern void sched_move_task(struct task_struct *tsk);
  192. #ifdef CONFIG_FAIR_GROUP_SCHED
  193. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  194. #endif
  195. #else /* CONFIG_CGROUP_SCHED */
  196. struct cfs_bandwidth { };
  197. #endif /* CONFIG_CGROUP_SCHED */
  198. /* CFS-related fields in a runqueue */
  199. struct cfs_rq {
  200. struct load_weight load;
  201. unsigned int nr_running, h_nr_running;
  202. u64 exec_clock;
  203. u64 min_vruntime;
  204. #ifndef CONFIG_64BIT
  205. u64 min_vruntime_copy;
  206. #endif
  207. struct rb_root tasks_timeline;
  208. struct rb_node *rb_leftmost;
  209. /*
  210. * 'curr' points to currently running entity on this cfs_rq.
  211. * It is set to NULL otherwise (i.e when none are currently running).
  212. */
  213. struct sched_entity *curr, *next, *last, *skip;
  214. #ifdef CONFIG_SCHED_DEBUG
  215. unsigned int nr_spread_over;
  216. #endif
  217. #ifdef CONFIG_SMP
  218. /*
  219. * CFS Load tracking
  220. * Under CFS, load is tracked on a per-entity basis and aggregated up.
  221. * This allows for the description of both thread and group usage (in
  222. * the FAIR_GROUP_SCHED case).
  223. */
  224. u64 runnable_load_avg, blocked_load_avg;
  225. atomic64_t decay_counter, removed_load;
  226. u64 last_decay;
  227. #ifdef CONFIG_FAIR_GROUP_SCHED
  228. /* Required to track per-cpu representation of a task_group */
  229. u32 tg_runnable_contrib;
  230. u64 tg_load_contrib;
  231. #endif /* CONFIG_FAIR_GROUP_SCHED */
  232. /*
  233. * h_load = weight * f(tg)
  234. *
  235. * Where f(tg) is the recursive weight fraction assigned to
  236. * this group.
  237. */
  238. unsigned long h_load;
  239. #endif /* CONFIG_SMP */
  240. #ifdef CONFIG_FAIR_GROUP_SCHED
  241. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  242. /*
  243. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  244. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  245. * (like users, containers etc.)
  246. *
  247. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  248. * list is used during load balance.
  249. */
  250. int on_list;
  251. struct list_head leaf_cfs_rq_list;
  252. struct task_group *tg; /* group that "owns" this runqueue */
  253. #ifdef CONFIG_CFS_BANDWIDTH
  254. int runtime_enabled;
  255. u64 runtime_expires;
  256. s64 runtime_remaining;
  257. u64 throttled_clock, throttled_clock_task;
  258. u64 throttled_clock_task_time;
  259. int throttled, throttle_count;
  260. struct list_head throttled_list;
  261. #endif /* CONFIG_CFS_BANDWIDTH */
  262. #endif /* CONFIG_FAIR_GROUP_SCHED */
  263. };
  264. static inline int rt_bandwidth_enabled(void)
  265. {
  266. return sysctl_sched_rt_runtime >= 0;
  267. }
  268. /* Real-Time classes' related field in a runqueue: */
  269. struct rt_rq {
  270. struct rt_prio_array active;
  271. unsigned int rt_nr_running;
  272. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  273. struct {
  274. int curr; /* highest queued rt task prio */
  275. #ifdef CONFIG_SMP
  276. int next; /* next highest */
  277. #endif
  278. } highest_prio;
  279. #endif
  280. #ifdef CONFIG_SMP
  281. unsigned long rt_nr_migratory;
  282. unsigned long rt_nr_total;
  283. int overloaded;
  284. struct plist_head pushable_tasks;
  285. #endif
  286. int rt_throttled;
  287. u64 rt_time;
  288. u64 rt_runtime;
  289. /* Nests inside the rq lock: */
  290. raw_spinlock_t rt_runtime_lock;
  291. #ifdef CONFIG_RT_GROUP_SCHED
  292. unsigned long rt_nr_boosted;
  293. struct rq *rq;
  294. struct task_group *tg;
  295. #endif
  296. };
  297. #ifdef CONFIG_SMP
  298. /*
  299. * We add the notion of a root-domain which will be used to define per-domain
  300. * variables. Each exclusive cpuset essentially defines an island domain by
  301. * fully partitioning the member cpus from any other cpuset. Whenever a new
  302. * exclusive cpuset is created, we also create and attach a new root-domain
  303. * object.
  304. *
  305. */
  306. struct root_domain {
  307. atomic_t refcount;
  308. atomic_t rto_count;
  309. struct rcu_head rcu;
  310. cpumask_var_t span;
  311. cpumask_var_t online;
  312. /*
  313. * The "RT overload" flag: it gets set if a CPU has more than
  314. * one runnable RT task.
  315. */
  316. cpumask_var_t rto_mask;
  317. struct cpupri cpupri;
  318. };
  319. extern struct root_domain def_root_domain;
  320. #endif /* CONFIG_SMP */
  321. /*
  322. * This is the main, per-CPU runqueue data structure.
  323. *
  324. * Locking rule: those places that want to lock multiple runqueues
  325. * (such as the load balancing or the thread migration code), lock
  326. * acquire operations must be ordered by ascending &runqueue.
  327. */
  328. struct rq {
  329. /* runqueue lock: */
  330. raw_spinlock_t lock;
  331. /*
  332. * nr_running and cpu_load should be in the same cacheline because
  333. * remote CPUs use both these fields when doing load calculation.
  334. */
  335. unsigned int nr_running;
  336. #define CPU_LOAD_IDX_MAX 5
  337. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  338. unsigned long last_load_update_tick;
  339. #ifdef CONFIG_NO_HZ_COMMON
  340. u64 nohz_stamp;
  341. unsigned long nohz_flags;
  342. #endif
  343. #ifdef CONFIG_NO_HZ_FULL
  344. unsigned long last_sched_tick;
  345. #endif
  346. int skip_clock_update;
  347. /* capture load from *all* tasks on this cpu: */
  348. struct load_weight load;
  349. unsigned long nr_load_updates;
  350. u64 nr_switches;
  351. struct cfs_rq cfs;
  352. struct rt_rq rt;
  353. #ifdef CONFIG_FAIR_GROUP_SCHED
  354. /* list of leaf cfs_rq on this cpu: */
  355. struct list_head leaf_cfs_rq_list;
  356. #ifdef CONFIG_SMP
  357. unsigned long h_load_throttle;
  358. #endif /* CONFIG_SMP */
  359. #endif /* CONFIG_FAIR_GROUP_SCHED */
  360. #ifdef CONFIG_RT_GROUP_SCHED
  361. struct list_head leaf_rt_rq_list;
  362. #endif
  363. /*
  364. * This is part of a global counter where only the total sum
  365. * over all CPUs matters. A task can increase this counter on
  366. * one CPU and if it got migrated afterwards it may decrease
  367. * it on another CPU. Always updated under the runqueue lock:
  368. */
  369. unsigned long nr_uninterruptible;
  370. struct task_struct *curr, *idle, *stop;
  371. unsigned long next_balance;
  372. struct mm_struct *prev_mm;
  373. u64 clock;
  374. u64 clock_task;
  375. atomic_t nr_iowait;
  376. #ifdef CONFIG_SMP
  377. struct root_domain *rd;
  378. struct sched_domain *sd;
  379. unsigned long cpu_power;
  380. unsigned char idle_balance;
  381. /* For active balancing */
  382. int post_schedule;
  383. int active_balance;
  384. int push_cpu;
  385. struct cpu_stop_work active_balance_work;
  386. /* cpu of this runqueue: */
  387. int cpu;
  388. int online;
  389. struct list_head cfs_tasks;
  390. u64 rt_avg;
  391. u64 age_stamp;
  392. u64 idle_stamp;
  393. u64 avg_idle;
  394. #endif
  395. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  396. u64 prev_irq_time;
  397. #endif
  398. #ifdef CONFIG_PARAVIRT
  399. u64 prev_steal_time;
  400. #endif
  401. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  402. u64 prev_steal_time_rq;
  403. #endif
  404. /* calc_load related fields */
  405. unsigned long calc_load_update;
  406. long calc_load_active;
  407. #ifdef CONFIG_SCHED_HRTICK
  408. #ifdef CONFIG_SMP
  409. int hrtick_csd_pending;
  410. struct call_single_data hrtick_csd;
  411. #endif
  412. struct hrtimer hrtick_timer;
  413. #endif
  414. #ifdef CONFIG_SCHEDSTATS
  415. /* latency stats */
  416. struct sched_info rq_sched_info;
  417. unsigned long long rq_cpu_time;
  418. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  419. /* sys_sched_yield() stats */
  420. unsigned int yld_count;
  421. /* schedule() stats */
  422. unsigned int sched_count;
  423. unsigned int sched_goidle;
  424. /* try_to_wake_up() stats */
  425. unsigned int ttwu_count;
  426. unsigned int ttwu_local;
  427. #endif
  428. #ifdef CONFIG_SMP
  429. struct llist_head wake_list;
  430. #endif
  431. struct sched_avg avg;
  432. };
  433. static inline int cpu_of(struct rq *rq)
  434. {
  435. #ifdef CONFIG_SMP
  436. return rq->cpu;
  437. #else
  438. return 0;
  439. #endif
  440. }
  441. DECLARE_PER_CPU(struct rq, runqueues);
  442. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  443. #define this_rq() (&__get_cpu_var(runqueues))
  444. #define task_rq(p) cpu_rq(task_cpu(p))
  445. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  446. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  447. static inline u64 rq_clock(struct rq *rq)
  448. {
  449. return rq->clock;
  450. }
  451. static inline u64 rq_clock_task(struct rq *rq)
  452. {
  453. return rq->clock_task;
  454. }
  455. #ifdef CONFIG_SMP
  456. #define rcu_dereference_check_sched_domain(p) \
  457. rcu_dereference_check((p), \
  458. lockdep_is_held(&sched_domains_mutex))
  459. /*
  460. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  461. * See detach_destroy_domains: synchronize_sched for details.
  462. *
  463. * The domain tree of any CPU may only be accessed from within
  464. * preempt-disabled sections.
  465. */
  466. #define for_each_domain(cpu, __sd) \
  467. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
  468. __sd; __sd = __sd->parent)
  469. #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
  470. /**
  471. * highest_flag_domain - Return highest sched_domain containing flag.
  472. * @cpu: The cpu whose highest level of sched domain is to
  473. * be returned.
  474. * @flag: The flag to check for the highest sched_domain
  475. * for the given cpu.
  476. *
  477. * Returns the highest sched_domain of a cpu which contains the given flag.
  478. */
  479. static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
  480. {
  481. struct sched_domain *sd, *hsd = NULL;
  482. for_each_domain(cpu, sd) {
  483. if (!(sd->flags & flag))
  484. break;
  485. hsd = sd;
  486. }
  487. return hsd;
  488. }
  489. DECLARE_PER_CPU(struct sched_domain *, sd_llc);
  490. DECLARE_PER_CPU(int, sd_llc_id);
  491. struct sched_group_power {
  492. atomic_t ref;
  493. /*
  494. * CPU power of this group, SCHED_LOAD_SCALE being max power for a
  495. * single CPU.
  496. */
  497. unsigned int power, power_orig;
  498. unsigned long next_update;
  499. /*
  500. * Number of busy cpus in this group.
  501. */
  502. atomic_t nr_busy_cpus;
  503. unsigned long cpumask[0]; /* iteration mask */
  504. };
  505. struct sched_group {
  506. struct sched_group *next; /* Must be a circular list */
  507. atomic_t ref;
  508. unsigned int group_weight;
  509. struct sched_group_power *sgp;
  510. /*
  511. * The CPUs this group covers.
  512. *
  513. * NOTE: this field is variable length. (Allocated dynamically
  514. * by attaching extra space to the end of the structure,
  515. * depending on how many CPUs the kernel has booted up with)
  516. */
  517. unsigned long cpumask[0];
  518. };
  519. static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
  520. {
  521. return to_cpumask(sg->cpumask);
  522. }
  523. /*
  524. * cpumask masking which cpus in the group are allowed to iterate up the domain
  525. * tree.
  526. */
  527. static inline struct cpumask *sched_group_mask(struct sched_group *sg)
  528. {
  529. return to_cpumask(sg->sgp->cpumask);
  530. }
  531. /**
  532. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  533. * @group: The group whose first cpu is to be returned.
  534. */
  535. static inline unsigned int group_first_cpu(struct sched_group *group)
  536. {
  537. return cpumask_first(sched_group_cpus(group));
  538. }
  539. extern int group_balance_cpu(struct sched_group *sg);
  540. #endif /* CONFIG_SMP */
  541. #include "stats.h"
  542. #include "auto_group.h"
  543. #ifdef CONFIG_CGROUP_SCHED
  544. /*
  545. * Return the group to which this tasks belongs.
  546. *
  547. * We cannot use task_subsys_state() and friends because the cgroup
  548. * subsystem changes that value before the cgroup_subsys::attach() method
  549. * is called, therefore we cannot pin it and might observe the wrong value.
  550. *
  551. * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
  552. * core changes this before calling sched_move_task().
  553. *
  554. * Instead we use a 'copy' which is updated from sched_move_task() while
  555. * holding both task_struct::pi_lock and rq::lock.
  556. */
  557. static inline struct task_group *task_group(struct task_struct *p)
  558. {
  559. return p->sched_task_group;
  560. }
  561. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  562. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  563. {
  564. #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
  565. struct task_group *tg = task_group(p);
  566. #endif
  567. #ifdef CONFIG_FAIR_GROUP_SCHED
  568. p->se.cfs_rq = tg->cfs_rq[cpu];
  569. p->se.parent = tg->se[cpu];
  570. #endif
  571. #ifdef CONFIG_RT_GROUP_SCHED
  572. p->rt.rt_rq = tg->rt_rq[cpu];
  573. p->rt.parent = tg->rt_se[cpu];
  574. #endif
  575. }
  576. #else /* CONFIG_CGROUP_SCHED */
  577. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  578. static inline struct task_group *task_group(struct task_struct *p)
  579. {
  580. return NULL;
  581. }
  582. #endif /* CONFIG_CGROUP_SCHED */
  583. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  584. {
  585. set_task_rq(p, cpu);
  586. #ifdef CONFIG_SMP
  587. /*
  588. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  589. * successfuly executed on another CPU. We must ensure that updates of
  590. * per-task data have been completed by this moment.
  591. */
  592. smp_wmb();
  593. task_thread_info(p)->cpu = cpu;
  594. #endif
  595. }
  596. /*
  597. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  598. */
  599. #ifdef CONFIG_SCHED_DEBUG
  600. # include <linux/static_key.h>
  601. # define const_debug __read_mostly
  602. #else
  603. # define const_debug const
  604. #endif
  605. extern const_debug unsigned int sysctl_sched_features;
  606. #define SCHED_FEAT(name, enabled) \
  607. __SCHED_FEAT_##name ,
  608. enum {
  609. #include "features.h"
  610. __SCHED_FEAT_NR,
  611. };
  612. #undef SCHED_FEAT
  613. #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  614. static __always_inline bool static_branch__true(struct static_key *key)
  615. {
  616. return static_key_true(key); /* Not out of line branch. */
  617. }
  618. static __always_inline bool static_branch__false(struct static_key *key)
  619. {
  620. return static_key_false(key); /* Out of line branch. */
  621. }
  622. #define SCHED_FEAT(name, enabled) \
  623. static __always_inline bool static_branch_##name(struct static_key *key) \
  624. { \
  625. return static_branch__##enabled(key); \
  626. }
  627. #include "features.h"
  628. #undef SCHED_FEAT
  629. extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
  630. #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
  631. #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
  632. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  633. #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
  634. #ifdef CONFIG_NUMA_BALANCING
  635. #define sched_feat_numa(x) sched_feat(x)
  636. #ifdef CONFIG_SCHED_DEBUG
  637. #define numabalancing_enabled sched_feat_numa(NUMA)
  638. #else
  639. extern bool numabalancing_enabled;
  640. #endif /* CONFIG_SCHED_DEBUG */
  641. #else
  642. #define sched_feat_numa(x) (0)
  643. #define numabalancing_enabled (0)
  644. #endif /* CONFIG_NUMA_BALANCING */
  645. static inline u64 global_rt_period(void)
  646. {
  647. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  648. }
  649. static inline u64 global_rt_runtime(void)
  650. {
  651. if (sysctl_sched_rt_runtime < 0)
  652. return RUNTIME_INF;
  653. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  654. }
  655. static inline int task_current(struct rq *rq, struct task_struct *p)
  656. {
  657. return rq->curr == p;
  658. }
  659. static inline int task_running(struct rq *rq, struct task_struct *p)
  660. {
  661. #ifdef CONFIG_SMP
  662. return p->on_cpu;
  663. #else
  664. return task_current(rq, p);
  665. #endif
  666. }
  667. #ifndef prepare_arch_switch
  668. # define prepare_arch_switch(next) do { } while (0)
  669. #endif
  670. #ifndef finish_arch_switch
  671. # define finish_arch_switch(prev) do { } while (0)
  672. #endif
  673. #ifndef finish_arch_post_lock_switch
  674. # define finish_arch_post_lock_switch() do { } while (0)
  675. #endif
  676. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  677. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  678. {
  679. #ifdef CONFIG_SMP
  680. /*
  681. * We can optimise this out completely for !SMP, because the
  682. * SMP rebalancing from interrupt is the only thing that cares
  683. * here.
  684. */
  685. next->on_cpu = 1;
  686. #endif
  687. }
  688. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  689. {
  690. #ifdef CONFIG_SMP
  691. /*
  692. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  693. * We must ensure this doesn't happen until the switch is completely
  694. * finished.
  695. */
  696. smp_wmb();
  697. prev->on_cpu = 0;
  698. #endif
  699. #ifdef CONFIG_DEBUG_SPINLOCK
  700. /* this is a valid case when another task releases the spinlock */
  701. rq->lock.owner = current;
  702. #endif
  703. /*
  704. * If we are tracking spinlock dependencies then we have to
  705. * fix up the runqueue lock - which gets 'carried over' from
  706. * prev into current:
  707. */
  708. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  709. raw_spin_unlock_irq(&rq->lock);
  710. }
  711. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  712. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  713. {
  714. #ifdef CONFIG_SMP
  715. /*
  716. * We can optimise this out completely for !SMP, because the
  717. * SMP rebalancing from interrupt is the only thing that cares
  718. * here.
  719. */
  720. next->on_cpu = 1;
  721. #endif
  722. raw_spin_unlock(&rq->lock);
  723. }
  724. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  725. {
  726. #ifdef CONFIG_SMP
  727. /*
  728. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  729. * We must ensure this doesn't happen until the switch is completely
  730. * finished.
  731. */
  732. smp_wmb();
  733. prev->on_cpu = 0;
  734. #endif
  735. local_irq_enable();
  736. }
  737. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  738. /*
  739. * wake flags
  740. */
  741. #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
  742. #define WF_FORK 0x02 /* child wakeup after fork */
  743. #define WF_MIGRATED 0x4 /* internal use, task got migrated */
  744. /*
  745. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  746. * of tasks with abnormal "nice" values across CPUs the contribution that
  747. * each task makes to its run queue's load is weighted according to its
  748. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  749. * scaled version of the new time slice allocation that they receive on time
  750. * slice expiry etc.
  751. */
  752. #define WEIGHT_IDLEPRIO 3
  753. #define WMULT_IDLEPRIO 1431655765
  754. /*
  755. * Nice levels are multiplicative, with a gentle 10% change for every
  756. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  757. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  758. * that remained on nice 0.
  759. *
  760. * The "10% effect" is relative and cumulative: from _any_ nice level,
  761. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  762. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  763. * If a task goes up by ~10% and another task goes down by ~10% then
  764. * the relative distance between them is ~25%.)
  765. */
  766. static const int prio_to_weight[40] = {
  767. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  768. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  769. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  770. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  771. /* 0 */ 1024, 820, 655, 526, 423,
  772. /* 5 */ 335, 272, 215, 172, 137,
  773. /* 10 */ 110, 87, 70, 56, 45,
  774. /* 15 */ 36, 29, 23, 18, 15,
  775. };
  776. /*
  777. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  778. *
  779. * In cases where the weight does not change often, we can use the
  780. * precalculated inverse to speed up arithmetics by turning divisions
  781. * into multiplications:
  782. */
  783. static const u32 prio_to_wmult[40] = {
  784. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  785. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  786. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  787. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  788. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  789. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  790. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  791. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  792. };
  793. #define ENQUEUE_WAKEUP 1
  794. #define ENQUEUE_HEAD 2
  795. #ifdef CONFIG_SMP
  796. #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
  797. #else
  798. #define ENQUEUE_WAKING 0
  799. #endif
  800. #define DEQUEUE_SLEEP 1
  801. struct sched_class {
  802. const struct sched_class *next;
  803. void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
  804. void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
  805. void (*yield_task) (struct rq *rq);
  806. bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
  807. void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
  808. struct task_struct * (*pick_next_task) (struct rq *rq);
  809. void (*put_prev_task) (struct rq *rq, struct task_struct *p);
  810. #ifdef CONFIG_SMP
  811. int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
  812. void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
  813. void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
  814. void (*post_schedule) (struct rq *this_rq);
  815. void (*task_waking) (struct task_struct *task);
  816. void (*task_woken) (struct rq *this_rq, struct task_struct *task);
  817. void (*set_cpus_allowed)(struct task_struct *p,
  818. const struct cpumask *newmask);
  819. void (*rq_online)(struct rq *rq);
  820. void (*rq_offline)(struct rq *rq);
  821. #endif
  822. void (*set_curr_task) (struct rq *rq);
  823. void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
  824. void (*task_fork) (struct task_struct *p);
  825. void (*switched_from) (struct rq *this_rq, struct task_struct *task);
  826. void (*switched_to) (struct rq *this_rq, struct task_struct *task);
  827. void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
  828. int oldprio);
  829. unsigned int (*get_rr_interval) (struct rq *rq,
  830. struct task_struct *task);
  831. #ifdef CONFIG_FAIR_GROUP_SCHED
  832. void (*task_move_group) (struct task_struct *p, int on_rq);
  833. #endif
  834. };
  835. #define sched_class_highest (&stop_sched_class)
  836. #define for_each_class(class) \
  837. for (class = sched_class_highest; class; class = class->next)
  838. extern const struct sched_class stop_sched_class;
  839. extern const struct sched_class rt_sched_class;
  840. extern const struct sched_class fair_sched_class;
  841. extern const struct sched_class idle_sched_class;
  842. #ifdef CONFIG_SMP
  843. extern void update_group_power(struct sched_domain *sd, int cpu);
  844. extern void trigger_load_balance(struct rq *rq, int cpu);
  845. extern void idle_balance(int this_cpu, struct rq *this_rq);
  846. extern void idle_enter_fair(struct rq *this_rq);
  847. extern void idle_exit_fair(struct rq *this_rq);
  848. #else /* CONFIG_SMP */
  849. static inline void idle_balance(int cpu, struct rq *rq)
  850. {
  851. }
  852. #endif
  853. extern void sysrq_sched_debug_show(void);
  854. extern void sched_init_granularity(void);
  855. extern void update_max_interval(void);
  856. extern void init_sched_rt_class(void);
  857. extern void init_sched_fair_class(void);
  858. extern void resched_task(struct task_struct *p);
  859. extern void resched_cpu(int cpu);
  860. extern struct rt_bandwidth def_rt_bandwidth;
  861. extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
  862. extern void update_idle_cpu_load(struct rq *this_rq);
  863. #ifdef CONFIG_PARAVIRT
  864. static inline u64 steal_ticks(u64 steal)
  865. {
  866. if (unlikely(steal > NSEC_PER_SEC))
  867. return div_u64(steal, TICK_NSEC);
  868. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  869. }
  870. #endif
  871. static inline void inc_nr_running(struct rq *rq)
  872. {
  873. rq->nr_running++;
  874. #ifdef CONFIG_NO_HZ_FULL
  875. if (rq->nr_running == 2) {
  876. if (tick_nohz_full_cpu(rq->cpu)) {
  877. /* Order rq->nr_running write against the IPI */
  878. smp_wmb();
  879. smp_send_reschedule(rq->cpu);
  880. }
  881. }
  882. #endif
  883. }
  884. static inline void dec_nr_running(struct rq *rq)
  885. {
  886. rq->nr_running--;
  887. }
  888. static inline void rq_last_tick_reset(struct rq *rq)
  889. {
  890. #ifdef CONFIG_NO_HZ_FULL
  891. rq->last_sched_tick = jiffies;
  892. #endif
  893. }
  894. extern void update_rq_clock(struct rq *rq);
  895. extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
  896. extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
  897. extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  898. extern const_debug unsigned int sysctl_sched_time_avg;
  899. extern const_debug unsigned int sysctl_sched_nr_migrate;
  900. extern const_debug unsigned int sysctl_sched_migration_cost;
  901. static inline u64 sched_avg_period(void)
  902. {
  903. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  904. }
  905. #ifdef CONFIG_SCHED_HRTICK
  906. /*
  907. * Use hrtick when:
  908. * - enabled by features
  909. * - hrtimer is actually high res
  910. */
  911. static inline int hrtick_enabled(struct rq *rq)
  912. {
  913. if (!sched_feat(HRTICK))
  914. return 0;
  915. if (!cpu_active(cpu_of(rq)))
  916. return 0;
  917. return hrtimer_is_hres_active(&rq->hrtick_timer);
  918. }
  919. void hrtick_start(struct rq *rq, u64 delay);
  920. #else
  921. static inline int hrtick_enabled(struct rq *rq)
  922. {
  923. return 0;
  924. }
  925. #endif /* CONFIG_SCHED_HRTICK */
  926. #ifdef CONFIG_SMP
  927. extern void sched_avg_update(struct rq *rq);
  928. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  929. {
  930. rq->rt_avg += rt_delta;
  931. sched_avg_update(rq);
  932. }
  933. #else
  934. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
  935. static inline void sched_avg_update(struct rq *rq) { }
  936. #endif
  937. extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
  938. #ifdef CONFIG_SMP
  939. #ifdef CONFIG_PREEMPT
  940. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
  941. /*
  942. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  943. * way at the expense of forcing extra atomic operations in all
  944. * invocations. This assures that the double_lock is acquired using the
  945. * same underlying policy as the spinlock_t on this architecture, which
  946. * reduces latency compared to the unfair variant below. However, it
  947. * also adds more overhead and therefore may reduce throughput.
  948. */
  949. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  950. __releases(this_rq->lock)
  951. __acquires(busiest->lock)
  952. __acquires(this_rq->lock)
  953. {
  954. raw_spin_unlock(&this_rq->lock);
  955. double_rq_lock(this_rq, busiest);
  956. return 1;
  957. }
  958. #else
  959. /*
  960. * Unfair double_lock_balance: Optimizes throughput at the expense of
  961. * latency by eliminating extra atomic operations when the locks are
  962. * already in proper order on entry. This favors lower cpu-ids and will
  963. * grant the double lock to lower cpus over higher ids under contention,
  964. * regardless of entry order into the function.
  965. */
  966. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  967. __releases(this_rq->lock)
  968. __acquires(busiest->lock)
  969. __acquires(this_rq->lock)
  970. {
  971. int ret = 0;
  972. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  973. if (busiest < this_rq) {
  974. raw_spin_unlock(&this_rq->lock);
  975. raw_spin_lock(&busiest->lock);
  976. raw_spin_lock_nested(&this_rq->lock,
  977. SINGLE_DEPTH_NESTING);
  978. ret = 1;
  979. } else
  980. raw_spin_lock_nested(&busiest->lock,
  981. SINGLE_DEPTH_NESTING);
  982. }
  983. return ret;
  984. }
  985. #endif /* CONFIG_PREEMPT */
  986. /*
  987. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  988. */
  989. static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  990. {
  991. if (unlikely(!irqs_disabled())) {
  992. /* printk() doesn't work good under rq->lock */
  993. raw_spin_unlock(&this_rq->lock);
  994. BUG_ON(1);
  995. }
  996. return _double_lock_balance(this_rq, busiest);
  997. }
  998. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  999. __releases(busiest->lock)
  1000. {
  1001. raw_spin_unlock(&busiest->lock);
  1002. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1003. }
  1004. /*
  1005. * double_rq_lock - safely lock two runqueues
  1006. *
  1007. * Note this does not disable interrupts like task_rq_lock,
  1008. * you need to do so manually before calling.
  1009. */
  1010. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1011. __acquires(rq1->lock)
  1012. __acquires(rq2->lock)
  1013. {
  1014. BUG_ON(!irqs_disabled());
  1015. if (rq1 == rq2) {
  1016. raw_spin_lock(&rq1->lock);
  1017. __acquire(rq2->lock); /* Fake it out ;) */
  1018. } else {
  1019. if (rq1 < rq2) {
  1020. raw_spin_lock(&rq1->lock);
  1021. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1022. } else {
  1023. raw_spin_lock(&rq2->lock);
  1024. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1025. }
  1026. }
  1027. }
  1028. /*
  1029. * double_rq_unlock - safely unlock two runqueues
  1030. *
  1031. * Note this does not restore interrupts like task_rq_unlock,
  1032. * you need to do so manually after calling.
  1033. */
  1034. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1035. __releases(rq1->lock)
  1036. __releases(rq2->lock)
  1037. {
  1038. raw_spin_unlock(&rq1->lock);
  1039. if (rq1 != rq2)
  1040. raw_spin_unlock(&rq2->lock);
  1041. else
  1042. __release(rq2->lock);
  1043. }
  1044. #else /* CONFIG_SMP */
  1045. /*
  1046. * double_rq_lock - safely lock two runqueues
  1047. *
  1048. * Note this does not disable interrupts like task_rq_lock,
  1049. * you need to do so manually before calling.
  1050. */
  1051. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1052. __acquires(rq1->lock)
  1053. __acquires(rq2->lock)
  1054. {
  1055. BUG_ON(!irqs_disabled());
  1056. BUG_ON(rq1 != rq2);
  1057. raw_spin_lock(&rq1->lock);
  1058. __acquire(rq2->lock); /* Fake it out ;) */
  1059. }
  1060. /*
  1061. * double_rq_unlock - safely unlock two runqueues
  1062. *
  1063. * Note this does not restore interrupts like task_rq_unlock,
  1064. * you need to do so manually after calling.
  1065. */
  1066. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1067. __releases(rq1->lock)
  1068. __releases(rq2->lock)
  1069. {
  1070. BUG_ON(rq1 != rq2);
  1071. raw_spin_unlock(&rq1->lock);
  1072. __release(rq2->lock);
  1073. }
  1074. #endif
  1075. extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
  1076. extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
  1077. extern void print_cfs_stats(struct seq_file *m, int cpu);
  1078. extern void print_rt_stats(struct seq_file *m, int cpu);
  1079. extern void init_cfs_rq(struct cfs_rq *cfs_rq);
  1080. extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
  1081. extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
  1082. #ifdef CONFIG_NO_HZ_COMMON
  1083. enum rq_nohz_flag_bits {
  1084. NOHZ_TICK_STOPPED,
  1085. NOHZ_BALANCE_KICK,
  1086. };
  1087. #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
  1088. #endif
  1089. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1090. DECLARE_PER_CPU(u64, cpu_hardirq_time);
  1091. DECLARE_PER_CPU(u64, cpu_softirq_time);
  1092. #ifndef CONFIG_64BIT
  1093. DECLARE_PER_CPU(seqcount_t, irq_time_seq);
  1094. static inline void irq_time_write_begin(void)
  1095. {
  1096. __this_cpu_inc(irq_time_seq.sequence);
  1097. smp_wmb();
  1098. }
  1099. static inline void irq_time_write_end(void)
  1100. {
  1101. smp_wmb();
  1102. __this_cpu_inc(irq_time_seq.sequence);
  1103. }
  1104. static inline u64 irq_time_read(int cpu)
  1105. {
  1106. u64 irq_time;
  1107. unsigned seq;
  1108. do {
  1109. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1110. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1111. per_cpu(cpu_hardirq_time, cpu);
  1112. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1113. return irq_time;
  1114. }
  1115. #else /* CONFIG_64BIT */
  1116. static inline void irq_time_write_begin(void)
  1117. {
  1118. }
  1119. static inline void irq_time_write_end(void)
  1120. {
  1121. }
  1122. static inline u64 irq_time_read(int cpu)
  1123. {
  1124. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1125. }
  1126. #endif /* CONFIG_64BIT */
  1127. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */