book3s_64_mmu_hv.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License
  12. * along with this program; if not, write to the Free Software
  13. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  14. *
  15. * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  16. */
  17. #include <linux/types.h>
  18. #include <linux/string.h>
  19. #include <linux/kvm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/highmem.h>
  22. #include <linux/gfp.h>
  23. #include <linux/slab.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/srcu.h>
  27. #include <linux/anon_inodes.h>
  28. #include <linux/file.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/kvm_ppc.h>
  31. #include <asm/kvm_book3s.h>
  32. #include <asm/mmu-hash64.h>
  33. #include <asm/hvcall.h>
  34. #include <asm/synch.h>
  35. #include <asm/ppc-opcode.h>
  36. #include <asm/cputable.h>
  37. /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
  38. #define MAX_LPID_970 63
  39. /* Power architecture requires HPT is at least 256kB */
  40. #define PPC_MIN_HPT_ORDER 18
  41. static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  42. long pte_index, unsigned long pteh,
  43. unsigned long ptel, unsigned long *pte_idx_ret);
  44. static void kvmppc_rmap_reset(struct kvm *kvm);
  45. long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
  46. {
  47. unsigned long hpt;
  48. struct revmap_entry *rev;
  49. struct page *page = NULL;
  50. long order = KVM_DEFAULT_HPT_ORDER;
  51. if (htab_orderp) {
  52. order = *htab_orderp;
  53. if (order < PPC_MIN_HPT_ORDER)
  54. order = PPC_MIN_HPT_ORDER;
  55. }
  56. kvm->arch.hpt_cma_alloc = 0;
  57. /*
  58. * try first to allocate it from the kernel page allocator.
  59. * We keep the CMA reserved for failed allocation.
  60. */
  61. hpt = __get_free_pages(GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT |
  62. __GFP_NOWARN, order - PAGE_SHIFT);
  63. /* Next try to allocate from the preallocated pool */
  64. if (!hpt) {
  65. page = kvm_alloc_hpt(1 << (order - PAGE_SHIFT));
  66. if (page) {
  67. hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
  68. kvm->arch.hpt_cma_alloc = 1;
  69. } else
  70. --order;
  71. }
  72. /* Lastly try successively smaller sizes from the page allocator */
  73. while (!hpt && order > PPC_MIN_HPT_ORDER) {
  74. hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  75. __GFP_NOWARN, order - PAGE_SHIFT);
  76. if (!hpt)
  77. --order;
  78. }
  79. if (!hpt)
  80. return -ENOMEM;
  81. kvm->arch.hpt_virt = hpt;
  82. kvm->arch.hpt_order = order;
  83. /* HPTEs are 2**4 bytes long */
  84. kvm->arch.hpt_npte = 1ul << (order - 4);
  85. /* 128 (2**7) bytes in each HPTEG */
  86. kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
  87. /* Allocate reverse map array */
  88. rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
  89. if (!rev) {
  90. pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
  91. goto out_freehpt;
  92. }
  93. kvm->arch.revmap = rev;
  94. kvm->arch.sdr1 = __pa(hpt) | (order - 18);
  95. pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
  96. hpt, order, kvm->arch.lpid);
  97. if (htab_orderp)
  98. *htab_orderp = order;
  99. return 0;
  100. out_freehpt:
  101. if (kvm->arch.hpt_cma_alloc)
  102. kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
  103. else
  104. free_pages(hpt, order - PAGE_SHIFT);
  105. return -ENOMEM;
  106. }
  107. long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
  108. {
  109. long err = -EBUSY;
  110. long order;
  111. mutex_lock(&kvm->lock);
  112. if (kvm->arch.rma_setup_done) {
  113. kvm->arch.rma_setup_done = 0;
  114. /* order rma_setup_done vs. vcpus_running */
  115. smp_mb();
  116. if (atomic_read(&kvm->arch.vcpus_running)) {
  117. kvm->arch.rma_setup_done = 1;
  118. goto out;
  119. }
  120. }
  121. if (kvm->arch.hpt_virt) {
  122. order = kvm->arch.hpt_order;
  123. /* Set the entire HPT to 0, i.e. invalid HPTEs */
  124. memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
  125. /*
  126. * Reset all the reverse-mapping chains for all memslots
  127. */
  128. kvmppc_rmap_reset(kvm);
  129. /* Ensure that each vcpu will flush its TLB on next entry. */
  130. cpumask_setall(&kvm->arch.need_tlb_flush);
  131. *htab_orderp = order;
  132. err = 0;
  133. } else {
  134. err = kvmppc_alloc_hpt(kvm, htab_orderp);
  135. order = *htab_orderp;
  136. }
  137. out:
  138. mutex_unlock(&kvm->lock);
  139. return err;
  140. }
  141. void kvmppc_free_hpt(struct kvm *kvm)
  142. {
  143. kvmppc_free_lpid(kvm->arch.lpid);
  144. vfree(kvm->arch.revmap);
  145. if (kvm->arch.hpt_cma_alloc)
  146. kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
  147. 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
  148. else
  149. free_pages(kvm->arch.hpt_virt,
  150. kvm->arch.hpt_order - PAGE_SHIFT);
  151. }
  152. /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
  153. static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
  154. {
  155. return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
  156. }
  157. /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
  158. static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
  159. {
  160. return (pgsize == 0x10000) ? 0x1000 : 0;
  161. }
  162. void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
  163. unsigned long porder)
  164. {
  165. unsigned long i;
  166. unsigned long npages;
  167. unsigned long hp_v, hp_r;
  168. unsigned long addr, hash;
  169. unsigned long psize;
  170. unsigned long hp0, hp1;
  171. unsigned long idx_ret;
  172. long ret;
  173. struct kvm *kvm = vcpu->kvm;
  174. psize = 1ul << porder;
  175. npages = memslot->npages >> (porder - PAGE_SHIFT);
  176. /* VRMA can't be > 1TB */
  177. if (npages > 1ul << (40 - porder))
  178. npages = 1ul << (40 - porder);
  179. /* Can't use more than 1 HPTE per HPTEG */
  180. if (npages > kvm->arch.hpt_mask + 1)
  181. npages = kvm->arch.hpt_mask + 1;
  182. hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
  183. HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
  184. hp1 = hpte1_pgsize_encoding(psize) |
  185. HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
  186. for (i = 0; i < npages; ++i) {
  187. addr = i << porder;
  188. /* can't use hpt_hash since va > 64 bits */
  189. hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
  190. /*
  191. * We assume that the hash table is empty and no
  192. * vcpus are using it at this stage. Since we create
  193. * at most one HPTE per HPTEG, we just assume entry 7
  194. * is available and use it.
  195. */
  196. hash = (hash << 3) + 7;
  197. hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
  198. hp_r = hp1 | addr;
  199. ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
  200. &idx_ret);
  201. if (ret != H_SUCCESS) {
  202. pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
  203. addr, ret);
  204. break;
  205. }
  206. }
  207. }
  208. int kvmppc_mmu_hv_init(void)
  209. {
  210. unsigned long host_lpid, rsvd_lpid;
  211. if (!cpu_has_feature(CPU_FTR_HVMODE))
  212. return -EINVAL;
  213. /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
  214. if (cpu_has_feature(CPU_FTR_ARCH_206)) {
  215. host_lpid = mfspr(SPRN_LPID); /* POWER7 */
  216. rsvd_lpid = LPID_RSVD;
  217. } else {
  218. host_lpid = 0; /* PPC970 */
  219. rsvd_lpid = MAX_LPID_970;
  220. }
  221. kvmppc_init_lpid(rsvd_lpid + 1);
  222. kvmppc_claim_lpid(host_lpid);
  223. /* rsvd_lpid is reserved for use in partition switching */
  224. kvmppc_claim_lpid(rsvd_lpid);
  225. return 0;
  226. }
  227. void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
  228. {
  229. }
  230. static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
  231. {
  232. kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
  233. }
  234. /*
  235. * This is called to get a reference to a guest page if there isn't
  236. * one already in the memslot->arch.slot_phys[] array.
  237. */
  238. static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
  239. struct kvm_memory_slot *memslot,
  240. unsigned long psize)
  241. {
  242. unsigned long start;
  243. long np, err;
  244. struct page *page, *hpage, *pages[1];
  245. unsigned long s, pgsize;
  246. unsigned long *physp;
  247. unsigned int is_io, got, pgorder;
  248. struct vm_area_struct *vma;
  249. unsigned long pfn, i, npages;
  250. physp = memslot->arch.slot_phys;
  251. if (!physp)
  252. return -EINVAL;
  253. if (physp[gfn - memslot->base_gfn])
  254. return 0;
  255. is_io = 0;
  256. got = 0;
  257. page = NULL;
  258. pgsize = psize;
  259. err = -EINVAL;
  260. start = gfn_to_hva_memslot(memslot, gfn);
  261. /* Instantiate and get the page we want access to */
  262. np = get_user_pages_fast(start, 1, 1, pages);
  263. if (np != 1) {
  264. /* Look up the vma for the page */
  265. down_read(&current->mm->mmap_sem);
  266. vma = find_vma(current->mm, start);
  267. if (!vma || vma->vm_start > start ||
  268. start + psize > vma->vm_end ||
  269. !(vma->vm_flags & VM_PFNMAP))
  270. goto up_err;
  271. is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
  272. pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  273. /* check alignment of pfn vs. requested page size */
  274. if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
  275. goto up_err;
  276. up_read(&current->mm->mmap_sem);
  277. } else {
  278. page = pages[0];
  279. got = KVMPPC_GOT_PAGE;
  280. /* See if this is a large page */
  281. s = PAGE_SIZE;
  282. if (PageHuge(page)) {
  283. hpage = compound_head(page);
  284. s <<= compound_order(hpage);
  285. /* Get the whole large page if slot alignment is ok */
  286. if (s > psize && slot_is_aligned(memslot, s) &&
  287. !(memslot->userspace_addr & (s - 1))) {
  288. start &= ~(s - 1);
  289. pgsize = s;
  290. get_page(hpage);
  291. put_page(page);
  292. page = hpage;
  293. }
  294. }
  295. if (s < psize)
  296. goto out;
  297. pfn = page_to_pfn(page);
  298. }
  299. npages = pgsize >> PAGE_SHIFT;
  300. pgorder = __ilog2(npages);
  301. physp += (gfn - memslot->base_gfn) & ~(npages - 1);
  302. spin_lock(&kvm->arch.slot_phys_lock);
  303. for (i = 0; i < npages; ++i) {
  304. if (!physp[i]) {
  305. physp[i] = ((pfn + i) << PAGE_SHIFT) +
  306. got + is_io + pgorder;
  307. got = 0;
  308. }
  309. }
  310. spin_unlock(&kvm->arch.slot_phys_lock);
  311. err = 0;
  312. out:
  313. if (got)
  314. put_page(page);
  315. return err;
  316. up_err:
  317. up_read(&current->mm->mmap_sem);
  318. return err;
  319. }
  320. long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  321. long pte_index, unsigned long pteh,
  322. unsigned long ptel, unsigned long *pte_idx_ret)
  323. {
  324. unsigned long psize, gpa, gfn;
  325. struct kvm_memory_slot *memslot;
  326. long ret;
  327. if (kvm->arch.using_mmu_notifiers)
  328. goto do_insert;
  329. psize = hpte_page_size(pteh, ptel);
  330. if (!psize)
  331. return H_PARAMETER;
  332. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  333. /* Find the memslot (if any) for this address */
  334. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  335. gfn = gpa >> PAGE_SHIFT;
  336. memslot = gfn_to_memslot(kvm, gfn);
  337. if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
  338. if (!slot_is_aligned(memslot, psize))
  339. return H_PARAMETER;
  340. if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
  341. return H_PARAMETER;
  342. }
  343. do_insert:
  344. /* Protect linux PTE lookup from page table destruction */
  345. rcu_read_lock_sched(); /* this disables preemption too */
  346. ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
  347. current->mm->pgd, false, pte_idx_ret);
  348. rcu_read_unlock_sched();
  349. if (ret == H_TOO_HARD) {
  350. /* this can't happen */
  351. pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
  352. ret = H_RESOURCE; /* or something */
  353. }
  354. return ret;
  355. }
  356. /*
  357. * We come here on a H_ENTER call from the guest when we are not
  358. * using mmu notifiers and we don't have the requested page pinned
  359. * already.
  360. */
  361. long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  362. long pte_index, unsigned long pteh,
  363. unsigned long ptel)
  364. {
  365. return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
  366. pteh, ptel, &vcpu->arch.gpr[4]);
  367. }
  368. static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
  369. gva_t eaddr)
  370. {
  371. u64 mask;
  372. int i;
  373. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  374. if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
  375. continue;
  376. if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
  377. mask = ESID_MASK_1T;
  378. else
  379. mask = ESID_MASK;
  380. if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
  381. return &vcpu->arch.slb[i];
  382. }
  383. return NULL;
  384. }
  385. static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
  386. unsigned long ea)
  387. {
  388. unsigned long ra_mask;
  389. ra_mask = hpte_page_size(v, r) - 1;
  390. return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
  391. }
  392. static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
  393. struct kvmppc_pte *gpte, bool data)
  394. {
  395. struct kvm *kvm = vcpu->kvm;
  396. struct kvmppc_slb *slbe;
  397. unsigned long slb_v;
  398. unsigned long pp, key;
  399. unsigned long v, gr;
  400. unsigned long *hptep;
  401. int index;
  402. int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
  403. /* Get SLB entry */
  404. if (virtmode) {
  405. slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
  406. if (!slbe)
  407. return -EINVAL;
  408. slb_v = slbe->origv;
  409. } else {
  410. /* real mode access */
  411. slb_v = vcpu->kvm->arch.vrma_slb_v;
  412. }
  413. /* Find the HPTE in the hash table */
  414. index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
  415. HPTE_V_VALID | HPTE_V_ABSENT);
  416. if (index < 0)
  417. return -ENOENT;
  418. hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  419. v = hptep[0] & ~HPTE_V_HVLOCK;
  420. gr = kvm->arch.revmap[index].guest_rpte;
  421. /* Unlock the HPTE */
  422. asm volatile("lwsync" : : : "memory");
  423. hptep[0] = v;
  424. gpte->eaddr = eaddr;
  425. gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
  426. /* Get PP bits and key for permission check */
  427. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  428. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  429. key &= slb_v;
  430. /* Calculate permissions */
  431. gpte->may_read = hpte_read_permission(pp, key);
  432. gpte->may_write = hpte_write_permission(pp, key);
  433. gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
  434. /* Storage key permission check for POWER7 */
  435. if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
  436. int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
  437. if (amrfield & 1)
  438. gpte->may_read = 0;
  439. if (amrfield & 2)
  440. gpte->may_write = 0;
  441. }
  442. /* Get the guest physical address */
  443. gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
  444. return 0;
  445. }
  446. /*
  447. * Quick test for whether an instruction is a load or a store.
  448. * If the instruction is a load or a store, then this will indicate
  449. * which it is, at least on server processors. (Embedded processors
  450. * have some external PID instructions that don't follow the rule
  451. * embodied here.) If the instruction isn't a load or store, then
  452. * this doesn't return anything useful.
  453. */
  454. static int instruction_is_store(unsigned int instr)
  455. {
  456. unsigned int mask;
  457. mask = 0x10000000;
  458. if ((instr & 0xfc000000) == 0x7c000000)
  459. mask = 0x100; /* major opcode 31 */
  460. return (instr & mask) != 0;
  461. }
  462. static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
  463. unsigned long gpa, gva_t ea, int is_store)
  464. {
  465. int ret;
  466. u32 last_inst;
  467. unsigned long srr0 = kvmppc_get_pc(vcpu);
  468. /* We try to load the last instruction. We don't let
  469. * emulate_instruction do it as it doesn't check what
  470. * kvmppc_ld returns.
  471. * If we fail, we just return to the guest and try executing it again.
  472. */
  473. if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
  474. ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
  475. if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
  476. return RESUME_GUEST;
  477. vcpu->arch.last_inst = last_inst;
  478. }
  479. /*
  480. * WARNING: We do not know for sure whether the instruction we just
  481. * read from memory is the same that caused the fault in the first
  482. * place. If the instruction we read is neither an load or a store,
  483. * then it can't access memory, so we don't need to worry about
  484. * enforcing access permissions. So, assuming it is a load or
  485. * store, we just check that its direction (load or store) is
  486. * consistent with the original fault, since that's what we
  487. * checked the access permissions against. If there is a mismatch
  488. * we just return and retry the instruction.
  489. */
  490. if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
  491. return RESUME_GUEST;
  492. /*
  493. * Emulated accesses are emulated by looking at the hash for
  494. * translation once, then performing the access later. The
  495. * translation could be invalidated in the meantime in which
  496. * point performing the subsequent memory access on the old
  497. * physical address could possibly be a security hole for the
  498. * guest (but not the host).
  499. *
  500. * This is less of an issue for MMIO stores since they aren't
  501. * globally visible. It could be an issue for MMIO loads to
  502. * a certain extent but we'll ignore it for now.
  503. */
  504. vcpu->arch.paddr_accessed = gpa;
  505. vcpu->arch.vaddr_accessed = ea;
  506. return kvmppc_emulate_mmio(run, vcpu);
  507. }
  508. int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
  509. unsigned long ea, unsigned long dsisr)
  510. {
  511. struct kvm *kvm = vcpu->kvm;
  512. unsigned long *hptep, hpte[3], r;
  513. unsigned long mmu_seq, psize, pte_size;
  514. unsigned long gpa, gfn, hva, pfn;
  515. struct kvm_memory_slot *memslot;
  516. unsigned long *rmap;
  517. struct revmap_entry *rev;
  518. struct page *page, *pages[1];
  519. long index, ret, npages;
  520. unsigned long is_io;
  521. unsigned int writing, write_ok;
  522. struct vm_area_struct *vma;
  523. unsigned long rcbits;
  524. /*
  525. * Real-mode code has already searched the HPT and found the
  526. * entry we're interested in. Lock the entry and check that
  527. * it hasn't changed. If it has, just return and re-execute the
  528. * instruction.
  529. */
  530. if (ea != vcpu->arch.pgfault_addr)
  531. return RESUME_GUEST;
  532. index = vcpu->arch.pgfault_index;
  533. hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  534. rev = &kvm->arch.revmap[index];
  535. preempt_disable();
  536. while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
  537. cpu_relax();
  538. hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
  539. hpte[1] = hptep[1];
  540. hpte[2] = r = rev->guest_rpte;
  541. asm volatile("lwsync" : : : "memory");
  542. hptep[0] = hpte[0];
  543. preempt_enable();
  544. if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
  545. hpte[1] != vcpu->arch.pgfault_hpte[1])
  546. return RESUME_GUEST;
  547. /* Translate the logical address and get the page */
  548. psize = hpte_page_size(hpte[0], r);
  549. gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
  550. gfn = gpa >> PAGE_SHIFT;
  551. memslot = gfn_to_memslot(kvm, gfn);
  552. /* No memslot means it's an emulated MMIO region */
  553. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  554. return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
  555. dsisr & DSISR_ISSTORE);
  556. if (!kvm->arch.using_mmu_notifiers)
  557. return -EFAULT; /* should never get here */
  558. /* used to check for invalidations in progress */
  559. mmu_seq = kvm->mmu_notifier_seq;
  560. smp_rmb();
  561. is_io = 0;
  562. pfn = 0;
  563. page = NULL;
  564. pte_size = PAGE_SIZE;
  565. writing = (dsisr & DSISR_ISSTORE) != 0;
  566. /* If writing != 0, then the HPTE must allow writing, if we get here */
  567. write_ok = writing;
  568. hva = gfn_to_hva_memslot(memslot, gfn);
  569. npages = get_user_pages_fast(hva, 1, writing, pages);
  570. if (npages < 1) {
  571. /* Check if it's an I/O mapping */
  572. down_read(&current->mm->mmap_sem);
  573. vma = find_vma(current->mm, hva);
  574. if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
  575. (vma->vm_flags & VM_PFNMAP)) {
  576. pfn = vma->vm_pgoff +
  577. ((hva - vma->vm_start) >> PAGE_SHIFT);
  578. pte_size = psize;
  579. is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
  580. write_ok = vma->vm_flags & VM_WRITE;
  581. }
  582. up_read(&current->mm->mmap_sem);
  583. if (!pfn)
  584. return -EFAULT;
  585. } else {
  586. page = pages[0];
  587. if (PageHuge(page)) {
  588. page = compound_head(page);
  589. pte_size <<= compound_order(page);
  590. }
  591. /* if the guest wants write access, see if that is OK */
  592. if (!writing && hpte_is_writable(r)) {
  593. pte_t *ptep, pte;
  594. /*
  595. * We need to protect against page table destruction
  596. * while looking up and updating the pte.
  597. */
  598. rcu_read_lock_sched();
  599. ptep = find_linux_pte_or_hugepte(current->mm->pgd,
  600. hva, NULL);
  601. if (ptep && pte_present(*ptep)) {
  602. pte = kvmppc_read_update_linux_pte(ptep, 1);
  603. if (pte_write(pte))
  604. write_ok = 1;
  605. }
  606. rcu_read_unlock_sched();
  607. }
  608. pfn = page_to_pfn(page);
  609. }
  610. ret = -EFAULT;
  611. if (psize > pte_size)
  612. goto out_put;
  613. /* Check WIMG vs. the actual page we're accessing */
  614. if (!hpte_cache_flags_ok(r, is_io)) {
  615. if (is_io)
  616. return -EFAULT;
  617. /*
  618. * Allow guest to map emulated device memory as
  619. * uncacheable, but actually make it cacheable.
  620. */
  621. r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
  622. }
  623. /* Set the HPTE to point to pfn */
  624. r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
  625. if (hpte_is_writable(r) && !write_ok)
  626. r = hpte_make_readonly(r);
  627. ret = RESUME_GUEST;
  628. preempt_disable();
  629. while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
  630. cpu_relax();
  631. if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
  632. rev->guest_rpte != hpte[2])
  633. /* HPTE has been changed under us; let the guest retry */
  634. goto out_unlock;
  635. hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
  636. rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
  637. lock_rmap(rmap);
  638. /* Check if we might have been invalidated; let the guest retry if so */
  639. ret = RESUME_GUEST;
  640. if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
  641. unlock_rmap(rmap);
  642. goto out_unlock;
  643. }
  644. /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
  645. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  646. r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  647. if (hptep[0] & HPTE_V_VALID) {
  648. /* HPTE was previously valid, so we need to invalidate it */
  649. unlock_rmap(rmap);
  650. hptep[0] |= HPTE_V_ABSENT;
  651. kvmppc_invalidate_hpte(kvm, hptep, index);
  652. /* don't lose previous R and C bits */
  653. r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
  654. } else {
  655. kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
  656. }
  657. hptep[1] = r;
  658. eieio();
  659. hptep[0] = hpte[0];
  660. asm volatile("ptesync" : : : "memory");
  661. preempt_enable();
  662. if (page && hpte_is_writable(r))
  663. SetPageDirty(page);
  664. out_put:
  665. if (page) {
  666. /*
  667. * We drop pages[0] here, not page because page might
  668. * have been set to the head page of a compound, but
  669. * we have to drop the reference on the correct tail
  670. * page to match the get inside gup()
  671. */
  672. put_page(pages[0]);
  673. }
  674. return ret;
  675. out_unlock:
  676. hptep[0] &= ~HPTE_V_HVLOCK;
  677. preempt_enable();
  678. goto out_put;
  679. }
  680. static void kvmppc_rmap_reset(struct kvm *kvm)
  681. {
  682. struct kvm_memslots *slots;
  683. struct kvm_memory_slot *memslot;
  684. int srcu_idx;
  685. srcu_idx = srcu_read_lock(&kvm->srcu);
  686. slots = kvm->memslots;
  687. kvm_for_each_memslot(memslot, slots) {
  688. /*
  689. * This assumes it is acceptable to lose reference and
  690. * change bits across a reset.
  691. */
  692. memset(memslot->arch.rmap, 0,
  693. memslot->npages * sizeof(*memslot->arch.rmap));
  694. }
  695. srcu_read_unlock(&kvm->srcu, srcu_idx);
  696. }
  697. static int kvm_handle_hva_range(struct kvm *kvm,
  698. unsigned long start,
  699. unsigned long end,
  700. int (*handler)(struct kvm *kvm,
  701. unsigned long *rmapp,
  702. unsigned long gfn))
  703. {
  704. int ret;
  705. int retval = 0;
  706. struct kvm_memslots *slots;
  707. struct kvm_memory_slot *memslot;
  708. slots = kvm_memslots(kvm);
  709. kvm_for_each_memslot(memslot, slots) {
  710. unsigned long hva_start, hva_end;
  711. gfn_t gfn, gfn_end;
  712. hva_start = max(start, memslot->userspace_addr);
  713. hva_end = min(end, memslot->userspace_addr +
  714. (memslot->npages << PAGE_SHIFT));
  715. if (hva_start >= hva_end)
  716. continue;
  717. /*
  718. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  719. * {gfn, gfn+1, ..., gfn_end-1}.
  720. */
  721. gfn = hva_to_gfn_memslot(hva_start, memslot);
  722. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  723. for (; gfn < gfn_end; ++gfn) {
  724. gfn_t gfn_offset = gfn - memslot->base_gfn;
  725. ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
  726. retval |= ret;
  727. }
  728. }
  729. return retval;
  730. }
  731. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  732. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  733. unsigned long gfn))
  734. {
  735. return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
  736. }
  737. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  738. unsigned long gfn)
  739. {
  740. struct revmap_entry *rev = kvm->arch.revmap;
  741. unsigned long h, i, j;
  742. unsigned long *hptep;
  743. unsigned long ptel, psize, rcbits;
  744. for (;;) {
  745. lock_rmap(rmapp);
  746. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  747. unlock_rmap(rmapp);
  748. break;
  749. }
  750. /*
  751. * To avoid an ABBA deadlock with the HPTE lock bit,
  752. * we can't spin on the HPTE lock while holding the
  753. * rmap chain lock.
  754. */
  755. i = *rmapp & KVMPPC_RMAP_INDEX;
  756. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  757. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  758. /* unlock rmap before spinning on the HPTE lock */
  759. unlock_rmap(rmapp);
  760. while (hptep[0] & HPTE_V_HVLOCK)
  761. cpu_relax();
  762. continue;
  763. }
  764. j = rev[i].forw;
  765. if (j == i) {
  766. /* chain is now empty */
  767. *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  768. } else {
  769. /* remove i from chain */
  770. h = rev[i].back;
  771. rev[h].forw = j;
  772. rev[j].back = h;
  773. rev[i].forw = rev[i].back = i;
  774. *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
  775. }
  776. /* Now check and modify the HPTE */
  777. ptel = rev[i].guest_rpte;
  778. psize = hpte_page_size(hptep[0], ptel);
  779. if ((hptep[0] & HPTE_V_VALID) &&
  780. hpte_rpn(ptel, psize) == gfn) {
  781. if (kvm->arch.using_mmu_notifiers)
  782. hptep[0] |= HPTE_V_ABSENT;
  783. kvmppc_invalidate_hpte(kvm, hptep, i);
  784. /* Harvest R and C */
  785. rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
  786. *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  787. if (rcbits & ~rev[i].guest_rpte) {
  788. rev[i].guest_rpte = ptel | rcbits;
  789. note_hpte_modification(kvm, &rev[i]);
  790. }
  791. }
  792. unlock_rmap(rmapp);
  793. hptep[0] &= ~HPTE_V_HVLOCK;
  794. }
  795. return 0;
  796. }
  797. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  798. {
  799. if (kvm->arch.using_mmu_notifiers)
  800. kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  801. return 0;
  802. }
  803. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  804. {
  805. if (kvm->arch.using_mmu_notifiers)
  806. kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
  807. return 0;
  808. }
  809. void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
  810. {
  811. unsigned long *rmapp;
  812. unsigned long gfn;
  813. unsigned long n;
  814. rmapp = memslot->arch.rmap;
  815. gfn = memslot->base_gfn;
  816. for (n = memslot->npages; n; --n) {
  817. /*
  818. * Testing the present bit without locking is OK because
  819. * the memslot has been marked invalid already, and hence
  820. * no new HPTEs referencing this page can be created,
  821. * thus the present bit can't go from 0 to 1.
  822. */
  823. if (*rmapp & KVMPPC_RMAP_PRESENT)
  824. kvm_unmap_rmapp(kvm, rmapp, gfn);
  825. ++rmapp;
  826. ++gfn;
  827. }
  828. }
  829. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  830. unsigned long gfn)
  831. {
  832. struct revmap_entry *rev = kvm->arch.revmap;
  833. unsigned long head, i, j;
  834. unsigned long *hptep;
  835. int ret = 0;
  836. retry:
  837. lock_rmap(rmapp);
  838. if (*rmapp & KVMPPC_RMAP_REFERENCED) {
  839. *rmapp &= ~KVMPPC_RMAP_REFERENCED;
  840. ret = 1;
  841. }
  842. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  843. unlock_rmap(rmapp);
  844. return ret;
  845. }
  846. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  847. do {
  848. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  849. j = rev[i].forw;
  850. /* If this HPTE isn't referenced, ignore it */
  851. if (!(hptep[1] & HPTE_R_R))
  852. continue;
  853. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  854. /* unlock rmap before spinning on the HPTE lock */
  855. unlock_rmap(rmapp);
  856. while (hptep[0] & HPTE_V_HVLOCK)
  857. cpu_relax();
  858. goto retry;
  859. }
  860. /* Now check and modify the HPTE */
  861. if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
  862. kvmppc_clear_ref_hpte(kvm, hptep, i);
  863. if (!(rev[i].guest_rpte & HPTE_R_R)) {
  864. rev[i].guest_rpte |= HPTE_R_R;
  865. note_hpte_modification(kvm, &rev[i]);
  866. }
  867. ret = 1;
  868. }
  869. hptep[0] &= ~HPTE_V_HVLOCK;
  870. } while ((i = j) != head);
  871. unlock_rmap(rmapp);
  872. return ret;
  873. }
  874. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  875. {
  876. if (!kvm->arch.using_mmu_notifiers)
  877. return 0;
  878. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  879. }
  880. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  881. unsigned long gfn)
  882. {
  883. struct revmap_entry *rev = kvm->arch.revmap;
  884. unsigned long head, i, j;
  885. unsigned long *hp;
  886. int ret = 1;
  887. if (*rmapp & KVMPPC_RMAP_REFERENCED)
  888. return 1;
  889. lock_rmap(rmapp);
  890. if (*rmapp & KVMPPC_RMAP_REFERENCED)
  891. goto out;
  892. if (*rmapp & KVMPPC_RMAP_PRESENT) {
  893. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  894. do {
  895. hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
  896. j = rev[i].forw;
  897. if (hp[1] & HPTE_R_R)
  898. goto out;
  899. } while ((i = j) != head);
  900. }
  901. ret = 0;
  902. out:
  903. unlock_rmap(rmapp);
  904. return ret;
  905. }
  906. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  907. {
  908. if (!kvm->arch.using_mmu_notifiers)
  909. return 0;
  910. return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
  911. }
  912. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  913. {
  914. if (!kvm->arch.using_mmu_notifiers)
  915. return;
  916. kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  917. }
  918. static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
  919. {
  920. struct revmap_entry *rev = kvm->arch.revmap;
  921. unsigned long head, i, j;
  922. unsigned long *hptep;
  923. int ret = 0;
  924. retry:
  925. lock_rmap(rmapp);
  926. if (*rmapp & KVMPPC_RMAP_CHANGED) {
  927. *rmapp &= ~KVMPPC_RMAP_CHANGED;
  928. ret = 1;
  929. }
  930. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  931. unlock_rmap(rmapp);
  932. return ret;
  933. }
  934. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  935. do {
  936. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  937. j = rev[i].forw;
  938. if (!(hptep[1] & HPTE_R_C))
  939. continue;
  940. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  941. /* unlock rmap before spinning on the HPTE lock */
  942. unlock_rmap(rmapp);
  943. while (hptep[0] & HPTE_V_HVLOCK)
  944. cpu_relax();
  945. goto retry;
  946. }
  947. /* Now check and modify the HPTE */
  948. if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
  949. /* need to make it temporarily absent to clear C */
  950. hptep[0] |= HPTE_V_ABSENT;
  951. kvmppc_invalidate_hpte(kvm, hptep, i);
  952. hptep[1] &= ~HPTE_R_C;
  953. eieio();
  954. hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
  955. if (!(rev[i].guest_rpte & HPTE_R_C)) {
  956. rev[i].guest_rpte |= HPTE_R_C;
  957. note_hpte_modification(kvm, &rev[i]);
  958. }
  959. ret = 1;
  960. }
  961. hptep[0] &= ~HPTE_V_HVLOCK;
  962. } while ((i = j) != head);
  963. unlock_rmap(rmapp);
  964. return ret;
  965. }
  966. static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
  967. struct kvm_memory_slot *memslot,
  968. unsigned long *map)
  969. {
  970. unsigned long gfn;
  971. if (!vpa->dirty || !vpa->pinned_addr)
  972. return;
  973. gfn = vpa->gpa >> PAGE_SHIFT;
  974. if (gfn < memslot->base_gfn ||
  975. gfn >= memslot->base_gfn + memslot->npages)
  976. return;
  977. vpa->dirty = false;
  978. if (map)
  979. __set_bit_le(gfn - memslot->base_gfn, map);
  980. }
  981. long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
  982. unsigned long *map)
  983. {
  984. unsigned long i;
  985. unsigned long *rmapp;
  986. struct kvm_vcpu *vcpu;
  987. preempt_disable();
  988. rmapp = memslot->arch.rmap;
  989. for (i = 0; i < memslot->npages; ++i) {
  990. if (kvm_test_clear_dirty(kvm, rmapp) && map)
  991. __set_bit_le(i, map);
  992. ++rmapp;
  993. }
  994. /* Harvest dirty bits from VPA and DTL updates */
  995. /* Note: we never modify the SLB shadow buffer areas */
  996. kvm_for_each_vcpu(i, vcpu, kvm) {
  997. spin_lock(&vcpu->arch.vpa_update_lock);
  998. harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
  999. harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
  1000. spin_unlock(&vcpu->arch.vpa_update_lock);
  1001. }
  1002. preempt_enable();
  1003. return 0;
  1004. }
  1005. void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
  1006. unsigned long *nb_ret)
  1007. {
  1008. struct kvm_memory_slot *memslot;
  1009. unsigned long gfn = gpa >> PAGE_SHIFT;
  1010. struct page *page, *pages[1];
  1011. int npages;
  1012. unsigned long hva, offset;
  1013. unsigned long pa;
  1014. unsigned long *physp;
  1015. int srcu_idx;
  1016. srcu_idx = srcu_read_lock(&kvm->srcu);
  1017. memslot = gfn_to_memslot(kvm, gfn);
  1018. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  1019. goto err;
  1020. if (!kvm->arch.using_mmu_notifiers) {
  1021. physp = memslot->arch.slot_phys;
  1022. if (!physp)
  1023. goto err;
  1024. physp += gfn - memslot->base_gfn;
  1025. pa = *physp;
  1026. if (!pa) {
  1027. if (kvmppc_get_guest_page(kvm, gfn, memslot,
  1028. PAGE_SIZE) < 0)
  1029. goto err;
  1030. pa = *physp;
  1031. }
  1032. page = pfn_to_page(pa >> PAGE_SHIFT);
  1033. get_page(page);
  1034. } else {
  1035. hva = gfn_to_hva_memslot(memslot, gfn);
  1036. npages = get_user_pages_fast(hva, 1, 1, pages);
  1037. if (npages < 1)
  1038. goto err;
  1039. page = pages[0];
  1040. }
  1041. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1042. offset = gpa & (PAGE_SIZE - 1);
  1043. if (nb_ret)
  1044. *nb_ret = PAGE_SIZE - offset;
  1045. return page_address(page) + offset;
  1046. err:
  1047. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1048. return NULL;
  1049. }
  1050. void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
  1051. bool dirty)
  1052. {
  1053. struct page *page = virt_to_page(va);
  1054. struct kvm_memory_slot *memslot;
  1055. unsigned long gfn;
  1056. unsigned long *rmap;
  1057. int srcu_idx;
  1058. put_page(page);
  1059. if (!dirty || !kvm->arch.using_mmu_notifiers)
  1060. return;
  1061. /* We need to mark this page dirty in the rmap chain */
  1062. gfn = gpa >> PAGE_SHIFT;
  1063. srcu_idx = srcu_read_lock(&kvm->srcu);
  1064. memslot = gfn_to_memslot(kvm, gfn);
  1065. if (memslot) {
  1066. rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
  1067. lock_rmap(rmap);
  1068. *rmap |= KVMPPC_RMAP_CHANGED;
  1069. unlock_rmap(rmap);
  1070. }
  1071. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1072. }
  1073. /*
  1074. * Functions for reading and writing the hash table via reads and
  1075. * writes on a file descriptor.
  1076. *
  1077. * Reads return the guest view of the hash table, which has to be
  1078. * pieced together from the real hash table and the guest_rpte
  1079. * values in the revmap array.
  1080. *
  1081. * On writes, each HPTE written is considered in turn, and if it
  1082. * is valid, it is written to the HPT as if an H_ENTER with the
  1083. * exact flag set was done. When the invalid count is non-zero
  1084. * in the header written to the stream, the kernel will make
  1085. * sure that that many HPTEs are invalid, and invalidate them
  1086. * if not.
  1087. */
  1088. struct kvm_htab_ctx {
  1089. unsigned long index;
  1090. unsigned long flags;
  1091. struct kvm *kvm;
  1092. int first_pass;
  1093. };
  1094. #define HPTE_SIZE (2 * sizeof(unsigned long))
  1095. /*
  1096. * Returns 1 if this HPT entry has been modified or has pending
  1097. * R/C bit changes.
  1098. */
  1099. static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
  1100. {
  1101. unsigned long rcbits_unset;
  1102. if (revp->guest_rpte & HPTE_GR_MODIFIED)
  1103. return 1;
  1104. /* Also need to consider changes in reference and changed bits */
  1105. rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
  1106. if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
  1107. return 1;
  1108. return 0;
  1109. }
  1110. static long record_hpte(unsigned long flags, unsigned long *hptp,
  1111. unsigned long *hpte, struct revmap_entry *revp,
  1112. int want_valid, int first_pass)
  1113. {
  1114. unsigned long v, r;
  1115. unsigned long rcbits_unset;
  1116. int ok = 1;
  1117. int valid, dirty;
  1118. /* Unmodified entries are uninteresting except on the first pass */
  1119. dirty = hpte_dirty(revp, hptp);
  1120. if (!first_pass && !dirty)
  1121. return 0;
  1122. valid = 0;
  1123. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  1124. valid = 1;
  1125. if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
  1126. !(hptp[0] & HPTE_V_BOLTED))
  1127. valid = 0;
  1128. }
  1129. if (valid != want_valid)
  1130. return 0;
  1131. v = r = 0;
  1132. if (valid || dirty) {
  1133. /* lock the HPTE so it's stable and read it */
  1134. preempt_disable();
  1135. while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
  1136. cpu_relax();
  1137. v = hptp[0];
  1138. /* re-evaluate valid and dirty from synchronized HPTE value */
  1139. valid = !!(v & HPTE_V_VALID);
  1140. dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
  1141. /* Harvest R and C into guest view if necessary */
  1142. rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
  1143. if (valid && (rcbits_unset & hptp[1])) {
  1144. revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
  1145. HPTE_GR_MODIFIED;
  1146. dirty = 1;
  1147. }
  1148. if (v & HPTE_V_ABSENT) {
  1149. v &= ~HPTE_V_ABSENT;
  1150. v |= HPTE_V_VALID;
  1151. valid = 1;
  1152. }
  1153. if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
  1154. valid = 0;
  1155. r = revp->guest_rpte;
  1156. /* only clear modified if this is the right sort of entry */
  1157. if (valid == want_valid && dirty) {
  1158. r &= ~HPTE_GR_MODIFIED;
  1159. revp->guest_rpte = r;
  1160. }
  1161. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  1162. hptp[0] &= ~HPTE_V_HVLOCK;
  1163. preempt_enable();
  1164. if (!(valid == want_valid && (first_pass || dirty)))
  1165. ok = 0;
  1166. }
  1167. hpte[0] = v;
  1168. hpte[1] = r;
  1169. return ok;
  1170. }
  1171. static ssize_t kvm_htab_read(struct file *file, char __user *buf,
  1172. size_t count, loff_t *ppos)
  1173. {
  1174. struct kvm_htab_ctx *ctx = file->private_data;
  1175. struct kvm *kvm = ctx->kvm;
  1176. struct kvm_get_htab_header hdr;
  1177. unsigned long *hptp;
  1178. struct revmap_entry *revp;
  1179. unsigned long i, nb, nw;
  1180. unsigned long __user *lbuf;
  1181. struct kvm_get_htab_header __user *hptr;
  1182. unsigned long flags;
  1183. int first_pass;
  1184. unsigned long hpte[2];
  1185. if (!access_ok(VERIFY_WRITE, buf, count))
  1186. return -EFAULT;
  1187. first_pass = ctx->first_pass;
  1188. flags = ctx->flags;
  1189. i = ctx->index;
  1190. hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
  1191. revp = kvm->arch.revmap + i;
  1192. lbuf = (unsigned long __user *)buf;
  1193. nb = 0;
  1194. while (nb + sizeof(hdr) + HPTE_SIZE < count) {
  1195. /* Initialize header */
  1196. hptr = (struct kvm_get_htab_header __user *)buf;
  1197. hdr.n_valid = 0;
  1198. hdr.n_invalid = 0;
  1199. nw = nb;
  1200. nb += sizeof(hdr);
  1201. lbuf = (unsigned long __user *)(buf + sizeof(hdr));
  1202. /* Skip uninteresting entries, i.e. clean on not-first pass */
  1203. if (!first_pass) {
  1204. while (i < kvm->arch.hpt_npte &&
  1205. !hpte_dirty(revp, hptp)) {
  1206. ++i;
  1207. hptp += 2;
  1208. ++revp;
  1209. }
  1210. }
  1211. hdr.index = i;
  1212. /* Grab a series of valid entries */
  1213. while (i < kvm->arch.hpt_npte &&
  1214. hdr.n_valid < 0xffff &&
  1215. nb + HPTE_SIZE < count &&
  1216. record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
  1217. /* valid entry, write it out */
  1218. ++hdr.n_valid;
  1219. if (__put_user(hpte[0], lbuf) ||
  1220. __put_user(hpte[1], lbuf + 1))
  1221. return -EFAULT;
  1222. nb += HPTE_SIZE;
  1223. lbuf += 2;
  1224. ++i;
  1225. hptp += 2;
  1226. ++revp;
  1227. }
  1228. /* Now skip invalid entries while we can */
  1229. while (i < kvm->arch.hpt_npte &&
  1230. hdr.n_invalid < 0xffff &&
  1231. record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
  1232. /* found an invalid entry */
  1233. ++hdr.n_invalid;
  1234. ++i;
  1235. hptp += 2;
  1236. ++revp;
  1237. }
  1238. if (hdr.n_valid || hdr.n_invalid) {
  1239. /* write back the header */
  1240. if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
  1241. return -EFAULT;
  1242. nw = nb;
  1243. buf = (char __user *)lbuf;
  1244. } else {
  1245. nb = nw;
  1246. }
  1247. /* Check if we've wrapped around the hash table */
  1248. if (i >= kvm->arch.hpt_npte) {
  1249. i = 0;
  1250. ctx->first_pass = 0;
  1251. break;
  1252. }
  1253. }
  1254. ctx->index = i;
  1255. return nb;
  1256. }
  1257. static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
  1258. size_t count, loff_t *ppos)
  1259. {
  1260. struct kvm_htab_ctx *ctx = file->private_data;
  1261. struct kvm *kvm = ctx->kvm;
  1262. struct kvm_get_htab_header hdr;
  1263. unsigned long i, j;
  1264. unsigned long v, r;
  1265. unsigned long __user *lbuf;
  1266. unsigned long *hptp;
  1267. unsigned long tmp[2];
  1268. ssize_t nb;
  1269. long int err, ret;
  1270. int rma_setup;
  1271. if (!access_ok(VERIFY_READ, buf, count))
  1272. return -EFAULT;
  1273. /* lock out vcpus from running while we're doing this */
  1274. mutex_lock(&kvm->lock);
  1275. rma_setup = kvm->arch.rma_setup_done;
  1276. if (rma_setup) {
  1277. kvm->arch.rma_setup_done = 0; /* temporarily */
  1278. /* order rma_setup_done vs. vcpus_running */
  1279. smp_mb();
  1280. if (atomic_read(&kvm->arch.vcpus_running)) {
  1281. kvm->arch.rma_setup_done = 1;
  1282. mutex_unlock(&kvm->lock);
  1283. return -EBUSY;
  1284. }
  1285. }
  1286. err = 0;
  1287. for (nb = 0; nb + sizeof(hdr) <= count; ) {
  1288. err = -EFAULT;
  1289. if (__copy_from_user(&hdr, buf, sizeof(hdr)))
  1290. break;
  1291. err = 0;
  1292. if (nb + hdr.n_valid * HPTE_SIZE > count)
  1293. break;
  1294. nb += sizeof(hdr);
  1295. buf += sizeof(hdr);
  1296. err = -EINVAL;
  1297. i = hdr.index;
  1298. if (i >= kvm->arch.hpt_npte ||
  1299. i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
  1300. break;
  1301. hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
  1302. lbuf = (unsigned long __user *)buf;
  1303. for (j = 0; j < hdr.n_valid; ++j) {
  1304. err = -EFAULT;
  1305. if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
  1306. goto out;
  1307. err = -EINVAL;
  1308. if (!(v & HPTE_V_VALID))
  1309. goto out;
  1310. lbuf += 2;
  1311. nb += HPTE_SIZE;
  1312. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
  1313. kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
  1314. err = -EIO;
  1315. ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
  1316. tmp);
  1317. if (ret != H_SUCCESS) {
  1318. pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
  1319. "r=%lx\n", ret, i, v, r);
  1320. goto out;
  1321. }
  1322. if (!rma_setup && is_vrma_hpte(v)) {
  1323. unsigned long psize = hpte_page_size(v, r);
  1324. unsigned long senc = slb_pgsize_encoding(psize);
  1325. unsigned long lpcr;
  1326. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  1327. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1328. lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
  1329. lpcr |= senc << (LPCR_VRMASD_SH - 4);
  1330. kvm->arch.lpcr = lpcr;
  1331. rma_setup = 1;
  1332. }
  1333. ++i;
  1334. hptp += 2;
  1335. }
  1336. for (j = 0; j < hdr.n_invalid; ++j) {
  1337. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
  1338. kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
  1339. ++i;
  1340. hptp += 2;
  1341. }
  1342. err = 0;
  1343. }
  1344. out:
  1345. /* Order HPTE updates vs. rma_setup_done */
  1346. smp_wmb();
  1347. kvm->arch.rma_setup_done = rma_setup;
  1348. mutex_unlock(&kvm->lock);
  1349. if (err)
  1350. return err;
  1351. return nb;
  1352. }
  1353. static int kvm_htab_release(struct inode *inode, struct file *filp)
  1354. {
  1355. struct kvm_htab_ctx *ctx = filp->private_data;
  1356. filp->private_data = NULL;
  1357. if (!(ctx->flags & KVM_GET_HTAB_WRITE))
  1358. atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
  1359. kvm_put_kvm(ctx->kvm);
  1360. kfree(ctx);
  1361. return 0;
  1362. }
  1363. static const struct file_operations kvm_htab_fops = {
  1364. .read = kvm_htab_read,
  1365. .write = kvm_htab_write,
  1366. .llseek = default_llseek,
  1367. .release = kvm_htab_release,
  1368. };
  1369. int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
  1370. {
  1371. int ret;
  1372. struct kvm_htab_ctx *ctx;
  1373. int rwflag;
  1374. /* reject flags we don't recognize */
  1375. if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
  1376. return -EINVAL;
  1377. ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
  1378. if (!ctx)
  1379. return -ENOMEM;
  1380. kvm_get_kvm(kvm);
  1381. ctx->kvm = kvm;
  1382. ctx->index = ghf->start_index;
  1383. ctx->flags = ghf->flags;
  1384. ctx->first_pass = 1;
  1385. rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
  1386. ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag);
  1387. if (ret < 0) {
  1388. kvm_put_kvm(kvm);
  1389. return ret;
  1390. }
  1391. if (rwflag == O_RDONLY) {
  1392. mutex_lock(&kvm->slots_lock);
  1393. atomic_inc(&kvm->arch.hpte_mod_interest);
  1394. /* make sure kvmppc_do_h_enter etc. see the increment */
  1395. synchronize_srcu_expedited(&kvm->srcu);
  1396. mutex_unlock(&kvm->slots_lock);
  1397. }
  1398. return ret;
  1399. }
  1400. void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
  1401. {
  1402. struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
  1403. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1404. vcpu->arch.slb_nr = 32; /* POWER7 */
  1405. else
  1406. vcpu->arch.slb_nr = 64;
  1407. mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
  1408. mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
  1409. vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
  1410. }