e1000_main.c 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. #include "e1000.h"
  21. /* Change Log
  22. * 5.3.12 6/7/04
  23. * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
  24. * - if_mii support and associated kcompat for older kernels
  25. * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
  26. * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
  27. *
  28. * 5.7.1 12/16/04
  29. * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
  30. * fix was removed as it caused system instability. The suspected cause of
  31. * this is the called to e1000_irq_disable in e1000_intr. Inlined the
  32. * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
  33. * 5.7.0 12/10/04
  34. * - include fix to the condition that determines when to quit NAPI - Robert Olsson
  35. * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
  36. * 5.6.5 11/01/04
  37. * - Enabling NETIF_F_SG without checksum offload is illegal -
  38. John Mason <jdmason@us.ibm.com>
  39. * 5.6.3 10/26/04
  40. * - Remove redundant initialization - Jamal Hadi
  41. * - Reset buffer_info->dma in tx resource cleanup logic
  42. * 5.6.2 10/12/04
  43. * - Avoid filling tx_ring completely - shemminger@osdl.org
  44. * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
  45. * nacc@us.ibm.com
  46. * - Sparse cleanup - shemminger@osdl.org
  47. * - Fix tx resource cleanup logic
  48. * - LLTX support - ak@suse.de and hadi@cyberus.ca
  49. */
  50. char e1000_driver_name[] = "e1000";
  51. char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  52. #ifndef CONFIG_E1000_NAPI
  53. #define DRIVERNAPI
  54. #else
  55. #define DRIVERNAPI "-NAPI"
  56. #endif
  57. #define DRV_VERSION "5.7.6-k2"DRIVERNAPI
  58. char e1000_driver_version[] = DRV_VERSION;
  59. char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
  60. /* e1000_pci_tbl - PCI Device ID Table
  61. *
  62. * Last entry must be all 0s
  63. *
  64. * Macro expands to...
  65. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  66. */
  67. static struct pci_device_id e1000_pci_tbl[] = {
  68. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  69. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  70. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  71. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  72. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  73. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  74. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  75. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  76. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  77. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  78. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  79. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  80. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  81. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  82. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  83. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  84. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  85. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  86. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  87. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  88. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  89. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  90. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  91. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  92. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  93. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  94. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  95. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  96. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  97. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  98. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  99. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  100. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  101. /* required last entry */
  102. {0,}
  103. };
  104. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  105. int e1000_up(struct e1000_adapter *adapter);
  106. void e1000_down(struct e1000_adapter *adapter);
  107. void e1000_reset(struct e1000_adapter *adapter);
  108. int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  109. int e1000_setup_tx_resources(struct e1000_adapter *adapter);
  110. int e1000_setup_rx_resources(struct e1000_adapter *adapter);
  111. void e1000_free_tx_resources(struct e1000_adapter *adapter);
  112. void e1000_free_rx_resources(struct e1000_adapter *adapter);
  113. void e1000_update_stats(struct e1000_adapter *adapter);
  114. /* Local Function Prototypes */
  115. static int e1000_init_module(void);
  116. static void e1000_exit_module(void);
  117. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  118. static void __devexit e1000_remove(struct pci_dev *pdev);
  119. static int e1000_sw_init(struct e1000_adapter *adapter);
  120. static int e1000_open(struct net_device *netdev);
  121. static int e1000_close(struct net_device *netdev);
  122. static void e1000_configure_tx(struct e1000_adapter *adapter);
  123. static void e1000_configure_rx(struct e1000_adapter *adapter);
  124. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  125. static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
  126. static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
  127. static void e1000_set_multi(struct net_device *netdev);
  128. static void e1000_update_phy_info(unsigned long data);
  129. static void e1000_watchdog(unsigned long data);
  130. static void e1000_watchdog_task(struct e1000_adapter *adapter);
  131. static void e1000_82547_tx_fifo_stall(unsigned long data);
  132. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  133. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  134. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  135. static int e1000_set_mac(struct net_device *netdev, void *p);
  136. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  137. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
  138. #ifdef CONFIG_E1000_NAPI
  139. static int e1000_clean(struct net_device *netdev, int *budget);
  140. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  141. int *work_done, int work_to_do);
  142. #else
  143. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
  144. #endif
  145. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
  146. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  147. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  148. int cmd);
  149. void e1000_set_ethtool_ops(struct net_device *netdev);
  150. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  151. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  152. static void e1000_tx_timeout(struct net_device *dev);
  153. static void e1000_tx_timeout_task(struct net_device *dev);
  154. static void e1000_smartspeed(struct e1000_adapter *adapter);
  155. static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  156. struct sk_buff *skb);
  157. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  158. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  159. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  160. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  161. static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
  162. static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
  163. #ifdef CONFIG_PM
  164. static int e1000_resume(struct pci_dev *pdev);
  165. #endif
  166. #ifdef CONFIG_NET_POLL_CONTROLLER
  167. /* for netdump / net console */
  168. static void e1000_netpoll (struct net_device *netdev);
  169. #endif
  170. struct notifier_block e1000_notifier_reboot = {
  171. .notifier_call = e1000_notify_reboot,
  172. .next = NULL,
  173. .priority = 0
  174. };
  175. /* Exported from other modules */
  176. extern void e1000_check_options(struct e1000_adapter *adapter);
  177. static struct pci_driver e1000_driver = {
  178. .name = e1000_driver_name,
  179. .id_table = e1000_pci_tbl,
  180. .probe = e1000_probe,
  181. .remove = __devexit_p(e1000_remove),
  182. /* Power Managment Hooks */
  183. #ifdef CONFIG_PM
  184. .suspend = e1000_suspend,
  185. .resume = e1000_resume
  186. #endif
  187. };
  188. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  189. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  190. MODULE_LICENSE("GPL");
  191. MODULE_VERSION(DRV_VERSION);
  192. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  193. module_param(debug, int, 0);
  194. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  195. /**
  196. * e1000_init_module - Driver Registration Routine
  197. *
  198. * e1000_init_module is the first routine called when the driver is
  199. * loaded. All it does is register with the PCI subsystem.
  200. **/
  201. static int __init
  202. e1000_init_module(void)
  203. {
  204. int ret;
  205. printk(KERN_INFO "%s - version %s\n",
  206. e1000_driver_string, e1000_driver_version);
  207. printk(KERN_INFO "%s\n", e1000_copyright);
  208. ret = pci_module_init(&e1000_driver);
  209. if(ret >= 0) {
  210. register_reboot_notifier(&e1000_notifier_reboot);
  211. }
  212. return ret;
  213. }
  214. module_init(e1000_init_module);
  215. /**
  216. * e1000_exit_module - Driver Exit Cleanup Routine
  217. *
  218. * e1000_exit_module is called just before the driver is removed
  219. * from memory.
  220. **/
  221. static void __exit
  222. e1000_exit_module(void)
  223. {
  224. unregister_reboot_notifier(&e1000_notifier_reboot);
  225. pci_unregister_driver(&e1000_driver);
  226. }
  227. module_exit(e1000_exit_module);
  228. /**
  229. * e1000_irq_disable - Mask off interrupt generation on the NIC
  230. * @adapter: board private structure
  231. **/
  232. static inline void
  233. e1000_irq_disable(struct e1000_adapter *adapter)
  234. {
  235. atomic_inc(&adapter->irq_sem);
  236. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  237. E1000_WRITE_FLUSH(&adapter->hw);
  238. synchronize_irq(adapter->pdev->irq);
  239. }
  240. /**
  241. * e1000_irq_enable - Enable default interrupt generation settings
  242. * @adapter: board private structure
  243. **/
  244. static inline void
  245. e1000_irq_enable(struct e1000_adapter *adapter)
  246. {
  247. if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
  248. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  249. E1000_WRITE_FLUSH(&adapter->hw);
  250. }
  251. }
  252. int
  253. e1000_up(struct e1000_adapter *adapter)
  254. {
  255. struct net_device *netdev = adapter->netdev;
  256. int err;
  257. /* hardware has been reset, we need to reload some things */
  258. /* Reset the PHY if it was previously powered down */
  259. if(adapter->hw.media_type == e1000_media_type_copper) {
  260. uint16_t mii_reg;
  261. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  262. if(mii_reg & MII_CR_POWER_DOWN)
  263. e1000_phy_reset(&adapter->hw);
  264. }
  265. e1000_set_multi(netdev);
  266. e1000_restore_vlan(adapter);
  267. e1000_configure_tx(adapter);
  268. e1000_setup_rctl(adapter);
  269. e1000_configure_rx(adapter);
  270. e1000_alloc_rx_buffers(adapter);
  271. #ifdef CONFIG_PCI_MSI
  272. if(adapter->hw.mac_type > e1000_82547_rev_2) {
  273. adapter->have_msi = TRUE;
  274. if((err = pci_enable_msi(adapter->pdev))) {
  275. DPRINTK(PROBE, ERR,
  276. "Unable to allocate MSI interrupt Error: %d\n", err);
  277. adapter->have_msi = FALSE;
  278. }
  279. }
  280. #endif
  281. if((err = request_irq(adapter->pdev->irq, &e1000_intr,
  282. SA_SHIRQ | SA_SAMPLE_RANDOM,
  283. netdev->name, netdev)))
  284. return err;
  285. mod_timer(&adapter->watchdog_timer, jiffies);
  286. e1000_irq_enable(adapter);
  287. #ifdef CONFIG_E1000_NAPI
  288. netif_poll_enable(netdev);
  289. #endif
  290. return 0;
  291. }
  292. void
  293. e1000_down(struct e1000_adapter *adapter)
  294. {
  295. struct net_device *netdev = adapter->netdev;
  296. e1000_irq_disable(adapter);
  297. free_irq(adapter->pdev->irq, netdev);
  298. #ifdef CONFIG_PCI_MSI
  299. if(adapter->hw.mac_type > e1000_82547_rev_2 &&
  300. adapter->have_msi == TRUE)
  301. pci_disable_msi(adapter->pdev);
  302. #endif
  303. del_timer_sync(&adapter->tx_fifo_stall_timer);
  304. del_timer_sync(&adapter->watchdog_timer);
  305. del_timer_sync(&adapter->phy_info_timer);
  306. #ifdef CONFIG_E1000_NAPI
  307. netif_poll_disable(netdev);
  308. #endif
  309. adapter->link_speed = 0;
  310. adapter->link_duplex = 0;
  311. netif_carrier_off(netdev);
  312. netif_stop_queue(netdev);
  313. e1000_reset(adapter);
  314. e1000_clean_tx_ring(adapter);
  315. e1000_clean_rx_ring(adapter);
  316. /* If WoL is not enabled
  317. * Power down the PHY so no link is implied when interface is down */
  318. if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
  319. uint16_t mii_reg;
  320. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  321. mii_reg |= MII_CR_POWER_DOWN;
  322. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  323. }
  324. }
  325. void
  326. e1000_reset(struct e1000_adapter *adapter)
  327. {
  328. uint32_t pba;
  329. /* Repartition Pba for greater than 9k mtu
  330. * To take effect CTRL.RST is required.
  331. */
  332. if(adapter->hw.mac_type < e1000_82547) {
  333. if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
  334. pba = E1000_PBA_40K;
  335. else
  336. pba = E1000_PBA_48K;
  337. } else {
  338. if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
  339. pba = E1000_PBA_22K;
  340. else
  341. pba = E1000_PBA_30K;
  342. adapter->tx_fifo_head = 0;
  343. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  344. adapter->tx_fifo_size =
  345. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  346. atomic_set(&adapter->tx_fifo_stall, 0);
  347. }
  348. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  349. /* flow control settings */
  350. adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
  351. E1000_FC_HIGH_DIFF;
  352. adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
  353. E1000_FC_LOW_DIFF;
  354. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  355. adapter->hw.fc_send_xon = 1;
  356. adapter->hw.fc = adapter->hw.original_fc;
  357. e1000_reset_hw(&adapter->hw);
  358. if(adapter->hw.mac_type >= e1000_82544)
  359. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  360. if(e1000_init_hw(&adapter->hw))
  361. DPRINTK(PROBE, ERR, "Hardware Error\n");
  362. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  363. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  364. e1000_reset_adaptive(&adapter->hw);
  365. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  366. }
  367. /**
  368. * e1000_probe - Device Initialization Routine
  369. * @pdev: PCI device information struct
  370. * @ent: entry in e1000_pci_tbl
  371. *
  372. * Returns 0 on success, negative on failure
  373. *
  374. * e1000_probe initializes an adapter identified by a pci_dev structure.
  375. * The OS initialization, configuring of the adapter private structure,
  376. * and a hardware reset occur.
  377. **/
  378. static int __devinit
  379. e1000_probe(struct pci_dev *pdev,
  380. const struct pci_device_id *ent)
  381. {
  382. struct net_device *netdev;
  383. struct e1000_adapter *adapter;
  384. static int cards_found = 0;
  385. unsigned long mmio_start;
  386. int mmio_len;
  387. int pci_using_dac;
  388. int i;
  389. int err;
  390. uint16_t eeprom_data;
  391. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  392. if((err = pci_enable_device(pdev)))
  393. return err;
  394. if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  395. pci_using_dac = 1;
  396. } else {
  397. if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  398. E1000_ERR("No usable DMA configuration, aborting\n");
  399. return err;
  400. }
  401. pci_using_dac = 0;
  402. }
  403. if((err = pci_request_regions(pdev, e1000_driver_name)))
  404. return err;
  405. pci_set_master(pdev);
  406. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  407. if(!netdev) {
  408. err = -ENOMEM;
  409. goto err_alloc_etherdev;
  410. }
  411. SET_MODULE_OWNER(netdev);
  412. SET_NETDEV_DEV(netdev, &pdev->dev);
  413. pci_set_drvdata(pdev, netdev);
  414. adapter = netdev->priv;
  415. adapter->netdev = netdev;
  416. adapter->pdev = pdev;
  417. adapter->hw.back = adapter;
  418. adapter->msg_enable = (1 << debug) - 1;
  419. mmio_start = pci_resource_start(pdev, BAR_0);
  420. mmio_len = pci_resource_len(pdev, BAR_0);
  421. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  422. if(!adapter->hw.hw_addr) {
  423. err = -EIO;
  424. goto err_ioremap;
  425. }
  426. for(i = BAR_1; i <= BAR_5; i++) {
  427. if(pci_resource_len(pdev, i) == 0)
  428. continue;
  429. if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  430. adapter->hw.io_base = pci_resource_start(pdev, i);
  431. break;
  432. }
  433. }
  434. netdev->open = &e1000_open;
  435. netdev->stop = &e1000_close;
  436. netdev->hard_start_xmit = &e1000_xmit_frame;
  437. netdev->get_stats = &e1000_get_stats;
  438. netdev->set_multicast_list = &e1000_set_multi;
  439. netdev->set_mac_address = &e1000_set_mac;
  440. netdev->change_mtu = &e1000_change_mtu;
  441. netdev->do_ioctl = &e1000_ioctl;
  442. e1000_set_ethtool_ops(netdev);
  443. netdev->tx_timeout = &e1000_tx_timeout;
  444. netdev->watchdog_timeo = 5 * HZ;
  445. #ifdef CONFIG_E1000_NAPI
  446. netdev->poll = &e1000_clean;
  447. netdev->weight = 64;
  448. #endif
  449. netdev->vlan_rx_register = e1000_vlan_rx_register;
  450. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  451. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  452. #ifdef CONFIG_NET_POLL_CONTROLLER
  453. netdev->poll_controller = e1000_netpoll;
  454. #endif
  455. strcpy(netdev->name, pci_name(pdev));
  456. netdev->mem_start = mmio_start;
  457. netdev->mem_end = mmio_start + mmio_len;
  458. netdev->base_addr = adapter->hw.io_base;
  459. adapter->bd_number = cards_found;
  460. /* setup the private structure */
  461. if((err = e1000_sw_init(adapter)))
  462. goto err_sw_init;
  463. if(adapter->hw.mac_type >= e1000_82543) {
  464. netdev->features = NETIF_F_SG |
  465. NETIF_F_HW_CSUM |
  466. NETIF_F_HW_VLAN_TX |
  467. NETIF_F_HW_VLAN_RX |
  468. NETIF_F_HW_VLAN_FILTER;
  469. }
  470. #ifdef NETIF_F_TSO
  471. if((adapter->hw.mac_type >= e1000_82544) &&
  472. (adapter->hw.mac_type != e1000_82547))
  473. netdev->features |= NETIF_F_TSO;
  474. #endif
  475. if(pci_using_dac)
  476. netdev->features |= NETIF_F_HIGHDMA;
  477. /* hard_start_xmit is safe against parallel locking */
  478. netdev->features |= NETIF_F_LLTX;
  479. /* before reading the EEPROM, reset the controller to
  480. * put the device in a known good starting state */
  481. e1000_reset_hw(&adapter->hw);
  482. /* make sure the EEPROM is good */
  483. if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  484. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  485. err = -EIO;
  486. goto err_eeprom;
  487. }
  488. /* copy the MAC address out of the EEPROM */
  489. if (e1000_read_mac_addr(&adapter->hw))
  490. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  491. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  492. if(!is_valid_ether_addr(netdev->dev_addr)) {
  493. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  494. err = -EIO;
  495. goto err_eeprom;
  496. }
  497. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  498. e1000_get_bus_info(&adapter->hw);
  499. init_timer(&adapter->tx_fifo_stall_timer);
  500. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  501. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  502. init_timer(&adapter->watchdog_timer);
  503. adapter->watchdog_timer.function = &e1000_watchdog;
  504. adapter->watchdog_timer.data = (unsigned long) adapter;
  505. INIT_WORK(&adapter->watchdog_task,
  506. (void (*)(void *))e1000_watchdog_task, adapter);
  507. init_timer(&adapter->phy_info_timer);
  508. adapter->phy_info_timer.function = &e1000_update_phy_info;
  509. adapter->phy_info_timer.data = (unsigned long) adapter;
  510. INIT_WORK(&adapter->tx_timeout_task,
  511. (void (*)(void *))e1000_tx_timeout_task, netdev);
  512. /* we're going to reset, so assume we have no link for now */
  513. netif_carrier_off(netdev);
  514. netif_stop_queue(netdev);
  515. e1000_check_options(adapter);
  516. /* Initial Wake on LAN setting
  517. * If APM wake is enabled in the EEPROM,
  518. * enable the ACPI Magic Packet filter
  519. */
  520. switch(adapter->hw.mac_type) {
  521. case e1000_82542_rev2_0:
  522. case e1000_82542_rev2_1:
  523. case e1000_82543:
  524. break;
  525. case e1000_82544:
  526. e1000_read_eeprom(&adapter->hw,
  527. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  528. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  529. break;
  530. case e1000_82546:
  531. case e1000_82546_rev_3:
  532. if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
  533. && (adapter->hw.media_type == e1000_media_type_copper)) {
  534. e1000_read_eeprom(&adapter->hw,
  535. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  536. break;
  537. }
  538. /* Fall Through */
  539. default:
  540. e1000_read_eeprom(&adapter->hw,
  541. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  542. break;
  543. }
  544. if(eeprom_data & eeprom_apme_mask)
  545. adapter->wol |= E1000_WUFC_MAG;
  546. /* reset the hardware with the new settings */
  547. e1000_reset(adapter);
  548. strcpy(netdev->name, "eth%d");
  549. if((err = register_netdev(netdev)))
  550. goto err_register;
  551. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  552. cards_found++;
  553. return 0;
  554. err_register:
  555. err_sw_init:
  556. err_eeprom:
  557. iounmap(adapter->hw.hw_addr);
  558. err_ioremap:
  559. free_netdev(netdev);
  560. err_alloc_etherdev:
  561. pci_release_regions(pdev);
  562. return err;
  563. }
  564. /**
  565. * e1000_remove - Device Removal Routine
  566. * @pdev: PCI device information struct
  567. *
  568. * e1000_remove is called by the PCI subsystem to alert the driver
  569. * that it should release a PCI device. The could be caused by a
  570. * Hot-Plug event, or because the driver is going to be removed from
  571. * memory.
  572. **/
  573. static void __devexit
  574. e1000_remove(struct pci_dev *pdev)
  575. {
  576. struct net_device *netdev = pci_get_drvdata(pdev);
  577. struct e1000_adapter *adapter = netdev->priv;
  578. uint32_t manc;
  579. flush_scheduled_work();
  580. if(adapter->hw.mac_type >= e1000_82540 &&
  581. adapter->hw.media_type == e1000_media_type_copper) {
  582. manc = E1000_READ_REG(&adapter->hw, MANC);
  583. if(manc & E1000_MANC_SMBUS_EN) {
  584. manc |= E1000_MANC_ARP_EN;
  585. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  586. }
  587. }
  588. unregister_netdev(netdev);
  589. e1000_phy_hw_reset(&adapter->hw);
  590. iounmap(adapter->hw.hw_addr);
  591. pci_release_regions(pdev);
  592. free_netdev(netdev);
  593. pci_disable_device(pdev);
  594. }
  595. /**
  596. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  597. * @adapter: board private structure to initialize
  598. *
  599. * e1000_sw_init initializes the Adapter private data structure.
  600. * Fields are initialized based on PCI device information and
  601. * OS network device settings (MTU size).
  602. **/
  603. static int __devinit
  604. e1000_sw_init(struct e1000_adapter *adapter)
  605. {
  606. struct e1000_hw *hw = &adapter->hw;
  607. struct net_device *netdev = adapter->netdev;
  608. struct pci_dev *pdev = adapter->pdev;
  609. /* PCI config space info */
  610. hw->vendor_id = pdev->vendor;
  611. hw->device_id = pdev->device;
  612. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  613. hw->subsystem_id = pdev->subsystem_device;
  614. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  615. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  616. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  617. hw->max_frame_size = netdev->mtu +
  618. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  619. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  620. /* identify the MAC */
  621. if(e1000_set_mac_type(hw)) {
  622. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  623. return -EIO;
  624. }
  625. /* initialize eeprom parameters */
  626. e1000_init_eeprom_params(hw);
  627. switch(hw->mac_type) {
  628. default:
  629. break;
  630. case e1000_82541:
  631. case e1000_82547:
  632. case e1000_82541_rev_2:
  633. case e1000_82547_rev_2:
  634. hw->phy_init_script = 1;
  635. break;
  636. }
  637. e1000_set_media_type(hw);
  638. hw->wait_autoneg_complete = FALSE;
  639. hw->tbi_compatibility_en = TRUE;
  640. hw->adaptive_ifs = TRUE;
  641. /* Copper options */
  642. if(hw->media_type == e1000_media_type_copper) {
  643. hw->mdix = AUTO_ALL_MODES;
  644. hw->disable_polarity_correction = FALSE;
  645. hw->master_slave = E1000_MASTER_SLAVE;
  646. }
  647. atomic_set(&adapter->irq_sem, 1);
  648. spin_lock_init(&adapter->stats_lock);
  649. spin_lock_init(&adapter->tx_lock);
  650. return 0;
  651. }
  652. /**
  653. * e1000_open - Called when a network interface is made active
  654. * @netdev: network interface device structure
  655. *
  656. * Returns 0 on success, negative value on failure
  657. *
  658. * The open entry point is called when a network interface is made
  659. * active by the system (IFF_UP). At this point all resources needed
  660. * for transmit and receive operations are allocated, the interrupt
  661. * handler is registered with the OS, the watchdog timer is started,
  662. * and the stack is notified that the interface is ready.
  663. **/
  664. static int
  665. e1000_open(struct net_device *netdev)
  666. {
  667. struct e1000_adapter *adapter = netdev->priv;
  668. int err;
  669. /* allocate transmit descriptors */
  670. if((err = e1000_setup_tx_resources(adapter)))
  671. goto err_setup_tx;
  672. /* allocate receive descriptors */
  673. if((err = e1000_setup_rx_resources(adapter)))
  674. goto err_setup_rx;
  675. if((err = e1000_up(adapter)))
  676. goto err_up;
  677. return E1000_SUCCESS;
  678. err_up:
  679. e1000_free_rx_resources(adapter);
  680. err_setup_rx:
  681. e1000_free_tx_resources(adapter);
  682. err_setup_tx:
  683. e1000_reset(adapter);
  684. return err;
  685. }
  686. /**
  687. * e1000_close - Disables a network interface
  688. * @netdev: network interface device structure
  689. *
  690. * Returns 0, this is not allowed to fail
  691. *
  692. * The close entry point is called when an interface is de-activated
  693. * by the OS. The hardware is still under the drivers control, but
  694. * needs to be disabled. A global MAC reset is issued to stop the
  695. * hardware, and all transmit and receive resources are freed.
  696. **/
  697. static int
  698. e1000_close(struct net_device *netdev)
  699. {
  700. struct e1000_adapter *adapter = netdev->priv;
  701. e1000_down(adapter);
  702. e1000_free_tx_resources(adapter);
  703. e1000_free_rx_resources(adapter);
  704. return 0;
  705. }
  706. /**
  707. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  708. * @adapter: address of board private structure
  709. * @begin: address of beginning of memory
  710. * @end: address of end of memory
  711. **/
  712. static inline boolean_t
  713. e1000_check_64k_bound(struct e1000_adapter *adapter,
  714. void *start, unsigned long len)
  715. {
  716. unsigned long begin = (unsigned long) start;
  717. unsigned long end = begin + len;
  718. /* first rev 82545 and 82546 need to not allow any memory
  719. * write location to cross a 64k boundary due to errata 23 */
  720. if (adapter->hw.mac_type == e1000_82545 ||
  721. adapter->hw.mac_type == e1000_82546 ) {
  722. /* check buffer doesn't cross 64kB */
  723. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  724. }
  725. return TRUE;
  726. }
  727. /**
  728. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  729. * @adapter: board private structure
  730. *
  731. * Return 0 on success, negative on failure
  732. **/
  733. int
  734. e1000_setup_tx_resources(struct e1000_adapter *adapter)
  735. {
  736. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  737. struct pci_dev *pdev = adapter->pdev;
  738. int size;
  739. size = sizeof(struct e1000_buffer) * txdr->count;
  740. txdr->buffer_info = vmalloc(size);
  741. if(!txdr->buffer_info) {
  742. DPRINTK(PROBE, ERR,
  743. "Unable to Allocate Memory for the Transmit descriptor ring\n");
  744. return -ENOMEM;
  745. }
  746. memset(txdr->buffer_info, 0, size);
  747. /* round up to nearest 4K */
  748. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  749. E1000_ROUNDUP(txdr->size, 4096);
  750. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  751. if(!txdr->desc) {
  752. setup_tx_desc_die:
  753. DPRINTK(PROBE, ERR,
  754. "Unable to Allocate Memory for the Transmit descriptor ring\n");
  755. vfree(txdr->buffer_info);
  756. return -ENOMEM;
  757. }
  758. /* fix for errata 23, cant cross 64kB boundary */
  759. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  760. void *olddesc = txdr->desc;
  761. dma_addr_t olddma = txdr->dma;
  762. DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
  763. txdr->size, txdr->desc);
  764. /* try again, without freeing the previous */
  765. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  766. /* failed allocation, critial failure */
  767. if(!txdr->desc) {
  768. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  769. goto setup_tx_desc_die;
  770. }
  771. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  772. /* give up */
  773. pci_free_consistent(pdev, txdr->size,
  774. txdr->desc, txdr->dma);
  775. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  776. DPRINTK(PROBE, ERR,
  777. "Unable to Allocate aligned Memory for the Transmit"
  778. " descriptor ring\n");
  779. vfree(txdr->buffer_info);
  780. return -ENOMEM;
  781. } else {
  782. /* free old, move on with the new one since its okay */
  783. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  784. }
  785. }
  786. memset(txdr->desc, 0, txdr->size);
  787. txdr->next_to_use = 0;
  788. txdr->next_to_clean = 0;
  789. return 0;
  790. }
  791. /**
  792. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  793. * @adapter: board private structure
  794. *
  795. * Configure the Tx unit of the MAC after a reset.
  796. **/
  797. static void
  798. e1000_configure_tx(struct e1000_adapter *adapter)
  799. {
  800. uint64_t tdba = adapter->tx_ring.dma;
  801. uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
  802. uint32_t tctl, tipg;
  803. E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  804. E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
  805. E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
  806. /* Setup the HW Tx Head and Tail descriptor pointers */
  807. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  808. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  809. /* Set the default values for the Tx Inter Packet Gap timer */
  810. switch (adapter->hw.mac_type) {
  811. case e1000_82542_rev2_0:
  812. case e1000_82542_rev2_1:
  813. tipg = DEFAULT_82542_TIPG_IPGT;
  814. tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  815. tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  816. break;
  817. default:
  818. if(adapter->hw.media_type == e1000_media_type_fiber ||
  819. adapter->hw.media_type == e1000_media_type_internal_serdes)
  820. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  821. else
  822. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  823. tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  824. tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  825. }
  826. E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
  827. /* Set the Tx Interrupt Delay register */
  828. E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
  829. if(adapter->hw.mac_type >= e1000_82540)
  830. E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
  831. /* Program the Transmit Control Register */
  832. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  833. tctl &= ~E1000_TCTL_CT;
  834. tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
  835. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  836. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  837. e1000_config_collision_dist(&adapter->hw);
  838. /* Setup Transmit Descriptor Settings for eop descriptor */
  839. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  840. E1000_TXD_CMD_IFCS;
  841. if(adapter->hw.mac_type < e1000_82543)
  842. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  843. else
  844. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  845. /* Cache if we're 82544 running in PCI-X because we'll
  846. * need this to apply a workaround later in the send path. */
  847. if(adapter->hw.mac_type == e1000_82544 &&
  848. adapter->hw.bus_type == e1000_bus_type_pcix)
  849. adapter->pcix_82544 = 1;
  850. }
  851. /**
  852. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  853. * @adapter: board private structure
  854. *
  855. * Returns 0 on success, negative on failure
  856. **/
  857. int
  858. e1000_setup_rx_resources(struct e1000_adapter *adapter)
  859. {
  860. struct e1000_desc_ring *rxdr = &adapter->rx_ring;
  861. struct pci_dev *pdev = adapter->pdev;
  862. int size;
  863. size = sizeof(struct e1000_buffer) * rxdr->count;
  864. rxdr->buffer_info = vmalloc(size);
  865. if(!rxdr->buffer_info) {
  866. DPRINTK(PROBE, ERR,
  867. "Unable to Allocate Memory for the Recieve descriptor ring\n");
  868. return -ENOMEM;
  869. }
  870. memset(rxdr->buffer_info, 0, size);
  871. /* Round up to nearest 4K */
  872. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  873. E1000_ROUNDUP(rxdr->size, 4096);
  874. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  875. if(!rxdr->desc) {
  876. setup_rx_desc_die:
  877. DPRINTK(PROBE, ERR,
  878. "Unble to Allocate Memory for the Recieve descriptor ring\n");
  879. vfree(rxdr->buffer_info);
  880. return -ENOMEM;
  881. }
  882. /* fix for errata 23, cant cross 64kB boundary */
  883. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  884. void *olddesc = rxdr->desc;
  885. dma_addr_t olddma = rxdr->dma;
  886. DPRINTK(RX_ERR,ERR,
  887. "rxdr align check failed: %u bytes at %p\n",
  888. rxdr->size, rxdr->desc);
  889. /* try again, without freeing the previous */
  890. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  891. /* failed allocation, critial failure */
  892. if(!rxdr->desc) {
  893. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  894. goto setup_rx_desc_die;
  895. }
  896. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  897. /* give up */
  898. pci_free_consistent(pdev, rxdr->size,
  899. rxdr->desc, rxdr->dma);
  900. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  901. DPRINTK(PROBE, ERR,
  902. "Unable to Allocate aligned Memory for the"
  903. " Receive descriptor ring\n");
  904. vfree(rxdr->buffer_info);
  905. return -ENOMEM;
  906. } else {
  907. /* free old, move on with the new one since its okay */
  908. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  909. }
  910. }
  911. memset(rxdr->desc, 0, rxdr->size);
  912. rxdr->next_to_clean = 0;
  913. rxdr->next_to_use = 0;
  914. return 0;
  915. }
  916. /**
  917. * e1000_setup_rctl - configure the receive control register
  918. * @adapter: Board private structure
  919. **/
  920. static void
  921. e1000_setup_rctl(struct e1000_adapter *adapter)
  922. {
  923. uint32_t rctl;
  924. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  925. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  926. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  927. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  928. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  929. if(adapter->hw.tbi_compatibility_on == 1)
  930. rctl |= E1000_RCTL_SBP;
  931. else
  932. rctl &= ~E1000_RCTL_SBP;
  933. /* Setup buffer sizes */
  934. rctl &= ~(E1000_RCTL_SZ_4096);
  935. rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
  936. switch (adapter->rx_buffer_len) {
  937. case E1000_RXBUFFER_2048:
  938. default:
  939. rctl |= E1000_RCTL_SZ_2048;
  940. rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
  941. break;
  942. case E1000_RXBUFFER_4096:
  943. rctl |= E1000_RCTL_SZ_4096;
  944. break;
  945. case E1000_RXBUFFER_8192:
  946. rctl |= E1000_RCTL_SZ_8192;
  947. break;
  948. case E1000_RXBUFFER_16384:
  949. rctl |= E1000_RCTL_SZ_16384;
  950. break;
  951. }
  952. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  953. }
  954. /**
  955. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  956. * @adapter: board private structure
  957. *
  958. * Configure the Rx unit of the MAC after a reset.
  959. **/
  960. static void
  961. e1000_configure_rx(struct e1000_adapter *adapter)
  962. {
  963. uint64_t rdba = adapter->rx_ring.dma;
  964. uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
  965. uint32_t rctl;
  966. uint32_t rxcsum;
  967. /* disable receives while setting up the descriptors */
  968. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  969. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  970. /* set the Receive Delay Timer Register */
  971. E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
  972. if(adapter->hw.mac_type >= e1000_82540) {
  973. E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
  974. if(adapter->itr > 1)
  975. E1000_WRITE_REG(&adapter->hw, ITR,
  976. 1000000000 / (adapter->itr * 256));
  977. }
  978. /* Setup the Base and Length of the Rx Descriptor Ring */
  979. E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  980. E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
  981. E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
  982. /* Setup the HW Rx Head and Tail Descriptor Pointers */
  983. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  984. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  985. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  986. if((adapter->hw.mac_type >= e1000_82543) &&
  987. (adapter->rx_csum == TRUE)) {
  988. rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
  989. rxcsum |= E1000_RXCSUM_TUOFL;
  990. E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
  991. }
  992. /* Enable Receives */
  993. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  994. }
  995. /**
  996. * e1000_free_tx_resources - Free Tx Resources
  997. * @adapter: board private structure
  998. *
  999. * Free all transmit software resources
  1000. **/
  1001. void
  1002. e1000_free_tx_resources(struct e1000_adapter *adapter)
  1003. {
  1004. struct pci_dev *pdev = adapter->pdev;
  1005. e1000_clean_tx_ring(adapter);
  1006. vfree(adapter->tx_ring.buffer_info);
  1007. adapter->tx_ring.buffer_info = NULL;
  1008. pci_free_consistent(pdev, adapter->tx_ring.size,
  1009. adapter->tx_ring.desc, adapter->tx_ring.dma);
  1010. adapter->tx_ring.desc = NULL;
  1011. }
  1012. static inline void
  1013. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  1014. struct e1000_buffer *buffer_info)
  1015. {
  1016. struct pci_dev *pdev = adapter->pdev;
  1017. if(buffer_info->dma) {
  1018. pci_unmap_page(pdev,
  1019. buffer_info->dma,
  1020. buffer_info->length,
  1021. PCI_DMA_TODEVICE);
  1022. buffer_info->dma = 0;
  1023. }
  1024. if(buffer_info->skb) {
  1025. dev_kfree_skb_any(buffer_info->skb);
  1026. buffer_info->skb = NULL;
  1027. }
  1028. }
  1029. /**
  1030. * e1000_clean_tx_ring - Free Tx Buffers
  1031. * @adapter: board private structure
  1032. **/
  1033. static void
  1034. e1000_clean_tx_ring(struct e1000_adapter *adapter)
  1035. {
  1036. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1037. struct e1000_buffer *buffer_info;
  1038. unsigned long size;
  1039. unsigned int i;
  1040. /* Free all the Tx ring sk_buffs */
  1041. if (likely(adapter->previous_buffer_info.skb != NULL)) {
  1042. e1000_unmap_and_free_tx_resource(adapter,
  1043. &adapter->previous_buffer_info);
  1044. }
  1045. for(i = 0; i < tx_ring->count; i++) {
  1046. buffer_info = &tx_ring->buffer_info[i];
  1047. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1048. }
  1049. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1050. memset(tx_ring->buffer_info, 0, size);
  1051. /* Zero out the descriptor ring */
  1052. memset(tx_ring->desc, 0, tx_ring->size);
  1053. tx_ring->next_to_use = 0;
  1054. tx_ring->next_to_clean = 0;
  1055. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  1056. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  1057. }
  1058. /**
  1059. * e1000_free_rx_resources - Free Rx Resources
  1060. * @adapter: board private structure
  1061. *
  1062. * Free all receive software resources
  1063. **/
  1064. void
  1065. e1000_free_rx_resources(struct e1000_adapter *adapter)
  1066. {
  1067. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  1068. struct pci_dev *pdev = adapter->pdev;
  1069. e1000_clean_rx_ring(adapter);
  1070. vfree(rx_ring->buffer_info);
  1071. rx_ring->buffer_info = NULL;
  1072. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1073. rx_ring->desc = NULL;
  1074. }
  1075. /**
  1076. * e1000_clean_rx_ring - Free Rx Buffers
  1077. * @adapter: board private structure
  1078. **/
  1079. static void
  1080. e1000_clean_rx_ring(struct e1000_adapter *adapter)
  1081. {
  1082. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  1083. struct e1000_buffer *buffer_info;
  1084. struct pci_dev *pdev = adapter->pdev;
  1085. unsigned long size;
  1086. unsigned int i;
  1087. /* Free all the Rx ring sk_buffs */
  1088. for(i = 0; i < rx_ring->count; i++) {
  1089. buffer_info = &rx_ring->buffer_info[i];
  1090. if(buffer_info->skb) {
  1091. pci_unmap_single(pdev,
  1092. buffer_info->dma,
  1093. buffer_info->length,
  1094. PCI_DMA_FROMDEVICE);
  1095. dev_kfree_skb(buffer_info->skb);
  1096. buffer_info->skb = NULL;
  1097. }
  1098. }
  1099. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1100. memset(rx_ring->buffer_info, 0, size);
  1101. /* Zero out the descriptor ring */
  1102. memset(rx_ring->desc, 0, rx_ring->size);
  1103. rx_ring->next_to_clean = 0;
  1104. rx_ring->next_to_use = 0;
  1105. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  1106. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  1107. }
  1108. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1109. * and memory write and invalidate disabled for certain operations
  1110. */
  1111. static void
  1112. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1113. {
  1114. struct net_device *netdev = adapter->netdev;
  1115. uint32_t rctl;
  1116. e1000_pci_clear_mwi(&adapter->hw);
  1117. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1118. rctl |= E1000_RCTL_RST;
  1119. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1120. E1000_WRITE_FLUSH(&adapter->hw);
  1121. mdelay(5);
  1122. if(netif_running(netdev))
  1123. e1000_clean_rx_ring(adapter);
  1124. }
  1125. static void
  1126. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1127. {
  1128. struct net_device *netdev = adapter->netdev;
  1129. uint32_t rctl;
  1130. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1131. rctl &= ~E1000_RCTL_RST;
  1132. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1133. E1000_WRITE_FLUSH(&adapter->hw);
  1134. mdelay(5);
  1135. if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1136. e1000_pci_set_mwi(&adapter->hw);
  1137. if(netif_running(netdev)) {
  1138. e1000_configure_rx(adapter);
  1139. e1000_alloc_rx_buffers(adapter);
  1140. }
  1141. }
  1142. /**
  1143. * e1000_set_mac - Change the Ethernet Address of the NIC
  1144. * @netdev: network interface device structure
  1145. * @p: pointer to an address structure
  1146. *
  1147. * Returns 0 on success, negative on failure
  1148. **/
  1149. static int
  1150. e1000_set_mac(struct net_device *netdev, void *p)
  1151. {
  1152. struct e1000_adapter *adapter = netdev->priv;
  1153. struct sockaddr *addr = p;
  1154. if(!is_valid_ether_addr(addr->sa_data))
  1155. return -EADDRNOTAVAIL;
  1156. /* 82542 2.0 needs to be in reset to write receive address registers */
  1157. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1158. e1000_enter_82542_rst(adapter);
  1159. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1160. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1161. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1162. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1163. e1000_leave_82542_rst(adapter);
  1164. return 0;
  1165. }
  1166. /**
  1167. * e1000_set_multi - Multicast and Promiscuous mode set
  1168. * @netdev: network interface device structure
  1169. *
  1170. * The set_multi entry point is called whenever the multicast address
  1171. * list or the network interface flags are updated. This routine is
  1172. * responsible for configuring the hardware for proper multicast,
  1173. * promiscuous mode, and all-multi behavior.
  1174. **/
  1175. static void
  1176. e1000_set_multi(struct net_device *netdev)
  1177. {
  1178. struct e1000_adapter *adapter = netdev->priv;
  1179. struct e1000_hw *hw = &adapter->hw;
  1180. struct dev_mc_list *mc_ptr;
  1181. uint32_t rctl;
  1182. uint32_t hash_value;
  1183. int i;
  1184. unsigned long flags;
  1185. /* Check for Promiscuous and All Multicast modes */
  1186. spin_lock_irqsave(&adapter->tx_lock, flags);
  1187. rctl = E1000_READ_REG(hw, RCTL);
  1188. if(netdev->flags & IFF_PROMISC) {
  1189. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1190. } else if(netdev->flags & IFF_ALLMULTI) {
  1191. rctl |= E1000_RCTL_MPE;
  1192. rctl &= ~E1000_RCTL_UPE;
  1193. } else {
  1194. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1195. }
  1196. E1000_WRITE_REG(hw, RCTL, rctl);
  1197. /* 82542 2.0 needs to be in reset to write receive address registers */
  1198. if(hw->mac_type == e1000_82542_rev2_0)
  1199. e1000_enter_82542_rst(adapter);
  1200. /* load the first 14 multicast address into the exact filters 1-14
  1201. * RAR 0 is used for the station MAC adddress
  1202. * if there are not 14 addresses, go ahead and clear the filters
  1203. */
  1204. mc_ptr = netdev->mc_list;
  1205. for(i = 1; i < E1000_RAR_ENTRIES; i++) {
  1206. if(mc_ptr) {
  1207. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1208. mc_ptr = mc_ptr->next;
  1209. } else {
  1210. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1211. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1212. }
  1213. }
  1214. /* clear the old settings from the multicast hash table */
  1215. for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
  1216. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1217. /* load any remaining addresses into the hash table */
  1218. for(; mc_ptr; mc_ptr = mc_ptr->next) {
  1219. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1220. e1000_mta_set(hw, hash_value);
  1221. }
  1222. if(hw->mac_type == e1000_82542_rev2_0)
  1223. e1000_leave_82542_rst(adapter);
  1224. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1225. }
  1226. /* Need to wait a few seconds after link up to get diagnostic information from
  1227. * the phy */
  1228. static void
  1229. e1000_update_phy_info(unsigned long data)
  1230. {
  1231. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1232. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1233. }
  1234. /**
  1235. * e1000_82547_tx_fifo_stall - Timer Call-back
  1236. * @data: pointer to adapter cast into an unsigned long
  1237. **/
  1238. static void
  1239. e1000_82547_tx_fifo_stall(unsigned long data)
  1240. {
  1241. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1242. struct net_device *netdev = adapter->netdev;
  1243. uint32_t tctl;
  1244. if(atomic_read(&adapter->tx_fifo_stall)) {
  1245. if((E1000_READ_REG(&adapter->hw, TDT) ==
  1246. E1000_READ_REG(&adapter->hw, TDH)) &&
  1247. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1248. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1249. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1250. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1251. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1252. E1000_WRITE_REG(&adapter->hw, TCTL,
  1253. tctl & ~E1000_TCTL_EN);
  1254. E1000_WRITE_REG(&adapter->hw, TDFT,
  1255. adapter->tx_head_addr);
  1256. E1000_WRITE_REG(&adapter->hw, TDFH,
  1257. adapter->tx_head_addr);
  1258. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1259. adapter->tx_head_addr);
  1260. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1261. adapter->tx_head_addr);
  1262. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1263. E1000_WRITE_FLUSH(&adapter->hw);
  1264. adapter->tx_fifo_head = 0;
  1265. atomic_set(&adapter->tx_fifo_stall, 0);
  1266. netif_wake_queue(netdev);
  1267. } else {
  1268. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1269. }
  1270. }
  1271. }
  1272. /**
  1273. * e1000_watchdog - Timer Call-back
  1274. * @data: pointer to adapter cast into an unsigned long
  1275. **/
  1276. static void
  1277. e1000_watchdog(unsigned long data)
  1278. {
  1279. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1280. /* Do the rest outside of interrupt context */
  1281. schedule_work(&adapter->watchdog_task);
  1282. }
  1283. static void
  1284. e1000_watchdog_task(struct e1000_adapter *adapter)
  1285. {
  1286. struct net_device *netdev = adapter->netdev;
  1287. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  1288. uint32_t link;
  1289. e1000_check_for_link(&adapter->hw);
  1290. if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1291. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1292. link = !adapter->hw.serdes_link_down;
  1293. else
  1294. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1295. if(link) {
  1296. if(!netif_carrier_ok(netdev)) {
  1297. e1000_get_speed_and_duplex(&adapter->hw,
  1298. &adapter->link_speed,
  1299. &adapter->link_duplex);
  1300. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1301. adapter->link_speed,
  1302. adapter->link_duplex == FULL_DUPLEX ?
  1303. "Full Duplex" : "Half Duplex");
  1304. netif_carrier_on(netdev);
  1305. netif_wake_queue(netdev);
  1306. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1307. adapter->smartspeed = 0;
  1308. }
  1309. } else {
  1310. if(netif_carrier_ok(netdev)) {
  1311. adapter->link_speed = 0;
  1312. adapter->link_duplex = 0;
  1313. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  1314. netif_carrier_off(netdev);
  1315. netif_stop_queue(netdev);
  1316. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1317. }
  1318. e1000_smartspeed(adapter);
  1319. }
  1320. e1000_update_stats(adapter);
  1321. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  1322. adapter->tpt_old = adapter->stats.tpt;
  1323. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  1324. adapter->colc_old = adapter->stats.colc;
  1325. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  1326. adapter->gorcl_old = adapter->stats.gorcl;
  1327. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  1328. adapter->gotcl_old = adapter->stats.gotcl;
  1329. e1000_update_adaptive(&adapter->hw);
  1330. if(!netif_carrier_ok(netdev)) {
  1331. if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  1332. /* We've lost link, so the controller stops DMA,
  1333. * but we've got queued Tx work that's never going
  1334. * to get done, so reset controller to flush Tx.
  1335. * (Do the reset outside of interrupt context). */
  1336. schedule_work(&adapter->tx_timeout_task);
  1337. }
  1338. }
  1339. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  1340. if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  1341. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  1342. * asymmetrical Tx or Rx gets ITR=8000; everyone
  1343. * else is between 2000-8000. */
  1344. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  1345. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  1346. adapter->gotcl - adapter->gorcl :
  1347. adapter->gorcl - adapter->gotcl) / 10000;
  1348. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  1349. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  1350. }
  1351. /* Cause software interrupt to ensure rx ring is cleaned */
  1352. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  1353. /* Force detection of hung controller every watchdog period*/
  1354. adapter->detect_tx_hung = TRUE;
  1355. /* Reset the timer */
  1356. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  1357. }
  1358. #define E1000_TX_FLAGS_CSUM 0x00000001
  1359. #define E1000_TX_FLAGS_VLAN 0x00000002
  1360. #define E1000_TX_FLAGS_TSO 0x00000004
  1361. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  1362. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  1363. static inline int
  1364. e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
  1365. {
  1366. #ifdef NETIF_F_TSO
  1367. struct e1000_context_desc *context_desc;
  1368. unsigned int i;
  1369. uint32_t cmd_length = 0;
  1370. uint16_t ipcse, tucse, mss;
  1371. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  1372. int err;
  1373. if(skb_shinfo(skb)->tso_size) {
  1374. if (skb_header_cloned(skb)) {
  1375. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1376. if (err)
  1377. return err;
  1378. }
  1379. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  1380. mss = skb_shinfo(skb)->tso_size;
  1381. skb->nh.iph->tot_len = 0;
  1382. skb->nh.iph->check = 0;
  1383. skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
  1384. skb->nh.iph->daddr,
  1385. 0,
  1386. IPPROTO_TCP,
  1387. 0);
  1388. ipcss = skb->nh.raw - skb->data;
  1389. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  1390. ipcse = skb->h.raw - skb->data - 1;
  1391. tucss = skb->h.raw - skb->data;
  1392. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  1393. tucse = 0;
  1394. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  1395. E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
  1396. (skb->len - (hdr_len)));
  1397. i = adapter->tx_ring.next_to_use;
  1398. context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
  1399. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  1400. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  1401. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  1402. context_desc->upper_setup.tcp_fields.tucss = tucss;
  1403. context_desc->upper_setup.tcp_fields.tucso = tucso;
  1404. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  1405. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  1406. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  1407. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  1408. if(++i == adapter->tx_ring.count) i = 0;
  1409. adapter->tx_ring.next_to_use = i;
  1410. return 1;
  1411. }
  1412. #endif
  1413. return 0;
  1414. }
  1415. static inline boolean_t
  1416. e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
  1417. {
  1418. struct e1000_context_desc *context_desc;
  1419. unsigned int i;
  1420. uint8_t css;
  1421. if(likely(skb->ip_summed == CHECKSUM_HW)) {
  1422. css = skb->h.raw - skb->data;
  1423. i = adapter->tx_ring.next_to_use;
  1424. context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
  1425. context_desc->upper_setup.tcp_fields.tucss = css;
  1426. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  1427. context_desc->upper_setup.tcp_fields.tucse = 0;
  1428. context_desc->tcp_seg_setup.data = 0;
  1429. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  1430. if(unlikely(++i == adapter->tx_ring.count)) i = 0;
  1431. adapter->tx_ring.next_to_use = i;
  1432. return TRUE;
  1433. }
  1434. return FALSE;
  1435. }
  1436. #define E1000_MAX_TXD_PWR 12
  1437. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  1438. static inline int
  1439. e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
  1440. unsigned int first, unsigned int max_per_txd,
  1441. unsigned int nr_frags, unsigned int mss)
  1442. {
  1443. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1444. struct e1000_buffer *buffer_info;
  1445. unsigned int len = skb->len;
  1446. unsigned int offset = 0, size, count = 0, i;
  1447. unsigned int f;
  1448. len -= skb->data_len;
  1449. i = tx_ring->next_to_use;
  1450. while(len) {
  1451. buffer_info = &tx_ring->buffer_info[i];
  1452. size = min(len, max_per_txd);
  1453. #ifdef NETIF_F_TSO
  1454. /* Workaround for premature desc write-backs
  1455. * in TSO mode. Append 4-byte sentinel desc */
  1456. if(unlikely(mss && !nr_frags && size == len && size > 8))
  1457. size -= 4;
  1458. #endif
  1459. /* Workaround for potential 82544 hang in PCI-X. Avoid
  1460. * terminating buffers within evenly-aligned dwords. */
  1461. if(unlikely(adapter->pcix_82544 &&
  1462. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  1463. size > 4))
  1464. size -= 4;
  1465. buffer_info->length = size;
  1466. buffer_info->dma =
  1467. pci_map_single(adapter->pdev,
  1468. skb->data + offset,
  1469. size,
  1470. PCI_DMA_TODEVICE);
  1471. buffer_info->time_stamp = jiffies;
  1472. len -= size;
  1473. offset += size;
  1474. count++;
  1475. if(unlikely(++i == tx_ring->count)) i = 0;
  1476. }
  1477. for(f = 0; f < nr_frags; f++) {
  1478. struct skb_frag_struct *frag;
  1479. frag = &skb_shinfo(skb)->frags[f];
  1480. len = frag->size;
  1481. offset = frag->page_offset;
  1482. while(len) {
  1483. buffer_info = &tx_ring->buffer_info[i];
  1484. size = min(len, max_per_txd);
  1485. #ifdef NETIF_F_TSO
  1486. /* Workaround for premature desc write-backs
  1487. * in TSO mode. Append 4-byte sentinel desc */
  1488. if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  1489. size -= 4;
  1490. #endif
  1491. /* Workaround for potential 82544 hang in PCI-X.
  1492. * Avoid terminating buffers within evenly-aligned
  1493. * dwords. */
  1494. if(unlikely(adapter->pcix_82544 &&
  1495. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  1496. size > 4))
  1497. size -= 4;
  1498. buffer_info->length = size;
  1499. buffer_info->dma =
  1500. pci_map_page(adapter->pdev,
  1501. frag->page,
  1502. offset,
  1503. size,
  1504. PCI_DMA_TODEVICE);
  1505. buffer_info->time_stamp = jiffies;
  1506. len -= size;
  1507. offset += size;
  1508. count++;
  1509. if(unlikely(++i == tx_ring->count)) i = 0;
  1510. }
  1511. }
  1512. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  1513. tx_ring->buffer_info[i].skb = skb;
  1514. tx_ring->buffer_info[first].next_to_watch = i;
  1515. return count;
  1516. }
  1517. static inline void
  1518. e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
  1519. {
  1520. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1521. struct e1000_tx_desc *tx_desc = NULL;
  1522. struct e1000_buffer *buffer_info;
  1523. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  1524. unsigned int i;
  1525. if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  1526. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  1527. E1000_TXD_CMD_TSE;
  1528. txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
  1529. }
  1530. if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  1531. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  1532. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  1533. }
  1534. if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  1535. txd_lower |= E1000_TXD_CMD_VLE;
  1536. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  1537. }
  1538. i = tx_ring->next_to_use;
  1539. while(count--) {
  1540. buffer_info = &tx_ring->buffer_info[i];
  1541. tx_desc = E1000_TX_DESC(*tx_ring, i);
  1542. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  1543. tx_desc->lower.data =
  1544. cpu_to_le32(txd_lower | buffer_info->length);
  1545. tx_desc->upper.data = cpu_to_le32(txd_upper);
  1546. if(unlikely(++i == tx_ring->count)) i = 0;
  1547. }
  1548. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  1549. /* Force memory writes to complete before letting h/w
  1550. * know there are new descriptors to fetch. (Only
  1551. * applicable for weak-ordered memory model archs,
  1552. * such as IA-64). */
  1553. wmb();
  1554. tx_ring->next_to_use = i;
  1555. E1000_WRITE_REG(&adapter->hw, TDT, i);
  1556. }
  1557. /**
  1558. * 82547 workaround to avoid controller hang in half-duplex environment.
  1559. * The workaround is to avoid queuing a large packet that would span
  1560. * the internal Tx FIFO ring boundary by notifying the stack to resend
  1561. * the packet at a later time. This gives the Tx FIFO an opportunity to
  1562. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  1563. * to the beginning of the Tx FIFO.
  1564. **/
  1565. #define E1000_FIFO_HDR 0x10
  1566. #define E1000_82547_PAD_LEN 0x3E0
  1567. static inline int
  1568. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  1569. {
  1570. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  1571. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  1572. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  1573. if(adapter->link_duplex != HALF_DUPLEX)
  1574. goto no_fifo_stall_required;
  1575. if(atomic_read(&adapter->tx_fifo_stall))
  1576. return 1;
  1577. if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  1578. atomic_set(&adapter->tx_fifo_stall, 1);
  1579. return 1;
  1580. }
  1581. no_fifo_stall_required:
  1582. adapter->tx_fifo_head += skb_fifo_len;
  1583. if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
  1584. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  1585. return 0;
  1586. }
  1587. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  1588. static int
  1589. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1590. {
  1591. struct e1000_adapter *adapter = netdev->priv;
  1592. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  1593. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  1594. unsigned int tx_flags = 0;
  1595. unsigned int len = skb->len;
  1596. unsigned long flags;
  1597. unsigned int nr_frags = 0;
  1598. unsigned int mss = 0;
  1599. int count = 0;
  1600. int tso;
  1601. unsigned int f;
  1602. len -= skb->data_len;
  1603. if(unlikely(skb->len <= 0)) {
  1604. dev_kfree_skb_any(skb);
  1605. return NETDEV_TX_OK;
  1606. }
  1607. #ifdef NETIF_F_TSO
  1608. mss = skb_shinfo(skb)->tso_size;
  1609. /* The controller does a simple calculation to
  1610. * make sure there is enough room in the FIFO before
  1611. * initiating the DMA for each buffer. The calc is:
  1612. * 4 = ceil(buffer len/mss). To make sure we don't
  1613. * overrun the FIFO, adjust the max buffer len if mss
  1614. * drops. */
  1615. if(mss) {
  1616. max_per_txd = min(mss << 2, max_per_txd);
  1617. max_txd_pwr = fls(max_per_txd) - 1;
  1618. }
  1619. if((mss) || (skb->ip_summed == CHECKSUM_HW))
  1620. count++;
  1621. count++; /* for sentinel desc */
  1622. #else
  1623. if(skb->ip_summed == CHECKSUM_HW)
  1624. count++;
  1625. #endif
  1626. count += TXD_USE_COUNT(len, max_txd_pwr);
  1627. if(adapter->pcix_82544)
  1628. count++;
  1629. nr_frags = skb_shinfo(skb)->nr_frags;
  1630. for(f = 0; f < nr_frags; f++)
  1631. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  1632. max_txd_pwr);
  1633. if(adapter->pcix_82544)
  1634. count += nr_frags;
  1635. local_irq_save(flags);
  1636. if (!spin_trylock(&adapter->tx_lock)) {
  1637. /* Collision - tell upper layer to requeue */
  1638. local_irq_restore(flags);
  1639. return NETDEV_TX_LOCKED;
  1640. }
  1641. /* need: count + 2 desc gap to keep tail from touching
  1642. * head, otherwise try next time */
  1643. if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
  1644. netif_stop_queue(netdev);
  1645. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1646. return NETDEV_TX_BUSY;
  1647. }
  1648. if(unlikely(adapter->hw.mac_type == e1000_82547)) {
  1649. if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  1650. netif_stop_queue(netdev);
  1651. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  1652. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1653. return NETDEV_TX_BUSY;
  1654. }
  1655. }
  1656. if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  1657. tx_flags |= E1000_TX_FLAGS_VLAN;
  1658. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  1659. }
  1660. first = adapter->tx_ring.next_to_use;
  1661. tso = e1000_tso(adapter, skb);
  1662. if (tso < 0) {
  1663. dev_kfree_skb_any(skb);
  1664. return NETDEV_TX_OK;
  1665. }
  1666. if (likely(tso))
  1667. tx_flags |= E1000_TX_FLAGS_TSO;
  1668. else if(likely(e1000_tx_csum(adapter, skb)))
  1669. tx_flags |= E1000_TX_FLAGS_CSUM;
  1670. e1000_tx_queue(adapter,
  1671. e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
  1672. tx_flags);
  1673. netdev->trans_start = jiffies;
  1674. /* Make sure there is space in the ring for the next send. */
  1675. if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
  1676. netif_stop_queue(netdev);
  1677. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1678. return NETDEV_TX_OK;
  1679. }
  1680. /**
  1681. * e1000_tx_timeout - Respond to a Tx Hang
  1682. * @netdev: network interface device structure
  1683. **/
  1684. static void
  1685. e1000_tx_timeout(struct net_device *netdev)
  1686. {
  1687. struct e1000_adapter *adapter = netdev->priv;
  1688. /* Do the reset outside of interrupt context */
  1689. schedule_work(&adapter->tx_timeout_task);
  1690. }
  1691. static void
  1692. e1000_tx_timeout_task(struct net_device *netdev)
  1693. {
  1694. struct e1000_adapter *adapter = netdev->priv;
  1695. e1000_down(adapter);
  1696. e1000_up(adapter);
  1697. }
  1698. /**
  1699. * e1000_get_stats - Get System Network Statistics
  1700. * @netdev: network interface device structure
  1701. *
  1702. * Returns the address of the device statistics structure.
  1703. * The statistics are actually updated from the timer callback.
  1704. **/
  1705. static struct net_device_stats *
  1706. e1000_get_stats(struct net_device *netdev)
  1707. {
  1708. struct e1000_adapter *adapter = netdev->priv;
  1709. e1000_update_stats(adapter);
  1710. return &adapter->net_stats;
  1711. }
  1712. /**
  1713. * e1000_change_mtu - Change the Maximum Transfer Unit
  1714. * @netdev: network interface device structure
  1715. * @new_mtu: new value for maximum frame size
  1716. *
  1717. * Returns 0 on success, negative on failure
  1718. **/
  1719. static int
  1720. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  1721. {
  1722. struct e1000_adapter *adapter = netdev->priv;
  1723. int old_mtu = adapter->rx_buffer_len;
  1724. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  1725. if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  1726. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  1727. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  1728. return -EINVAL;
  1729. }
  1730. if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
  1731. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  1732. } else if(adapter->hw.mac_type < e1000_82543) {
  1733. DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
  1734. return -EINVAL;
  1735. } else if(max_frame <= E1000_RXBUFFER_4096) {
  1736. adapter->rx_buffer_len = E1000_RXBUFFER_4096;
  1737. } else if(max_frame <= E1000_RXBUFFER_8192) {
  1738. adapter->rx_buffer_len = E1000_RXBUFFER_8192;
  1739. } else {
  1740. adapter->rx_buffer_len = E1000_RXBUFFER_16384;
  1741. }
  1742. if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
  1743. e1000_down(adapter);
  1744. e1000_up(adapter);
  1745. }
  1746. netdev->mtu = new_mtu;
  1747. adapter->hw.max_frame_size = max_frame;
  1748. return 0;
  1749. }
  1750. /**
  1751. * e1000_update_stats - Update the board statistics counters
  1752. * @adapter: board private structure
  1753. **/
  1754. void
  1755. e1000_update_stats(struct e1000_adapter *adapter)
  1756. {
  1757. struct e1000_hw *hw = &adapter->hw;
  1758. unsigned long flags;
  1759. uint16_t phy_tmp;
  1760. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  1761. spin_lock_irqsave(&adapter->stats_lock, flags);
  1762. /* these counters are modified from e1000_adjust_tbi_stats,
  1763. * called from the interrupt context, so they must only
  1764. * be written while holding adapter->stats_lock
  1765. */
  1766. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  1767. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  1768. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  1769. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  1770. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  1771. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  1772. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  1773. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  1774. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  1775. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  1776. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  1777. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  1778. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  1779. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  1780. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  1781. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  1782. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  1783. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  1784. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  1785. adapter->stats.dc += E1000_READ_REG(hw, DC);
  1786. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  1787. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  1788. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  1789. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  1790. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  1791. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  1792. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  1793. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  1794. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  1795. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  1796. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  1797. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  1798. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  1799. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  1800. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  1801. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  1802. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  1803. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  1804. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  1805. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  1806. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  1807. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  1808. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  1809. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  1810. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  1811. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  1812. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  1813. /* used for adaptive IFS */
  1814. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  1815. adapter->stats.tpt += hw->tx_packet_delta;
  1816. hw->collision_delta = E1000_READ_REG(hw, COLC);
  1817. adapter->stats.colc += hw->collision_delta;
  1818. if(hw->mac_type >= e1000_82543) {
  1819. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  1820. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  1821. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  1822. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  1823. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  1824. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  1825. }
  1826. /* Fill out the OS statistics structure */
  1827. adapter->net_stats.rx_packets = adapter->stats.gprc;
  1828. adapter->net_stats.tx_packets = adapter->stats.gptc;
  1829. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  1830. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  1831. adapter->net_stats.multicast = adapter->stats.mprc;
  1832. adapter->net_stats.collisions = adapter->stats.colc;
  1833. /* Rx Errors */
  1834. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  1835. adapter->stats.crcerrs + adapter->stats.algnerrc +
  1836. adapter->stats.rlec + adapter->stats.rnbc +
  1837. adapter->stats.mpc + adapter->stats.cexterr;
  1838. adapter->net_stats.rx_dropped = adapter->stats.rnbc;
  1839. adapter->net_stats.rx_length_errors = adapter->stats.rlec;
  1840. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  1841. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  1842. adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
  1843. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  1844. /* Tx Errors */
  1845. adapter->net_stats.tx_errors = adapter->stats.ecol +
  1846. adapter->stats.latecol;
  1847. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  1848. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  1849. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  1850. /* Tx Dropped needs to be maintained elsewhere */
  1851. /* Phy Stats */
  1852. if(hw->media_type == e1000_media_type_copper) {
  1853. if((adapter->link_speed == SPEED_1000) &&
  1854. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  1855. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  1856. adapter->phy_stats.idle_errors += phy_tmp;
  1857. }
  1858. if((hw->mac_type <= e1000_82546) &&
  1859. (hw->phy_type == e1000_phy_m88) &&
  1860. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  1861. adapter->phy_stats.receive_errors += phy_tmp;
  1862. }
  1863. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  1864. }
  1865. /**
  1866. * e1000_intr - Interrupt Handler
  1867. * @irq: interrupt number
  1868. * @data: pointer to a network interface device structure
  1869. * @pt_regs: CPU registers structure
  1870. **/
  1871. static irqreturn_t
  1872. e1000_intr(int irq, void *data, struct pt_regs *regs)
  1873. {
  1874. struct net_device *netdev = data;
  1875. struct e1000_adapter *adapter = netdev->priv;
  1876. struct e1000_hw *hw = &adapter->hw;
  1877. uint32_t icr = E1000_READ_REG(hw, ICR);
  1878. #ifndef CONFIG_E1000_NAPI
  1879. unsigned int i;
  1880. #endif
  1881. if(unlikely(!icr))
  1882. return IRQ_NONE; /* Not our interrupt */
  1883. if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  1884. hw->get_link_status = 1;
  1885. mod_timer(&adapter->watchdog_timer, jiffies);
  1886. }
  1887. #ifdef CONFIG_E1000_NAPI
  1888. if(likely(netif_rx_schedule_prep(netdev))) {
  1889. /* Disable interrupts and register for poll. The flush
  1890. of the posted write is intentionally left out.
  1891. */
  1892. atomic_inc(&adapter->irq_sem);
  1893. E1000_WRITE_REG(hw, IMC, ~0);
  1894. __netif_rx_schedule(netdev);
  1895. }
  1896. #else
  1897. /* Writing IMC and IMS is needed for 82547.
  1898. Due to Hub Link bus being occupied, an interrupt
  1899. de-assertion message is not able to be sent.
  1900. When an interrupt assertion message is generated later,
  1901. two messages are re-ordered and sent out.
  1902. That causes APIC to think 82547 is in de-assertion
  1903. state, while 82547 is in assertion state, resulting
  1904. in dead lock. Writing IMC forces 82547 into
  1905. de-assertion state.
  1906. */
  1907. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
  1908. atomic_inc(&adapter->irq_sem);
  1909. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  1910. }
  1911. for(i = 0; i < E1000_MAX_INTR; i++)
  1912. if(unlikely(!e1000_clean_rx_irq(adapter) &
  1913. !e1000_clean_tx_irq(adapter)))
  1914. break;
  1915. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  1916. e1000_irq_enable(adapter);
  1917. #endif
  1918. return IRQ_HANDLED;
  1919. }
  1920. #ifdef CONFIG_E1000_NAPI
  1921. /**
  1922. * e1000_clean - NAPI Rx polling callback
  1923. * @adapter: board private structure
  1924. **/
  1925. static int
  1926. e1000_clean(struct net_device *netdev, int *budget)
  1927. {
  1928. struct e1000_adapter *adapter = netdev->priv;
  1929. int work_to_do = min(*budget, netdev->quota);
  1930. int tx_cleaned;
  1931. int work_done = 0;
  1932. tx_cleaned = e1000_clean_tx_irq(adapter);
  1933. e1000_clean_rx_irq(adapter, &work_done, work_to_do);
  1934. *budget -= work_done;
  1935. netdev->quota -= work_done;
  1936. /* if no Tx and not enough Rx work done, exit the polling mode */
  1937. if((!tx_cleaned && (work_done < work_to_do)) ||
  1938. !netif_running(netdev)) {
  1939. netif_rx_complete(netdev);
  1940. e1000_irq_enable(adapter);
  1941. return 0;
  1942. }
  1943. return 1;
  1944. }
  1945. #endif
  1946. /**
  1947. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  1948. * @adapter: board private structure
  1949. **/
  1950. static boolean_t
  1951. e1000_clean_tx_irq(struct e1000_adapter *adapter)
  1952. {
  1953. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1954. struct net_device *netdev = adapter->netdev;
  1955. struct e1000_tx_desc *tx_desc, *eop_desc;
  1956. struct e1000_buffer *buffer_info;
  1957. unsigned int i, eop;
  1958. boolean_t cleaned = FALSE;
  1959. i = tx_ring->next_to_clean;
  1960. eop = tx_ring->buffer_info[i].next_to_watch;
  1961. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  1962. while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  1963. /* pre-mature writeback of Tx descriptors */
  1964. /* clear (free buffers and unmap pci_mapping) */
  1965. /* previous_buffer_info */
  1966. if (likely(adapter->previous_buffer_info.skb != NULL)) {
  1967. e1000_unmap_and_free_tx_resource(adapter,
  1968. &adapter->previous_buffer_info);
  1969. }
  1970. for(cleaned = FALSE; !cleaned; ) {
  1971. tx_desc = E1000_TX_DESC(*tx_ring, i);
  1972. buffer_info = &tx_ring->buffer_info[i];
  1973. cleaned = (i == eop);
  1974. /* pre-mature writeback of Tx descriptors */
  1975. /* save the cleaning of the this for the */
  1976. /* next iteration */
  1977. if (cleaned) {
  1978. memcpy(&adapter->previous_buffer_info,
  1979. buffer_info,
  1980. sizeof(struct e1000_buffer));
  1981. memset(buffer_info,
  1982. 0,
  1983. sizeof(struct e1000_buffer));
  1984. } else {
  1985. e1000_unmap_and_free_tx_resource(adapter,
  1986. buffer_info);
  1987. }
  1988. tx_desc->buffer_addr = 0;
  1989. tx_desc->lower.data = 0;
  1990. tx_desc->upper.data = 0;
  1991. cleaned = (i == eop);
  1992. if(unlikely(++i == tx_ring->count)) i = 0;
  1993. }
  1994. eop = tx_ring->buffer_info[i].next_to_watch;
  1995. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  1996. }
  1997. tx_ring->next_to_clean = i;
  1998. spin_lock(&adapter->tx_lock);
  1999. if(unlikely(cleaned && netif_queue_stopped(netdev) &&
  2000. netif_carrier_ok(netdev)))
  2001. netif_wake_queue(netdev);
  2002. spin_unlock(&adapter->tx_lock);
  2003. if(adapter->detect_tx_hung) {
  2004. /* detect a transmit hang in hardware, this serializes the
  2005. * check with the clearing of time_stamp and movement of i */
  2006. adapter->detect_tx_hung = FALSE;
  2007. if(tx_ring->buffer_info[i].dma &&
  2008. time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) &&
  2009. !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
  2010. netif_stop_queue(netdev);
  2011. }
  2012. return cleaned;
  2013. }
  2014. /**
  2015. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2016. * @adapter: board private structure
  2017. * @rx_desc: receive descriptor
  2018. * @sk_buff: socket buffer with received data
  2019. **/
  2020. static inline void
  2021. e1000_rx_checksum(struct e1000_adapter *adapter,
  2022. struct e1000_rx_desc *rx_desc,
  2023. struct sk_buff *skb)
  2024. {
  2025. /* 82543 or newer only */
  2026. if(unlikely((adapter->hw.mac_type < e1000_82543) ||
  2027. /* Ignore Checksum bit is set */
  2028. (rx_desc->status & E1000_RXD_STAT_IXSM) ||
  2029. /* TCP Checksum has not been calculated */
  2030. (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
  2031. skb->ip_summed = CHECKSUM_NONE;
  2032. return;
  2033. }
  2034. /* At this point we know the hardware did the TCP checksum */
  2035. /* now look at the TCP checksum error bit */
  2036. if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
  2037. /* let the stack verify checksum errors */
  2038. skb->ip_summed = CHECKSUM_NONE;
  2039. adapter->hw_csum_err++;
  2040. } else {
  2041. /* TCP checksum is good */
  2042. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2043. adapter->hw_csum_good++;
  2044. }
  2045. }
  2046. /**
  2047. * e1000_clean_rx_irq - Send received data up the network stack
  2048. * @adapter: board private structure
  2049. **/
  2050. static boolean_t
  2051. #ifdef CONFIG_E1000_NAPI
  2052. e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
  2053. int work_to_do)
  2054. #else
  2055. e1000_clean_rx_irq(struct e1000_adapter *adapter)
  2056. #endif
  2057. {
  2058. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2059. struct net_device *netdev = adapter->netdev;
  2060. struct pci_dev *pdev = adapter->pdev;
  2061. struct e1000_rx_desc *rx_desc;
  2062. struct e1000_buffer *buffer_info;
  2063. struct sk_buff *skb;
  2064. unsigned long flags;
  2065. uint32_t length;
  2066. uint8_t last_byte;
  2067. unsigned int i;
  2068. boolean_t cleaned = FALSE;
  2069. i = rx_ring->next_to_clean;
  2070. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2071. while(rx_desc->status & E1000_RXD_STAT_DD) {
  2072. buffer_info = &rx_ring->buffer_info[i];
  2073. #ifdef CONFIG_E1000_NAPI
  2074. if(*work_done >= work_to_do)
  2075. break;
  2076. (*work_done)++;
  2077. #endif
  2078. cleaned = TRUE;
  2079. pci_unmap_single(pdev,
  2080. buffer_info->dma,
  2081. buffer_info->length,
  2082. PCI_DMA_FROMDEVICE);
  2083. skb = buffer_info->skb;
  2084. length = le16_to_cpu(rx_desc->length);
  2085. if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
  2086. /* All receives must fit into a single buffer */
  2087. E1000_DBG("%s: Receive packet consumed multiple"
  2088. " buffers\n", netdev->name);
  2089. dev_kfree_skb_irq(skb);
  2090. goto next_desc;
  2091. }
  2092. if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  2093. last_byte = *(skb->data + length - 1);
  2094. if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
  2095. rx_desc->errors, length, last_byte)) {
  2096. spin_lock_irqsave(&adapter->stats_lock, flags);
  2097. e1000_tbi_adjust_stats(&adapter->hw,
  2098. &adapter->stats,
  2099. length, skb->data);
  2100. spin_unlock_irqrestore(&adapter->stats_lock,
  2101. flags);
  2102. length--;
  2103. } else {
  2104. dev_kfree_skb_irq(skb);
  2105. goto next_desc;
  2106. }
  2107. }
  2108. /* Good Receive */
  2109. skb_put(skb, length - ETHERNET_FCS_SIZE);
  2110. /* Receive Checksum Offload */
  2111. e1000_rx_checksum(adapter, rx_desc, skb);
  2112. skb->protocol = eth_type_trans(skb, netdev);
  2113. #ifdef CONFIG_E1000_NAPI
  2114. if(unlikely(adapter->vlgrp &&
  2115. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2116. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  2117. le16_to_cpu(rx_desc->special) &
  2118. E1000_RXD_SPC_VLAN_MASK);
  2119. } else {
  2120. netif_receive_skb(skb);
  2121. }
  2122. #else /* CONFIG_E1000_NAPI */
  2123. if(unlikely(adapter->vlgrp &&
  2124. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2125. vlan_hwaccel_rx(skb, adapter->vlgrp,
  2126. le16_to_cpu(rx_desc->special) &
  2127. E1000_RXD_SPC_VLAN_MASK);
  2128. } else {
  2129. netif_rx(skb);
  2130. }
  2131. #endif /* CONFIG_E1000_NAPI */
  2132. netdev->last_rx = jiffies;
  2133. next_desc:
  2134. rx_desc->status = 0;
  2135. buffer_info->skb = NULL;
  2136. if(unlikely(++i == rx_ring->count)) i = 0;
  2137. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2138. }
  2139. rx_ring->next_to_clean = i;
  2140. e1000_alloc_rx_buffers(adapter);
  2141. return cleaned;
  2142. }
  2143. /**
  2144. * e1000_alloc_rx_buffers - Replace used receive buffers
  2145. * @adapter: address of board private structure
  2146. **/
  2147. static void
  2148. e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
  2149. {
  2150. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2151. struct net_device *netdev = adapter->netdev;
  2152. struct pci_dev *pdev = adapter->pdev;
  2153. struct e1000_rx_desc *rx_desc;
  2154. struct e1000_buffer *buffer_info;
  2155. struct sk_buff *skb;
  2156. unsigned int i, bufsz;
  2157. i = rx_ring->next_to_use;
  2158. buffer_info = &rx_ring->buffer_info[i];
  2159. while(!buffer_info->skb) {
  2160. bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  2161. skb = dev_alloc_skb(bufsz);
  2162. if(unlikely(!skb)) {
  2163. /* Better luck next round */
  2164. break;
  2165. }
  2166. /* fix for errata 23, cant cross 64kB boundary */
  2167. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  2168. struct sk_buff *oldskb = skb;
  2169. DPRINTK(RX_ERR,ERR,
  2170. "skb align check failed: %u bytes at %p\n",
  2171. bufsz, skb->data);
  2172. /* try again, without freeing the previous */
  2173. skb = dev_alloc_skb(bufsz);
  2174. if (!skb) {
  2175. dev_kfree_skb(oldskb);
  2176. break;
  2177. }
  2178. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  2179. /* give up */
  2180. dev_kfree_skb(skb);
  2181. dev_kfree_skb(oldskb);
  2182. break; /* while !buffer_info->skb */
  2183. } else {
  2184. /* move on with the new one */
  2185. dev_kfree_skb(oldskb);
  2186. }
  2187. }
  2188. /* Make buffer alignment 2 beyond a 16 byte boundary
  2189. * this will result in a 16 byte aligned IP header after
  2190. * the 14 byte MAC header is removed
  2191. */
  2192. skb_reserve(skb, NET_IP_ALIGN);
  2193. skb->dev = netdev;
  2194. buffer_info->skb = skb;
  2195. buffer_info->length = adapter->rx_buffer_len;
  2196. buffer_info->dma = pci_map_single(pdev,
  2197. skb->data,
  2198. adapter->rx_buffer_len,
  2199. PCI_DMA_FROMDEVICE);
  2200. /* fix for errata 23, cant cross 64kB boundary */
  2201. if(!e1000_check_64k_bound(adapter,
  2202. (void *)(unsigned long)buffer_info->dma,
  2203. adapter->rx_buffer_len)) {
  2204. DPRINTK(RX_ERR,ERR,
  2205. "dma align check failed: %u bytes at %ld\n",
  2206. adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
  2207. dev_kfree_skb(skb);
  2208. buffer_info->skb = NULL;
  2209. pci_unmap_single(pdev,
  2210. buffer_info->dma,
  2211. adapter->rx_buffer_len,
  2212. PCI_DMA_FROMDEVICE);
  2213. break; /* while !buffer_info->skb */
  2214. }
  2215. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2216. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2217. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  2218. /* Force memory writes to complete before letting h/w
  2219. * know there are new descriptors to fetch. (Only
  2220. * applicable for weak-ordered memory model archs,
  2221. * such as IA-64). */
  2222. wmb();
  2223. E1000_WRITE_REG(&adapter->hw, RDT, i);
  2224. }
  2225. if(unlikely(++i == rx_ring->count)) i = 0;
  2226. buffer_info = &rx_ring->buffer_info[i];
  2227. }
  2228. rx_ring->next_to_use = i;
  2229. }
  2230. /**
  2231. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  2232. * @adapter:
  2233. **/
  2234. static void
  2235. e1000_smartspeed(struct e1000_adapter *adapter)
  2236. {
  2237. uint16_t phy_status;
  2238. uint16_t phy_ctrl;
  2239. if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  2240. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  2241. return;
  2242. if(adapter->smartspeed == 0) {
  2243. /* If Master/Slave config fault is asserted twice,
  2244. * we assume back-to-back */
  2245. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  2246. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  2247. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  2248. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  2249. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  2250. if(phy_ctrl & CR_1000T_MS_ENABLE) {
  2251. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  2252. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  2253. phy_ctrl);
  2254. adapter->smartspeed++;
  2255. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  2256. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  2257. &phy_ctrl)) {
  2258. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  2259. MII_CR_RESTART_AUTO_NEG);
  2260. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  2261. phy_ctrl);
  2262. }
  2263. }
  2264. return;
  2265. } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  2266. /* If still no link, perhaps using 2/3 pair cable */
  2267. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  2268. phy_ctrl |= CR_1000T_MS_ENABLE;
  2269. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  2270. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  2271. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  2272. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  2273. MII_CR_RESTART_AUTO_NEG);
  2274. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  2275. }
  2276. }
  2277. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  2278. if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  2279. adapter->smartspeed = 0;
  2280. }
  2281. /**
  2282. * e1000_ioctl -
  2283. * @netdev:
  2284. * @ifreq:
  2285. * @cmd:
  2286. **/
  2287. static int
  2288. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2289. {
  2290. switch (cmd) {
  2291. case SIOCGMIIPHY:
  2292. case SIOCGMIIREG:
  2293. case SIOCSMIIREG:
  2294. return e1000_mii_ioctl(netdev, ifr, cmd);
  2295. default:
  2296. return -EOPNOTSUPP;
  2297. }
  2298. }
  2299. /**
  2300. * e1000_mii_ioctl -
  2301. * @netdev:
  2302. * @ifreq:
  2303. * @cmd:
  2304. **/
  2305. static int
  2306. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2307. {
  2308. struct e1000_adapter *adapter = netdev->priv;
  2309. struct mii_ioctl_data *data = if_mii(ifr);
  2310. int retval;
  2311. uint16_t mii_reg;
  2312. uint16_t spddplx;
  2313. if(adapter->hw.media_type != e1000_media_type_copper)
  2314. return -EOPNOTSUPP;
  2315. switch (cmd) {
  2316. case SIOCGMIIPHY:
  2317. data->phy_id = adapter->hw.phy_addr;
  2318. break;
  2319. case SIOCGMIIREG:
  2320. if (!capable(CAP_NET_ADMIN))
  2321. return -EPERM;
  2322. if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  2323. &data->val_out))
  2324. return -EIO;
  2325. break;
  2326. case SIOCSMIIREG:
  2327. if (!capable(CAP_NET_ADMIN))
  2328. return -EPERM;
  2329. if (data->reg_num & ~(0x1F))
  2330. return -EFAULT;
  2331. mii_reg = data->val_in;
  2332. if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
  2333. mii_reg))
  2334. return -EIO;
  2335. if (adapter->hw.phy_type == e1000_phy_m88) {
  2336. switch (data->reg_num) {
  2337. case PHY_CTRL:
  2338. if(mii_reg & MII_CR_POWER_DOWN)
  2339. break;
  2340. if(mii_reg & MII_CR_AUTO_NEG_EN) {
  2341. adapter->hw.autoneg = 1;
  2342. adapter->hw.autoneg_advertised = 0x2F;
  2343. } else {
  2344. if (mii_reg & 0x40)
  2345. spddplx = SPEED_1000;
  2346. else if (mii_reg & 0x2000)
  2347. spddplx = SPEED_100;
  2348. else
  2349. spddplx = SPEED_10;
  2350. spddplx += (mii_reg & 0x100)
  2351. ? FULL_DUPLEX :
  2352. HALF_DUPLEX;
  2353. retval = e1000_set_spd_dplx(adapter,
  2354. spddplx);
  2355. if(retval)
  2356. return retval;
  2357. }
  2358. if(netif_running(adapter->netdev)) {
  2359. e1000_down(adapter);
  2360. e1000_up(adapter);
  2361. } else
  2362. e1000_reset(adapter);
  2363. break;
  2364. case M88E1000_PHY_SPEC_CTRL:
  2365. case M88E1000_EXT_PHY_SPEC_CTRL:
  2366. if (e1000_phy_reset(&adapter->hw))
  2367. return -EIO;
  2368. break;
  2369. }
  2370. } else {
  2371. switch (data->reg_num) {
  2372. case PHY_CTRL:
  2373. if(mii_reg & MII_CR_POWER_DOWN)
  2374. break;
  2375. if(netif_running(adapter->netdev)) {
  2376. e1000_down(adapter);
  2377. e1000_up(adapter);
  2378. } else
  2379. e1000_reset(adapter);
  2380. break;
  2381. }
  2382. }
  2383. break;
  2384. default:
  2385. return -EOPNOTSUPP;
  2386. }
  2387. return E1000_SUCCESS;
  2388. }
  2389. void
  2390. e1000_pci_set_mwi(struct e1000_hw *hw)
  2391. {
  2392. struct e1000_adapter *adapter = hw->back;
  2393. int ret;
  2394. ret = pci_set_mwi(adapter->pdev);
  2395. }
  2396. void
  2397. e1000_pci_clear_mwi(struct e1000_hw *hw)
  2398. {
  2399. struct e1000_adapter *adapter = hw->back;
  2400. pci_clear_mwi(adapter->pdev);
  2401. }
  2402. void
  2403. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  2404. {
  2405. struct e1000_adapter *adapter = hw->back;
  2406. pci_read_config_word(adapter->pdev, reg, value);
  2407. }
  2408. void
  2409. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  2410. {
  2411. struct e1000_adapter *adapter = hw->back;
  2412. pci_write_config_word(adapter->pdev, reg, *value);
  2413. }
  2414. uint32_t
  2415. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  2416. {
  2417. return inl(port);
  2418. }
  2419. void
  2420. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  2421. {
  2422. outl(value, port);
  2423. }
  2424. static void
  2425. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  2426. {
  2427. struct e1000_adapter *adapter = netdev->priv;
  2428. uint32_t ctrl, rctl;
  2429. e1000_irq_disable(adapter);
  2430. adapter->vlgrp = grp;
  2431. if(grp) {
  2432. /* enable VLAN tag insert/strip */
  2433. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2434. ctrl |= E1000_CTRL_VME;
  2435. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2436. /* enable VLAN receive filtering */
  2437. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2438. rctl |= E1000_RCTL_VFE;
  2439. rctl &= ~E1000_RCTL_CFIEN;
  2440. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2441. } else {
  2442. /* disable VLAN tag insert/strip */
  2443. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2444. ctrl &= ~E1000_CTRL_VME;
  2445. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2446. /* disable VLAN filtering */
  2447. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2448. rctl &= ~E1000_RCTL_VFE;
  2449. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2450. }
  2451. e1000_irq_enable(adapter);
  2452. }
  2453. static void
  2454. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  2455. {
  2456. struct e1000_adapter *adapter = netdev->priv;
  2457. uint32_t vfta, index;
  2458. /* add VID to filter table */
  2459. index = (vid >> 5) & 0x7F;
  2460. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  2461. vfta |= (1 << (vid & 0x1F));
  2462. e1000_write_vfta(&adapter->hw, index, vfta);
  2463. }
  2464. static void
  2465. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  2466. {
  2467. struct e1000_adapter *adapter = netdev->priv;
  2468. uint32_t vfta, index;
  2469. e1000_irq_disable(adapter);
  2470. if(adapter->vlgrp)
  2471. adapter->vlgrp->vlan_devices[vid] = NULL;
  2472. e1000_irq_enable(adapter);
  2473. /* remove VID from filter table */
  2474. index = (vid >> 5) & 0x7F;
  2475. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  2476. vfta &= ~(1 << (vid & 0x1F));
  2477. e1000_write_vfta(&adapter->hw, index, vfta);
  2478. }
  2479. static void
  2480. e1000_restore_vlan(struct e1000_adapter *adapter)
  2481. {
  2482. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  2483. if(adapter->vlgrp) {
  2484. uint16_t vid;
  2485. for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  2486. if(!adapter->vlgrp->vlan_devices[vid])
  2487. continue;
  2488. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  2489. }
  2490. }
  2491. }
  2492. int
  2493. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  2494. {
  2495. adapter->hw.autoneg = 0;
  2496. switch(spddplx) {
  2497. case SPEED_10 + DUPLEX_HALF:
  2498. adapter->hw.forced_speed_duplex = e1000_10_half;
  2499. break;
  2500. case SPEED_10 + DUPLEX_FULL:
  2501. adapter->hw.forced_speed_duplex = e1000_10_full;
  2502. break;
  2503. case SPEED_100 + DUPLEX_HALF:
  2504. adapter->hw.forced_speed_duplex = e1000_100_half;
  2505. break;
  2506. case SPEED_100 + DUPLEX_FULL:
  2507. adapter->hw.forced_speed_duplex = e1000_100_full;
  2508. break;
  2509. case SPEED_1000 + DUPLEX_FULL:
  2510. adapter->hw.autoneg = 1;
  2511. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  2512. break;
  2513. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  2514. default:
  2515. DPRINTK(PROBE, ERR,
  2516. "Unsupported Speed/Duplexity configuration\n");
  2517. return -EINVAL;
  2518. }
  2519. return 0;
  2520. }
  2521. static int
  2522. e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
  2523. {
  2524. struct pci_dev *pdev = NULL;
  2525. switch(event) {
  2526. case SYS_DOWN:
  2527. case SYS_HALT:
  2528. case SYS_POWER_OFF:
  2529. while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
  2530. if(pci_dev_driver(pdev) == &e1000_driver)
  2531. e1000_suspend(pdev, 3);
  2532. }
  2533. }
  2534. return NOTIFY_DONE;
  2535. }
  2536. static int
  2537. e1000_suspend(struct pci_dev *pdev, uint32_t state)
  2538. {
  2539. struct net_device *netdev = pci_get_drvdata(pdev);
  2540. struct e1000_adapter *adapter = netdev->priv;
  2541. uint32_t ctrl, ctrl_ext, rctl, manc, status;
  2542. uint32_t wufc = adapter->wol;
  2543. netif_device_detach(netdev);
  2544. if(netif_running(netdev))
  2545. e1000_down(adapter);
  2546. status = E1000_READ_REG(&adapter->hw, STATUS);
  2547. if(status & E1000_STATUS_LU)
  2548. wufc &= ~E1000_WUFC_LNKC;
  2549. if(wufc) {
  2550. e1000_setup_rctl(adapter);
  2551. e1000_set_multi(netdev);
  2552. /* turn on all-multi mode if wake on multicast is enabled */
  2553. if(adapter->wol & E1000_WUFC_MC) {
  2554. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2555. rctl |= E1000_RCTL_MPE;
  2556. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2557. }
  2558. if(adapter->hw.mac_type >= e1000_82540) {
  2559. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2560. /* advertise wake from D3Cold */
  2561. #define E1000_CTRL_ADVD3WUC 0x00100000
  2562. /* phy power management enable */
  2563. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  2564. ctrl |= E1000_CTRL_ADVD3WUC |
  2565. E1000_CTRL_EN_PHY_PWR_MGMT;
  2566. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2567. }
  2568. if(adapter->hw.media_type == e1000_media_type_fiber ||
  2569. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  2570. /* keep the laser running in D3 */
  2571. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  2572. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  2573. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  2574. }
  2575. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  2576. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  2577. pci_enable_wake(pdev, 3, 1);
  2578. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  2579. } else {
  2580. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  2581. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  2582. pci_enable_wake(pdev, 3, 0);
  2583. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  2584. }
  2585. pci_save_state(pdev);
  2586. if(adapter->hw.mac_type >= e1000_82540 &&
  2587. adapter->hw.media_type == e1000_media_type_copper) {
  2588. manc = E1000_READ_REG(&adapter->hw, MANC);
  2589. if(manc & E1000_MANC_SMBUS_EN) {
  2590. manc |= E1000_MANC_ARP_EN;
  2591. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  2592. pci_enable_wake(pdev, 3, 1);
  2593. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  2594. }
  2595. }
  2596. pci_disable_device(pdev);
  2597. state = (state > 0) ? 3 : 0;
  2598. pci_set_power_state(pdev, state);
  2599. return 0;
  2600. }
  2601. #ifdef CONFIG_PM
  2602. static int
  2603. e1000_resume(struct pci_dev *pdev)
  2604. {
  2605. struct net_device *netdev = pci_get_drvdata(pdev);
  2606. struct e1000_adapter *adapter = netdev->priv;
  2607. uint32_t manc, ret;
  2608. pci_set_power_state(pdev, 0);
  2609. pci_restore_state(pdev);
  2610. ret = pci_enable_device(pdev);
  2611. if (pdev->is_busmaster)
  2612. pci_set_master(pdev);
  2613. pci_enable_wake(pdev, 3, 0);
  2614. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  2615. e1000_reset(adapter);
  2616. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  2617. if(netif_running(netdev))
  2618. e1000_up(adapter);
  2619. netif_device_attach(netdev);
  2620. if(adapter->hw.mac_type >= e1000_82540 &&
  2621. adapter->hw.media_type == e1000_media_type_copper) {
  2622. manc = E1000_READ_REG(&adapter->hw, MANC);
  2623. manc &= ~(E1000_MANC_ARP_EN);
  2624. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  2625. }
  2626. return 0;
  2627. }
  2628. #endif
  2629. #ifdef CONFIG_NET_POLL_CONTROLLER
  2630. /*
  2631. * Polling 'interrupt' - used by things like netconsole to send skbs
  2632. * without having to re-enable interrupts. It's not called while
  2633. * the interrupt routine is executing.
  2634. */
  2635. static void
  2636. e1000_netpoll (struct net_device *netdev)
  2637. {
  2638. struct e1000_adapter *adapter = netdev->priv;
  2639. disable_irq(adapter->pdev->irq);
  2640. e1000_intr(adapter->pdev->irq, netdev, NULL);
  2641. enable_irq(adapter->pdev->irq);
  2642. }
  2643. #endif
  2644. /* e1000_main.c */