smp.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/smp.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/irq.h>
  25. #include <linux/percpu.h>
  26. #include <linux/clockchips.h>
  27. #include <linux/completion.h>
  28. #include <linux/cpufreq.h>
  29. #include <linux/atomic.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/localtimer.h>
  44. #include <asm/smp_plat.h>
  45. /*
  46. * as from 2.5, kernels no longer have an init_tasks structure
  47. * so we need some other way of telling a new secondary core
  48. * where to place its SVC stack
  49. */
  50. struct secondary_data secondary_data;
  51. enum ipi_msg_type {
  52. IPI_TIMER = 2,
  53. IPI_RESCHEDULE,
  54. IPI_CALL_FUNC,
  55. IPI_CALL_FUNC_SINGLE,
  56. IPI_CPU_STOP,
  57. };
  58. static DECLARE_COMPLETION(cpu_running);
  59. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  60. {
  61. int ret;
  62. /*
  63. * We need to tell the secondary core where to find
  64. * its stack and the page tables.
  65. */
  66. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  67. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  68. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  69. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  70. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  71. /*
  72. * Now bring the CPU into our world.
  73. */
  74. ret = boot_secondary(cpu, idle);
  75. if (ret == 0) {
  76. /*
  77. * CPU was successfully started, wait for it
  78. * to come online or time out.
  79. */
  80. wait_for_completion_timeout(&cpu_running,
  81. msecs_to_jiffies(1000));
  82. if (!cpu_online(cpu)) {
  83. pr_crit("CPU%u: failed to come online\n", cpu);
  84. ret = -EIO;
  85. }
  86. } else {
  87. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  88. }
  89. secondary_data.stack = NULL;
  90. secondary_data.pgdir = 0;
  91. return ret;
  92. }
  93. #ifdef CONFIG_HOTPLUG_CPU
  94. static void percpu_timer_stop(void);
  95. /*
  96. * __cpu_disable runs on the processor to be shutdown.
  97. */
  98. int __cpu_disable(void)
  99. {
  100. unsigned int cpu = smp_processor_id();
  101. int ret;
  102. ret = platform_cpu_disable(cpu);
  103. if (ret)
  104. return ret;
  105. /*
  106. * Take this CPU offline. Once we clear this, we can't return,
  107. * and we must not schedule until we're ready to give up the cpu.
  108. */
  109. set_cpu_online(cpu, false);
  110. /*
  111. * OK - migrate IRQs away from this CPU
  112. */
  113. migrate_irqs();
  114. /*
  115. * Stop the local timer for this CPU.
  116. */
  117. percpu_timer_stop();
  118. /*
  119. * Flush user cache and TLB mappings, and then remove this CPU
  120. * from the vm mask set of all processes.
  121. */
  122. flush_cache_all();
  123. local_flush_tlb_all();
  124. clear_tasks_mm_cpumask(cpu);
  125. return 0;
  126. }
  127. static DECLARE_COMPLETION(cpu_died);
  128. /*
  129. * called on the thread which is asking for a CPU to be shutdown -
  130. * waits until shutdown has completed, or it is timed out.
  131. */
  132. void __cpu_die(unsigned int cpu)
  133. {
  134. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  135. pr_err("CPU%u: cpu didn't die\n", cpu);
  136. return;
  137. }
  138. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  139. if (!platform_cpu_kill(cpu))
  140. printk("CPU%u: unable to kill\n", cpu);
  141. }
  142. /*
  143. * Called from the idle thread for the CPU which has been shutdown.
  144. *
  145. * Note that we disable IRQs here, but do not re-enable them
  146. * before returning to the caller. This is also the behaviour
  147. * of the other hotplug-cpu capable cores, so presumably coming
  148. * out of idle fixes this.
  149. */
  150. void __ref cpu_die(void)
  151. {
  152. unsigned int cpu = smp_processor_id();
  153. idle_task_exit();
  154. local_irq_disable();
  155. mb();
  156. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  157. RCU_NONIDLE(complete(&cpu_died));
  158. /*
  159. * actual CPU shutdown procedure is at least platform (if not
  160. * CPU) specific.
  161. */
  162. platform_cpu_die(cpu);
  163. /*
  164. * Do not return to the idle loop - jump back to the secondary
  165. * cpu initialisation. There's some initialisation which needs
  166. * to be repeated to undo the effects of taking the CPU offline.
  167. */
  168. __asm__("mov sp, %0\n"
  169. " mov fp, #0\n"
  170. " b secondary_start_kernel"
  171. :
  172. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  173. }
  174. #endif /* CONFIG_HOTPLUG_CPU */
  175. /*
  176. * Called by both boot and secondaries to move global data into
  177. * per-processor storage.
  178. */
  179. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  180. {
  181. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  182. cpu_info->loops_per_jiffy = loops_per_jiffy;
  183. store_cpu_topology(cpuid);
  184. }
  185. static void percpu_timer_setup(void);
  186. /*
  187. * This is the secondary CPU boot entry. We're using this CPUs
  188. * idle thread stack, but a set of temporary page tables.
  189. */
  190. asmlinkage void __cpuinit secondary_start_kernel(void)
  191. {
  192. struct mm_struct *mm = &init_mm;
  193. unsigned int cpu = smp_processor_id();
  194. /*
  195. * All kernel threads share the same mm context; grab a
  196. * reference and switch to it.
  197. */
  198. atomic_inc(&mm->mm_count);
  199. current->active_mm = mm;
  200. cpumask_set_cpu(cpu, mm_cpumask(mm));
  201. cpu_switch_mm(mm->pgd, mm);
  202. enter_lazy_tlb(mm, current);
  203. local_flush_tlb_all();
  204. printk("CPU%u: Booted secondary processor\n", cpu);
  205. cpu_init();
  206. preempt_disable();
  207. trace_hardirqs_off();
  208. /*
  209. * Give the platform a chance to do its own initialisation.
  210. */
  211. platform_secondary_init(cpu);
  212. notify_cpu_starting(cpu);
  213. calibrate_delay();
  214. smp_store_cpu_info(cpu);
  215. /*
  216. * OK, now it's safe to let the boot CPU continue. Wait for
  217. * the CPU migration code to notice that the CPU is online
  218. * before we continue - which happens after __cpu_up returns.
  219. */
  220. set_cpu_online(cpu, true);
  221. complete(&cpu_running);
  222. /*
  223. * Setup the percpu timer for this CPU.
  224. */
  225. percpu_timer_setup();
  226. local_irq_enable();
  227. local_fiq_enable();
  228. /*
  229. * OK, it's off to the idle thread for us
  230. */
  231. cpu_idle();
  232. }
  233. void __init smp_cpus_done(unsigned int max_cpus)
  234. {
  235. int cpu;
  236. unsigned long bogosum = 0;
  237. for_each_online_cpu(cpu)
  238. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  239. printk(KERN_INFO "SMP: Total of %d processors activated "
  240. "(%lu.%02lu BogoMIPS).\n",
  241. num_online_cpus(),
  242. bogosum / (500000/HZ),
  243. (bogosum / (5000/HZ)) % 100);
  244. }
  245. void __init smp_prepare_boot_cpu(void)
  246. {
  247. }
  248. void __init smp_prepare_cpus(unsigned int max_cpus)
  249. {
  250. unsigned int ncores = num_possible_cpus();
  251. init_cpu_topology();
  252. smp_store_cpu_info(smp_processor_id());
  253. /*
  254. * are we trying to boot more cores than exist?
  255. */
  256. if (max_cpus > ncores)
  257. max_cpus = ncores;
  258. if (ncores > 1 && max_cpus) {
  259. /*
  260. * Enable the local timer or broadcast device for the
  261. * boot CPU, but only if we have more than one CPU.
  262. */
  263. percpu_timer_setup();
  264. /*
  265. * Initialise the present map, which describes the set of CPUs
  266. * actually populated at the present time. A platform should
  267. * re-initialize the map in platform_smp_prepare_cpus() if
  268. * present != possible (e.g. physical hotplug).
  269. */
  270. init_cpu_present(cpu_possible_mask);
  271. /*
  272. * Initialise the SCU if there are more than one CPU
  273. * and let them know where to start.
  274. */
  275. platform_smp_prepare_cpus(max_cpus);
  276. }
  277. }
  278. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  279. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  280. {
  281. smp_cross_call = fn;
  282. }
  283. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  284. {
  285. smp_cross_call(mask, IPI_CALL_FUNC);
  286. }
  287. void arch_send_call_function_single_ipi(int cpu)
  288. {
  289. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  290. }
  291. static const char *ipi_types[NR_IPI] = {
  292. #define S(x,s) [x - IPI_TIMER] = s
  293. S(IPI_TIMER, "Timer broadcast interrupts"),
  294. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  295. S(IPI_CALL_FUNC, "Function call interrupts"),
  296. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  297. S(IPI_CPU_STOP, "CPU stop interrupts"),
  298. };
  299. void show_ipi_list(struct seq_file *p, int prec)
  300. {
  301. unsigned int cpu, i;
  302. for (i = 0; i < NR_IPI; i++) {
  303. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  304. for_each_present_cpu(cpu)
  305. seq_printf(p, "%10u ",
  306. __get_irq_stat(cpu, ipi_irqs[i]));
  307. seq_printf(p, " %s\n", ipi_types[i]);
  308. }
  309. }
  310. u64 smp_irq_stat_cpu(unsigned int cpu)
  311. {
  312. u64 sum = 0;
  313. int i;
  314. for (i = 0; i < NR_IPI; i++)
  315. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  316. return sum;
  317. }
  318. /*
  319. * Timer (local or broadcast) support
  320. */
  321. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  322. static void ipi_timer(void)
  323. {
  324. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  325. evt->event_handler(evt);
  326. }
  327. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  328. static void smp_timer_broadcast(const struct cpumask *mask)
  329. {
  330. smp_cross_call(mask, IPI_TIMER);
  331. }
  332. #else
  333. #define smp_timer_broadcast NULL
  334. #endif
  335. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  336. struct clock_event_device *evt)
  337. {
  338. }
  339. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  340. {
  341. evt->name = "dummy_timer";
  342. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  343. CLOCK_EVT_FEAT_PERIODIC |
  344. CLOCK_EVT_FEAT_DUMMY;
  345. evt->rating = 400;
  346. evt->mult = 1;
  347. evt->set_mode = broadcast_timer_set_mode;
  348. clockevents_register_device(evt);
  349. }
  350. static struct local_timer_ops *lt_ops;
  351. #ifdef CONFIG_LOCAL_TIMERS
  352. int local_timer_register(struct local_timer_ops *ops)
  353. {
  354. if (!is_smp() || !setup_max_cpus)
  355. return -ENXIO;
  356. if (lt_ops)
  357. return -EBUSY;
  358. lt_ops = ops;
  359. return 0;
  360. }
  361. #endif
  362. static void __cpuinit percpu_timer_setup(void)
  363. {
  364. unsigned int cpu = smp_processor_id();
  365. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  366. evt->cpumask = cpumask_of(cpu);
  367. evt->broadcast = smp_timer_broadcast;
  368. if (!lt_ops || lt_ops->setup(evt))
  369. broadcast_timer_setup(evt);
  370. }
  371. #ifdef CONFIG_HOTPLUG_CPU
  372. /*
  373. * The generic clock events code purposely does not stop the local timer
  374. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  375. * manually here.
  376. */
  377. static void percpu_timer_stop(void)
  378. {
  379. unsigned int cpu = smp_processor_id();
  380. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  381. if (lt_ops)
  382. lt_ops->stop(evt);
  383. }
  384. #endif
  385. static DEFINE_RAW_SPINLOCK(stop_lock);
  386. /*
  387. * ipi_cpu_stop - handle IPI from smp_send_stop()
  388. */
  389. static void ipi_cpu_stop(unsigned int cpu)
  390. {
  391. if (system_state == SYSTEM_BOOTING ||
  392. system_state == SYSTEM_RUNNING) {
  393. raw_spin_lock(&stop_lock);
  394. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  395. dump_stack();
  396. raw_spin_unlock(&stop_lock);
  397. }
  398. set_cpu_online(cpu, false);
  399. local_fiq_disable();
  400. local_irq_disable();
  401. while (1)
  402. cpu_relax();
  403. }
  404. /*
  405. * Main handler for inter-processor interrupts
  406. */
  407. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  408. {
  409. handle_IPI(ipinr, regs);
  410. }
  411. void handle_IPI(int ipinr, struct pt_regs *regs)
  412. {
  413. unsigned int cpu = smp_processor_id();
  414. struct pt_regs *old_regs = set_irq_regs(regs);
  415. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  416. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  417. switch (ipinr) {
  418. case IPI_TIMER:
  419. irq_enter();
  420. ipi_timer();
  421. irq_exit();
  422. break;
  423. case IPI_RESCHEDULE:
  424. scheduler_ipi();
  425. break;
  426. case IPI_CALL_FUNC:
  427. irq_enter();
  428. generic_smp_call_function_interrupt();
  429. irq_exit();
  430. break;
  431. case IPI_CALL_FUNC_SINGLE:
  432. irq_enter();
  433. generic_smp_call_function_single_interrupt();
  434. irq_exit();
  435. break;
  436. case IPI_CPU_STOP:
  437. irq_enter();
  438. ipi_cpu_stop(cpu);
  439. irq_exit();
  440. break;
  441. default:
  442. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  443. cpu, ipinr);
  444. break;
  445. }
  446. set_irq_regs(old_regs);
  447. }
  448. void smp_send_reschedule(int cpu)
  449. {
  450. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  451. }
  452. #ifdef CONFIG_HOTPLUG_CPU
  453. static void smp_kill_cpus(cpumask_t *mask)
  454. {
  455. unsigned int cpu;
  456. for_each_cpu(cpu, mask)
  457. platform_cpu_kill(cpu);
  458. }
  459. #else
  460. static void smp_kill_cpus(cpumask_t *mask) { }
  461. #endif
  462. void smp_send_stop(void)
  463. {
  464. unsigned long timeout;
  465. struct cpumask mask;
  466. cpumask_copy(&mask, cpu_online_mask);
  467. cpumask_clear_cpu(smp_processor_id(), &mask);
  468. if (!cpumask_empty(&mask))
  469. smp_cross_call(&mask, IPI_CPU_STOP);
  470. /* Wait up to one second for other CPUs to stop */
  471. timeout = USEC_PER_SEC;
  472. while (num_online_cpus() > 1 && timeout--)
  473. udelay(1);
  474. if (num_online_cpus() > 1)
  475. pr_warning("SMP: failed to stop secondary CPUs\n");
  476. smp_kill_cpus(&mask);
  477. }
  478. /*
  479. * not supported here
  480. */
  481. int setup_profiling_timer(unsigned int multiplier)
  482. {
  483. return -EINVAL;
  484. }
  485. #ifdef CONFIG_CPU_FREQ
  486. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  487. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  488. static unsigned long global_l_p_j_ref;
  489. static unsigned long global_l_p_j_ref_freq;
  490. static int cpufreq_callback(struct notifier_block *nb,
  491. unsigned long val, void *data)
  492. {
  493. struct cpufreq_freqs *freq = data;
  494. int cpu = freq->cpu;
  495. if (freq->flags & CPUFREQ_CONST_LOOPS)
  496. return NOTIFY_OK;
  497. if (!per_cpu(l_p_j_ref, cpu)) {
  498. per_cpu(l_p_j_ref, cpu) =
  499. per_cpu(cpu_data, cpu).loops_per_jiffy;
  500. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  501. if (!global_l_p_j_ref) {
  502. global_l_p_j_ref = loops_per_jiffy;
  503. global_l_p_j_ref_freq = freq->old;
  504. }
  505. }
  506. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  507. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  508. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  509. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  510. global_l_p_j_ref_freq,
  511. freq->new);
  512. per_cpu(cpu_data, cpu).loops_per_jiffy =
  513. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  514. per_cpu(l_p_j_ref_freq, cpu),
  515. freq->new);
  516. }
  517. return NOTIFY_OK;
  518. }
  519. static struct notifier_block cpufreq_notifier = {
  520. .notifier_call = cpufreq_callback,
  521. };
  522. static int __init register_cpufreq_notifier(void)
  523. {
  524. return cpufreq_register_notifier(&cpufreq_notifier,
  525. CPUFREQ_TRANSITION_NOTIFIER);
  526. }
  527. core_initcall(register_cpufreq_notifier);
  528. #endif