sched.c 180 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/kthread.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/sysctl.h>
  57. #include <linux/syscalls.h>
  58. #include <linux/times.h>
  59. #include <linux/tsacct_kern.h>
  60. #include <linux/kprobes.h>
  61. #include <linux/delayacct.h>
  62. #include <linux/reciprocal_div.h>
  63. #include <linux/unistd.h>
  64. #include <linux/pagemap.h>
  65. #include <asm/tlb.h>
  66. #include <asm/irq_regs.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. unsigned long shares;
  155. /* spinlock to serialize modification to shares */
  156. spinlock_t lock;
  157. struct rcu_head rcu;
  158. };
  159. /* Default task group's sched entity on each cpu */
  160. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  161. /* Default task group's cfs_rq on each cpu */
  162. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  163. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  164. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  165. /* Default task group.
  166. * Every task in system belong to this group at bootup.
  167. */
  168. struct task_group init_task_group = {
  169. .se = init_sched_entity_p,
  170. .cfs_rq = init_cfs_rq_p,
  171. };
  172. #ifdef CONFIG_FAIR_USER_SCHED
  173. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  174. #else
  175. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  176. #endif
  177. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  178. /* return group to which a task belongs */
  179. static inline struct task_group *task_group(struct task_struct *p)
  180. {
  181. struct task_group *tg;
  182. #ifdef CONFIG_FAIR_USER_SCHED
  183. tg = p->user->tg;
  184. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  185. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  186. struct task_group, css);
  187. #else
  188. tg = &init_task_group;
  189. #endif
  190. return tg;
  191. }
  192. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  193. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  194. {
  195. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  196. p->se.parent = task_group(p)->se[cpu];
  197. }
  198. #else
  199. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  200. #endif /* CONFIG_FAIR_GROUP_SCHED */
  201. /* CFS-related fields in a runqueue */
  202. struct cfs_rq {
  203. struct load_weight load;
  204. unsigned long nr_running;
  205. u64 exec_clock;
  206. u64 min_vruntime;
  207. struct rb_root tasks_timeline;
  208. struct rb_node *rb_leftmost;
  209. struct rb_node *rb_load_balance_curr;
  210. /* 'curr' points to currently running entity on this cfs_rq.
  211. * It is set to NULL otherwise (i.e when none are currently running).
  212. */
  213. struct sched_entity *curr;
  214. unsigned long nr_spread_over;
  215. #ifdef CONFIG_FAIR_GROUP_SCHED
  216. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  217. /*
  218. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  219. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  220. * (like users, containers etc.)
  221. *
  222. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  223. * list is used during load balance.
  224. */
  225. struct list_head leaf_cfs_rq_list;
  226. struct task_group *tg; /* group that "owns" this runqueue */
  227. #endif
  228. };
  229. /* Real-Time classes' related field in a runqueue: */
  230. struct rt_rq {
  231. struct rt_prio_array active;
  232. int rt_load_balance_idx;
  233. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  234. };
  235. /*
  236. * This is the main, per-CPU runqueue data structure.
  237. *
  238. * Locking rule: those places that want to lock multiple runqueues
  239. * (such as the load balancing or the thread migration code), lock
  240. * acquire operations must be ordered by ascending &runqueue.
  241. */
  242. struct rq {
  243. /* runqueue lock: */
  244. spinlock_t lock;
  245. /*
  246. * nr_running and cpu_load should be in the same cacheline because
  247. * remote CPUs use both these fields when doing load calculation.
  248. */
  249. unsigned long nr_running;
  250. #define CPU_LOAD_IDX_MAX 5
  251. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  252. unsigned char idle_at_tick;
  253. #ifdef CONFIG_NO_HZ
  254. unsigned char in_nohz_recently;
  255. #endif
  256. /* capture load from *all* tasks on this cpu: */
  257. struct load_weight load;
  258. unsigned long nr_load_updates;
  259. u64 nr_switches;
  260. struct cfs_rq cfs;
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. /* list of leaf cfs_rq on this cpu: */
  263. struct list_head leaf_cfs_rq_list;
  264. #endif
  265. struct rt_rq rt;
  266. /*
  267. * This is part of a global counter where only the total sum
  268. * over all CPUs matters. A task can increase this counter on
  269. * one CPU and if it got migrated afterwards it may decrease
  270. * it on another CPU. Always updated under the runqueue lock:
  271. */
  272. unsigned long nr_uninterruptible;
  273. struct task_struct *curr, *idle;
  274. unsigned long next_balance;
  275. struct mm_struct *prev_mm;
  276. u64 clock, prev_clock_raw;
  277. s64 clock_max_delta;
  278. unsigned int clock_warps, clock_overflows;
  279. u64 idle_clock;
  280. unsigned int clock_deep_idle_events;
  281. u64 tick_timestamp;
  282. atomic_t nr_iowait;
  283. #ifdef CONFIG_SMP
  284. struct sched_domain *sd;
  285. /* For active balancing */
  286. int active_balance;
  287. int push_cpu;
  288. /* cpu of this runqueue: */
  289. int cpu;
  290. struct task_struct *migration_thread;
  291. struct list_head migration_queue;
  292. #endif
  293. #ifdef CONFIG_SCHEDSTATS
  294. /* latency stats */
  295. struct sched_info rq_sched_info;
  296. /* sys_sched_yield() stats */
  297. unsigned int yld_exp_empty;
  298. unsigned int yld_act_empty;
  299. unsigned int yld_both_empty;
  300. unsigned int yld_count;
  301. /* schedule() stats */
  302. unsigned int sched_switch;
  303. unsigned int sched_count;
  304. unsigned int sched_goidle;
  305. /* try_to_wake_up() stats */
  306. unsigned int ttwu_count;
  307. unsigned int ttwu_local;
  308. /* BKL stats */
  309. unsigned int bkl_count;
  310. #endif
  311. struct lock_class_key rq_lock_key;
  312. };
  313. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  314. static DEFINE_MUTEX(sched_hotcpu_mutex);
  315. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  316. {
  317. rq->curr->sched_class->check_preempt_curr(rq, p);
  318. }
  319. static inline int cpu_of(struct rq *rq)
  320. {
  321. #ifdef CONFIG_SMP
  322. return rq->cpu;
  323. #else
  324. return 0;
  325. #endif
  326. }
  327. /*
  328. * Update the per-runqueue clock, as finegrained as the platform can give
  329. * us, but without assuming monotonicity, etc.:
  330. */
  331. static void __update_rq_clock(struct rq *rq)
  332. {
  333. u64 prev_raw = rq->prev_clock_raw;
  334. u64 now = sched_clock();
  335. s64 delta = now - prev_raw;
  336. u64 clock = rq->clock;
  337. #ifdef CONFIG_SCHED_DEBUG
  338. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  339. #endif
  340. /*
  341. * Protect against sched_clock() occasionally going backwards:
  342. */
  343. if (unlikely(delta < 0)) {
  344. clock++;
  345. rq->clock_warps++;
  346. } else {
  347. /*
  348. * Catch too large forward jumps too:
  349. */
  350. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  351. if (clock < rq->tick_timestamp + TICK_NSEC)
  352. clock = rq->tick_timestamp + TICK_NSEC;
  353. else
  354. clock++;
  355. rq->clock_overflows++;
  356. } else {
  357. if (unlikely(delta > rq->clock_max_delta))
  358. rq->clock_max_delta = delta;
  359. clock += delta;
  360. }
  361. }
  362. rq->prev_clock_raw = now;
  363. rq->clock = clock;
  364. }
  365. static void update_rq_clock(struct rq *rq)
  366. {
  367. if (likely(smp_processor_id() == cpu_of(rq)))
  368. __update_rq_clock(rq);
  369. }
  370. /*
  371. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  372. * See detach_destroy_domains: synchronize_sched for details.
  373. *
  374. * The domain tree of any CPU may only be accessed from within
  375. * preempt-disabled sections.
  376. */
  377. #define for_each_domain(cpu, __sd) \
  378. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  379. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  380. #define this_rq() (&__get_cpu_var(runqueues))
  381. #define task_rq(p) cpu_rq(task_cpu(p))
  382. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  383. /*
  384. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  385. */
  386. #ifdef CONFIG_SCHED_DEBUG
  387. # define const_debug __read_mostly
  388. #else
  389. # define const_debug static const
  390. #endif
  391. /*
  392. * Debugging: various feature bits
  393. */
  394. enum {
  395. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  396. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  397. SCHED_FEAT_START_DEBIT = 4,
  398. SCHED_FEAT_TREE_AVG = 8,
  399. SCHED_FEAT_APPROX_AVG = 16,
  400. };
  401. const_debug unsigned int sysctl_sched_features =
  402. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  403. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  404. SCHED_FEAT_START_DEBIT * 1 |
  405. SCHED_FEAT_TREE_AVG * 0 |
  406. SCHED_FEAT_APPROX_AVG * 0;
  407. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  408. /*
  409. * Number of tasks to iterate in a single balance run.
  410. * Limited because this is done with IRQs disabled.
  411. */
  412. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  413. /*
  414. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  415. * clock constructed from sched_clock():
  416. */
  417. unsigned long long cpu_clock(int cpu)
  418. {
  419. unsigned long long now;
  420. unsigned long flags;
  421. struct rq *rq;
  422. local_irq_save(flags);
  423. rq = cpu_rq(cpu);
  424. /*
  425. * Only call sched_clock() if the scheduler has already been
  426. * initialized (some code might call cpu_clock() very early):
  427. */
  428. if (rq->idle)
  429. update_rq_clock(rq);
  430. now = rq->clock;
  431. local_irq_restore(flags);
  432. return now;
  433. }
  434. EXPORT_SYMBOL_GPL(cpu_clock);
  435. #ifndef prepare_arch_switch
  436. # define prepare_arch_switch(next) do { } while (0)
  437. #endif
  438. #ifndef finish_arch_switch
  439. # define finish_arch_switch(prev) do { } while (0)
  440. #endif
  441. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  442. static inline int task_running(struct rq *rq, struct task_struct *p)
  443. {
  444. return rq->curr == p;
  445. }
  446. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  447. {
  448. }
  449. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  450. {
  451. #ifdef CONFIG_DEBUG_SPINLOCK
  452. /* this is a valid case when another task releases the spinlock */
  453. rq->lock.owner = current;
  454. #endif
  455. /*
  456. * If we are tracking spinlock dependencies then we have to
  457. * fix up the runqueue lock - which gets 'carried over' from
  458. * prev into current:
  459. */
  460. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  461. spin_unlock_irq(&rq->lock);
  462. }
  463. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  464. static inline int task_running(struct rq *rq, struct task_struct *p)
  465. {
  466. #ifdef CONFIG_SMP
  467. return p->oncpu;
  468. #else
  469. return rq->curr == p;
  470. #endif
  471. }
  472. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  473. {
  474. #ifdef CONFIG_SMP
  475. /*
  476. * We can optimise this out completely for !SMP, because the
  477. * SMP rebalancing from interrupt is the only thing that cares
  478. * here.
  479. */
  480. next->oncpu = 1;
  481. #endif
  482. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  483. spin_unlock_irq(&rq->lock);
  484. #else
  485. spin_unlock(&rq->lock);
  486. #endif
  487. }
  488. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  489. {
  490. #ifdef CONFIG_SMP
  491. /*
  492. * After ->oncpu is cleared, the task can be moved to a different CPU.
  493. * We must ensure this doesn't happen until the switch is completely
  494. * finished.
  495. */
  496. smp_wmb();
  497. prev->oncpu = 0;
  498. #endif
  499. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  500. local_irq_enable();
  501. #endif
  502. }
  503. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  504. /*
  505. * __task_rq_lock - lock the runqueue a given task resides on.
  506. * Must be called interrupts disabled.
  507. */
  508. static inline struct rq *__task_rq_lock(struct task_struct *p)
  509. __acquires(rq->lock)
  510. {
  511. for (;;) {
  512. struct rq *rq = task_rq(p);
  513. spin_lock(&rq->lock);
  514. if (likely(rq == task_rq(p)))
  515. return rq;
  516. spin_unlock(&rq->lock);
  517. }
  518. }
  519. /*
  520. * task_rq_lock - lock the runqueue a given task resides on and disable
  521. * interrupts. Note the ordering: we can safely lookup the task_rq without
  522. * explicitly disabling preemption.
  523. */
  524. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  525. __acquires(rq->lock)
  526. {
  527. struct rq *rq;
  528. for (;;) {
  529. local_irq_save(*flags);
  530. rq = task_rq(p);
  531. spin_lock(&rq->lock);
  532. if (likely(rq == task_rq(p)))
  533. return rq;
  534. spin_unlock_irqrestore(&rq->lock, *flags);
  535. }
  536. }
  537. static void __task_rq_unlock(struct rq *rq)
  538. __releases(rq->lock)
  539. {
  540. spin_unlock(&rq->lock);
  541. }
  542. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  543. __releases(rq->lock)
  544. {
  545. spin_unlock_irqrestore(&rq->lock, *flags);
  546. }
  547. /*
  548. * this_rq_lock - lock this runqueue and disable interrupts.
  549. */
  550. static struct rq *this_rq_lock(void)
  551. __acquires(rq->lock)
  552. {
  553. struct rq *rq;
  554. local_irq_disable();
  555. rq = this_rq();
  556. spin_lock(&rq->lock);
  557. return rq;
  558. }
  559. /*
  560. * We are going deep-idle (irqs are disabled):
  561. */
  562. void sched_clock_idle_sleep_event(void)
  563. {
  564. struct rq *rq = cpu_rq(smp_processor_id());
  565. spin_lock(&rq->lock);
  566. __update_rq_clock(rq);
  567. spin_unlock(&rq->lock);
  568. rq->clock_deep_idle_events++;
  569. }
  570. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  571. /*
  572. * We just idled delta nanoseconds (called with irqs disabled):
  573. */
  574. void sched_clock_idle_wakeup_event(u64 delta_ns)
  575. {
  576. struct rq *rq = cpu_rq(smp_processor_id());
  577. u64 now = sched_clock();
  578. rq->idle_clock += delta_ns;
  579. /*
  580. * Override the previous timestamp and ignore all
  581. * sched_clock() deltas that occured while we idled,
  582. * and use the PM-provided delta_ns to advance the
  583. * rq clock:
  584. */
  585. spin_lock(&rq->lock);
  586. rq->prev_clock_raw = now;
  587. rq->clock += delta_ns;
  588. spin_unlock(&rq->lock);
  589. }
  590. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  591. /*
  592. * resched_task - mark a task 'to be rescheduled now'.
  593. *
  594. * On UP this means the setting of the need_resched flag, on SMP it
  595. * might also involve a cross-CPU call to trigger the scheduler on
  596. * the target CPU.
  597. */
  598. #ifdef CONFIG_SMP
  599. #ifndef tsk_is_polling
  600. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  601. #endif
  602. static void resched_task(struct task_struct *p)
  603. {
  604. int cpu;
  605. assert_spin_locked(&task_rq(p)->lock);
  606. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  607. return;
  608. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  609. cpu = task_cpu(p);
  610. if (cpu == smp_processor_id())
  611. return;
  612. /* NEED_RESCHED must be visible before we test polling */
  613. smp_mb();
  614. if (!tsk_is_polling(p))
  615. smp_send_reschedule(cpu);
  616. }
  617. static void resched_cpu(int cpu)
  618. {
  619. struct rq *rq = cpu_rq(cpu);
  620. unsigned long flags;
  621. if (!spin_trylock_irqsave(&rq->lock, flags))
  622. return;
  623. resched_task(cpu_curr(cpu));
  624. spin_unlock_irqrestore(&rq->lock, flags);
  625. }
  626. #else
  627. static inline void resched_task(struct task_struct *p)
  628. {
  629. assert_spin_locked(&task_rq(p)->lock);
  630. set_tsk_need_resched(p);
  631. }
  632. #endif
  633. #if BITS_PER_LONG == 32
  634. # define WMULT_CONST (~0UL)
  635. #else
  636. # define WMULT_CONST (1UL << 32)
  637. #endif
  638. #define WMULT_SHIFT 32
  639. /*
  640. * Shift right and round:
  641. */
  642. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  643. static unsigned long
  644. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  645. struct load_weight *lw)
  646. {
  647. u64 tmp;
  648. if (unlikely(!lw->inv_weight))
  649. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  650. tmp = (u64)delta_exec * weight;
  651. /*
  652. * Check whether we'd overflow the 64-bit multiplication:
  653. */
  654. if (unlikely(tmp > WMULT_CONST))
  655. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  656. WMULT_SHIFT/2);
  657. else
  658. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  659. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  660. }
  661. static inline unsigned long
  662. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  663. {
  664. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  665. }
  666. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  667. {
  668. lw->weight += inc;
  669. }
  670. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  671. {
  672. lw->weight -= dec;
  673. }
  674. /*
  675. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  676. * of tasks with abnormal "nice" values across CPUs the contribution that
  677. * each task makes to its run queue's load is weighted according to its
  678. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  679. * scaled version of the new time slice allocation that they receive on time
  680. * slice expiry etc.
  681. */
  682. #define WEIGHT_IDLEPRIO 2
  683. #define WMULT_IDLEPRIO (1 << 31)
  684. /*
  685. * Nice levels are multiplicative, with a gentle 10% change for every
  686. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  687. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  688. * that remained on nice 0.
  689. *
  690. * The "10% effect" is relative and cumulative: from _any_ nice level,
  691. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  692. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  693. * If a task goes up by ~10% and another task goes down by ~10% then
  694. * the relative distance between them is ~25%.)
  695. */
  696. static const int prio_to_weight[40] = {
  697. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  698. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  699. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  700. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  701. /* 0 */ 1024, 820, 655, 526, 423,
  702. /* 5 */ 335, 272, 215, 172, 137,
  703. /* 10 */ 110, 87, 70, 56, 45,
  704. /* 15 */ 36, 29, 23, 18, 15,
  705. };
  706. /*
  707. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  708. *
  709. * In cases where the weight does not change often, we can use the
  710. * precalculated inverse to speed up arithmetics by turning divisions
  711. * into multiplications:
  712. */
  713. static const u32 prio_to_wmult[40] = {
  714. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  715. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  716. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  717. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  718. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  719. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  720. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  721. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  722. };
  723. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  724. /*
  725. * runqueue iterator, to support SMP load-balancing between different
  726. * scheduling classes, without having to expose their internal data
  727. * structures to the load-balancing proper:
  728. */
  729. struct rq_iterator {
  730. void *arg;
  731. struct task_struct *(*start)(void *);
  732. struct task_struct *(*next)(void *);
  733. };
  734. #ifdef CONFIG_SMP
  735. static unsigned long
  736. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  737. unsigned long max_load_move, struct sched_domain *sd,
  738. enum cpu_idle_type idle, int *all_pinned,
  739. int *this_best_prio, struct rq_iterator *iterator);
  740. static int
  741. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  742. struct sched_domain *sd, enum cpu_idle_type idle,
  743. struct rq_iterator *iterator);
  744. #endif
  745. #ifdef CONFIG_CGROUP_CPUACCT
  746. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  747. #else
  748. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  749. #endif
  750. #include "sched_stats.h"
  751. #include "sched_idletask.c"
  752. #include "sched_fair.c"
  753. #include "sched_rt.c"
  754. #ifdef CONFIG_SCHED_DEBUG
  755. # include "sched_debug.c"
  756. #endif
  757. #define sched_class_highest (&rt_sched_class)
  758. /*
  759. * Update delta_exec, delta_fair fields for rq.
  760. *
  761. * delta_fair clock advances at a rate inversely proportional to
  762. * total load (rq->load.weight) on the runqueue, while
  763. * delta_exec advances at the same rate as wall-clock (provided
  764. * cpu is not idle).
  765. *
  766. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  767. * runqueue over any given interval. This (smoothened) load is used
  768. * during load balance.
  769. *
  770. * This function is called /before/ updating rq->load
  771. * and when switching tasks.
  772. */
  773. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  774. {
  775. update_load_add(&rq->load, p->se.load.weight);
  776. }
  777. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  778. {
  779. update_load_sub(&rq->load, p->se.load.weight);
  780. }
  781. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  782. {
  783. rq->nr_running++;
  784. inc_load(rq, p);
  785. }
  786. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  787. {
  788. rq->nr_running--;
  789. dec_load(rq, p);
  790. }
  791. static void set_load_weight(struct task_struct *p)
  792. {
  793. if (task_has_rt_policy(p)) {
  794. p->se.load.weight = prio_to_weight[0] * 2;
  795. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  796. return;
  797. }
  798. /*
  799. * SCHED_IDLE tasks get minimal weight:
  800. */
  801. if (p->policy == SCHED_IDLE) {
  802. p->se.load.weight = WEIGHT_IDLEPRIO;
  803. p->se.load.inv_weight = WMULT_IDLEPRIO;
  804. return;
  805. }
  806. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  807. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  808. }
  809. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  810. {
  811. sched_info_queued(p);
  812. p->sched_class->enqueue_task(rq, p, wakeup);
  813. p->se.on_rq = 1;
  814. }
  815. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  816. {
  817. p->sched_class->dequeue_task(rq, p, sleep);
  818. p->se.on_rq = 0;
  819. }
  820. /*
  821. * __normal_prio - return the priority that is based on the static prio
  822. */
  823. static inline int __normal_prio(struct task_struct *p)
  824. {
  825. return p->static_prio;
  826. }
  827. /*
  828. * Calculate the expected normal priority: i.e. priority
  829. * without taking RT-inheritance into account. Might be
  830. * boosted by interactivity modifiers. Changes upon fork,
  831. * setprio syscalls, and whenever the interactivity
  832. * estimator recalculates.
  833. */
  834. static inline int normal_prio(struct task_struct *p)
  835. {
  836. int prio;
  837. if (task_has_rt_policy(p))
  838. prio = MAX_RT_PRIO-1 - p->rt_priority;
  839. else
  840. prio = __normal_prio(p);
  841. return prio;
  842. }
  843. /*
  844. * Calculate the current priority, i.e. the priority
  845. * taken into account by the scheduler. This value might
  846. * be boosted by RT tasks, or might be boosted by
  847. * interactivity modifiers. Will be RT if the task got
  848. * RT-boosted. If not then it returns p->normal_prio.
  849. */
  850. static int effective_prio(struct task_struct *p)
  851. {
  852. p->normal_prio = normal_prio(p);
  853. /*
  854. * If we are RT tasks or we were boosted to RT priority,
  855. * keep the priority unchanged. Otherwise, update priority
  856. * to the normal priority:
  857. */
  858. if (!rt_prio(p->prio))
  859. return p->normal_prio;
  860. return p->prio;
  861. }
  862. /*
  863. * activate_task - move a task to the runqueue.
  864. */
  865. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  866. {
  867. if (p->state == TASK_UNINTERRUPTIBLE)
  868. rq->nr_uninterruptible--;
  869. enqueue_task(rq, p, wakeup);
  870. inc_nr_running(p, rq);
  871. }
  872. /*
  873. * deactivate_task - remove a task from the runqueue.
  874. */
  875. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  876. {
  877. if (p->state == TASK_UNINTERRUPTIBLE)
  878. rq->nr_uninterruptible++;
  879. dequeue_task(rq, p, sleep);
  880. dec_nr_running(p, rq);
  881. }
  882. /**
  883. * task_curr - is this task currently executing on a CPU?
  884. * @p: the task in question.
  885. */
  886. inline int task_curr(const struct task_struct *p)
  887. {
  888. return cpu_curr(task_cpu(p)) == p;
  889. }
  890. /* Used instead of source_load when we know the type == 0 */
  891. unsigned long weighted_cpuload(const int cpu)
  892. {
  893. return cpu_rq(cpu)->load.weight;
  894. }
  895. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  896. {
  897. set_task_cfs_rq(p, cpu);
  898. #ifdef CONFIG_SMP
  899. /*
  900. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  901. * successfuly executed on another CPU. We must ensure that updates of
  902. * per-task data have been completed by this moment.
  903. */
  904. smp_wmb();
  905. task_thread_info(p)->cpu = cpu;
  906. #endif
  907. }
  908. #ifdef CONFIG_SMP
  909. /*
  910. * Is this task likely cache-hot:
  911. */
  912. static inline int
  913. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  914. {
  915. s64 delta;
  916. if (p->sched_class != &fair_sched_class)
  917. return 0;
  918. if (sysctl_sched_migration_cost == -1)
  919. return 1;
  920. if (sysctl_sched_migration_cost == 0)
  921. return 0;
  922. delta = now - p->se.exec_start;
  923. return delta < (s64)sysctl_sched_migration_cost;
  924. }
  925. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  926. {
  927. int old_cpu = task_cpu(p);
  928. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  929. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  930. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  931. u64 clock_offset;
  932. clock_offset = old_rq->clock - new_rq->clock;
  933. #ifdef CONFIG_SCHEDSTATS
  934. if (p->se.wait_start)
  935. p->se.wait_start -= clock_offset;
  936. if (p->se.sleep_start)
  937. p->se.sleep_start -= clock_offset;
  938. if (p->se.block_start)
  939. p->se.block_start -= clock_offset;
  940. if (old_cpu != new_cpu) {
  941. schedstat_inc(p, se.nr_migrations);
  942. if (task_hot(p, old_rq->clock, NULL))
  943. schedstat_inc(p, se.nr_forced2_migrations);
  944. }
  945. #endif
  946. p->se.vruntime -= old_cfsrq->min_vruntime -
  947. new_cfsrq->min_vruntime;
  948. __set_task_cpu(p, new_cpu);
  949. }
  950. struct migration_req {
  951. struct list_head list;
  952. struct task_struct *task;
  953. int dest_cpu;
  954. struct completion done;
  955. };
  956. /*
  957. * The task's runqueue lock must be held.
  958. * Returns true if you have to wait for migration thread.
  959. */
  960. static int
  961. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  962. {
  963. struct rq *rq = task_rq(p);
  964. /*
  965. * If the task is not on a runqueue (and not running), then
  966. * it is sufficient to simply update the task's cpu field.
  967. */
  968. if (!p->se.on_rq && !task_running(rq, p)) {
  969. set_task_cpu(p, dest_cpu);
  970. return 0;
  971. }
  972. init_completion(&req->done);
  973. req->task = p;
  974. req->dest_cpu = dest_cpu;
  975. list_add(&req->list, &rq->migration_queue);
  976. return 1;
  977. }
  978. /*
  979. * wait_task_inactive - wait for a thread to unschedule.
  980. *
  981. * The caller must ensure that the task *will* unschedule sometime soon,
  982. * else this function might spin for a *long* time. This function can't
  983. * be called with interrupts off, or it may introduce deadlock with
  984. * smp_call_function() if an IPI is sent by the same process we are
  985. * waiting to become inactive.
  986. */
  987. void wait_task_inactive(struct task_struct *p)
  988. {
  989. unsigned long flags;
  990. int running, on_rq;
  991. struct rq *rq;
  992. for (;;) {
  993. /*
  994. * We do the initial early heuristics without holding
  995. * any task-queue locks at all. We'll only try to get
  996. * the runqueue lock when things look like they will
  997. * work out!
  998. */
  999. rq = task_rq(p);
  1000. /*
  1001. * If the task is actively running on another CPU
  1002. * still, just relax and busy-wait without holding
  1003. * any locks.
  1004. *
  1005. * NOTE! Since we don't hold any locks, it's not
  1006. * even sure that "rq" stays as the right runqueue!
  1007. * But we don't care, since "task_running()" will
  1008. * return false if the runqueue has changed and p
  1009. * is actually now running somewhere else!
  1010. */
  1011. while (task_running(rq, p))
  1012. cpu_relax();
  1013. /*
  1014. * Ok, time to look more closely! We need the rq
  1015. * lock now, to be *sure*. If we're wrong, we'll
  1016. * just go back and repeat.
  1017. */
  1018. rq = task_rq_lock(p, &flags);
  1019. running = task_running(rq, p);
  1020. on_rq = p->se.on_rq;
  1021. task_rq_unlock(rq, &flags);
  1022. /*
  1023. * Was it really running after all now that we
  1024. * checked with the proper locks actually held?
  1025. *
  1026. * Oops. Go back and try again..
  1027. */
  1028. if (unlikely(running)) {
  1029. cpu_relax();
  1030. continue;
  1031. }
  1032. /*
  1033. * It's not enough that it's not actively running,
  1034. * it must be off the runqueue _entirely_, and not
  1035. * preempted!
  1036. *
  1037. * So if it wa still runnable (but just not actively
  1038. * running right now), it's preempted, and we should
  1039. * yield - it could be a while.
  1040. */
  1041. if (unlikely(on_rq)) {
  1042. schedule_timeout_uninterruptible(1);
  1043. continue;
  1044. }
  1045. /*
  1046. * Ahh, all good. It wasn't running, and it wasn't
  1047. * runnable, which means that it will never become
  1048. * running in the future either. We're all done!
  1049. */
  1050. break;
  1051. }
  1052. }
  1053. /***
  1054. * kick_process - kick a running thread to enter/exit the kernel
  1055. * @p: the to-be-kicked thread
  1056. *
  1057. * Cause a process which is running on another CPU to enter
  1058. * kernel-mode, without any delay. (to get signals handled.)
  1059. *
  1060. * NOTE: this function doesnt have to take the runqueue lock,
  1061. * because all it wants to ensure is that the remote task enters
  1062. * the kernel. If the IPI races and the task has been migrated
  1063. * to another CPU then no harm is done and the purpose has been
  1064. * achieved as well.
  1065. */
  1066. void kick_process(struct task_struct *p)
  1067. {
  1068. int cpu;
  1069. preempt_disable();
  1070. cpu = task_cpu(p);
  1071. if ((cpu != smp_processor_id()) && task_curr(p))
  1072. smp_send_reschedule(cpu);
  1073. preempt_enable();
  1074. }
  1075. /*
  1076. * Return a low guess at the load of a migration-source cpu weighted
  1077. * according to the scheduling class and "nice" value.
  1078. *
  1079. * We want to under-estimate the load of migration sources, to
  1080. * balance conservatively.
  1081. */
  1082. static unsigned long source_load(int cpu, int type)
  1083. {
  1084. struct rq *rq = cpu_rq(cpu);
  1085. unsigned long total = weighted_cpuload(cpu);
  1086. if (type == 0)
  1087. return total;
  1088. return min(rq->cpu_load[type-1], total);
  1089. }
  1090. /*
  1091. * Return a high guess at the load of a migration-target cpu weighted
  1092. * according to the scheduling class and "nice" value.
  1093. */
  1094. static unsigned long target_load(int cpu, int type)
  1095. {
  1096. struct rq *rq = cpu_rq(cpu);
  1097. unsigned long total = weighted_cpuload(cpu);
  1098. if (type == 0)
  1099. return total;
  1100. return max(rq->cpu_load[type-1], total);
  1101. }
  1102. /*
  1103. * Return the average load per task on the cpu's run queue
  1104. */
  1105. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1106. {
  1107. struct rq *rq = cpu_rq(cpu);
  1108. unsigned long total = weighted_cpuload(cpu);
  1109. unsigned long n = rq->nr_running;
  1110. return n ? total / n : SCHED_LOAD_SCALE;
  1111. }
  1112. /*
  1113. * find_idlest_group finds and returns the least busy CPU group within the
  1114. * domain.
  1115. */
  1116. static struct sched_group *
  1117. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1118. {
  1119. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1120. unsigned long min_load = ULONG_MAX, this_load = 0;
  1121. int load_idx = sd->forkexec_idx;
  1122. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1123. do {
  1124. unsigned long load, avg_load;
  1125. int local_group;
  1126. int i;
  1127. /* Skip over this group if it has no CPUs allowed */
  1128. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1129. continue;
  1130. local_group = cpu_isset(this_cpu, group->cpumask);
  1131. /* Tally up the load of all CPUs in the group */
  1132. avg_load = 0;
  1133. for_each_cpu_mask(i, group->cpumask) {
  1134. /* Bias balancing toward cpus of our domain */
  1135. if (local_group)
  1136. load = source_load(i, load_idx);
  1137. else
  1138. load = target_load(i, load_idx);
  1139. avg_load += load;
  1140. }
  1141. /* Adjust by relative CPU power of the group */
  1142. avg_load = sg_div_cpu_power(group,
  1143. avg_load * SCHED_LOAD_SCALE);
  1144. if (local_group) {
  1145. this_load = avg_load;
  1146. this = group;
  1147. } else if (avg_load < min_load) {
  1148. min_load = avg_load;
  1149. idlest = group;
  1150. }
  1151. } while (group = group->next, group != sd->groups);
  1152. if (!idlest || 100*this_load < imbalance*min_load)
  1153. return NULL;
  1154. return idlest;
  1155. }
  1156. /*
  1157. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1158. */
  1159. static int
  1160. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1161. {
  1162. cpumask_t tmp;
  1163. unsigned long load, min_load = ULONG_MAX;
  1164. int idlest = -1;
  1165. int i;
  1166. /* Traverse only the allowed CPUs */
  1167. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1168. for_each_cpu_mask(i, tmp) {
  1169. load = weighted_cpuload(i);
  1170. if (load < min_load || (load == min_load && i == this_cpu)) {
  1171. min_load = load;
  1172. idlest = i;
  1173. }
  1174. }
  1175. return idlest;
  1176. }
  1177. /*
  1178. * sched_balance_self: balance the current task (running on cpu) in domains
  1179. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1180. * SD_BALANCE_EXEC.
  1181. *
  1182. * Balance, ie. select the least loaded group.
  1183. *
  1184. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1185. *
  1186. * preempt must be disabled.
  1187. */
  1188. static int sched_balance_self(int cpu, int flag)
  1189. {
  1190. struct task_struct *t = current;
  1191. struct sched_domain *tmp, *sd = NULL;
  1192. for_each_domain(cpu, tmp) {
  1193. /*
  1194. * If power savings logic is enabled for a domain, stop there.
  1195. */
  1196. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1197. break;
  1198. if (tmp->flags & flag)
  1199. sd = tmp;
  1200. }
  1201. while (sd) {
  1202. cpumask_t span;
  1203. struct sched_group *group;
  1204. int new_cpu, weight;
  1205. if (!(sd->flags & flag)) {
  1206. sd = sd->child;
  1207. continue;
  1208. }
  1209. span = sd->span;
  1210. group = find_idlest_group(sd, t, cpu);
  1211. if (!group) {
  1212. sd = sd->child;
  1213. continue;
  1214. }
  1215. new_cpu = find_idlest_cpu(group, t, cpu);
  1216. if (new_cpu == -1 || new_cpu == cpu) {
  1217. /* Now try balancing at a lower domain level of cpu */
  1218. sd = sd->child;
  1219. continue;
  1220. }
  1221. /* Now try balancing at a lower domain level of new_cpu */
  1222. cpu = new_cpu;
  1223. sd = NULL;
  1224. weight = cpus_weight(span);
  1225. for_each_domain(cpu, tmp) {
  1226. if (weight <= cpus_weight(tmp->span))
  1227. break;
  1228. if (tmp->flags & flag)
  1229. sd = tmp;
  1230. }
  1231. /* while loop will break here if sd == NULL */
  1232. }
  1233. return cpu;
  1234. }
  1235. #endif /* CONFIG_SMP */
  1236. /*
  1237. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1238. * not idle and an idle cpu is available. The span of cpus to
  1239. * search starts with cpus closest then further out as needed,
  1240. * so we always favor a closer, idle cpu.
  1241. *
  1242. * Returns the CPU we should wake onto.
  1243. */
  1244. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1245. static int wake_idle(int cpu, struct task_struct *p)
  1246. {
  1247. cpumask_t tmp;
  1248. struct sched_domain *sd;
  1249. int i;
  1250. /*
  1251. * If it is idle, then it is the best cpu to run this task.
  1252. *
  1253. * This cpu is also the best, if it has more than one task already.
  1254. * Siblings must be also busy(in most cases) as they didn't already
  1255. * pickup the extra load from this cpu and hence we need not check
  1256. * sibling runqueue info. This will avoid the checks and cache miss
  1257. * penalities associated with that.
  1258. */
  1259. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1260. return cpu;
  1261. for_each_domain(cpu, sd) {
  1262. if (sd->flags & SD_WAKE_IDLE) {
  1263. cpus_and(tmp, sd->span, p->cpus_allowed);
  1264. for_each_cpu_mask(i, tmp) {
  1265. if (idle_cpu(i)) {
  1266. if (i != task_cpu(p)) {
  1267. schedstat_inc(p,
  1268. se.nr_wakeups_idle);
  1269. }
  1270. return i;
  1271. }
  1272. }
  1273. } else {
  1274. break;
  1275. }
  1276. }
  1277. return cpu;
  1278. }
  1279. #else
  1280. static inline int wake_idle(int cpu, struct task_struct *p)
  1281. {
  1282. return cpu;
  1283. }
  1284. #endif
  1285. /***
  1286. * try_to_wake_up - wake up a thread
  1287. * @p: the to-be-woken-up thread
  1288. * @state: the mask of task states that can be woken
  1289. * @sync: do a synchronous wakeup?
  1290. *
  1291. * Put it on the run-queue if it's not already there. The "current"
  1292. * thread is always on the run-queue (except when the actual
  1293. * re-schedule is in progress), and as such you're allowed to do
  1294. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1295. * runnable without the overhead of this.
  1296. *
  1297. * returns failure only if the task is already active.
  1298. */
  1299. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1300. {
  1301. int cpu, orig_cpu, this_cpu, success = 0;
  1302. unsigned long flags;
  1303. long old_state;
  1304. struct rq *rq;
  1305. #ifdef CONFIG_SMP
  1306. struct sched_domain *sd, *this_sd = NULL;
  1307. unsigned long load, this_load;
  1308. int new_cpu;
  1309. #endif
  1310. rq = task_rq_lock(p, &flags);
  1311. old_state = p->state;
  1312. if (!(old_state & state))
  1313. goto out;
  1314. if (p->se.on_rq)
  1315. goto out_running;
  1316. cpu = task_cpu(p);
  1317. orig_cpu = cpu;
  1318. this_cpu = smp_processor_id();
  1319. #ifdef CONFIG_SMP
  1320. if (unlikely(task_running(rq, p)))
  1321. goto out_activate;
  1322. new_cpu = cpu;
  1323. schedstat_inc(rq, ttwu_count);
  1324. if (cpu == this_cpu) {
  1325. schedstat_inc(rq, ttwu_local);
  1326. goto out_set_cpu;
  1327. }
  1328. for_each_domain(this_cpu, sd) {
  1329. if (cpu_isset(cpu, sd->span)) {
  1330. schedstat_inc(sd, ttwu_wake_remote);
  1331. this_sd = sd;
  1332. break;
  1333. }
  1334. }
  1335. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1336. goto out_set_cpu;
  1337. /*
  1338. * Check for affine wakeup and passive balancing possibilities.
  1339. */
  1340. if (this_sd) {
  1341. int idx = this_sd->wake_idx;
  1342. unsigned int imbalance;
  1343. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1344. load = source_load(cpu, idx);
  1345. this_load = target_load(this_cpu, idx);
  1346. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1347. if (this_sd->flags & SD_WAKE_AFFINE) {
  1348. unsigned long tl = this_load;
  1349. unsigned long tl_per_task;
  1350. /*
  1351. * Attract cache-cold tasks on sync wakeups:
  1352. */
  1353. if (sync && !task_hot(p, rq->clock, this_sd))
  1354. goto out_set_cpu;
  1355. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1356. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1357. /*
  1358. * If sync wakeup then subtract the (maximum possible)
  1359. * effect of the currently running task from the load
  1360. * of the current CPU:
  1361. */
  1362. if (sync)
  1363. tl -= current->se.load.weight;
  1364. if ((tl <= load &&
  1365. tl + target_load(cpu, idx) <= tl_per_task) ||
  1366. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1367. /*
  1368. * This domain has SD_WAKE_AFFINE and
  1369. * p is cache cold in this domain, and
  1370. * there is no bad imbalance.
  1371. */
  1372. schedstat_inc(this_sd, ttwu_move_affine);
  1373. schedstat_inc(p, se.nr_wakeups_affine);
  1374. goto out_set_cpu;
  1375. }
  1376. }
  1377. /*
  1378. * Start passive balancing when half the imbalance_pct
  1379. * limit is reached.
  1380. */
  1381. if (this_sd->flags & SD_WAKE_BALANCE) {
  1382. if (imbalance*this_load <= 100*load) {
  1383. schedstat_inc(this_sd, ttwu_move_balance);
  1384. schedstat_inc(p, se.nr_wakeups_passive);
  1385. goto out_set_cpu;
  1386. }
  1387. }
  1388. }
  1389. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1390. out_set_cpu:
  1391. new_cpu = wake_idle(new_cpu, p);
  1392. if (new_cpu != cpu) {
  1393. set_task_cpu(p, new_cpu);
  1394. task_rq_unlock(rq, &flags);
  1395. /* might preempt at this point */
  1396. rq = task_rq_lock(p, &flags);
  1397. old_state = p->state;
  1398. if (!(old_state & state))
  1399. goto out;
  1400. if (p->se.on_rq)
  1401. goto out_running;
  1402. this_cpu = smp_processor_id();
  1403. cpu = task_cpu(p);
  1404. }
  1405. out_activate:
  1406. #endif /* CONFIG_SMP */
  1407. schedstat_inc(p, se.nr_wakeups);
  1408. if (sync)
  1409. schedstat_inc(p, se.nr_wakeups_sync);
  1410. if (orig_cpu != cpu)
  1411. schedstat_inc(p, se.nr_wakeups_migrate);
  1412. if (cpu == this_cpu)
  1413. schedstat_inc(p, se.nr_wakeups_local);
  1414. else
  1415. schedstat_inc(p, se.nr_wakeups_remote);
  1416. update_rq_clock(rq);
  1417. activate_task(rq, p, 1);
  1418. check_preempt_curr(rq, p);
  1419. success = 1;
  1420. out_running:
  1421. p->state = TASK_RUNNING;
  1422. out:
  1423. task_rq_unlock(rq, &flags);
  1424. return success;
  1425. }
  1426. int fastcall wake_up_process(struct task_struct *p)
  1427. {
  1428. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1429. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1430. }
  1431. EXPORT_SYMBOL(wake_up_process);
  1432. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1433. {
  1434. return try_to_wake_up(p, state, 0);
  1435. }
  1436. /*
  1437. * Perform scheduler related setup for a newly forked process p.
  1438. * p is forked by current.
  1439. *
  1440. * __sched_fork() is basic setup used by init_idle() too:
  1441. */
  1442. static void __sched_fork(struct task_struct *p)
  1443. {
  1444. p->se.exec_start = 0;
  1445. p->se.sum_exec_runtime = 0;
  1446. p->se.prev_sum_exec_runtime = 0;
  1447. #ifdef CONFIG_SCHEDSTATS
  1448. p->se.wait_start = 0;
  1449. p->se.sum_sleep_runtime = 0;
  1450. p->se.sleep_start = 0;
  1451. p->se.block_start = 0;
  1452. p->se.sleep_max = 0;
  1453. p->se.block_max = 0;
  1454. p->se.exec_max = 0;
  1455. p->se.slice_max = 0;
  1456. p->se.wait_max = 0;
  1457. #endif
  1458. INIT_LIST_HEAD(&p->run_list);
  1459. p->se.on_rq = 0;
  1460. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1461. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1462. #endif
  1463. /*
  1464. * We mark the process as running here, but have not actually
  1465. * inserted it onto the runqueue yet. This guarantees that
  1466. * nobody will actually run it, and a signal or other external
  1467. * event cannot wake it up and insert it on the runqueue either.
  1468. */
  1469. p->state = TASK_RUNNING;
  1470. }
  1471. /*
  1472. * fork()/clone()-time setup:
  1473. */
  1474. void sched_fork(struct task_struct *p, int clone_flags)
  1475. {
  1476. int cpu = get_cpu();
  1477. __sched_fork(p);
  1478. #ifdef CONFIG_SMP
  1479. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1480. #endif
  1481. set_task_cpu(p, cpu);
  1482. /*
  1483. * Make sure we do not leak PI boosting priority to the child:
  1484. */
  1485. p->prio = current->normal_prio;
  1486. if (!rt_prio(p->prio))
  1487. p->sched_class = &fair_sched_class;
  1488. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1489. if (likely(sched_info_on()))
  1490. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1491. #endif
  1492. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1493. p->oncpu = 0;
  1494. #endif
  1495. #ifdef CONFIG_PREEMPT
  1496. /* Want to start with kernel preemption disabled. */
  1497. task_thread_info(p)->preempt_count = 1;
  1498. #endif
  1499. put_cpu();
  1500. }
  1501. /*
  1502. * wake_up_new_task - wake up a newly created task for the first time.
  1503. *
  1504. * This function will do some initial scheduler statistics housekeeping
  1505. * that must be done for every newly created context, then puts the task
  1506. * on the runqueue and wakes it.
  1507. */
  1508. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1509. {
  1510. unsigned long flags;
  1511. struct rq *rq;
  1512. rq = task_rq_lock(p, &flags);
  1513. BUG_ON(p->state != TASK_RUNNING);
  1514. update_rq_clock(rq);
  1515. p->prio = effective_prio(p);
  1516. if (!p->sched_class->task_new || !current->se.on_rq) {
  1517. activate_task(rq, p, 0);
  1518. } else {
  1519. /*
  1520. * Let the scheduling class do new task startup
  1521. * management (if any):
  1522. */
  1523. p->sched_class->task_new(rq, p);
  1524. inc_nr_running(p, rq);
  1525. }
  1526. check_preempt_curr(rq, p);
  1527. task_rq_unlock(rq, &flags);
  1528. }
  1529. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1530. /**
  1531. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1532. * @notifier: notifier struct to register
  1533. */
  1534. void preempt_notifier_register(struct preempt_notifier *notifier)
  1535. {
  1536. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1537. }
  1538. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1539. /**
  1540. * preempt_notifier_unregister - no longer interested in preemption notifications
  1541. * @notifier: notifier struct to unregister
  1542. *
  1543. * This is safe to call from within a preemption notifier.
  1544. */
  1545. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1546. {
  1547. hlist_del(&notifier->link);
  1548. }
  1549. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1550. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1551. {
  1552. struct preempt_notifier *notifier;
  1553. struct hlist_node *node;
  1554. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1555. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1556. }
  1557. static void
  1558. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1559. struct task_struct *next)
  1560. {
  1561. struct preempt_notifier *notifier;
  1562. struct hlist_node *node;
  1563. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1564. notifier->ops->sched_out(notifier, next);
  1565. }
  1566. #else
  1567. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1568. {
  1569. }
  1570. static void
  1571. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1572. struct task_struct *next)
  1573. {
  1574. }
  1575. #endif
  1576. /**
  1577. * prepare_task_switch - prepare to switch tasks
  1578. * @rq: the runqueue preparing to switch
  1579. * @prev: the current task that is being switched out
  1580. * @next: the task we are going to switch to.
  1581. *
  1582. * This is called with the rq lock held and interrupts off. It must
  1583. * be paired with a subsequent finish_task_switch after the context
  1584. * switch.
  1585. *
  1586. * prepare_task_switch sets up locking and calls architecture specific
  1587. * hooks.
  1588. */
  1589. static inline void
  1590. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1591. struct task_struct *next)
  1592. {
  1593. fire_sched_out_preempt_notifiers(prev, next);
  1594. prepare_lock_switch(rq, next);
  1595. prepare_arch_switch(next);
  1596. }
  1597. /**
  1598. * finish_task_switch - clean up after a task-switch
  1599. * @rq: runqueue associated with task-switch
  1600. * @prev: the thread we just switched away from.
  1601. *
  1602. * finish_task_switch must be called after the context switch, paired
  1603. * with a prepare_task_switch call before the context switch.
  1604. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1605. * and do any other architecture-specific cleanup actions.
  1606. *
  1607. * Note that we may have delayed dropping an mm in context_switch(). If
  1608. * so, we finish that here outside of the runqueue lock. (Doing it
  1609. * with the lock held can cause deadlocks; see schedule() for
  1610. * details.)
  1611. */
  1612. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1613. __releases(rq->lock)
  1614. {
  1615. struct mm_struct *mm = rq->prev_mm;
  1616. long prev_state;
  1617. rq->prev_mm = NULL;
  1618. /*
  1619. * A task struct has one reference for the use as "current".
  1620. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1621. * schedule one last time. The schedule call will never return, and
  1622. * the scheduled task must drop that reference.
  1623. * The test for TASK_DEAD must occur while the runqueue locks are
  1624. * still held, otherwise prev could be scheduled on another cpu, die
  1625. * there before we look at prev->state, and then the reference would
  1626. * be dropped twice.
  1627. * Manfred Spraul <manfred@colorfullife.com>
  1628. */
  1629. prev_state = prev->state;
  1630. finish_arch_switch(prev);
  1631. finish_lock_switch(rq, prev);
  1632. fire_sched_in_preempt_notifiers(current);
  1633. if (mm)
  1634. mmdrop(mm);
  1635. if (unlikely(prev_state == TASK_DEAD)) {
  1636. /*
  1637. * Remove function-return probe instances associated with this
  1638. * task and put them back on the free list.
  1639. */
  1640. kprobe_flush_task(prev);
  1641. put_task_struct(prev);
  1642. }
  1643. }
  1644. /**
  1645. * schedule_tail - first thing a freshly forked thread must call.
  1646. * @prev: the thread we just switched away from.
  1647. */
  1648. asmlinkage void schedule_tail(struct task_struct *prev)
  1649. __releases(rq->lock)
  1650. {
  1651. struct rq *rq = this_rq();
  1652. finish_task_switch(rq, prev);
  1653. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1654. /* In this case, finish_task_switch does not reenable preemption */
  1655. preempt_enable();
  1656. #endif
  1657. if (current->set_child_tid)
  1658. put_user(task_pid_vnr(current), current->set_child_tid);
  1659. }
  1660. /*
  1661. * context_switch - switch to the new MM and the new
  1662. * thread's register state.
  1663. */
  1664. static inline void
  1665. context_switch(struct rq *rq, struct task_struct *prev,
  1666. struct task_struct *next)
  1667. {
  1668. struct mm_struct *mm, *oldmm;
  1669. prepare_task_switch(rq, prev, next);
  1670. mm = next->mm;
  1671. oldmm = prev->active_mm;
  1672. /*
  1673. * For paravirt, this is coupled with an exit in switch_to to
  1674. * combine the page table reload and the switch backend into
  1675. * one hypercall.
  1676. */
  1677. arch_enter_lazy_cpu_mode();
  1678. if (unlikely(!mm)) {
  1679. next->active_mm = oldmm;
  1680. atomic_inc(&oldmm->mm_count);
  1681. enter_lazy_tlb(oldmm, next);
  1682. } else
  1683. switch_mm(oldmm, mm, next);
  1684. if (unlikely(!prev->mm)) {
  1685. prev->active_mm = NULL;
  1686. rq->prev_mm = oldmm;
  1687. }
  1688. /*
  1689. * Since the runqueue lock will be released by the next
  1690. * task (which is an invalid locking op but in the case
  1691. * of the scheduler it's an obvious special-case), so we
  1692. * do an early lockdep release here:
  1693. */
  1694. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1695. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1696. #endif
  1697. /* Here we just switch the register state and the stack. */
  1698. switch_to(prev, next, prev);
  1699. barrier();
  1700. /*
  1701. * this_rq must be evaluated again because prev may have moved
  1702. * CPUs since it called schedule(), thus the 'rq' on its stack
  1703. * frame will be invalid.
  1704. */
  1705. finish_task_switch(this_rq(), prev);
  1706. }
  1707. /*
  1708. * nr_running, nr_uninterruptible and nr_context_switches:
  1709. *
  1710. * externally visible scheduler statistics: current number of runnable
  1711. * threads, current number of uninterruptible-sleeping threads, total
  1712. * number of context switches performed since bootup.
  1713. */
  1714. unsigned long nr_running(void)
  1715. {
  1716. unsigned long i, sum = 0;
  1717. for_each_online_cpu(i)
  1718. sum += cpu_rq(i)->nr_running;
  1719. return sum;
  1720. }
  1721. unsigned long nr_uninterruptible(void)
  1722. {
  1723. unsigned long i, sum = 0;
  1724. for_each_possible_cpu(i)
  1725. sum += cpu_rq(i)->nr_uninterruptible;
  1726. /*
  1727. * Since we read the counters lockless, it might be slightly
  1728. * inaccurate. Do not allow it to go below zero though:
  1729. */
  1730. if (unlikely((long)sum < 0))
  1731. sum = 0;
  1732. return sum;
  1733. }
  1734. unsigned long long nr_context_switches(void)
  1735. {
  1736. int i;
  1737. unsigned long long sum = 0;
  1738. for_each_possible_cpu(i)
  1739. sum += cpu_rq(i)->nr_switches;
  1740. return sum;
  1741. }
  1742. unsigned long nr_iowait(void)
  1743. {
  1744. unsigned long i, sum = 0;
  1745. for_each_possible_cpu(i)
  1746. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1747. return sum;
  1748. }
  1749. unsigned long nr_active(void)
  1750. {
  1751. unsigned long i, running = 0, uninterruptible = 0;
  1752. for_each_online_cpu(i) {
  1753. running += cpu_rq(i)->nr_running;
  1754. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1755. }
  1756. if (unlikely((long)uninterruptible < 0))
  1757. uninterruptible = 0;
  1758. return running + uninterruptible;
  1759. }
  1760. /*
  1761. * Update rq->cpu_load[] statistics. This function is usually called every
  1762. * scheduler tick (TICK_NSEC).
  1763. */
  1764. static void update_cpu_load(struct rq *this_rq)
  1765. {
  1766. unsigned long this_load = this_rq->load.weight;
  1767. int i, scale;
  1768. this_rq->nr_load_updates++;
  1769. /* Update our load: */
  1770. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1771. unsigned long old_load, new_load;
  1772. /* scale is effectively 1 << i now, and >> i divides by scale */
  1773. old_load = this_rq->cpu_load[i];
  1774. new_load = this_load;
  1775. /*
  1776. * Round up the averaging division if load is increasing. This
  1777. * prevents us from getting stuck on 9 if the load is 10, for
  1778. * example.
  1779. */
  1780. if (new_load > old_load)
  1781. new_load += scale-1;
  1782. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1783. }
  1784. }
  1785. #ifdef CONFIG_SMP
  1786. /*
  1787. * double_rq_lock - safely lock two runqueues
  1788. *
  1789. * Note this does not disable interrupts like task_rq_lock,
  1790. * you need to do so manually before calling.
  1791. */
  1792. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1793. __acquires(rq1->lock)
  1794. __acquires(rq2->lock)
  1795. {
  1796. BUG_ON(!irqs_disabled());
  1797. if (rq1 == rq2) {
  1798. spin_lock(&rq1->lock);
  1799. __acquire(rq2->lock); /* Fake it out ;) */
  1800. } else {
  1801. if (rq1 < rq2) {
  1802. spin_lock(&rq1->lock);
  1803. spin_lock(&rq2->lock);
  1804. } else {
  1805. spin_lock(&rq2->lock);
  1806. spin_lock(&rq1->lock);
  1807. }
  1808. }
  1809. update_rq_clock(rq1);
  1810. update_rq_clock(rq2);
  1811. }
  1812. /*
  1813. * double_rq_unlock - safely unlock two runqueues
  1814. *
  1815. * Note this does not restore interrupts like task_rq_unlock,
  1816. * you need to do so manually after calling.
  1817. */
  1818. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1819. __releases(rq1->lock)
  1820. __releases(rq2->lock)
  1821. {
  1822. spin_unlock(&rq1->lock);
  1823. if (rq1 != rq2)
  1824. spin_unlock(&rq2->lock);
  1825. else
  1826. __release(rq2->lock);
  1827. }
  1828. /*
  1829. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1830. */
  1831. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1832. __releases(this_rq->lock)
  1833. __acquires(busiest->lock)
  1834. __acquires(this_rq->lock)
  1835. {
  1836. if (unlikely(!irqs_disabled())) {
  1837. /* printk() doesn't work good under rq->lock */
  1838. spin_unlock(&this_rq->lock);
  1839. BUG_ON(1);
  1840. }
  1841. if (unlikely(!spin_trylock(&busiest->lock))) {
  1842. if (busiest < this_rq) {
  1843. spin_unlock(&this_rq->lock);
  1844. spin_lock(&busiest->lock);
  1845. spin_lock(&this_rq->lock);
  1846. } else
  1847. spin_lock(&busiest->lock);
  1848. }
  1849. }
  1850. /*
  1851. * If dest_cpu is allowed for this process, migrate the task to it.
  1852. * This is accomplished by forcing the cpu_allowed mask to only
  1853. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1854. * the cpu_allowed mask is restored.
  1855. */
  1856. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1857. {
  1858. struct migration_req req;
  1859. unsigned long flags;
  1860. struct rq *rq;
  1861. rq = task_rq_lock(p, &flags);
  1862. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1863. || unlikely(cpu_is_offline(dest_cpu)))
  1864. goto out;
  1865. /* force the process onto the specified CPU */
  1866. if (migrate_task(p, dest_cpu, &req)) {
  1867. /* Need to wait for migration thread (might exit: take ref). */
  1868. struct task_struct *mt = rq->migration_thread;
  1869. get_task_struct(mt);
  1870. task_rq_unlock(rq, &flags);
  1871. wake_up_process(mt);
  1872. put_task_struct(mt);
  1873. wait_for_completion(&req.done);
  1874. return;
  1875. }
  1876. out:
  1877. task_rq_unlock(rq, &flags);
  1878. }
  1879. /*
  1880. * sched_exec - execve() is a valuable balancing opportunity, because at
  1881. * this point the task has the smallest effective memory and cache footprint.
  1882. */
  1883. void sched_exec(void)
  1884. {
  1885. int new_cpu, this_cpu = get_cpu();
  1886. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1887. put_cpu();
  1888. if (new_cpu != this_cpu)
  1889. sched_migrate_task(current, new_cpu);
  1890. }
  1891. /*
  1892. * pull_task - move a task from a remote runqueue to the local runqueue.
  1893. * Both runqueues must be locked.
  1894. */
  1895. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1896. struct rq *this_rq, int this_cpu)
  1897. {
  1898. deactivate_task(src_rq, p, 0);
  1899. set_task_cpu(p, this_cpu);
  1900. activate_task(this_rq, p, 0);
  1901. /*
  1902. * Note that idle threads have a prio of MAX_PRIO, for this test
  1903. * to be always true for them.
  1904. */
  1905. check_preempt_curr(this_rq, p);
  1906. }
  1907. /*
  1908. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1909. */
  1910. static
  1911. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1912. struct sched_domain *sd, enum cpu_idle_type idle,
  1913. int *all_pinned)
  1914. {
  1915. /*
  1916. * We do not migrate tasks that are:
  1917. * 1) running (obviously), or
  1918. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1919. * 3) are cache-hot on their current CPU.
  1920. */
  1921. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1922. schedstat_inc(p, se.nr_failed_migrations_affine);
  1923. return 0;
  1924. }
  1925. *all_pinned = 0;
  1926. if (task_running(rq, p)) {
  1927. schedstat_inc(p, se.nr_failed_migrations_running);
  1928. return 0;
  1929. }
  1930. /*
  1931. * Aggressive migration if:
  1932. * 1) task is cache cold, or
  1933. * 2) too many balance attempts have failed.
  1934. */
  1935. if (!task_hot(p, rq->clock, sd) ||
  1936. sd->nr_balance_failed > sd->cache_nice_tries) {
  1937. #ifdef CONFIG_SCHEDSTATS
  1938. if (task_hot(p, rq->clock, sd)) {
  1939. schedstat_inc(sd, lb_hot_gained[idle]);
  1940. schedstat_inc(p, se.nr_forced_migrations);
  1941. }
  1942. #endif
  1943. return 1;
  1944. }
  1945. if (task_hot(p, rq->clock, sd)) {
  1946. schedstat_inc(p, se.nr_failed_migrations_hot);
  1947. return 0;
  1948. }
  1949. return 1;
  1950. }
  1951. static unsigned long
  1952. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1953. unsigned long max_load_move, struct sched_domain *sd,
  1954. enum cpu_idle_type idle, int *all_pinned,
  1955. int *this_best_prio, struct rq_iterator *iterator)
  1956. {
  1957. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1958. struct task_struct *p;
  1959. long rem_load_move = max_load_move;
  1960. if (max_load_move == 0)
  1961. goto out;
  1962. pinned = 1;
  1963. /*
  1964. * Start the load-balancing iterator:
  1965. */
  1966. p = iterator->start(iterator->arg);
  1967. next:
  1968. if (!p || loops++ > sysctl_sched_nr_migrate)
  1969. goto out;
  1970. /*
  1971. * To help distribute high priority tasks across CPUs we don't
  1972. * skip a task if it will be the highest priority task (i.e. smallest
  1973. * prio value) on its new queue regardless of its load weight
  1974. */
  1975. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1976. SCHED_LOAD_SCALE_FUZZ;
  1977. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1978. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1979. p = iterator->next(iterator->arg);
  1980. goto next;
  1981. }
  1982. pull_task(busiest, p, this_rq, this_cpu);
  1983. pulled++;
  1984. rem_load_move -= p->se.load.weight;
  1985. /*
  1986. * We only want to steal up to the prescribed amount of weighted load.
  1987. */
  1988. if (rem_load_move > 0) {
  1989. if (p->prio < *this_best_prio)
  1990. *this_best_prio = p->prio;
  1991. p = iterator->next(iterator->arg);
  1992. goto next;
  1993. }
  1994. out:
  1995. /*
  1996. * Right now, this is one of only two places pull_task() is called,
  1997. * so we can safely collect pull_task() stats here rather than
  1998. * inside pull_task().
  1999. */
  2000. schedstat_add(sd, lb_gained[idle], pulled);
  2001. if (all_pinned)
  2002. *all_pinned = pinned;
  2003. return max_load_move - rem_load_move;
  2004. }
  2005. /*
  2006. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2007. * this_rq, as part of a balancing operation within domain "sd".
  2008. * Returns 1 if successful and 0 otherwise.
  2009. *
  2010. * Called with both runqueues locked.
  2011. */
  2012. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2013. unsigned long max_load_move,
  2014. struct sched_domain *sd, enum cpu_idle_type idle,
  2015. int *all_pinned)
  2016. {
  2017. const struct sched_class *class = sched_class_highest;
  2018. unsigned long total_load_moved = 0;
  2019. int this_best_prio = this_rq->curr->prio;
  2020. do {
  2021. total_load_moved +=
  2022. class->load_balance(this_rq, this_cpu, busiest,
  2023. max_load_move - total_load_moved,
  2024. sd, idle, all_pinned, &this_best_prio);
  2025. class = class->next;
  2026. } while (class && max_load_move > total_load_moved);
  2027. return total_load_moved > 0;
  2028. }
  2029. static int
  2030. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2031. struct sched_domain *sd, enum cpu_idle_type idle,
  2032. struct rq_iterator *iterator)
  2033. {
  2034. struct task_struct *p = iterator->start(iterator->arg);
  2035. int pinned = 0;
  2036. while (p) {
  2037. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2038. pull_task(busiest, p, this_rq, this_cpu);
  2039. /*
  2040. * Right now, this is only the second place pull_task()
  2041. * is called, so we can safely collect pull_task()
  2042. * stats here rather than inside pull_task().
  2043. */
  2044. schedstat_inc(sd, lb_gained[idle]);
  2045. return 1;
  2046. }
  2047. p = iterator->next(iterator->arg);
  2048. }
  2049. return 0;
  2050. }
  2051. /*
  2052. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2053. * part of active balancing operations within "domain".
  2054. * Returns 1 if successful and 0 otherwise.
  2055. *
  2056. * Called with both runqueues locked.
  2057. */
  2058. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2059. struct sched_domain *sd, enum cpu_idle_type idle)
  2060. {
  2061. const struct sched_class *class;
  2062. for (class = sched_class_highest; class; class = class->next)
  2063. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2064. return 1;
  2065. return 0;
  2066. }
  2067. /*
  2068. * find_busiest_group finds and returns the busiest CPU group within the
  2069. * domain. It calculates and returns the amount of weighted load which
  2070. * should be moved to restore balance via the imbalance parameter.
  2071. */
  2072. static struct sched_group *
  2073. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2074. unsigned long *imbalance, enum cpu_idle_type idle,
  2075. int *sd_idle, cpumask_t *cpus, int *balance)
  2076. {
  2077. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2078. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2079. unsigned long max_pull;
  2080. unsigned long busiest_load_per_task, busiest_nr_running;
  2081. unsigned long this_load_per_task, this_nr_running;
  2082. int load_idx, group_imb = 0;
  2083. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2084. int power_savings_balance = 1;
  2085. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2086. unsigned long min_nr_running = ULONG_MAX;
  2087. struct sched_group *group_min = NULL, *group_leader = NULL;
  2088. #endif
  2089. max_load = this_load = total_load = total_pwr = 0;
  2090. busiest_load_per_task = busiest_nr_running = 0;
  2091. this_load_per_task = this_nr_running = 0;
  2092. if (idle == CPU_NOT_IDLE)
  2093. load_idx = sd->busy_idx;
  2094. else if (idle == CPU_NEWLY_IDLE)
  2095. load_idx = sd->newidle_idx;
  2096. else
  2097. load_idx = sd->idle_idx;
  2098. do {
  2099. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2100. int local_group;
  2101. int i;
  2102. int __group_imb = 0;
  2103. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2104. unsigned long sum_nr_running, sum_weighted_load;
  2105. local_group = cpu_isset(this_cpu, group->cpumask);
  2106. if (local_group)
  2107. balance_cpu = first_cpu(group->cpumask);
  2108. /* Tally up the load of all CPUs in the group */
  2109. sum_weighted_load = sum_nr_running = avg_load = 0;
  2110. max_cpu_load = 0;
  2111. min_cpu_load = ~0UL;
  2112. for_each_cpu_mask(i, group->cpumask) {
  2113. struct rq *rq;
  2114. if (!cpu_isset(i, *cpus))
  2115. continue;
  2116. rq = cpu_rq(i);
  2117. if (*sd_idle && rq->nr_running)
  2118. *sd_idle = 0;
  2119. /* Bias balancing toward cpus of our domain */
  2120. if (local_group) {
  2121. if (idle_cpu(i) && !first_idle_cpu) {
  2122. first_idle_cpu = 1;
  2123. balance_cpu = i;
  2124. }
  2125. load = target_load(i, load_idx);
  2126. } else {
  2127. load = source_load(i, load_idx);
  2128. if (load > max_cpu_load)
  2129. max_cpu_load = load;
  2130. if (min_cpu_load > load)
  2131. min_cpu_load = load;
  2132. }
  2133. avg_load += load;
  2134. sum_nr_running += rq->nr_running;
  2135. sum_weighted_load += weighted_cpuload(i);
  2136. }
  2137. /*
  2138. * First idle cpu or the first cpu(busiest) in this sched group
  2139. * is eligible for doing load balancing at this and above
  2140. * domains. In the newly idle case, we will allow all the cpu's
  2141. * to do the newly idle load balance.
  2142. */
  2143. if (idle != CPU_NEWLY_IDLE && local_group &&
  2144. balance_cpu != this_cpu && balance) {
  2145. *balance = 0;
  2146. goto ret;
  2147. }
  2148. total_load += avg_load;
  2149. total_pwr += group->__cpu_power;
  2150. /* Adjust by relative CPU power of the group */
  2151. avg_load = sg_div_cpu_power(group,
  2152. avg_load * SCHED_LOAD_SCALE);
  2153. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2154. __group_imb = 1;
  2155. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2156. if (local_group) {
  2157. this_load = avg_load;
  2158. this = group;
  2159. this_nr_running = sum_nr_running;
  2160. this_load_per_task = sum_weighted_load;
  2161. } else if (avg_load > max_load &&
  2162. (sum_nr_running > group_capacity || __group_imb)) {
  2163. max_load = avg_load;
  2164. busiest = group;
  2165. busiest_nr_running = sum_nr_running;
  2166. busiest_load_per_task = sum_weighted_load;
  2167. group_imb = __group_imb;
  2168. }
  2169. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2170. /*
  2171. * Busy processors will not participate in power savings
  2172. * balance.
  2173. */
  2174. if (idle == CPU_NOT_IDLE ||
  2175. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2176. goto group_next;
  2177. /*
  2178. * If the local group is idle or completely loaded
  2179. * no need to do power savings balance at this domain
  2180. */
  2181. if (local_group && (this_nr_running >= group_capacity ||
  2182. !this_nr_running))
  2183. power_savings_balance = 0;
  2184. /*
  2185. * If a group is already running at full capacity or idle,
  2186. * don't include that group in power savings calculations
  2187. */
  2188. if (!power_savings_balance || sum_nr_running >= group_capacity
  2189. || !sum_nr_running)
  2190. goto group_next;
  2191. /*
  2192. * Calculate the group which has the least non-idle load.
  2193. * This is the group from where we need to pick up the load
  2194. * for saving power
  2195. */
  2196. if ((sum_nr_running < min_nr_running) ||
  2197. (sum_nr_running == min_nr_running &&
  2198. first_cpu(group->cpumask) <
  2199. first_cpu(group_min->cpumask))) {
  2200. group_min = group;
  2201. min_nr_running = sum_nr_running;
  2202. min_load_per_task = sum_weighted_load /
  2203. sum_nr_running;
  2204. }
  2205. /*
  2206. * Calculate the group which is almost near its
  2207. * capacity but still has some space to pick up some load
  2208. * from other group and save more power
  2209. */
  2210. if (sum_nr_running <= group_capacity - 1) {
  2211. if (sum_nr_running > leader_nr_running ||
  2212. (sum_nr_running == leader_nr_running &&
  2213. first_cpu(group->cpumask) >
  2214. first_cpu(group_leader->cpumask))) {
  2215. group_leader = group;
  2216. leader_nr_running = sum_nr_running;
  2217. }
  2218. }
  2219. group_next:
  2220. #endif
  2221. group = group->next;
  2222. } while (group != sd->groups);
  2223. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2224. goto out_balanced;
  2225. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2226. if (this_load >= avg_load ||
  2227. 100*max_load <= sd->imbalance_pct*this_load)
  2228. goto out_balanced;
  2229. busiest_load_per_task /= busiest_nr_running;
  2230. if (group_imb)
  2231. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2232. /*
  2233. * We're trying to get all the cpus to the average_load, so we don't
  2234. * want to push ourselves above the average load, nor do we wish to
  2235. * reduce the max loaded cpu below the average load, as either of these
  2236. * actions would just result in more rebalancing later, and ping-pong
  2237. * tasks around. Thus we look for the minimum possible imbalance.
  2238. * Negative imbalances (*we* are more loaded than anyone else) will
  2239. * be counted as no imbalance for these purposes -- we can't fix that
  2240. * by pulling tasks to us. Be careful of negative numbers as they'll
  2241. * appear as very large values with unsigned longs.
  2242. */
  2243. if (max_load <= busiest_load_per_task)
  2244. goto out_balanced;
  2245. /*
  2246. * In the presence of smp nice balancing, certain scenarios can have
  2247. * max load less than avg load(as we skip the groups at or below
  2248. * its cpu_power, while calculating max_load..)
  2249. */
  2250. if (max_load < avg_load) {
  2251. *imbalance = 0;
  2252. goto small_imbalance;
  2253. }
  2254. /* Don't want to pull so many tasks that a group would go idle */
  2255. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2256. /* How much load to actually move to equalise the imbalance */
  2257. *imbalance = min(max_pull * busiest->__cpu_power,
  2258. (avg_load - this_load) * this->__cpu_power)
  2259. / SCHED_LOAD_SCALE;
  2260. /*
  2261. * if *imbalance is less than the average load per runnable task
  2262. * there is no gaurantee that any tasks will be moved so we'll have
  2263. * a think about bumping its value to force at least one task to be
  2264. * moved
  2265. */
  2266. if (*imbalance < busiest_load_per_task) {
  2267. unsigned long tmp, pwr_now, pwr_move;
  2268. unsigned int imbn;
  2269. small_imbalance:
  2270. pwr_move = pwr_now = 0;
  2271. imbn = 2;
  2272. if (this_nr_running) {
  2273. this_load_per_task /= this_nr_running;
  2274. if (busiest_load_per_task > this_load_per_task)
  2275. imbn = 1;
  2276. } else
  2277. this_load_per_task = SCHED_LOAD_SCALE;
  2278. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2279. busiest_load_per_task * imbn) {
  2280. *imbalance = busiest_load_per_task;
  2281. return busiest;
  2282. }
  2283. /*
  2284. * OK, we don't have enough imbalance to justify moving tasks,
  2285. * however we may be able to increase total CPU power used by
  2286. * moving them.
  2287. */
  2288. pwr_now += busiest->__cpu_power *
  2289. min(busiest_load_per_task, max_load);
  2290. pwr_now += this->__cpu_power *
  2291. min(this_load_per_task, this_load);
  2292. pwr_now /= SCHED_LOAD_SCALE;
  2293. /* Amount of load we'd subtract */
  2294. tmp = sg_div_cpu_power(busiest,
  2295. busiest_load_per_task * SCHED_LOAD_SCALE);
  2296. if (max_load > tmp)
  2297. pwr_move += busiest->__cpu_power *
  2298. min(busiest_load_per_task, max_load - tmp);
  2299. /* Amount of load we'd add */
  2300. if (max_load * busiest->__cpu_power <
  2301. busiest_load_per_task * SCHED_LOAD_SCALE)
  2302. tmp = sg_div_cpu_power(this,
  2303. max_load * busiest->__cpu_power);
  2304. else
  2305. tmp = sg_div_cpu_power(this,
  2306. busiest_load_per_task * SCHED_LOAD_SCALE);
  2307. pwr_move += this->__cpu_power *
  2308. min(this_load_per_task, this_load + tmp);
  2309. pwr_move /= SCHED_LOAD_SCALE;
  2310. /* Move if we gain throughput */
  2311. if (pwr_move > pwr_now)
  2312. *imbalance = busiest_load_per_task;
  2313. }
  2314. return busiest;
  2315. out_balanced:
  2316. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2317. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2318. goto ret;
  2319. if (this == group_leader && group_leader != group_min) {
  2320. *imbalance = min_load_per_task;
  2321. return group_min;
  2322. }
  2323. #endif
  2324. ret:
  2325. *imbalance = 0;
  2326. return NULL;
  2327. }
  2328. /*
  2329. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2330. */
  2331. static struct rq *
  2332. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2333. unsigned long imbalance, cpumask_t *cpus)
  2334. {
  2335. struct rq *busiest = NULL, *rq;
  2336. unsigned long max_load = 0;
  2337. int i;
  2338. for_each_cpu_mask(i, group->cpumask) {
  2339. unsigned long wl;
  2340. if (!cpu_isset(i, *cpus))
  2341. continue;
  2342. rq = cpu_rq(i);
  2343. wl = weighted_cpuload(i);
  2344. if (rq->nr_running == 1 && wl > imbalance)
  2345. continue;
  2346. if (wl > max_load) {
  2347. max_load = wl;
  2348. busiest = rq;
  2349. }
  2350. }
  2351. return busiest;
  2352. }
  2353. /*
  2354. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2355. * so long as it is large enough.
  2356. */
  2357. #define MAX_PINNED_INTERVAL 512
  2358. /*
  2359. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2360. * tasks if there is an imbalance.
  2361. */
  2362. static int load_balance(int this_cpu, struct rq *this_rq,
  2363. struct sched_domain *sd, enum cpu_idle_type idle,
  2364. int *balance)
  2365. {
  2366. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2367. struct sched_group *group;
  2368. unsigned long imbalance;
  2369. struct rq *busiest;
  2370. cpumask_t cpus = CPU_MASK_ALL;
  2371. unsigned long flags;
  2372. /*
  2373. * When power savings policy is enabled for the parent domain, idle
  2374. * sibling can pick up load irrespective of busy siblings. In this case,
  2375. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2376. * portraying it as CPU_NOT_IDLE.
  2377. */
  2378. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2379. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2380. sd_idle = 1;
  2381. schedstat_inc(sd, lb_count[idle]);
  2382. redo:
  2383. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2384. &cpus, balance);
  2385. if (*balance == 0)
  2386. goto out_balanced;
  2387. if (!group) {
  2388. schedstat_inc(sd, lb_nobusyg[idle]);
  2389. goto out_balanced;
  2390. }
  2391. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2392. if (!busiest) {
  2393. schedstat_inc(sd, lb_nobusyq[idle]);
  2394. goto out_balanced;
  2395. }
  2396. BUG_ON(busiest == this_rq);
  2397. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2398. ld_moved = 0;
  2399. if (busiest->nr_running > 1) {
  2400. /*
  2401. * Attempt to move tasks. If find_busiest_group has found
  2402. * an imbalance but busiest->nr_running <= 1, the group is
  2403. * still unbalanced. ld_moved simply stays zero, so it is
  2404. * correctly treated as an imbalance.
  2405. */
  2406. local_irq_save(flags);
  2407. double_rq_lock(this_rq, busiest);
  2408. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2409. imbalance, sd, idle, &all_pinned);
  2410. double_rq_unlock(this_rq, busiest);
  2411. local_irq_restore(flags);
  2412. /*
  2413. * some other cpu did the load balance for us.
  2414. */
  2415. if (ld_moved && this_cpu != smp_processor_id())
  2416. resched_cpu(this_cpu);
  2417. /* All tasks on this runqueue were pinned by CPU affinity */
  2418. if (unlikely(all_pinned)) {
  2419. cpu_clear(cpu_of(busiest), cpus);
  2420. if (!cpus_empty(cpus))
  2421. goto redo;
  2422. goto out_balanced;
  2423. }
  2424. }
  2425. if (!ld_moved) {
  2426. schedstat_inc(sd, lb_failed[idle]);
  2427. sd->nr_balance_failed++;
  2428. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2429. spin_lock_irqsave(&busiest->lock, flags);
  2430. /* don't kick the migration_thread, if the curr
  2431. * task on busiest cpu can't be moved to this_cpu
  2432. */
  2433. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2434. spin_unlock_irqrestore(&busiest->lock, flags);
  2435. all_pinned = 1;
  2436. goto out_one_pinned;
  2437. }
  2438. if (!busiest->active_balance) {
  2439. busiest->active_balance = 1;
  2440. busiest->push_cpu = this_cpu;
  2441. active_balance = 1;
  2442. }
  2443. spin_unlock_irqrestore(&busiest->lock, flags);
  2444. if (active_balance)
  2445. wake_up_process(busiest->migration_thread);
  2446. /*
  2447. * We've kicked active balancing, reset the failure
  2448. * counter.
  2449. */
  2450. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2451. }
  2452. } else
  2453. sd->nr_balance_failed = 0;
  2454. if (likely(!active_balance)) {
  2455. /* We were unbalanced, so reset the balancing interval */
  2456. sd->balance_interval = sd->min_interval;
  2457. } else {
  2458. /*
  2459. * If we've begun active balancing, start to back off. This
  2460. * case may not be covered by the all_pinned logic if there
  2461. * is only 1 task on the busy runqueue (because we don't call
  2462. * move_tasks).
  2463. */
  2464. if (sd->balance_interval < sd->max_interval)
  2465. sd->balance_interval *= 2;
  2466. }
  2467. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2468. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2469. return -1;
  2470. return ld_moved;
  2471. out_balanced:
  2472. schedstat_inc(sd, lb_balanced[idle]);
  2473. sd->nr_balance_failed = 0;
  2474. out_one_pinned:
  2475. /* tune up the balancing interval */
  2476. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2477. (sd->balance_interval < sd->max_interval))
  2478. sd->balance_interval *= 2;
  2479. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2480. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2481. return -1;
  2482. return 0;
  2483. }
  2484. /*
  2485. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2486. * tasks if there is an imbalance.
  2487. *
  2488. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2489. * this_rq is locked.
  2490. */
  2491. static int
  2492. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2493. {
  2494. struct sched_group *group;
  2495. struct rq *busiest = NULL;
  2496. unsigned long imbalance;
  2497. int ld_moved = 0;
  2498. int sd_idle = 0;
  2499. int all_pinned = 0;
  2500. cpumask_t cpus = CPU_MASK_ALL;
  2501. /*
  2502. * When power savings policy is enabled for the parent domain, idle
  2503. * sibling can pick up load irrespective of busy siblings. In this case,
  2504. * let the state of idle sibling percolate up as IDLE, instead of
  2505. * portraying it as CPU_NOT_IDLE.
  2506. */
  2507. if (sd->flags & SD_SHARE_CPUPOWER &&
  2508. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2509. sd_idle = 1;
  2510. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2511. redo:
  2512. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2513. &sd_idle, &cpus, NULL);
  2514. if (!group) {
  2515. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2516. goto out_balanced;
  2517. }
  2518. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2519. &cpus);
  2520. if (!busiest) {
  2521. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2522. goto out_balanced;
  2523. }
  2524. BUG_ON(busiest == this_rq);
  2525. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2526. ld_moved = 0;
  2527. if (busiest->nr_running > 1) {
  2528. /* Attempt to move tasks */
  2529. double_lock_balance(this_rq, busiest);
  2530. /* this_rq->clock is already updated */
  2531. update_rq_clock(busiest);
  2532. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2533. imbalance, sd, CPU_NEWLY_IDLE,
  2534. &all_pinned);
  2535. spin_unlock(&busiest->lock);
  2536. if (unlikely(all_pinned)) {
  2537. cpu_clear(cpu_of(busiest), cpus);
  2538. if (!cpus_empty(cpus))
  2539. goto redo;
  2540. }
  2541. }
  2542. if (!ld_moved) {
  2543. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2544. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2545. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2546. return -1;
  2547. } else
  2548. sd->nr_balance_failed = 0;
  2549. return ld_moved;
  2550. out_balanced:
  2551. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2552. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2553. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2554. return -1;
  2555. sd->nr_balance_failed = 0;
  2556. return 0;
  2557. }
  2558. /*
  2559. * idle_balance is called by schedule() if this_cpu is about to become
  2560. * idle. Attempts to pull tasks from other CPUs.
  2561. */
  2562. static void idle_balance(int this_cpu, struct rq *this_rq)
  2563. {
  2564. struct sched_domain *sd;
  2565. int pulled_task = -1;
  2566. unsigned long next_balance = jiffies + HZ;
  2567. for_each_domain(this_cpu, sd) {
  2568. unsigned long interval;
  2569. if (!(sd->flags & SD_LOAD_BALANCE))
  2570. continue;
  2571. if (sd->flags & SD_BALANCE_NEWIDLE)
  2572. /* If we've pulled tasks over stop searching: */
  2573. pulled_task = load_balance_newidle(this_cpu,
  2574. this_rq, sd);
  2575. interval = msecs_to_jiffies(sd->balance_interval);
  2576. if (time_after(next_balance, sd->last_balance + interval))
  2577. next_balance = sd->last_balance + interval;
  2578. if (pulled_task)
  2579. break;
  2580. }
  2581. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2582. /*
  2583. * We are going idle. next_balance may be set based on
  2584. * a busy processor. So reset next_balance.
  2585. */
  2586. this_rq->next_balance = next_balance;
  2587. }
  2588. }
  2589. /*
  2590. * active_load_balance is run by migration threads. It pushes running tasks
  2591. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2592. * running on each physical CPU where possible, and avoids physical /
  2593. * logical imbalances.
  2594. *
  2595. * Called with busiest_rq locked.
  2596. */
  2597. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2598. {
  2599. int target_cpu = busiest_rq->push_cpu;
  2600. struct sched_domain *sd;
  2601. struct rq *target_rq;
  2602. /* Is there any task to move? */
  2603. if (busiest_rq->nr_running <= 1)
  2604. return;
  2605. target_rq = cpu_rq(target_cpu);
  2606. /*
  2607. * This condition is "impossible", if it occurs
  2608. * we need to fix it. Originally reported by
  2609. * Bjorn Helgaas on a 128-cpu setup.
  2610. */
  2611. BUG_ON(busiest_rq == target_rq);
  2612. /* move a task from busiest_rq to target_rq */
  2613. double_lock_balance(busiest_rq, target_rq);
  2614. update_rq_clock(busiest_rq);
  2615. update_rq_clock(target_rq);
  2616. /* Search for an sd spanning us and the target CPU. */
  2617. for_each_domain(target_cpu, sd) {
  2618. if ((sd->flags & SD_LOAD_BALANCE) &&
  2619. cpu_isset(busiest_cpu, sd->span))
  2620. break;
  2621. }
  2622. if (likely(sd)) {
  2623. schedstat_inc(sd, alb_count);
  2624. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2625. sd, CPU_IDLE))
  2626. schedstat_inc(sd, alb_pushed);
  2627. else
  2628. schedstat_inc(sd, alb_failed);
  2629. }
  2630. spin_unlock(&target_rq->lock);
  2631. }
  2632. #ifdef CONFIG_NO_HZ
  2633. static struct {
  2634. atomic_t load_balancer;
  2635. cpumask_t cpu_mask;
  2636. } nohz ____cacheline_aligned = {
  2637. .load_balancer = ATOMIC_INIT(-1),
  2638. .cpu_mask = CPU_MASK_NONE,
  2639. };
  2640. /*
  2641. * This routine will try to nominate the ilb (idle load balancing)
  2642. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2643. * load balancing on behalf of all those cpus. If all the cpus in the system
  2644. * go into this tickless mode, then there will be no ilb owner (as there is
  2645. * no need for one) and all the cpus will sleep till the next wakeup event
  2646. * arrives...
  2647. *
  2648. * For the ilb owner, tick is not stopped. And this tick will be used
  2649. * for idle load balancing. ilb owner will still be part of
  2650. * nohz.cpu_mask..
  2651. *
  2652. * While stopping the tick, this cpu will become the ilb owner if there
  2653. * is no other owner. And will be the owner till that cpu becomes busy
  2654. * or if all cpus in the system stop their ticks at which point
  2655. * there is no need for ilb owner.
  2656. *
  2657. * When the ilb owner becomes busy, it nominates another owner, during the
  2658. * next busy scheduler_tick()
  2659. */
  2660. int select_nohz_load_balancer(int stop_tick)
  2661. {
  2662. int cpu = smp_processor_id();
  2663. if (stop_tick) {
  2664. cpu_set(cpu, nohz.cpu_mask);
  2665. cpu_rq(cpu)->in_nohz_recently = 1;
  2666. /*
  2667. * If we are going offline and still the leader, give up!
  2668. */
  2669. if (cpu_is_offline(cpu) &&
  2670. atomic_read(&nohz.load_balancer) == cpu) {
  2671. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2672. BUG();
  2673. return 0;
  2674. }
  2675. /* time for ilb owner also to sleep */
  2676. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2677. if (atomic_read(&nohz.load_balancer) == cpu)
  2678. atomic_set(&nohz.load_balancer, -1);
  2679. return 0;
  2680. }
  2681. if (atomic_read(&nohz.load_balancer) == -1) {
  2682. /* make me the ilb owner */
  2683. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2684. return 1;
  2685. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2686. return 1;
  2687. } else {
  2688. if (!cpu_isset(cpu, nohz.cpu_mask))
  2689. return 0;
  2690. cpu_clear(cpu, nohz.cpu_mask);
  2691. if (atomic_read(&nohz.load_balancer) == cpu)
  2692. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2693. BUG();
  2694. }
  2695. return 0;
  2696. }
  2697. #endif
  2698. static DEFINE_SPINLOCK(balancing);
  2699. /*
  2700. * It checks each scheduling domain to see if it is due to be balanced,
  2701. * and initiates a balancing operation if so.
  2702. *
  2703. * Balancing parameters are set up in arch_init_sched_domains.
  2704. */
  2705. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2706. {
  2707. int balance = 1;
  2708. struct rq *rq = cpu_rq(cpu);
  2709. unsigned long interval;
  2710. struct sched_domain *sd;
  2711. /* Earliest time when we have to do rebalance again */
  2712. unsigned long next_balance = jiffies + 60*HZ;
  2713. int update_next_balance = 0;
  2714. for_each_domain(cpu, sd) {
  2715. if (!(sd->flags & SD_LOAD_BALANCE))
  2716. continue;
  2717. interval = sd->balance_interval;
  2718. if (idle != CPU_IDLE)
  2719. interval *= sd->busy_factor;
  2720. /* scale ms to jiffies */
  2721. interval = msecs_to_jiffies(interval);
  2722. if (unlikely(!interval))
  2723. interval = 1;
  2724. if (interval > HZ*NR_CPUS/10)
  2725. interval = HZ*NR_CPUS/10;
  2726. if (sd->flags & SD_SERIALIZE) {
  2727. if (!spin_trylock(&balancing))
  2728. goto out;
  2729. }
  2730. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2731. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2732. /*
  2733. * We've pulled tasks over so either we're no
  2734. * longer idle, or one of our SMT siblings is
  2735. * not idle.
  2736. */
  2737. idle = CPU_NOT_IDLE;
  2738. }
  2739. sd->last_balance = jiffies;
  2740. }
  2741. if (sd->flags & SD_SERIALIZE)
  2742. spin_unlock(&balancing);
  2743. out:
  2744. if (time_after(next_balance, sd->last_balance + interval)) {
  2745. next_balance = sd->last_balance + interval;
  2746. update_next_balance = 1;
  2747. }
  2748. /*
  2749. * Stop the load balance at this level. There is another
  2750. * CPU in our sched group which is doing load balancing more
  2751. * actively.
  2752. */
  2753. if (!balance)
  2754. break;
  2755. }
  2756. /*
  2757. * next_balance will be updated only when there is a need.
  2758. * When the cpu is attached to null domain for ex, it will not be
  2759. * updated.
  2760. */
  2761. if (likely(update_next_balance))
  2762. rq->next_balance = next_balance;
  2763. }
  2764. /*
  2765. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2766. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2767. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2768. */
  2769. static void run_rebalance_domains(struct softirq_action *h)
  2770. {
  2771. int this_cpu = smp_processor_id();
  2772. struct rq *this_rq = cpu_rq(this_cpu);
  2773. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2774. CPU_IDLE : CPU_NOT_IDLE;
  2775. rebalance_domains(this_cpu, idle);
  2776. #ifdef CONFIG_NO_HZ
  2777. /*
  2778. * If this cpu is the owner for idle load balancing, then do the
  2779. * balancing on behalf of the other idle cpus whose ticks are
  2780. * stopped.
  2781. */
  2782. if (this_rq->idle_at_tick &&
  2783. atomic_read(&nohz.load_balancer) == this_cpu) {
  2784. cpumask_t cpus = nohz.cpu_mask;
  2785. struct rq *rq;
  2786. int balance_cpu;
  2787. cpu_clear(this_cpu, cpus);
  2788. for_each_cpu_mask(balance_cpu, cpus) {
  2789. /*
  2790. * If this cpu gets work to do, stop the load balancing
  2791. * work being done for other cpus. Next load
  2792. * balancing owner will pick it up.
  2793. */
  2794. if (need_resched())
  2795. break;
  2796. rebalance_domains(balance_cpu, CPU_IDLE);
  2797. rq = cpu_rq(balance_cpu);
  2798. if (time_after(this_rq->next_balance, rq->next_balance))
  2799. this_rq->next_balance = rq->next_balance;
  2800. }
  2801. }
  2802. #endif
  2803. }
  2804. /*
  2805. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2806. *
  2807. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2808. * idle load balancing owner or decide to stop the periodic load balancing,
  2809. * if the whole system is idle.
  2810. */
  2811. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2812. {
  2813. #ifdef CONFIG_NO_HZ
  2814. /*
  2815. * If we were in the nohz mode recently and busy at the current
  2816. * scheduler tick, then check if we need to nominate new idle
  2817. * load balancer.
  2818. */
  2819. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2820. rq->in_nohz_recently = 0;
  2821. if (atomic_read(&nohz.load_balancer) == cpu) {
  2822. cpu_clear(cpu, nohz.cpu_mask);
  2823. atomic_set(&nohz.load_balancer, -1);
  2824. }
  2825. if (atomic_read(&nohz.load_balancer) == -1) {
  2826. /*
  2827. * simple selection for now: Nominate the
  2828. * first cpu in the nohz list to be the next
  2829. * ilb owner.
  2830. *
  2831. * TBD: Traverse the sched domains and nominate
  2832. * the nearest cpu in the nohz.cpu_mask.
  2833. */
  2834. int ilb = first_cpu(nohz.cpu_mask);
  2835. if (ilb != NR_CPUS)
  2836. resched_cpu(ilb);
  2837. }
  2838. }
  2839. /*
  2840. * If this cpu is idle and doing idle load balancing for all the
  2841. * cpus with ticks stopped, is it time for that to stop?
  2842. */
  2843. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2844. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2845. resched_cpu(cpu);
  2846. return;
  2847. }
  2848. /*
  2849. * If this cpu is idle and the idle load balancing is done by
  2850. * someone else, then no need raise the SCHED_SOFTIRQ
  2851. */
  2852. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2853. cpu_isset(cpu, nohz.cpu_mask))
  2854. return;
  2855. #endif
  2856. if (time_after_eq(jiffies, rq->next_balance))
  2857. raise_softirq(SCHED_SOFTIRQ);
  2858. }
  2859. #else /* CONFIG_SMP */
  2860. /*
  2861. * on UP we do not need to balance between CPUs:
  2862. */
  2863. static inline void idle_balance(int cpu, struct rq *rq)
  2864. {
  2865. }
  2866. #endif
  2867. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2868. EXPORT_PER_CPU_SYMBOL(kstat);
  2869. /*
  2870. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2871. * that have not yet been banked in case the task is currently running.
  2872. */
  2873. unsigned long long task_sched_runtime(struct task_struct *p)
  2874. {
  2875. unsigned long flags;
  2876. u64 ns, delta_exec;
  2877. struct rq *rq;
  2878. rq = task_rq_lock(p, &flags);
  2879. ns = p->se.sum_exec_runtime;
  2880. if (rq->curr == p) {
  2881. update_rq_clock(rq);
  2882. delta_exec = rq->clock - p->se.exec_start;
  2883. if ((s64)delta_exec > 0)
  2884. ns += delta_exec;
  2885. }
  2886. task_rq_unlock(rq, &flags);
  2887. return ns;
  2888. }
  2889. /*
  2890. * Account user cpu time to a process.
  2891. * @p: the process that the cpu time gets accounted to
  2892. * @cputime: the cpu time spent in user space since the last update
  2893. */
  2894. void account_user_time(struct task_struct *p, cputime_t cputime)
  2895. {
  2896. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2897. cputime64_t tmp;
  2898. p->utime = cputime_add(p->utime, cputime);
  2899. /* Add user time to cpustat. */
  2900. tmp = cputime_to_cputime64(cputime);
  2901. if (TASK_NICE(p) > 0)
  2902. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2903. else
  2904. cpustat->user = cputime64_add(cpustat->user, tmp);
  2905. }
  2906. /*
  2907. * Account guest cpu time to a process.
  2908. * @p: the process that the cpu time gets accounted to
  2909. * @cputime: the cpu time spent in virtual machine since the last update
  2910. */
  2911. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2912. {
  2913. cputime64_t tmp;
  2914. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2915. tmp = cputime_to_cputime64(cputime);
  2916. p->utime = cputime_add(p->utime, cputime);
  2917. p->gtime = cputime_add(p->gtime, cputime);
  2918. cpustat->user = cputime64_add(cpustat->user, tmp);
  2919. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2920. }
  2921. /*
  2922. * Account scaled user cpu time to a process.
  2923. * @p: the process that the cpu time gets accounted to
  2924. * @cputime: the cpu time spent in user space since the last update
  2925. */
  2926. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2927. {
  2928. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2929. }
  2930. /*
  2931. * Account system cpu time to a process.
  2932. * @p: the process that the cpu time gets accounted to
  2933. * @hardirq_offset: the offset to subtract from hardirq_count()
  2934. * @cputime: the cpu time spent in kernel space since the last update
  2935. */
  2936. void account_system_time(struct task_struct *p, int hardirq_offset,
  2937. cputime_t cputime)
  2938. {
  2939. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2940. struct rq *rq = this_rq();
  2941. cputime64_t tmp;
  2942. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2943. return account_guest_time(p, cputime);
  2944. p->stime = cputime_add(p->stime, cputime);
  2945. /* Add system time to cpustat. */
  2946. tmp = cputime_to_cputime64(cputime);
  2947. if (hardirq_count() - hardirq_offset)
  2948. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2949. else if (softirq_count())
  2950. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2951. else if (p != rq->idle)
  2952. cpustat->system = cputime64_add(cpustat->system, tmp);
  2953. else if (atomic_read(&rq->nr_iowait) > 0)
  2954. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2955. else
  2956. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2957. /* Account for system time used */
  2958. acct_update_integrals(p);
  2959. }
  2960. /*
  2961. * Account scaled system cpu time to a process.
  2962. * @p: the process that the cpu time gets accounted to
  2963. * @hardirq_offset: the offset to subtract from hardirq_count()
  2964. * @cputime: the cpu time spent in kernel space since the last update
  2965. */
  2966. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2967. {
  2968. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2969. }
  2970. /*
  2971. * Account for involuntary wait time.
  2972. * @p: the process from which the cpu time has been stolen
  2973. * @steal: the cpu time spent in involuntary wait
  2974. */
  2975. void account_steal_time(struct task_struct *p, cputime_t steal)
  2976. {
  2977. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2978. cputime64_t tmp = cputime_to_cputime64(steal);
  2979. struct rq *rq = this_rq();
  2980. if (p == rq->idle) {
  2981. p->stime = cputime_add(p->stime, steal);
  2982. if (atomic_read(&rq->nr_iowait) > 0)
  2983. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2984. else
  2985. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2986. } else
  2987. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2988. }
  2989. /*
  2990. * This function gets called by the timer code, with HZ frequency.
  2991. * We call it with interrupts disabled.
  2992. *
  2993. * It also gets called by the fork code, when changing the parent's
  2994. * timeslices.
  2995. */
  2996. void scheduler_tick(void)
  2997. {
  2998. int cpu = smp_processor_id();
  2999. struct rq *rq = cpu_rq(cpu);
  3000. struct task_struct *curr = rq->curr;
  3001. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3002. spin_lock(&rq->lock);
  3003. __update_rq_clock(rq);
  3004. /*
  3005. * Let rq->clock advance by at least TICK_NSEC:
  3006. */
  3007. if (unlikely(rq->clock < next_tick))
  3008. rq->clock = next_tick;
  3009. rq->tick_timestamp = rq->clock;
  3010. update_cpu_load(rq);
  3011. if (curr != rq->idle) /* FIXME: needed? */
  3012. curr->sched_class->task_tick(rq, curr);
  3013. spin_unlock(&rq->lock);
  3014. #ifdef CONFIG_SMP
  3015. rq->idle_at_tick = idle_cpu(cpu);
  3016. trigger_load_balance(rq, cpu);
  3017. #endif
  3018. }
  3019. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3020. void fastcall add_preempt_count(int val)
  3021. {
  3022. /*
  3023. * Underflow?
  3024. */
  3025. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3026. return;
  3027. preempt_count() += val;
  3028. /*
  3029. * Spinlock count overflowing soon?
  3030. */
  3031. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3032. PREEMPT_MASK - 10);
  3033. }
  3034. EXPORT_SYMBOL(add_preempt_count);
  3035. void fastcall sub_preempt_count(int val)
  3036. {
  3037. /*
  3038. * Underflow?
  3039. */
  3040. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3041. return;
  3042. /*
  3043. * Is the spinlock portion underflowing?
  3044. */
  3045. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3046. !(preempt_count() & PREEMPT_MASK)))
  3047. return;
  3048. preempt_count() -= val;
  3049. }
  3050. EXPORT_SYMBOL(sub_preempt_count);
  3051. #endif
  3052. /*
  3053. * Print scheduling while atomic bug:
  3054. */
  3055. static noinline void __schedule_bug(struct task_struct *prev)
  3056. {
  3057. struct pt_regs *regs = get_irq_regs();
  3058. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3059. prev->comm, prev->pid, preempt_count());
  3060. debug_show_held_locks(prev);
  3061. if (irqs_disabled())
  3062. print_irqtrace_events(prev);
  3063. if (regs)
  3064. show_regs(regs);
  3065. else
  3066. dump_stack();
  3067. }
  3068. /*
  3069. * Various schedule()-time debugging checks and statistics:
  3070. */
  3071. static inline void schedule_debug(struct task_struct *prev)
  3072. {
  3073. /*
  3074. * Test if we are atomic. Since do_exit() needs to call into
  3075. * schedule() atomically, we ignore that path for now.
  3076. * Otherwise, whine if we are scheduling when we should not be.
  3077. */
  3078. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3079. __schedule_bug(prev);
  3080. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3081. schedstat_inc(this_rq(), sched_count);
  3082. #ifdef CONFIG_SCHEDSTATS
  3083. if (unlikely(prev->lock_depth >= 0)) {
  3084. schedstat_inc(this_rq(), bkl_count);
  3085. schedstat_inc(prev, sched_info.bkl_count);
  3086. }
  3087. #endif
  3088. }
  3089. /*
  3090. * Pick up the highest-prio task:
  3091. */
  3092. static inline struct task_struct *
  3093. pick_next_task(struct rq *rq, struct task_struct *prev)
  3094. {
  3095. const struct sched_class *class;
  3096. struct task_struct *p;
  3097. /*
  3098. * Optimization: we know that if all tasks are in
  3099. * the fair class we can call that function directly:
  3100. */
  3101. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3102. p = fair_sched_class.pick_next_task(rq);
  3103. if (likely(p))
  3104. return p;
  3105. }
  3106. class = sched_class_highest;
  3107. for ( ; ; ) {
  3108. p = class->pick_next_task(rq);
  3109. if (p)
  3110. return p;
  3111. /*
  3112. * Will never be NULL as the idle class always
  3113. * returns a non-NULL p:
  3114. */
  3115. class = class->next;
  3116. }
  3117. }
  3118. /*
  3119. * schedule() is the main scheduler function.
  3120. */
  3121. asmlinkage void __sched schedule(void)
  3122. {
  3123. struct task_struct *prev, *next;
  3124. long *switch_count;
  3125. struct rq *rq;
  3126. int cpu;
  3127. need_resched:
  3128. preempt_disable();
  3129. cpu = smp_processor_id();
  3130. rq = cpu_rq(cpu);
  3131. rcu_qsctr_inc(cpu);
  3132. prev = rq->curr;
  3133. switch_count = &prev->nivcsw;
  3134. release_kernel_lock(prev);
  3135. need_resched_nonpreemptible:
  3136. schedule_debug(prev);
  3137. /*
  3138. * Do the rq-clock update outside the rq lock:
  3139. */
  3140. local_irq_disable();
  3141. __update_rq_clock(rq);
  3142. spin_lock(&rq->lock);
  3143. clear_tsk_need_resched(prev);
  3144. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3145. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3146. unlikely(signal_pending(prev)))) {
  3147. prev->state = TASK_RUNNING;
  3148. } else {
  3149. deactivate_task(rq, prev, 1);
  3150. }
  3151. switch_count = &prev->nvcsw;
  3152. }
  3153. if (unlikely(!rq->nr_running))
  3154. idle_balance(cpu, rq);
  3155. prev->sched_class->put_prev_task(rq, prev);
  3156. next = pick_next_task(rq, prev);
  3157. sched_info_switch(prev, next);
  3158. if (likely(prev != next)) {
  3159. rq->nr_switches++;
  3160. rq->curr = next;
  3161. ++*switch_count;
  3162. context_switch(rq, prev, next); /* unlocks the rq */
  3163. } else
  3164. spin_unlock_irq(&rq->lock);
  3165. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3166. cpu = smp_processor_id();
  3167. rq = cpu_rq(cpu);
  3168. goto need_resched_nonpreemptible;
  3169. }
  3170. preempt_enable_no_resched();
  3171. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3172. goto need_resched;
  3173. }
  3174. EXPORT_SYMBOL(schedule);
  3175. #ifdef CONFIG_PREEMPT
  3176. /*
  3177. * this is the entry point to schedule() from in-kernel preemption
  3178. * off of preempt_enable. Kernel preemptions off return from interrupt
  3179. * occur there and call schedule directly.
  3180. */
  3181. asmlinkage void __sched preempt_schedule(void)
  3182. {
  3183. struct thread_info *ti = current_thread_info();
  3184. #ifdef CONFIG_PREEMPT_BKL
  3185. struct task_struct *task = current;
  3186. int saved_lock_depth;
  3187. #endif
  3188. /*
  3189. * If there is a non-zero preempt_count or interrupts are disabled,
  3190. * we do not want to preempt the current task. Just return..
  3191. */
  3192. if (likely(ti->preempt_count || irqs_disabled()))
  3193. return;
  3194. do {
  3195. add_preempt_count(PREEMPT_ACTIVE);
  3196. /*
  3197. * We keep the big kernel semaphore locked, but we
  3198. * clear ->lock_depth so that schedule() doesnt
  3199. * auto-release the semaphore:
  3200. */
  3201. #ifdef CONFIG_PREEMPT_BKL
  3202. saved_lock_depth = task->lock_depth;
  3203. task->lock_depth = -1;
  3204. #endif
  3205. schedule();
  3206. #ifdef CONFIG_PREEMPT_BKL
  3207. task->lock_depth = saved_lock_depth;
  3208. #endif
  3209. sub_preempt_count(PREEMPT_ACTIVE);
  3210. /*
  3211. * Check again in case we missed a preemption opportunity
  3212. * between schedule and now.
  3213. */
  3214. barrier();
  3215. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3216. }
  3217. EXPORT_SYMBOL(preempt_schedule);
  3218. /*
  3219. * this is the entry point to schedule() from kernel preemption
  3220. * off of irq context.
  3221. * Note, that this is called and return with irqs disabled. This will
  3222. * protect us against recursive calling from irq.
  3223. */
  3224. asmlinkage void __sched preempt_schedule_irq(void)
  3225. {
  3226. struct thread_info *ti = current_thread_info();
  3227. #ifdef CONFIG_PREEMPT_BKL
  3228. struct task_struct *task = current;
  3229. int saved_lock_depth;
  3230. #endif
  3231. /* Catch callers which need to be fixed */
  3232. BUG_ON(ti->preempt_count || !irqs_disabled());
  3233. do {
  3234. add_preempt_count(PREEMPT_ACTIVE);
  3235. /*
  3236. * We keep the big kernel semaphore locked, but we
  3237. * clear ->lock_depth so that schedule() doesnt
  3238. * auto-release the semaphore:
  3239. */
  3240. #ifdef CONFIG_PREEMPT_BKL
  3241. saved_lock_depth = task->lock_depth;
  3242. task->lock_depth = -1;
  3243. #endif
  3244. local_irq_enable();
  3245. schedule();
  3246. local_irq_disable();
  3247. #ifdef CONFIG_PREEMPT_BKL
  3248. task->lock_depth = saved_lock_depth;
  3249. #endif
  3250. sub_preempt_count(PREEMPT_ACTIVE);
  3251. /*
  3252. * Check again in case we missed a preemption opportunity
  3253. * between schedule and now.
  3254. */
  3255. barrier();
  3256. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3257. }
  3258. #endif /* CONFIG_PREEMPT */
  3259. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3260. void *key)
  3261. {
  3262. return try_to_wake_up(curr->private, mode, sync);
  3263. }
  3264. EXPORT_SYMBOL(default_wake_function);
  3265. /*
  3266. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3267. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3268. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3269. *
  3270. * There are circumstances in which we can try to wake a task which has already
  3271. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3272. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3273. */
  3274. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3275. int nr_exclusive, int sync, void *key)
  3276. {
  3277. wait_queue_t *curr, *next;
  3278. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3279. unsigned flags = curr->flags;
  3280. if (curr->func(curr, mode, sync, key) &&
  3281. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3282. break;
  3283. }
  3284. }
  3285. /**
  3286. * __wake_up - wake up threads blocked on a waitqueue.
  3287. * @q: the waitqueue
  3288. * @mode: which threads
  3289. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3290. * @key: is directly passed to the wakeup function
  3291. */
  3292. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3293. int nr_exclusive, void *key)
  3294. {
  3295. unsigned long flags;
  3296. spin_lock_irqsave(&q->lock, flags);
  3297. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3298. spin_unlock_irqrestore(&q->lock, flags);
  3299. }
  3300. EXPORT_SYMBOL(__wake_up);
  3301. /*
  3302. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3303. */
  3304. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3305. {
  3306. __wake_up_common(q, mode, 1, 0, NULL);
  3307. }
  3308. /**
  3309. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3310. * @q: the waitqueue
  3311. * @mode: which threads
  3312. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3313. *
  3314. * The sync wakeup differs that the waker knows that it will schedule
  3315. * away soon, so while the target thread will be woken up, it will not
  3316. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3317. * with each other. This can prevent needless bouncing between CPUs.
  3318. *
  3319. * On UP it can prevent extra preemption.
  3320. */
  3321. void fastcall
  3322. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3323. {
  3324. unsigned long flags;
  3325. int sync = 1;
  3326. if (unlikely(!q))
  3327. return;
  3328. if (unlikely(!nr_exclusive))
  3329. sync = 0;
  3330. spin_lock_irqsave(&q->lock, flags);
  3331. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3332. spin_unlock_irqrestore(&q->lock, flags);
  3333. }
  3334. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3335. void complete(struct completion *x)
  3336. {
  3337. unsigned long flags;
  3338. spin_lock_irqsave(&x->wait.lock, flags);
  3339. x->done++;
  3340. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3341. 1, 0, NULL);
  3342. spin_unlock_irqrestore(&x->wait.lock, flags);
  3343. }
  3344. EXPORT_SYMBOL(complete);
  3345. void complete_all(struct completion *x)
  3346. {
  3347. unsigned long flags;
  3348. spin_lock_irqsave(&x->wait.lock, flags);
  3349. x->done += UINT_MAX/2;
  3350. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3351. 0, 0, NULL);
  3352. spin_unlock_irqrestore(&x->wait.lock, flags);
  3353. }
  3354. EXPORT_SYMBOL(complete_all);
  3355. static inline long __sched
  3356. do_wait_for_common(struct completion *x, long timeout, int state)
  3357. {
  3358. if (!x->done) {
  3359. DECLARE_WAITQUEUE(wait, current);
  3360. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3361. __add_wait_queue_tail(&x->wait, &wait);
  3362. do {
  3363. if (state == TASK_INTERRUPTIBLE &&
  3364. signal_pending(current)) {
  3365. __remove_wait_queue(&x->wait, &wait);
  3366. return -ERESTARTSYS;
  3367. }
  3368. __set_current_state(state);
  3369. spin_unlock_irq(&x->wait.lock);
  3370. timeout = schedule_timeout(timeout);
  3371. spin_lock_irq(&x->wait.lock);
  3372. if (!timeout) {
  3373. __remove_wait_queue(&x->wait, &wait);
  3374. return timeout;
  3375. }
  3376. } while (!x->done);
  3377. __remove_wait_queue(&x->wait, &wait);
  3378. }
  3379. x->done--;
  3380. return timeout;
  3381. }
  3382. static long __sched
  3383. wait_for_common(struct completion *x, long timeout, int state)
  3384. {
  3385. might_sleep();
  3386. spin_lock_irq(&x->wait.lock);
  3387. timeout = do_wait_for_common(x, timeout, state);
  3388. spin_unlock_irq(&x->wait.lock);
  3389. return timeout;
  3390. }
  3391. void __sched wait_for_completion(struct completion *x)
  3392. {
  3393. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3394. }
  3395. EXPORT_SYMBOL(wait_for_completion);
  3396. unsigned long __sched
  3397. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3398. {
  3399. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3400. }
  3401. EXPORT_SYMBOL(wait_for_completion_timeout);
  3402. int __sched wait_for_completion_interruptible(struct completion *x)
  3403. {
  3404. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3405. if (t == -ERESTARTSYS)
  3406. return t;
  3407. return 0;
  3408. }
  3409. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3410. unsigned long __sched
  3411. wait_for_completion_interruptible_timeout(struct completion *x,
  3412. unsigned long timeout)
  3413. {
  3414. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3415. }
  3416. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3417. static long __sched
  3418. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3419. {
  3420. unsigned long flags;
  3421. wait_queue_t wait;
  3422. init_waitqueue_entry(&wait, current);
  3423. __set_current_state(state);
  3424. spin_lock_irqsave(&q->lock, flags);
  3425. __add_wait_queue(q, &wait);
  3426. spin_unlock(&q->lock);
  3427. timeout = schedule_timeout(timeout);
  3428. spin_lock_irq(&q->lock);
  3429. __remove_wait_queue(q, &wait);
  3430. spin_unlock_irqrestore(&q->lock, flags);
  3431. return timeout;
  3432. }
  3433. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3434. {
  3435. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3436. }
  3437. EXPORT_SYMBOL(interruptible_sleep_on);
  3438. long __sched
  3439. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3440. {
  3441. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3442. }
  3443. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3444. void __sched sleep_on(wait_queue_head_t *q)
  3445. {
  3446. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3447. }
  3448. EXPORT_SYMBOL(sleep_on);
  3449. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3450. {
  3451. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3452. }
  3453. EXPORT_SYMBOL(sleep_on_timeout);
  3454. #ifdef CONFIG_RT_MUTEXES
  3455. /*
  3456. * rt_mutex_setprio - set the current priority of a task
  3457. * @p: task
  3458. * @prio: prio value (kernel-internal form)
  3459. *
  3460. * This function changes the 'effective' priority of a task. It does
  3461. * not touch ->normal_prio like __setscheduler().
  3462. *
  3463. * Used by the rt_mutex code to implement priority inheritance logic.
  3464. */
  3465. void rt_mutex_setprio(struct task_struct *p, int prio)
  3466. {
  3467. unsigned long flags;
  3468. int oldprio, on_rq, running;
  3469. struct rq *rq;
  3470. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3471. rq = task_rq_lock(p, &flags);
  3472. update_rq_clock(rq);
  3473. oldprio = p->prio;
  3474. on_rq = p->se.on_rq;
  3475. running = task_running(rq, p);
  3476. if (on_rq) {
  3477. dequeue_task(rq, p, 0);
  3478. if (running)
  3479. p->sched_class->put_prev_task(rq, p);
  3480. }
  3481. if (rt_prio(prio))
  3482. p->sched_class = &rt_sched_class;
  3483. else
  3484. p->sched_class = &fair_sched_class;
  3485. p->prio = prio;
  3486. if (on_rq) {
  3487. if (running)
  3488. p->sched_class->set_curr_task(rq);
  3489. enqueue_task(rq, p, 0);
  3490. /*
  3491. * Reschedule if we are currently running on this runqueue and
  3492. * our priority decreased, or if we are not currently running on
  3493. * this runqueue and our priority is higher than the current's
  3494. */
  3495. if (running) {
  3496. if (p->prio > oldprio)
  3497. resched_task(rq->curr);
  3498. } else {
  3499. check_preempt_curr(rq, p);
  3500. }
  3501. }
  3502. task_rq_unlock(rq, &flags);
  3503. }
  3504. #endif
  3505. void set_user_nice(struct task_struct *p, long nice)
  3506. {
  3507. int old_prio, delta, on_rq;
  3508. unsigned long flags;
  3509. struct rq *rq;
  3510. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3511. return;
  3512. /*
  3513. * We have to be careful, if called from sys_setpriority(),
  3514. * the task might be in the middle of scheduling on another CPU.
  3515. */
  3516. rq = task_rq_lock(p, &flags);
  3517. update_rq_clock(rq);
  3518. /*
  3519. * The RT priorities are set via sched_setscheduler(), but we still
  3520. * allow the 'normal' nice value to be set - but as expected
  3521. * it wont have any effect on scheduling until the task is
  3522. * SCHED_FIFO/SCHED_RR:
  3523. */
  3524. if (task_has_rt_policy(p)) {
  3525. p->static_prio = NICE_TO_PRIO(nice);
  3526. goto out_unlock;
  3527. }
  3528. on_rq = p->se.on_rq;
  3529. if (on_rq) {
  3530. dequeue_task(rq, p, 0);
  3531. dec_load(rq, p);
  3532. }
  3533. p->static_prio = NICE_TO_PRIO(nice);
  3534. set_load_weight(p);
  3535. old_prio = p->prio;
  3536. p->prio = effective_prio(p);
  3537. delta = p->prio - old_prio;
  3538. if (on_rq) {
  3539. enqueue_task(rq, p, 0);
  3540. inc_load(rq, p);
  3541. /*
  3542. * If the task increased its priority or is running and
  3543. * lowered its priority, then reschedule its CPU:
  3544. */
  3545. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3546. resched_task(rq->curr);
  3547. }
  3548. out_unlock:
  3549. task_rq_unlock(rq, &flags);
  3550. }
  3551. EXPORT_SYMBOL(set_user_nice);
  3552. /*
  3553. * can_nice - check if a task can reduce its nice value
  3554. * @p: task
  3555. * @nice: nice value
  3556. */
  3557. int can_nice(const struct task_struct *p, const int nice)
  3558. {
  3559. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3560. int nice_rlim = 20 - nice;
  3561. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3562. capable(CAP_SYS_NICE));
  3563. }
  3564. #ifdef __ARCH_WANT_SYS_NICE
  3565. /*
  3566. * sys_nice - change the priority of the current process.
  3567. * @increment: priority increment
  3568. *
  3569. * sys_setpriority is a more generic, but much slower function that
  3570. * does similar things.
  3571. */
  3572. asmlinkage long sys_nice(int increment)
  3573. {
  3574. long nice, retval;
  3575. /*
  3576. * Setpriority might change our priority at the same moment.
  3577. * We don't have to worry. Conceptually one call occurs first
  3578. * and we have a single winner.
  3579. */
  3580. if (increment < -40)
  3581. increment = -40;
  3582. if (increment > 40)
  3583. increment = 40;
  3584. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3585. if (nice < -20)
  3586. nice = -20;
  3587. if (nice > 19)
  3588. nice = 19;
  3589. if (increment < 0 && !can_nice(current, nice))
  3590. return -EPERM;
  3591. retval = security_task_setnice(current, nice);
  3592. if (retval)
  3593. return retval;
  3594. set_user_nice(current, nice);
  3595. return 0;
  3596. }
  3597. #endif
  3598. /**
  3599. * task_prio - return the priority value of a given task.
  3600. * @p: the task in question.
  3601. *
  3602. * This is the priority value as seen by users in /proc.
  3603. * RT tasks are offset by -200. Normal tasks are centered
  3604. * around 0, value goes from -16 to +15.
  3605. */
  3606. int task_prio(const struct task_struct *p)
  3607. {
  3608. return p->prio - MAX_RT_PRIO;
  3609. }
  3610. /**
  3611. * task_nice - return the nice value of a given task.
  3612. * @p: the task in question.
  3613. */
  3614. int task_nice(const struct task_struct *p)
  3615. {
  3616. return TASK_NICE(p);
  3617. }
  3618. EXPORT_SYMBOL_GPL(task_nice);
  3619. /**
  3620. * idle_cpu - is a given cpu idle currently?
  3621. * @cpu: the processor in question.
  3622. */
  3623. int idle_cpu(int cpu)
  3624. {
  3625. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3626. }
  3627. /**
  3628. * idle_task - return the idle task for a given cpu.
  3629. * @cpu: the processor in question.
  3630. */
  3631. struct task_struct *idle_task(int cpu)
  3632. {
  3633. return cpu_rq(cpu)->idle;
  3634. }
  3635. /**
  3636. * find_process_by_pid - find a process with a matching PID value.
  3637. * @pid: the pid in question.
  3638. */
  3639. static struct task_struct *find_process_by_pid(pid_t pid)
  3640. {
  3641. return pid ? find_task_by_vpid(pid) : current;
  3642. }
  3643. /* Actually do priority change: must hold rq lock. */
  3644. static void
  3645. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3646. {
  3647. BUG_ON(p->se.on_rq);
  3648. p->policy = policy;
  3649. switch (p->policy) {
  3650. case SCHED_NORMAL:
  3651. case SCHED_BATCH:
  3652. case SCHED_IDLE:
  3653. p->sched_class = &fair_sched_class;
  3654. break;
  3655. case SCHED_FIFO:
  3656. case SCHED_RR:
  3657. p->sched_class = &rt_sched_class;
  3658. break;
  3659. }
  3660. p->rt_priority = prio;
  3661. p->normal_prio = normal_prio(p);
  3662. /* we are holding p->pi_lock already */
  3663. p->prio = rt_mutex_getprio(p);
  3664. set_load_weight(p);
  3665. }
  3666. /**
  3667. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3668. * @p: the task in question.
  3669. * @policy: new policy.
  3670. * @param: structure containing the new RT priority.
  3671. *
  3672. * NOTE that the task may be already dead.
  3673. */
  3674. int sched_setscheduler(struct task_struct *p, int policy,
  3675. struct sched_param *param)
  3676. {
  3677. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3678. unsigned long flags;
  3679. struct rq *rq;
  3680. /* may grab non-irq protected spin_locks */
  3681. BUG_ON(in_interrupt());
  3682. recheck:
  3683. /* double check policy once rq lock held */
  3684. if (policy < 0)
  3685. policy = oldpolicy = p->policy;
  3686. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3687. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3688. policy != SCHED_IDLE)
  3689. return -EINVAL;
  3690. /*
  3691. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3692. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3693. * SCHED_BATCH and SCHED_IDLE is 0.
  3694. */
  3695. if (param->sched_priority < 0 ||
  3696. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3697. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3698. return -EINVAL;
  3699. if (rt_policy(policy) != (param->sched_priority != 0))
  3700. return -EINVAL;
  3701. /*
  3702. * Allow unprivileged RT tasks to decrease priority:
  3703. */
  3704. if (!capable(CAP_SYS_NICE)) {
  3705. if (rt_policy(policy)) {
  3706. unsigned long rlim_rtprio;
  3707. if (!lock_task_sighand(p, &flags))
  3708. return -ESRCH;
  3709. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3710. unlock_task_sighand(p, &flags);
  3711. /* can't set/change the rt policy */
  3712. if (policy != p->policy && !rlim_rtprio)
  3713. return -EPERM;
  3714. /* can't increase priority */
  3715. if (param->sched_priority > p->rt_priority &&
  3716. param->sched_priority > rlim_rtprio)
  3717. return -EPERM;
  3718. }
  3719. /*
  3720. * Like positive nice levels, dont allow tasks to
  3721. * move out of SCHED_IDLE either:
  3722. */
  3723. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3724. return -EPERM;
  3725. /* can't change other user's priorities */
  3726. if ((current->euid != p->euid) &&
  3727. (current->euid != p->uid))
  3728. return -EPERM;
  3729. }
  3730. retval = security_task_setscheduler(p, policy, param);
  3731. if (retval)
  3732. return retval;
  3733. /*
  3734. * make sure no PI-waiters arrive (or leave) while we are
  3735. * changing the priority of the task:
  3736. */
  3737. spin_lock_irqsave(&p->pi_lock, flags);
  3738. /*
  3739. * To be able to change p->policy safely, the apropriate
  3740. * runqueue lock must be held.
  3741. */
  3742. rq = __task_rq_lock(p);
  3743. /* recheck policy now with rq lock held */
  3744. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3745. policy = oldpolicy = -1;
  3746. __task_rq_unlock(rq);
  3747. spin_unlock_irqrestore(&p->pi_lock, flags);
  3748. goto recheck;
  3749. }
  3750. update_rq_clock(rq);
  3751. on_rq = p->se.on_rq;
  3752. running = task_running(rq, p);
  3753. if (on_rq) {
  3754. deactivate_task(rq, p, 0);
  3755. if (running)
  3756. p->sched_class->put_prev_task(rq, p);
  3757. }
  3758. oldprio = p->prio;
  3759. __setscheduler(rq, p, policy, param->sched_priority);
  3760. if (on_rq) {
  3761. if (running)
  3762. p->sched_class->set_curr_task(rq);
  3763. activate_task(rq, p, 0);
  3764. /*
  3765. * Reschedule if we are currently running on this runqueue and
  3766. * our priority decreased, or if we are not currently running on
  3767. * this runqueue and our priority is higher than the current's
  3768. */
  3769. if (running) {
  3770. if (p->prio > oldprio)
  3771. resched_task(rq->curr);
  3772. } else {
  3773. check_preempt_curr(rq, p);
  3774. }
  3775. }
  3776. __task_rq_unlock(rq);
  3777. spin_unlock_irqrestore(&p->pi_lock, flags);
  3778. rt_mutex_adjust_pi(p);
  3779. return 0;
  3780. }
  3781. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3782. static int
  3783. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3784. {
  3785. struct sched_param lparam;
  3786. struct task_struct *p;
  3787. int retval;
  3788. if (!param || pid < 0)
  3789. return -EINVAL;
  3790. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3791. return -EFAULT;
  3792. rcu_read_lock();
  3793. retval = -ESRCH;
  3794. p = find_process_by_pid(pid);
  3795. if (p != NULL)
  3796. retval = sched_setscheduler(p, policy, &lparam);
  3797. rcu_read_unlock();
  3798. return retval;
  3799. }
  3800. /**
  3801. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3802. * @pid: the pid in question.
  3803. * @policy: new policy.
  3804. * @param: structure containing the new RT priority.
  3805. */
  3806. asmlinkage long
  3807. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3808. {
  3809. /* negative values for policy are not valid */
  3810. if (policy < 0)
  3811. return -EINVAL;
  3812. return do_sched_setscheduler(pid, policy, param);
  3813. }
  3814. /**
  3815. * sys_sched_setparam - set/change the RT priority of a thread
  3816. * @pid: the pid in question.
  3817. * @param: structure containing the new RT priority.
  3818. */
  3819. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3820. {
  3821. return do_sched_setscheduler(pid, -1, param);
  3822. }
  3823. /**
  3824. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3825. * @pid: the pid in question.
  3826. */
  3827. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3828. {
  3829. struct task_struct *p;
  3830. int retval;
  3831. if (pid < 0)
  3832. return -EINVAL;
  3833. retval = -ESRCH;
  3834. read_lock(&tasklist_lock);
  3835. p = find_process_by_pid(pid);
  3836. if (p) {
  3837. retval = security_task_getscheduler(p);
  3838. if (!retval)
  3839. retval = p->policy;
  3840. }
  3841. read_unlock(&tasklist_lock);
  3842. return retval;
  3843. }
  3844. /**
  3845. * sys_sched_getscheduler - get the RT priority of a thread
  3846. * @pid: the pid in question.
  3847. * @param: structure containing the RT priority.
  3848. */
  3849. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3850. {
  3851. struct sched_param lp;
  3852. struct task_struct *p;
  3853. int retval;
  3854. if (!param || pid < 0)
  3855. return -EINVAL;
  3856. read_lock(&tasklist_lock);
  3857. p = find_process_by_pid(pid);
  3858. retval = -ESRCH;
  3859. if (!p)
  3860. goto out_unlock;
  3861. retval = security_task_getscheduler(p);
  3862. if (retval)
  3863. goto out_unlock;
  3864. lp.sched_priority = p->rt_priority;
  3865. read_unlock(&tasklist_lock);
  3866. /*
  3867. * This one might sleep, we cannot do it with a spinlock held ...
  3868. */
  3869. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3870. return retval;
  3871. out_unlock:
  3872. read_unlock(&tasklist_lock);
  3873. return retval;
  3874. }
  3875. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3876. {
  3877. cpumask_t cpus_allowed;
  3878. struct task_struct *p;
  3879. int retval;
  3880. mutex_lock(&sched_hotcpu_mutex);
  3881. read_lock(&tasklist_lock);
  3882. p = find_process_by_pid(pid);
  3883. if (!p) {
  3884. read_unlock(&tasklist_lock);
  3885. mutex_unlock(&sched_hotcpu_mutex);
  3886. return -ESRCH;
  3887. }
  3888. /*
  3889. * It is not safe to call set_cpus_allowed with the
  3890. * tasklist_lock held. We will bump the task_struct's
  3891. * usage count and then drop tasklist_lock.
  3892. */
  3893. get_task_struct(p);
  3894. read_unlock(&tasklist_lock);
  3895. retval = -EPERM;
  3896. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3897. !capable(CAP_SYS_NICE))
  3898. goto out_unlock;
  3899. retval = security_task_setscheduler(p, 0, NULL);
  3900. if (retval)
  3901. goto out_unlock;
  3902. cpus_allowed = cpuset_cpus_allowed(p);
  3903. cpus_and(new_mask, new_mask, cpus_allowed);
  3904. again:
  3905. retval = set_cpus_allowed(p, new_mask);
  3906. if (!retval) {
  3907. cpus_allowed = cpuset_cpus_allowed(p);
  3908. if (!cpus_subset(new_mask, cpus_allowed)) {
  3909. /*
  3910. * We must have raced with a concurrent cpuset
  3911. * update. Just reset the cpus_allowed to the
  3912. * cpuset's cpus_allowed
  3913. */
  3914. new_mask = cpus_allowed;
  3915. goto again;
  3916. }
  3917. }
  3918. out_unlock:
  3919. put_task_struct(p);
  3920. mutex_unlock(&sched_hotcpu_mutex);
  3921. return retval;
  3922. }
  3923. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3924. cpumask_t *new_mask)
  3925. {
  3926. if (len < sizeof(cpumask_t)) {
  3927. memset(new_mask, 0, sizeof(cpumask_t));
  3928. } else if (len > sizeof(cpumask_t)) {
  3929. len = sizeof(cpumask_t);
  3930. }
  3931. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3932. }
  3933. /**
  3934. * sys_sched_setaffinity - set the cpu affinity of a process
  3935. * @pid: pid of the process
  3936. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3937. * @user_mask_ptr: user-space pointer to the new cpu mask
  3938. */
  3939. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3940. unsigned long __user *user_mask_ptr)
  3941. {
  3942. cpumask_t new_mask;
  3943. int retval;
  3944. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3945. if (retval)
  3946. return retval;
  3947. return sched_setaffinity(pid, new_mask);
  3948. }
  3949. /*
  3950. * Represents all cpu's present in the system
  3951. * In systems capable of hotplug, this map could dynamically grow
  3952. * as new cpu's are detected in the system via any platform specific
  3953. * method, such as ACPI for e.g.
  3954. */
  3955. cpumask_t cpu_present_map __read_mostly;
  3956. EXPORT_SYMBOL(cpu_present_map);
  3957. #ifndef CONFIG_SMP
  3958. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3959. EXPORT_SYMBOL(cpu_online_map);
  3960. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3961. EXPORT_SYMBOL(cpu_possible_map);
  3962. #endif
  3963. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3964. {
  3965. struct task_struct *p;
  3966. int retval;
  3967. mutex_lock(&sched_hotcpu_mutex);
  3968. read_lock(&tasklist_lock);
  3969. retval = -ESRCH;
  3970. p = find_process_by_pid(pid);
  3971. if (!p)
  3972. goto out_unlock;
  3973. retval = security_task_getscheduler(p);
  3974. if (retval)
  3975. goto out_unlock;
  3976. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3977. out_unlock:
  3978. read_unlock(&tasklist_lock);
  3979. mutex_unlock(&sched_hotcpu_mutex);
  3980. return retval;
  3981. }
  3982. /**
  3983. * sys_sched_getaffinity - get the cpu affinity of a process
  3984. * @pid: pid of the process
  3985. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3986. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3987. */
  3988. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3989. unsigned long __user *user_mask_ptr)
  3990. {
  3991. int ret;
  3992. cpumask_t mask;
  3993. if (len < sizeof(cpumask_t))
  3994. return -EINVAL;
  3995. ret = sched_getaffinity(pid, &mask);
  3996. if (ret < 0)
  3997. return ret;
  3998. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3999. return -EFAULT;
  4000. return sizeof(cpumask_t);
  4001. }
  4002. /**
  4003. * sys_sched_yield - yield the current processor to other threads.
  4004. *
  4005. * This function yields the current CPU to other tasks. If there are no
  4006. * other threads running on this CPU then this function will return.
  4007. */
  4008. asmlinkage long sys_sched_yield(void)
  4009. {
  4010. struct rq *rq = this_rq_lock();
  4011. schedstat_inc(rq, yld_count);
  4012. current->sched_class->yield_task(rq);
  4013. /*
  4014. * Since we are going to call schedule() anyway, there's
  4015. * no need to preempt or enable interrupts:
  4016. */
  4017. __release(rq->lock);
  4018. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4019. _raw_spin_unlock(&rq->lock);
  4020. preempt_enable_no_resched();
  4021. schedule();
  4022. return 0;
  4023. }
  4024. static void __cond_resched(void)
  4025. {
  4026. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4027. __might_sleep(__FILE__, __LINE__);
  4028. #endif
  4029. /*
  4030. * The BKS might be reacquired before we have dropped
  4031. * PREEMPT_ACTIVE, which could trigger a second
  4032. * cond_resched() call.
  4033. */
  4034. do {
  4035. add_preempt_count(PREEMPT_ACTIVE);
  4036. schedule();
  4037. sub_preempt_count(PREEMPT_ACTIVE);
  4038. } while (need_resched());
  4039. }
  4040. int __sched cond_resched(void)
  4041. {
  4042. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4043. system_state == SYSTEM_RUNNING) {
  4044. __cond_resched();
  4045. return 1;
  4046. }
  4047. return 0;
  4048. }
  4049. EXPORT_SYMBOL(cond_resched);
  4050. /*
  4051. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4052. * call schedule, and on return reacquire the lock.
  4053. *
  4054. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4055. * operations here to prevent schedule() from being called twice (once via
  4056. * spin_unlock(), once by hand).
  4057. */
  4058. int cond_resched_lock(spinlock_t *lock)
  4059. {
  4060. int ret = 0;
  4061. if (need_lockbreak(lock)) {
  4062. spin_unlock(lock);
  4063. cpu_relax();
  4064. ret = 1;
  4065. spin_lock(lock);
  4066. }
  4067. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4068. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4069. _raw_spin_unlock(lock);
  4070. preempt_enable_no_resched();
  4071. __cond_resched();
  4072. ret = 1;
  4073. spin_lock(lock);
  4074. }
  4075. return ret;
  4076. }
  4077. EXPORT_SYMBOL(cond_resched_lock);
  4078. int __sched cond_resched_softirq(void)
  4079. {
  4080. BUG_ON(!in_softirq());
  4081. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4082. local_bh_enable();
  4083. __cond_resched();
  4084. local_bh_disable();
  4085. return 1;
  4086. }
  4087. return 0;
  4088. }
  4089. EXPORT_SYMBOL(cond_resched_softirq);
  4090. /**
  4091. * yield - yield the current processor to other threads.
  4092. *
  4093. * This is a shortcut for kernel-space yielding - it marks the
  4094. * thread runnable and calls sys_sched_yield().
  4095. */
  4096. void __sched yield(void)
  4097. {
  4098. set_current_state(TASK_RUNNING);
  4099. sys_sched_yield();
  4100. }
  4101. EXPORT_SYMBOL(yield);
  4102. /*
  4103. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4104. * that process accounting knows that this is a task in IO wait state.
  4105. *
  4106. * But don't do that if it is a deliberate, throttling IO wait (this task
  4107. * has set its backing_dev_info: the queue against which it should throttle)
  4108. */
  4109. void __sched io_schedule(void)
  4110. {
  4111. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4112. delayacct_blkio_start();
  4113. atomic_inc(&rq->nr_iowait);
  4114. schedule();
  4115. atomic_dec(&rq->nr_iowait);
  4116. delayacct_blkio_end();
  4117. }
  4118. EXPORT_SYMBOL(io_schedule);
  4119. long __sched io_schedule_timeout(long timeout)
  4120. {
  4121. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4122. long ret;
  4123. delayacct_blkio_start();
  4124. atomic_inc(&rq->nr_iowait);
  4125. ret = schedule_timeout(timeout);
  4126. atomic_dec(&rq->nr_iowait);
  4127. delayacct_blkio_end();
  4128. return ret;
  4129. }
  4130. /**
  4131. * sys_sched_get_priority_max - return maximum RT priority.
  4132. * @policy: scheduling class.
  4133. *
  4134. * this syscall returns the maximum rt_priority that can be used
  4135. * by a given scheduling class.
  4136. */
  4137. asmlinkage long sys_sched_get_priority_max(int policy)
  4138. {
  4139. int ret = -EINVAL;
  4140. switch (policy) {
  4141. case SCHED_FIFO:
  4142. case SCHED_RR:
  4143. ret = MAX_USER_RT_PRIO-1;
  4144. break;
  4145. case SCHED_NORMAL:
  4146. case SCHED_BATCH:
  4147. case SCHED_IDLE:
  4148. ret = 0;
  4149. break;
  4150. }
  4151. return ret;
  4152. }
  4153. /**
  4154. * sys_sched_get_priority_min - return minimum RT priority.
  4155. * @policy: scheduling class.
  4156. *
  4157. * this syscall returns the minimum rt_priority that can be used
  4158. * by a given scheduling class.
  4159. */
  4160. asmlinkage long sys_sched_get_priority_min(int policy)
  4161. {
  4162. int ret = -EINVAL;
  4163. switch (policy) {
  4164. case SCHED_FIFO:
  4165. case SCHED_RR:
  4166. ret = 1;
  4167. break;
  4168. case SCHED_NORMAL:
  4169. case SCHED_BATCH:
  4170. case SCHED_IDLE:
  4171. ret = 0;
  4172. }
  4173. return ret;
  4174. }
  4175. /**
  4176. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4177. * @pid: pid of the process.
  4178. * @interval: userspace pointer to the timeslice value.
  4179. *
  4180. * this syscall writes the default timeslice value of a given process
  4181. * into the user-space timespec buffer. A value of '0' means infinity.
  4182. */
  4183. asmlinkage
  4184. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4185. {
  4186. struct task_struct *p;
  4187. unsigned int time_slice;
  4188. int retval;
  4189. struct timespec t;
  4190. if (pid < 0)
  4191. return -EINVAL;
  4192. retval = -ESRCH;
  4193. read_lock(&tasklist_lock);
  4194. p = find_process_by_pid(pid);
  4195. if (!p)
  4196. goto out_unlock;
  4197. retval = security_task_getscheduler(p);
  4198. if (retval)
  4199. goto out_unlock;
  4200. /*
  4201. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4202. * tasks that are on an otherwise idle runqueue:
  4203. */
  4204. time_slice = 0;
  4205. if (p->policy == SCHED_RR) {
  4206. time_slice = DEF_TIMESLICE;
  4207. } else {
  4208. struct sched_entity *se = &p->se;
  4209. unsigned long flags;
  4210. struct rq *rq;
  4211. rq = task_rq_lock(p, &flags);
  4212. if (rq->cfs.load.weight)
  4213. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4214. task_rq_unlock(rq, &flags);
  4215. }
  4216. read_unlock(&tasklist_lock);
  4217. jiffies_to_timespec(time_slice, &t);
  4218. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4219. return retval;
  4220. out_unlock:
  4221. read_unlock(&tasklist_lock);
  4222. return retval;
  4223. }
  4224. static const char stat_nam[] = "RSDTtZX";
  4225. static void show_task(struct task_struct *p)
  4226. {
  4227. unsigned long free = 0;
  4228. unsigned state;
  4229. state = p->state ? __ffs(p->state) + 1 : 0;
  4230. printk(KERN_INFO "%-13.13s %c", p->comm,
  4231. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4232. #if BITS_PER_LONG == 32
  4233. if (state == TASK_RUNNING)
  4234. printk(KERN_CONT " running ");
  4235. else
  4236. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4237. #else
  4238. if (state == TASK_RUNNING)
  4239. printk(KERN_CONT " running task ");
  4240. else
  4241. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4242. #endif
  4243. #ifdef CONFIG_DEBUG_STACK_USAGE
  4244. {
  4245. unsigned long *n = end_of_stack(p);
  4246. while (!*n)
  4247. n++;
  4248. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4249. }
  4250. #endif
  4251. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4252. task_pid_nr(p), task_pid_nr(p->parent));
  4253. if (state != TASK_RUNNING)
  4254. show_stack(p, NULL);
  4255. }
  4256. void show_state_filter(unsigned long state_filter)
  4257. {
  4258. struct task_struct *g, *p;
  4259. #if BITS_PER_LONG == 32
  4260. printk(KERN_INFO
  4261. " task PC stack pid father\n");
  4262. #else
  4263. printk(KERN_INFO
  4264. " task PC stack pid father\n");
  4265. #endif
  4266. read_lock(&tasklist_lock);
  4267. do_each_thread(g, p) {
  4268. /*
  4269. * reset the NMI-timeout, listing all files on a slow
  4270. * console might take alot of time:
  4271. */
  4272. touch_nmi_watchdog();
  4273. if (!state_filter || (p->state & state_filter))
  4274. show_task(p);
  4275. } while_each_thread(g, p);
  4276. touch_all_softlockup_watchdogs();
  4277. #ifdef CONFIG_SCHED_DEBUG
  4278. sysrq_sched_debug_show();
  4279. #endif
  4280. read_unlock(&tasklist_lock);
  4281. /*
  4282. * Only show locks if all tasks are dumped:
  4283. */
  4284. if (state_filter == -1)
  4285. debug_show_all_locks();
  4286. }
  4287. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4288. {
  4289. idle->sched_class = &idle_sched_class;
  4290. }
  4291. /**
  4292. * init_idle - set up an idle thread for a given CPU
  4293. * @idle: task in question
  4294. * @cpu: cpu the idle task belongs to
  4295. *
  4296. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4297. * flag, to make booting more robust.
  4298. */
  4299. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4300. {
  4301. struct rq *rq = cpu_rq(cpu);
  4302. unsigned long flags;
  4303. __sched_fork(idle);
  4304. idle->se.exec_start = sched_clock();
  4305. idle->prio = idle->normal_prio = MAX_PRIO;
  4306. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4307. __set_task_cpu(idle, cpu);
  4308. spin_lock_irqsave(&rq->lock, flags);
  4309. rq->curr = rq->idle = idle;
  4310. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4311. idle->oncpu = 1;
  4312. #endif
  4313. spin_unlock_irqrestore(&rq->lock, flags);
  4314. /* Set the preempt count _outside_ the spinlocks! */
  4315. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4316. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4317. #else
  4318. task_thread_info(idle)->preempt_count = 0;
  4319. #endif
  4320. /*
  4321. * The idle tasks have their own, simple scheduling class:
  4322. */
  4323. idle->sched_class = &idle_sched_class;
  4324. }
  4325. /*
  4326. * In a system that switches off the HZ timer nohz_cpu_mask
  4327. * indicates which cpus entered this state. This is used
  4328. * in the rcu update to wait only for active cpus. For system
  4329. * which do not switch off the HZ timer nohz_cpu_mask should
  4330. * always be CPU_MASK_NONE.
  4331. */
  4332. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4333. /*
  4334. * Increase the granularity value when there are more CPUs,
  4335. * because with more CPUs the 'effective latency' as visible
  4336. * to users decreases. But the relationship is not linear,
  4337. * so pick a second-best guess by going with the log2 of the
  4338. * number of CPUs.
  4339. *
  4340. * This idea comes from the SD scheduler of Con Kolivas:
  4341. */
  4342. static inline void sched_init_granularity(void)
  4343. {
  4344. unsigned int factor = 1 + ilog2(num_online_cpus());
  4345. const unsigned long limit = 200000000;
  4346. sysctl_sched_min_granularity *= factor;
  4347. if (sysctl_sched_min_granularity > limit)
  4348. sysctl_sched_min_granularity = limit;
  4349. sysctl_sched_latency *= factor;
  4350. if (sysctl_sched_latency > limit)
  4351. sysctl_sched_latency = limit;
  4352. sysctl_sched_wakeup_granularity *= factor;
  4353. sysctl_sched_batch_wakeup_granularity *= factor;
  4354. }
  4355. #ifdef CONFIG_SMP
  4356. /*
  4357. * This is how migration works:
  4358. *
  4359. * 1) we queue a struct migration_req structure in the source CPU's
  4360. * runqueue and wake up that CPU's migration thread.
  4361. * 2) we down() the locked semaphore => thread blocks.
  4362. * 3) migration thread wakes up (implicitly it forces the migrated
  4363. * thread off the CPU)
  4364. * 4) it gets the migration request and checks whether the migrated
  4365. * task is still in the wrong runqueue.
  4366. * 5) if it's in the wrong runqueue then the migration thread removes
  4367. * it and puts it into the right queue.
  4368. * 6) migration thread up()s the semaphore.
  4369. * 7) we wake up and the migration is done.
  4370. */
  4371. /*
  4372. * Change a given task's CPU affinity. Migrate the thread to a
  4373. * proper CPU and schedule it away if the CPU it's executing on
  4374. * is removed from the allowed bitmask.
  4375. *
  4376. * NOTE: the caller must have a valid reference to the task, the
  4377. * task must not exit() & deallocate itself prematurely. The
  4378. * call is not atomic; no spinlocks may be held.
  4379. */
  4380. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4381. {
  4382. struct migration_req req;
  4383. unsigned long flags;
  4384. struct rq *rq;
  4385. int ret = 0;
  4386. rq = task_rq_lock(p, &flags);
  4387. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4388. ret = -EINVAL;
  4389. goto out;
  4390. }
  4391. p->cpus_allowed = new_mask;
  4392. /* Can the task run on the task's current CPU? If so, we're done */
  4393. if (cpu_isset(task_cpu(p), new_mask))
  4394. goto out;
  4395. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4396. /* Need help from migration thread: drop lock and wait. */
  4397. task_rq_unlock(rq, &flags);
  4398. wake_up_process(rq->migration_thread);
  4399. wait_for_completion(&req.done);
  4400. tlb_migrate_finish(p->mm);
  4401. return 0;
  4402. }
  4403. out:
  4404. task_rq_unlock(rq, &flags);
  4405. return ret;
  4406. }
  4407. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4408. /*
  4409. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4410. * this because either it can't run here any more (set_cpus_allowed()
  4411. * away from this CPU, or CPU going down), or because we're
  4412. * attempting to rebalance this task on exec (sched_exec).
  4413. *
  4414. * So we race with normal scheduler movements, but that's OK, as long
  4415. * as the task is no longer on this CPU.
  4416. *
  4417. * Returns non-zero if task was successfully migrated.
  4418. */
  4419. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4420. {
  4421. struct rq *rq_dest, *rq_src;
  4422. int ret = 0, on_rq;
  4423. if (unlikely(cpu_is_offline(dest_cpu)))
  4424. return ret;
  4425. rq_src = cpu_rq(src_cpu);
  4426. rq_dest = cpu_rq(dest_cpu);
  4427. double_rq_lock(rq_src, rq_dest);
  4428. /* Already moved. */
  4429. if (task_cpu(p) != src_cpu)
  4430. goto out;
  4431. /* Affinity changed (again). */
  4432. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4433. goto out;
  4434. on_rq = p->se.on_rq;
  4435. if (on_rq)
  4436. deactivate_task(rq_src, p, 0);
  4437. set_task_cpu(p, dest_cpu);
  4438. if (on_rq) {
  4439. activate_task(rq_dest, p, 0);
  4440. check_preempt_curr(rq_dest, p);
  4441. }
  4442. ret = 1;
  4443. out:
  4444. double_rq_unlock(rq_src, rq_dest);
  4445. return ret;
  4446. }
  4447. /*
  4448. * migration_thread - this is a highprio system thread that performs
  4449. * thread migration by bumping thread off CPU then 'pushing' onto
  4450. * another runqueue.
  4451. */
  4452. static int migration_thread(void *data)
  4453. {
  4454. int cpu = (long)data;
  4455. struct rq *rq;
  4456. rq = cpu_rq(cpu);
  4457. BUG_ON(rq->migration_thread != current);
  4458. set_current_state(TASK_INTERRUPTIBLE);
  4459. while (!kthread_should_stop()) {
  4460. struct migration_req *req;
  4461. struct list_head *head;
  4462. spin_lock_irq(&rq->lock);
  4463. if (cpu_is_offline(cpu)) {
  4464. spin_unlock_irq(&rq->lock);
  4465. goto wait_to_die;
  4466. }
  4467. if (rq->active_balance) {
  4468. active_load_balance(rq, cpu);
  4469. rq->active_balance = 0;
  4470. }
  4471. head = &rq->migration_queue;
  4472. if (list_empty(head)) {
  4473. spin_unlock_irq(&rq->lock);
  4474. schedule();
  4475. set_current_state(TASK_INTERRUPTIBLE);
  4476. continue;
  4477. }
  4478. req = list_entry(head->next, struct migration_req, list);
  4479. list_del_init(head->next);
  4480. spin_unlock(&rq->lock);
  4481. __migrate_task(req->task, cpu, req->dest_cpu);
  4482. local_irq_enable();
  4483. complete(&req->done);
  4484. }
  4485. __set_current_state(TASK_RUNNING);
  4486. return 0;
  4487. wait_to_die:
  4488. /* Wait for kthread_stop */
  4489. set_current_state(TASK_INTERRUPTIBLE);
  4490. while (!kthread_should_stop()) {
  4491. schedule();
  4492. set_current_state(TASK_INTERRUPTIBLE);
  4493. }
  4494. __set_current_state(TASK_RUNNING);
  4495. return 0;
  4496. }
  4497. #ifdef CONFIG_HOTPLUG_CPU
  4498. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4499. {
  4500. int ret;
  4501. local_irq_disable();
  4502. ret = __migrate_task(p, src_cpu, dest_cpu);
  4503. local_irq_enable();
  4504. return ret;
  4505. }
  4506. /*
  4507. * Figure out where task on dead CPU should go, use force if necessary.
  4508. * NOTE: interrupts should be disabled by the caller
  4509. */
  4510. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4511. {
  4512. unsigned long flags;
  4513. cpumask_t mask;
  4514. struct rq *rq;
  4515. int dest_cpu;
  4516. do {
  4517. /* On same node? */
  4518. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4519. cpus_and(mask, mask, p->cpus_allowed);
  4520. dest_cpu = any_online_cpu(mask);
  4521. /* On any allowed CPU? */
  4522. if (dest_cpu == NR_CPUS)
  4523. dest_cpu = any_online_cpu(p->cpus_allowed);
  4524. /* No more Mr. Nice Guy. */
  4525. if (dest_cpu == NR_CPUS) {
  4526. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4527. /*
  4528. * Try to stay on the same cpuset, where the
  4529. * current cpuset may be a subset of all cpus.
  4530. * The cpuset_cpus_allowed_locked() variant of
  4531. * cpuset_cpus_allowed() will not block. It must be
  4532. * called within calls to cpuset_lock/cpuset_unlock.
  4533. */
  4534. rq = task_rq_lock(p, &flags);
  4535. p->cpus_allowed = cpus_allowed;
  4536. dest_cpu = any_online_cpu(p->cpus_allowed);
  4537. task_rq_unlock(rq, &flags);
  4538. /*
  4539. * Don't tell them about moving exiting tasks or
  4540. * kernel threads (both mm NULL), since they never
  4541. * leave kernel.
  4542. */
  4543. if (p->mm && printk_ratelimit()) {
  4544. printk(KERN_INFO "process %d (%s) no "
  4545. "longer affine to cpu%d\n",
  4546. task_pid_nr(p), p->comm, dead_cpu);
  4547. }
  4548. }
  4549. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4550. }
  4551. /*
  4552. * While a dead CPU has no uninterruptible tasks queued at this point,
  4553. * it might still have a nonzero ->nr_uninterruptible counter, because
  4554. * for performance reasons the counter is not stricly tracking tasks to
  4555. * their home CPUs. So we just add the counter to another CPU's counter,
  4556. * to keep the global sum constant after CPU-down:
  4557. */
  4558. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4559. {
  4560. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4561. unsigned long flags;
  4562. local_irq_save(flags);
  4563. double_rq_lock(rq_src, rq_dest);
  4564. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4565. rq_src->nr_uninterruptible = 0;
  4566. double_rq_unlock(rq_src, rq_dest);
  4567. local_irq_restore(flags);
  4568. }
  4569. /* Run through task list and migrate tasks from the dead cpu. */
  4570. static void migrate_live_tasks(int src_cpu)
  4571. {
  4572. struct task_struct *p, *t;
  4573. read_lock(&tasklist_lock);
  4574. do_each_thread(t, p) {
  4575. if (p == current)
  4576. continue;
  4577. if (task_cpu(p) == src_cpu)
  4578. move_task_off_dead_cpu(src_cpu, p);
  4579. } while_each_thread(t, p);
  4580. read_unlock(&tasklist_lock);
  4581. }
  4582. /*
  4583. * Schedules idle task to be the next runnable task on current CPU.
  4584. * It does so by boosting its priority to highest possible.
  4585. * Used by CPU offline code.
  4586. */
  4587. void sched_idle_next(void)
  4588. {
  4589. int this_cpu = smp_processor_id();
  4590. struct rq *rq = cpu_rq(this_cpu);
  4591. struct task_struct *p = rq->idle;
  4592. unsigned long flags;
  4593. /* cpu has to be offline */
  4594. BUG_ON(cpu_online(this_cpu));
  4595. /*
  4596. * Strictly not necessary since rest of the CPUs are stopped by now
  4597. * and interrupts disabled on the current cpu.
  4598. */
  4599. spin_lock_irqsave(&rq->lock, flags);
  4600. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4601. update_rq_clock(rq);
  4602. activate_task(rq, p, 0);
  4603. spin_unlock_irqrestore(&rq->lock, flags);
  4604. }
  4605. /*
  4606. * Ensures that the idle task is using init_mm right before its cpu goes
  4607. * offline.
  4608. */
  4609. void idle_task_exit(void)
  4610. {
  4611. struct mm_struct *mm = current->active_mm;
  4612. BUG_ON(cpu_online(smp_processor_id()));
  4613. if (mm != &init_mm)
  4614. switch_mm(mm, &init_mm, current);
  4615. mmdrop(mm);
  4616. }
  4617. /* called under rq->lock with disabled interrupts */
  4618. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4619. {
  4620. struct rq *rq = cpu_rq(dead_cpu);
  4621. /* Must be exiting, otherwise would be on tasklist. */
  4622. BUG_ON(!p->exit_state);
  4623. /* Cannot have done final schedule yet: would have vanished. */
  4624. BUG_ON(p->state == TASK_DEAD);
  4625. get_task_struct(p);
  4626. /*
  4627. * Drop lock around migration; if someone else moves it,
  4628. * that's OK. No task can be added to this CPU, so iteration is
  4629. * fine.
  4630. */
  4631. spin_unlock_irq(&rq->lock);
  4632. move_task_off_dead_cpu(dead_cpu, p);
  4633. spin_lock_irq(&rq->lock);
  4634. put_task_struct(p);
  4635. }
  4636. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4637. static void migrate_dead_tasks(unsigned int dead_cpu)
  4638. {
  4639. struct rq *rq = cpu_rq(dead_cpu);
  4640. struct task_struct *next;
  4641. for ( ; ; ) {
  4642. if (!rq->nr_running)
  4643. break;
  4644. update_rq_clock(rq);
  4645. next = pick_next_task(rq, rq->curr);
  4646. if (!next)
  4647. break;
  4648. migrate_dead(dead_cpu, next);
  4649. }
  4650. }
  4651. #endif /* CONFIG_HOTPLUG_CPU */
  4652. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4653. static struct ctl_table sd_ctl_dir[] = {
  4654. {
  4655. .procname = "sched_domain",
  4656. .mode = 0555,
  4657. },
  4658. {0, },
  4659. };
  4660. static struct ctl_table sd_ctl_root[] = {
  4661. {
  4662. .ctl_name = CTL_KERN,
  4663. .procname = "kernel",
  4664. .mode = 0555,
  4665. .child = sd_ctl_dir,
  4666. },
  4667. {0, },
  4668. };
  4669. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4670. {
  4671. struct ctl_table *entry =
  4672. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4673. return entry;
  4674. }
  4675. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4676. {
  4677. struct ctl_table *entry;
  4678. /*
  4679. * In the intermediate directories, both the child directory and
  4680. * procname are dynamically allocated and could fail but the mode
  4681. * will always be set. In the lowest directory the names are
  4682. * static strings and all have proc handlers.
  4683. */
  4684. for (entry = *tablep; entry->mode; entry++) {
  4685. if (entry->child)
  4686. sd_free_ctl_entry(&entry->child);
  4687. if (entry->proc_handler == NULL)
  4688. kfree(entry->procname);
  4689. }
  4690. kfree(*tablep);
  4691. *tablep = NULL;
  4692. }
  4693. static void
  4694. set_table_entry(struct ctl_table *entry,
  4695. const char *procname, void *data, int maxlen,
  4696. mode_t mode, proc_handler *proc_handler)
  4697. {
  4698. entry->procname = procname;
  4699. entry->data = data;
  4700. entry->maxlen = maxlen;
  4701. entry->mode = mode;
  4702. entry->proc_handler = proc_handler;
  4703. }
  4704. static struct ctl_table *
  4705. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4706. {
  4707. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4708. if (table == NULL)
  4709. return NULL;
  4710. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4711. sizeof(long), 0644, proc_doulongvec_minmax);
  4712. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4713. sizeof(long), 0644, proc_doulongvec_minmax);
  4714. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4715. sizeof(int), 0644, proc_dointvec_minmax);
  4716. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4717. sizeof(int), 0644, proc_dointvec_minmax);
  4718. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4719. sizeof(int), 0644, proc_dointvec_minmax);
  4720. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4721. sizeof(int), 0644, proc_dointvec_minmax);
  4722. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4723. sizeof(int), 0644, proc_dointvec_minmax);
  4724. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4725. sizeof(int), 0644, proc_dointvec_minmax);
  4726. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4727. sizeof(int), 0644, proc_dointvec_minmax);
  4728. set_table_entry(&table[9], "cache_nice_tries",
  4729. &sd->cache_nice_tries,
  4730. sizeof(int), 0644, proc_dointvec_minmax);
  4731. set_table_entry(&table[10], "flags", &sd->flags,
  4732. sizeof(int), 0644, proc_dointvec_minmax);
  4733. /* &table[11] is terminator */
  4734. return table;
  4735. }
  4736. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4737. {
  4738. struct ctl_table *entry, *table;
  4739. struct sched_domain *sd;
  4740. int domain_num = 0, i;
  4741. char buf[32];
  4742. for_each_domain(cpu, sd)
  4743. domain_num++;
  4744. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4745. if (table == NULL)
  4746. return NULL;
  4747. i = 0;
  4748. for_each_domain(cpu, sd) {
  4749. snprintf(buf, 32, "domain%d", i);
  4750. entry->procname = kstrdup(buf, GFP_KERNEL);
  4751. entry->mode = 0555;
  4752. entry->child = sd_alloc_ctl_domain_table(sd);
  4753. entry++;
  4754. i++;
  4755. }
  4756. return table;
  4757. }
  4758. static struct ctl_table_header *sd_sysctl_header;
  4759. static void register_sched_domain_sysctl(void)
  4760. {
  4761. int i, cpu_num = num_online_cpus();
  4762. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4763. char buf[32];
  4764. WARN_ON(sd_ctl_dir[0].child);
  4765. sd_ctl_dir[0].child = entry;
  4766. if (entry == NULL)
  4767. return;
  4768. for_each_online_cpu(i) {
  4769. snprintf(buf, 32, "cpu%d", i);
  4770. entry->procname = kstrdup(buf, GFP_KERNEL);
  4771. entry->mode = 0555;
  4772. entry->child = sd_alloc_ctl_cpu_table(i);
  4773. entry++;
  4774. }
  4775. WARN_ON(sd_sysctl_header);
  4776. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4777. }
  4778. /* may be called multiple times per register */
  4779. static void unregister_sched_domain_sysctl(void)
  4780. {
  4781. if (sd_sysctl_header)
  4782. unregister_sysctl_table(sd_sysctl_header);
  4783. sd_sysctl_header = NULL;
  4784. if (sd_ctl_dir[0].child)
  4785. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4786. }
  4787. #else
  4788. static void register_sched_domain_sysctl(void)
  4789. {
  4790. }
  4791. static void unregister_sched_domain_sysctl(void)
  4792. {
  4793. }
  4794. #endif
  4795. /*
  4796. * migration_call - callback that gets triggered when a CPU is added.
  4797. * Here we can start up the necessary migration thread for the new CPU.
  4798. */
  4799. static int __cpuinit
  4800. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4801. {
  4802. struct task_struct *p;
  4803. int cpu = (long)hcpu;
  4804. unsigned long flags;
  4805. struct rq *rq;
  4806. switch (action) {
  4807. case CPU_LOCK_ACQUIRE:
  4808. mutex_lock(&sched_hotcpu_mutex);
  4809. break;
  4810. case CPU_UP_PREPARE:
  4811. case CPU_UP_PREPARE_FROZEN:
  4812. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4813. if (IS_ERR(p))
  4814. return NOTIFY_BAD;
  4815. kthread_bind(p, cpu);
  4816. /* Must be high prio: stop_machine expects to yield to it. */
  4817. rq = task_rq_lock(p, &flags);
  4818. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4819. task_rq_unlock(rq, &flags);
  4820. cpu_rq(cpu)->migration_thread = p;
  4821. break;
  4822. case CPU_ONLINE:
  4823. case CPU_ONLINE_FROZEN:
  4824. /* Strictly unnecessary, as first user will wake it. */
  4825. wake_up_process(cpu_rq(cpu)->migration_thread);
  4826. break;
  4827. #ifdef CONFIG_HOTPLUG_CPU
  4828. case CPU_UP_CANCELED:
  4829. case CPU_UP_CANCELED_FROZEN:
  4830. if (!cpu_rq(cpu)->migration_thread)
  4831. break;
  4832. /* Unbind it from offline cpu so it can run. Fall thru. */
  4833. kthread_bind(cpu_rq(cpu)->migration_thread,
  4834. any_online_cpu(cpu_online_map));
  4835. kthread_stop(cpu_rq(cpu)->migration_thread);
  4836. cpu_rq(cpu)->migration_thread = NULL;
  4837. break;
  4838. case CPU_DEAD:
  4839. case CPU_DEAD_FROZEN:
  4840. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4841. migrate_live_tasks(cpu);
  4842. rq = cpu_rq(cpu);
  4843. kthread_stop(rq->migration_thread);
  4844. rq->migration_thread = NULL;
  4845. /* Idle task back to normal (off runqueue, low prio) */
  4846. spin_lock_irq(&rq->lock);
  4847. update_rq_clock(rq);
  4848. deactivate_task(rq, rq->idle, 0);
  4849. rq->idle->static_prio = MAX_PRIO;
  4850. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4851. rq->idle->sched_class = &idle_sched_class;
  4852. migrate_dead_tasks(cpu);
  4853. spin_unlock_irq(&rq->lock);
  4854. cpuset_unlock();
  4855. migrate_nr_uninterruptible(rq);
  4856. BUG_ON(rq->nr_running != 0);
  4857. /*
  4858. * No need to migrate the tasks: it was best-effort if
  4859. * they didn't take sched_hotcpu_mutex. Just wake up
  4860. * the requestors.
  4861. */
  4862. spin_lock_irq(&rq->lock);
  4863. while (!list_empty(&rq->migration_queue)) {
  4864. struct migration_req *req;
  4865. req = list_entry(rq->migration_queue.next,
  4866. struct migration_req, list);
  4867. list_del_init(&req->list);
  4868. complete(&req->done);
  4869. }
  4870. spin_unlock_irq(&rq->lock);
  4871. break;
  4872. #endif
  4873. case CPU_LOCK_RELEASE:
  4874. mutex_unlock(&sched_hotcpu_mutex);
  4875. break;
  4876. }
  4877. return NOTIFY_OK;
  4878. }
  4879. /* Register at highest priority so that task migration (migrate_all_tasks)
  4880. * happens before everything else.
  4881. */
  4882. static struct notifier_block __cpuinitdata migration_notifier = {
  4883. .notifier_call = migration_call,
  4884. .priority = 10
  4885. };
  4886. void __init migration_init(void)
  4887. {
  4888. void *cpu = (void *)(long)smp_processor_id();
  4889. int err;
  4890. /* Start one for the boot CPU: */
  4891. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4892. BUG_ON(err == NOTIFY_BAD);
  4893. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4894. register_cpu_notifier(&migration_notifier);
  4895. }
  4896. #endif
  4897. #ifdef CONFIG_SMP
  4898. /* Number of possible processor ids */
  4899. int nr_cpu_ids __read_mostly = NR_CPUS;
  4900. EXPORT_SYMBOL(nr_cpu_ids);
  4901. #ifdef CONFIG_SCHED_DEBUG
  4902. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4903. {
  4904. struct sched_group *group = sd->groups;
  4905. cpumask_t groupmask;
  4906. char str[NR_CPUS];
  4907. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4908. cpus_clear(groupmask);
  4909. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4910. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4911. printk("does not load-balance\n");
  4912. if (sd->parent)
  4913. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4914. " has parent");
  4915. return -1;
  4916. }
  4917. printk(KERN_CONT "span %s\n", str);
  4918. if (!cpu_isset(cpu, sd->span)) {
  4919. printk(KERN_ERR "ERROR: domain->span does not contain "
  4920. "CPU%d\n", cpu);
  4921. }
  4922. if (!cpu_isset(cpu, group->cpumask)) {
  4923. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4924. " CPU%d\n", cpu);
  4925. }
  4926. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4927. do {
  4928. if (!group) {
  4929. printk("\n");
  4930. printk(KERN_ERR "ERROR: group is NULL\n");
  4931. break;
  4932. }
  4933. if (!group->__cpu_power) {
  4934. printk(KERN_CONT "\n");
  4935. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4936. "set\n");
  4937. break;
  4938. }
  4939. if (!cpus_weight(group->cpumask)) {
  4940. printk(KERN_CONT "\n");
  4941. printk(KERN_ERR "ERROR: empty group\n");
  4942. break;
  4943. }
  4944. if (cpus_intersects(groupmask, group->cpumask)) {
  4945. printk(KERN_CONT "\n");
  4946. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4947. break;
  4948. }
  4949. cpus_or(groupmask, groupmask, group->cpumask);
  4950. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4951. printk(KERN_CONT " %s", str);
  4952. group = group->next;
  4953. } while (group != sd->groups);
  4954. printk(KERN_CONT "\n");
  4955. if (!cpus_equal(sd->span, groupmask))
  4956. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4957. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4958. printk(KERN_ERR "ERROR: parent span is not a superset "
  4959. "of domain->span\n");
  4960. return 0;
  4961. }
  4962. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4963. {
  4964. int level = 0;
  4965. if (!sd) {
  4966. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4967. return;
  4968. }
  4969. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4970. for (;;) {
  4971. if (sched_domain_debug_one(sd, cpu, level))
  4972. break;
  4973. level++;
  4974. sd = sd->parent;
  4975. if (!sd)
  4976. break;
  4977. }
  4978. }
  4979. #else
  4980. # define sched_domain_debug(sd, cpu) do { } while (0)
  4981. #endif
  4982. static int sd_degenerate(struct sched_domain *sd)
  4983. {
  4984. if (cpus_weight(sd->span) == 1)
  4985. return 1;
  4986. /* Following flags need at least 2 groups */
  4987. if (sd->flags & (SD_LOAD_BALANCE |
  4988. SD_BALANCE_NEWIDLE |
  4989. SD_BALANCE_FORK |
  4990. SD_BALANCE_EXEC |
  4991. SD_SHARE_CPUPOWER |
  4992. SD_SHARE_PKG_RESOURCES)) {
  4993. if (sd->groups != sd->groups->next)
  4994. return 0;
  4995. }
  4996. /* Following flags don't use groups */
  4997. if (sd->flags & (SD_WAKE_IDLE |
  4998. SD_WAKE_AFFINE |
  4999. SD_WAKE_BALANCE))
  5000. return 0;
  5001. return 1;
  5002. }
  5003. static int
  5004. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5005. {
  5006. unsigned long cflags = sd->flags, pflags = parent->flags;
  5007. if (sd_degenerate(parent))
  5008. return 1;
  5009. if (!cpus_equal(sd->span, parent->span))
  5010. return 0;
  5011. /* Does parent contain flags not in child? */
  5012. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5013. if (cflags & SD_WAKE_AFFINE)
  5014. pflags &= ~SD_WAKE_BALANCE;
  5015. /* Flags needing groups don't count if only 1 group in parent */
  5016. if (parent->groups == parent->groups->next) {
  5017. pflags &= ~(SD_LOAD_BALANCE |
  5018. SD_BALANCE_NEWIDLE |
  5019. SD_BALANCE_FORK |
  5020. SD_BALANCE_EXEC |
  5021. SD_SHARE_CPUPOWER |
  5022. SD_SHARE_PKG_RESOURCES);
  5023. }
  5024. if (~cflags & pflags)
  5025. return 0;
  5026. return 1;
  5027. }
  5028. /*
  5029. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5030. * hold the hotplug lock.
  5031. */
  5032. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5033. {
  5034. struct rq *rq = cpu_rq(cpu);
  5035. struct sched_domain *tmp;
  5036. /* Remove the sched domains which do not contribute to scheduling. */
  5037. for (tmp = sd; tmp; tmp = tmp->parent) {
  5038. struct sched_domain *parent = tmp->parent;
  5039. if (!parent)
  5040. break;
  5041. if (sd_parent_degenerate(tmp, parent)) {
  5042. tmp->parent = parent->parent;
  5043. if (parent->parent)
  5044. parent->parent->child = tmp;
  5045. }
  5046. }
  5047. if (sd && sd_degenerate(sd)) {
  5048. sd = sd->parent;
  5049. if (sd)
  5050. sd->child = NULL;
  5051. }
  5052. sched_domain_debug(sd, cpu);
  5053. rcu_assign_pointer(rq->sd, sd);
  5054. }
  5055. /* cpus with isolated domains */
  5056. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5057. /* Setup the mask of cpus configured for isolated domains */
  5058. static int __init isolated_cpu_setup(char *str)
  5059. {
  5060. int ints[NR_CPUS], i;
  5061. str = get_options(str, ARRAY_SIZE(ints), ints);
  5062. cpus_clear(cpu_isolated_map);
  5063. for (i = 1; i <= ints[0]; i++)
  5064. if (ints[i] < NR_CPUS)
  5065. cpu_set(ints[i], cpu_isolated_map);
  5066. return 1;
  5067. }
  5068. __setup("isolcpus=", isolated_cpu_setup);
  5069. /*
  5070. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5071. * to a function which identifies what group(along with sched group) a CPU
  5072. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5073. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5074. *
  5075. * init_sched_build_groups will build a circular linked list of the groups
  5076. * covered by the given span, and will set each group's ->cpumask correctly,
  5077. * and ->cpu_power to 0.
  5078. */
  5079. static void
  5080. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5081. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5082. struct sched_group **sg))
  5083. {
  5084. struct sched_group *first = NULL, *last = NULL;
  5085. cpumask_t covered = CPU_MASK_NONE;
  5086. int i;
  5087. for_each_cpu_mask(i, span) {
  5088. struct sched_group *sg;
  5089. int group = group_fn(i, cpu_map, &sg);
  5090. int j;
  5091. if (cpu_isset(i, covered))
  5092. continue;
  5093. sg->cpumask = CPU_MASK_NONE;
  5094. sg->__cpu_power = 0;
  5095. for_each_cpu_mask(j, span) {
  5096. if (group_fn(j, cpu_map, NULL) != group)
  5097. continue;
  5098. cpu_set(j, covered);
  5099. cpu_set(j, sg->cpumask);
  5100. }
  5101. if (!first)
  5102. first = sg;
  5103. if (last)
  5104. last->next = sg;
  5105. last = sg;
  5106. }
  5107. last->next = first;
  5108. }
  5109. #define SD_NODES_PER_DOMAIN 16
  5110. #ifdef CONFIG_NUMA
  5111. /**
  5112. * find_next_best_node - find the next node to include in a sched_domain
  5113. * @node: node whose sched_domain we're building
  5114. * @used_nodes: nodes already in the sched_domain
  5115. *
  5116. * Find the next node to include in a given scheduling domain. Simply
  5117. * finds the closest node not already in the @used_nodes map.
  5118. *
  5119. * Should use nodemask_t.
  5120. */
  5121. static int find_next_best_node(int node, unsigned long *used_nodes)
  5122. {
  5123. int i, n, val, min_val, best_node = 0;
  5124. min_val = INT_MAX;
  5125. for (i = 0; i < MAX_NUMNODES; i++) {
  5126. /* Start at @node */
  5127. n = (node + i) % MAX_NUMNODES;
  5128. if (!nr_cpus_node(n))
  5129. continue;
  5130. /* Skip already used nodes */
  5131. if (test_bit(n, used_nodes))
  5132. continue;
  5133. /* Simple min distance search */
  5134. val = node_distance(node, n);
  5135. if (val < min_val) {
  5136. min_val = val;
  5137. best_node = n;
  5138. }
  5139. }
  5140. set_bit(best_node, used_nodes);
  5141. return best_node;
  5142. }
  5143. /**
  5144. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5145. * @node: node whose cpumask we're constructing
  5146. * @size: number of nodes to include in this span
  5147. *
  5148. * Given a node, construct a good cpumask for its sched_domain to span. It
  5149. * should be one that prevents unnecessary balancing, but also spreads tasks
  5150. * out optimally.
  5151. */
  5152. static cpumask_t sched_domain_node_span(int node)
  5153. {
  5154. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5155. cpumask_t span, nodemask;
  5156. int i;
  5157. cpus_clear(span);
  5158. bitmap_zero(used_nodes, MAX_NUMNODES);
  5159. nodemask = node_to_cpumask(node);
  5160. cpus_or(span, span, nodemask);
  5161. set_bit(node, used_nodes);
  5162. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5163. int next_node = find_next_best_node(node, used_nodes);
  5164. nodemask = node_to_cpumask(next_node);
  5165. cpus_or(span, span, nodemask);
  5166. }
  5167. return span;
  5168. }
  5169. #endif
  5170. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5171. /*
  5172. * SMT sched-domains:
  5173. */
  5174. #ifdef CONFIG_SCHED_SMT
  5175. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5176. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5177. static int
  5178. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5179. {
  5180. if (sg)
  5181. *sg = &per_cpu(sched_group_cpus, cpu);
  5182. return cpu;
  5183. }
  5184. #endif
  5185. /*
  5186. * multi-core sched-domains:
  5187. */
  5188. #ifdef CONFIG_SCHED_MC
  5189. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5190. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5191. #endif
  5192. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5193. static int
  5194. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5195. {
  5196. int group;
  5197. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5198. cpus_and(mask, mask, *cpu_map);
  5199. group = first_cpu(mask);
  5200. if (sg)
  5201. *sg = &per_cpu(sched_group_core, group);
  5202. return group;
  5203. }
  5204. #elif defined(CONFIG_SCHED_MC)
  5205. static int
  5206. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5207. {
  5208. if (sg)
  5209. *sg = &per_cpu(sched_group_core, cpu);
  5210. return cpu;
  5211. }
  5212. #endif
  5213. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5214. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5215. static int
  5216. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5217. {
  5218. int group;
  5219. #ifdef CONFIG_SCHED_MC
  5220. cpumask_t mask = cpu_coregroup_map(cpu);
  5221. cpus_and(mask, mask, *cpu_map);
  5222. group = first_cpu(mask);
  5223. #elif defined(CONFIG_SCHED_SMT)
  5224. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5225. cpus_and(mask, mask, *cpu_map);
  5226. group = first_cpu(mask);
  5227. #else
  5228. group = cpu;
  5229. #endif
  5230. if (sg)
  5231. *sg = &per_cpu(sched_group_phys, group);
  5232. return group;
  5233. }
  5234. #ifdef CONFIG_NUMA
  5235. /*
  5236. * The init_sched_build_groups can't handle what we want to do with node
  5237. * groups, so roll our own. Now each node has its own list of groups which
  5238. * gets dynamically allocated.
  5239. */
  5240. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5241. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5242. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5243. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5244. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5245. struct sched_group **sg)
  5246. {
  5247. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5248. int group;
  5249. cpus_and(nodemask, nodemask, *cpu_map);
  5250. group = first_cpu(nodemask);
  5251. if (sg)
  5252. *sg = &per_cpu(sched_group_allnodes, group);
  5253. return group;
  5254. }
  5255. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5256. {
  5257. struct sched_group *sg = group_head;
  5258. int j;
  5259. if (!sg)
  5260. return;
  5261. do {
  5262. for_each_cpu_mask(j, sg->cpumask) {
  5263. struct sched_domain *sd;
  5264. sd = &per_cpu(phys_domains, j);
  5265. if (j != first_cpu(sd->groups->cpumask)) {
  5266. /*
  5267. * Only add "power" once for each
  5268. * physical package.
  5269. */
  5270. continue;
  5271. }
  5272. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5273. }
  5274. sg = sg->next;
  5275. } while (sg != group_head);
  5276. }
  5277. #endif
  5278. #ifdef CONFIG_NUMA
  5279. /* Free memory allocated for various sched_group structures */
  5280. static void free_sched_groups(const cpumask_t *cpu_map)
  5281. {
  5282. int cpu, i;
  5283. for_each_cpu_mask(cpu, *cpu_map) {
  5284. struct sched_group **sched_group_nodes
  5285. = sched_group_nodes_bycpu[cpu];
  5286. if (!sched_group_nodes)
  5287. continue;
  5288. for (i = 0; i < MAX_NUMNODES; i++) {
  5289. cpumask_t nodemask = node_to_cpumask(i);
  5290. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5291. cpus_and(nodemask, nodemask, *cpu_map);
  5292. if (cpus_empty(nodemask))
  5293. continue;
  5294. if (sg == NULL)
  5295. continue;
  5296. sg = sg->next;
  5297. next_sg:
  5298. oldsg = sg;
  5299. sg = sg->next;
  5300. kfree(oldsg);
  5301. if (oldsg != sched_group_nodes[i])
  5302. goto next_sg;
  5303. }
  5304. kfree(sched_group_nodes);
  5305. sched_group_nodes_bycpu[cpu] = NULL;
  5306. }
  5307. }
  5308. #else
  5309. static void free_sched_groups(const cpumask_t *cpu_map)
  5310. {
  5311. }
  5312. #endif
  5313. /*
  5314. * Initialize sched groups cpu_power.
  5315. *
  5316. * cpu_power indicates the capacity of sched group, which is used while
  5317. * distributing the load between different sched groups in a sched domain.
  5318. * Typically cpu_power for all the groups in a sched domain will be same unless
  5319. * there are asymmetries in the topology. If there are asymmetries, group
  5320. * having more cpu_power will pickup more load compared to the group having
  5321. * less cpu_power.
  5322. *
  5323. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5324. * the maximum number of tasks a group can handle in the presence of other idle
  5325. * or lightly loaded groups in the same sched domain.
  5326. */
  5327. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5328. {
  5329. struct sched_domain *child;
  5330. struct sched_group *group;
  5331. WARN_ON(!sd || !sd->groups);
  5332. if (cpu != first_cpu(sd->groups->cpumask))
  5333. return;
  5334. child = sd->child;
  5335. sd->groups->__cpu_power = 0;
  5336. /*
  5337. * For perf policy, if the groups in child domain share resources
  5338. * (for example cores sharing some portions of the cache hierarchy
  5339. * or SMT), then set this domain groups cpu_power such that each group
  5340. * can handle only one task, when there are other idle groups in the
  5341. * same sched domain.
  5342. */
  5343. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5344. (child->flags &
  5345. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5346. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5347. return;
  5348. }
  5349. /*
  5350. * add cpu_power of each child group to this groups cpu_power
  5351. */
  5352. group = child->groups;
  5353. do {
  5354. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5355. group = group->next;
  5356. } while (group != child->groups);
  5357. }
  5358. /*
  5359. * Build sched domains for a given set of cpus and attach the sched domains
  5360. * to the individual cpus
  5361. */
  5362. static int build_sched_domains(const cpumask_t *cpu_map)
  5363. {
  5364. int i;
  5365. #ifdef CONFIG_NUMA
  5366. struct sched_group **sched_group_nodes = NULL;
  5367. int sd_allnodes = 0;
  5368. /*
  5369. * Allocate the per-node list of sched groups
  5370. */
  5371. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5372. GFP_KERNEL);
  5373. if (!sched_group_nodes) {
  5374. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5375. return -ENOMEM;
  5376. }
  5377. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5378. #endif
  5379. /*
  5380. * Set up domains for cpus specified by the cpu_map.
  5381. */
  5382. for_each_cpu_mask(i, *cpu_map) {
  5383. struct sched_domain *sd = NULL, *p;
  5384. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5385. cpus_and(nodemask, nodemask, *cpu_map);
  5386. #ifdef CONFIG_NUMA
  5387. if (cpus_weight(*cpu_map) >
  5388. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5389. sd = &per_cpu(allnodes_domains, i);
  5390. *sd = SD_ALLNODES_INIT;
  5391. sd->span = *cpu_map;
  5392. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5393. p = sd;
  5394. sd_allnodes = 1;
  5395. } else
  5396. p = NULL;
  5397. sd = &per_cpu(node_domains, i);
  5398. *sd = SD_NODE_INIT;
  5399. sd->span = sched_domain_node_span(cpu_to_node(i));
  5400. sd->parent = p;
  5401. if (p)
  5402. p->child = sd;
  5403. cpus_and(sd->span, sd->span, *cpu_map);
  5404. #endif
  5405. p = sd;
  5406. sd = &per_cpu(phys_domains, i);
  5407. *sd = SD_CPU_INIT;
  5408. sd->span = nodemask;
  5409. sd->parent = p;
  5410. if (p)
  5411. p->child = sd;
  5412. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5413. #ifdef CONFIG_SCHED_MC
  5414. p = sd;
  5415. sd = &per_cpu(core_domains, i);
  5416. *sd = SD_MC_INIT;
  5417. sd->span = cpu_coregroup_map(i);
  5418. cpus_and(sd->span, sd->span, *cpu_map);
  5419. sd->parent = p;
  5420. p->child = sd;
  5421. cpu_to_core_group(i, cpu_map, &sd->groups);
  5422. #endif
  5423. #ifdef CONFIG_SCHED_SMT
  5424. p = sd;
  5425. sd = &per_cpu(cpu_domains, i);
  5426. *sd = SD_SIBLING_INIT;
  5427. sd->span = per_cpu(cpu_sibling_map, i);
  5428. cpus_and(sd->span, sd->span, *cpu_map);
  5429. sd->parent = p;
  5430. p->child = sd;
  5431. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5432. #endif
  5433. }
  5434. #ifdef CONFIG_SCHED_SMT
  5435. /* Set up CPU (sibling) groups */
  5436. for_each_cpu_mask(i, *cpu_map) {
  5437. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5438. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5439. if (i != first_cpu(this_sibling_map))
  5440. continue;
  5441. init_sched_build_groups(this_sibling_map, cpu_map,
  5442. &cpu_to_cpu_group);
  5443. }
  5444. #endif
  5445. #ifdef CONFIG_SCHED_MC
  5446. /* Set up multi-core groups */
  5447. for_each_cpu_mask(i, *cpu_map) {
  5448. cpumask_t this_core_map = cpu_coregroup_map(i);
  5449. cpus_and(this_core_map, this_core_map, *cpu_map);
  5450. if (i != first_cpu(this_core_map))
  5451. continue;
  5452. init_sched_build_groups(this_core_map, cpu_map,
  5453. &cpu_to_core_group);
  5454. }
  5455. #endif
  5456. /* Set up physical groups */
  5457. for (i = 0; i < MAX_NUMNODES; i++) {
  5458. cpumask_t nodemask = node_to_cpumask(i);
  5459. cpus_and(nodemask, nodemask, *cpu_map);
  5460. if (cpus_empty(nodemask))
  5461. continue;
  5462. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5463. }
  5464. #ifdef CONFIG_NUMA
  5465. /* Set up node groups */
  5466. if (sd_allnodes)
  5467. init_sched_build_groups(*cpu_map, cpu_map,
  5468. &cpu_to_allnodes_group);
  5469. for (i = 0; i < MAX_NUMNODES; i++) {
  5470. /* Set up node groups */
  5471. struct sched_group *sg, *prev;
  5472. cpumask_t nodemask = node_to_cpumask(i);
  5473. cpumask_t domainspan;
  5474. cpumask_t covered = CPU_MASK_NONE;
  5475. int j;
  5476. cpus_and(nodemask, nodemask, *cpu_map);
  5477. if (cpus_empty(nodemask)) {
  5478. sched_group_nodes[i] = NULL;
  5479. continue;
  5480. }
  5481. domainspan = sched_domain_node_span(i);
  5482. cpus_and(domainspan, domainspan, *cpu_map);
  5483. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5484. if (!sg) {
  5485. printk(KERN_WARNING "Can not alloc domain group for "
  5486. "node %d\n", i);
  5487. goto error;
  5488. }
  5489. sched_group_nodes[i] = sg;
  5490. for_each_cpu_mask(j, nodemask) {
  5491. struct sched_domain *sd;
  5492. sd = &per_cpu(node_domains, j);
  5493. sd->groups = sg;
  5494. }
  5495. sg->__cpu_power = 0;
  5496. sg->cpumask = nodemask;
  5497. sg->next = sg;
  5498. cpus_or(covered, covered, nodemask);
  5499. prev = sg;
  5500. for (j = 0; j < MAX_NUMNODES; j++) {
  5501. cpumask_t tmp, notcovered;
  5502. int n = (i + j) % MAX_NUMNODES;
  5503. cpus_complement(notcovered, covered);
  5504. cpus_and(tmp, notcovered, *cpu_map);
  5505. cpus_and(tmp, tmp, domainspan);
  5506. if (cpus_empty(tmp))
  5507. break;
  5508. nodemask = node_to_cpumask(n);
  5509. cpus_and(tmp, tmp, nodemask);
  5510. if (cpus_empty(tmp))
  5511. continue;
  5512. sg = kmalloc_node(sizeof(struct sched_group),
  5513. GFP_KERNEL, i);
  5514. if (!sg) {
  5515. printk(KERN_WARNING
  5516. "Can not alloc domain group for node %d\n", j);
  5517. goto error;
  5518. }
  5519. sg->__cpu_power = 0;
  5520. sg->cpumask = tmp;
  5521. sg->next = prev->next;
  5522. cpus_or(covered, covered, tmp);
  5523. prev->next = sg;
  5524. prev = sg;
  5525. }
  5526. }
  5527. #endif
  5528. /* Calculate CPU power for physical packages and nodes */
  5529. #ifdef CONFIG_SCHED_SMT
  5530. for_each_cpu_mask(i, *cpu_map) {
  5531. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5532. init_sched_groups_power(i, sd);
  5533. }
  5534. #endif
  5535. #ifdef CONFIG_SCHED_MC
  5536. for_each_cpu_mask(i, *cpu_map) {
  5537. struct sched_domain *sd = &per_cpu(core_domains, i);
  5538. init_sched_groups_power(i, sd);
  5539. }
  5540. #endif
  5541. for_each_cpu_mask(i, *cpu_map) {
  5542. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5543. init_sched_groups_power(i, sd);
  5544. }
  5545. #ifdef CONFIG_NUMA
  5546. for (i = 0; i < MAX_NUMNODES; i++)
  5547. init_numa_sched_groups_power(sched_group_nodes[i]);
  5548. if (sd_allnodes) {
  5549. struct sched_group *sg;
  5550. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5551. init_numa_sched_groups_power(sg);
  5552. }
  5553. #endif
  5554. /* Attach the domains */
  5555. for_each_cpu_mask(i, *cpu_map) {
  5556. struct sched_domain *sd;
  5557. #ifdef CONFIG_SCHED_SMT
  5558. sd = &per_cpu(cpu_domains, i);
  5559. #elif defined(CONFIG_SCHED_MC)
  5560. sd = &per_cpu(core_domains, i);
  5561. #else
  5562. sd = &per_cpu(phys_domains, i);
  5563. #endif
  5564. cpu_attach_domain(sd, i);
  5565. }
  5566. return 0;
  5567. #ifdef CONFIG_NUMA
  5568. error:
  5569. free_sched_groups(cpu_map);
  5570. return -ENOMEM;
  5571. #endif
  5572. }
  5573. static cpumask_t *doms_cur; /* current sched domains */
  5574. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5575. /*
  5576. * Special case: If a kmalloc of a doms_cur partition (array of
  5577. * cpumask_t) fails, then fallback to a single sched domain,
  5578. * as determined by the single cpumask_t fallback_doms.
  5579. */
  5580. static cpumask_t fallback_doms;
  5581. /*
  5582. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5583. * For now this just excludes isolated cpus, but could be used to
  5584. * exclude other special cases in the future.
  5585. */
  5586. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5587. {
  5588. int err;
  5589. ndoms_cur = 1;
  5590. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5591. if (!doms_cur)
  5592. doms_cur = &fallback_doms;
  5593. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5594. err = build_sched_domains(doms_cur);
  5595. register_sched_domain_sysctl();
  5596. return err;
  5597. }
  5598. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5599. {
  5600. free_sched_groups(cpu_map);
  5601. }
  5602. /*
  5603. * Detach sched domains from a group of cpus specified in cpu_map
  5604. * These cpus will now be attached to the NULL domain
  5605. */
  5606. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5607. {
  5608. int i;
  5609. unregister_sched_domain_sysctl();
  5610. for_each_cpu_mask(i, *cpu_map)
  5611. cpu_attach_domain(NULL, i);
  5612. synchronize_sched();
  5613. arch_destroy_sched_domains(cpu_map);
  5614. }
  5615. /*
  5616. * Partition sched domains as specified by the 'ndoms_new'
  5617. * cpumasks in the array doms_new[] of cpumasks. This compares
  5618. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5619. * It destroys each deleted domain and builds each new domain.
  5620. *
  5621. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5622. * The masks don't intersect (don't overlap.) We should setup one
  5623. * sched domain for each mask. CPUs not in any of the cpumasks will
  5624. * not be load balanced. If the same cpumask appears both in the
  5625. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5626. * it as it is.
  5627. *
  5628. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5629. * ownership of it and will kfree it when done with it. If the caller
  5630. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5631. * and partition_sched_domains() will fallback to the single partition
  5632. * 'fallback_doms'.
  5633. *
  5634. * Call with hotplug lock held
  5635. */
  5636. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5637. {
  5638. int i, j;
  5639. /* always unregister in case we don't destroy any domains */
  5640. unregister_sched_domain_sysctl();
  5641. if (doms_new == NULL) {
  5642. ndoms_new = 1;
  5643. doms_new = &fallback_doms;
  5644. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5645. }
  5646. /* Destroy deleted domains */
  5647. for (i = 0; i < ndoms_cur; i++) {
  5648. for (j = 0; j < ndoms_new; j++) {
  5649. if (cpus_equal(doms_cur[i], doms_new[j]))
  5650. goto match1;
  5651. }
  5652. /* no match - a current sched domain not in new doms_new[] */
  5653. detach_destroy_domains(doms_cur + i);
  5654. match1:
  5655. ;
  5656. }
  5657. /* Build new domains */
  5658. for (i = 0; i < ndoms_new; i++) {
  5659. for (j = 0; j < ndoms_cur; j++) {
  5660. if (cpus_equal(doms_new[i], doms_cur[j]))
  5661. goto match2;
  5662. }
  5663. /* no match - add a new doms_new */
  5664. build_sched_domains(doms_new + i);
  5665. match2:
  5666. ;
  5667. }
  5668. /* Remember the new sched domains */
  5669. if (doms_cur != &fallback_doms)
  5670. kfree(doms_cur);
  5671. doms_cur = doms_new;
  5672. ndoms_cur = ndoms_new;
  5673. register_sched_domain_sysctl();
  5674. }
  5675. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5676. static int arch_reinit_sched_domains(void)
  5677. {
  5678. int err;
  5679. mutex_lock(&sched_hotcpu_mutex);
  5680. detach_destroy_domains(&cpu_online_map);
  5681. err = arch_init_sched_domains(&cpu_online_map);
  5682. mutex_unlock(&sched_hotcpu_mutex);
  5683. return err;
  5684. }
  5685. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5686. {
  5687. int ret;
  5688. if (buf[0] != '0' && buf[0] != '1')
  5689. return -EINVAL;
  5690. if (smt)
  5691. sched_smt_power_savings = (buf[0] == '1');
  5692. else
  5693. sched_mc_power_savings = (buf[0] == '1');
  5694. ret = arch_reinit_sched_domains();
  5695. return ret ? ret : count;
  5696. }
  5697. #ifdef CONFIG_SCHED_MC
  5698. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5699. {
  5700. return sprintf(page, "%u\n", sched_mc_power_savings);
  5701. }
  5702. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5703. const char *buf, size_t count)
  5704. {
  5705. return sched_power_savings_store(buf, count, 0);
  5706. }
  5707. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5708. sched_mc_power_savings_store);
  5709. #endif
  5710. #ifdef CONFIG_SCHED_SMT
  5711. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5712. {
  5713. return sprintf(page, "%u\n", sched_smt_power_savings);
  5714. }
  5715. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5716. const char *buf, size_t count)
  5717. {
  5718. return sched_power_savings_store(buf, count, 1);
  5719. }
  5720. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5721. sched_smt_power_savings_store);
  5722. #endif
  5723. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5724. {
  5725. int err = 0;
  5726. #ifdef CONFIG_SCHED_SMT
  5727. if (smt_capable())
  5728. err = sysfs_create_file(&cls->kset.kobj,
  5729. &attr_sched_smt_power_savings.attr);
  5730. #endif
  5731. #ifdef CONFIG_SCHED_MC
  5732. if (!err && mc_capable())
  5733. err = sysfs_create_file(&cls->kset.kobj,
  5734. &attr_sched_mc_power_savings.attr);
  5735. #endif
  5736. return err;
  5737. }
  5738. #endif
  5739. /*
  5740. * Force a reinitialization of the sched domains hierarchy. The domains
  5741. * and groups cannot be updated in place without racing with the balancing
  5742. * code, so we temporarily attach all running cpus to the NULL domain
  5743. * which will prevent rebalancing while the sched domains are recalculated.
  5744. */
  5745. static int update_sched_domains(struct notifier_block *nfb,
  5746. unsigned long action, void *hcpu)
  5747. {
  5748. switch (action) {
  5749. case CPU_UP_PREPARE:
  5750. case CPU_UP_PREPARE_FROZEN:
  5751. case CPU_DOWN_PREPARE:
  5752. case CPU_DOWN_PREPARE_FROZEN:
  5753. detach_destroy_domains(&cpu_online_map);
  5754. return NOTIFY_OK;
  5755. case CPU_UP_CANCELED:
  5756. case CPU_UP_CANCELED_FROZEN:
  5757. case CPU_DOWN_FAILED:
  5758. case CPU_DOWN_FAILED_FROZEN:
  5759. case CPU_ONLINE:
  5760. case CPU_ONLINE_FROZEN:
  5761. case CPU_DEAD:
  5762. case CPU_DEAD_FROZEN:
  5763. /*
  5764. * Fall through and re-initialise the domains.
  5765. */
  5766. break;
  5767. default:
  5768. return NOTIFY_DONE;
  5769. }
  5770. /* The hotplug lock is already held by cpu_up/cpu_down */
  5771. arch_init_sched_domains(&cpu_online_map);
  5772. return NOTIFY_OK;
  5773. }
  5774. void __init sched_init_smp(void)
  5775. {
  5776. cpumask_t non_isolated_cpus;
  5777. mutex_lock(&sched_hotcpu_mutex);
  5778. arch_init_sched_domains(&cpu_online_map);
  5779. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5780. if (cpus_empty(non_isolated_cpus))
  5781. cpu_set(smp_processor_id(), non_isolated_cpus);
  5782. mutex_unlock(&sched_hotcpu_mutex);
  5783. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5784. hotcpu_notifier(update_sched_domains, 0);
  5785. /* Move init over to a non-isolated CPU */
  5786. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5787. BUG();
  5788. sched_init_granularity();
  5789. }
  5790. #else
  5791. void __init sched_init_smp(void)
  5792. {
  5793. sched_init_granularity();
  5794. }
  5795. #endif /* CONFIG_SMP */
  5796. int in_sched_functions(unsigned long addr)
  5797. {
  5798. return in_lock_functions(addr) ||
  5799. (addr >= (unsigned long)__sched_text_start
  5800. && addr < (unsigned long)__sched_text_end);
  5801. }
  5802. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5803. {
  5804. cfs_rq->tasks_timeline = RB_ROOT;
  5805. #ifdef CONFIG_FAIR_GROUP_SCHED
  5806. cfs_rq->rq = rq;
  5807. #endif
  5808. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5809. }
  5810. void __init sched_init(void)
  5811. {
  5812. int highest_cpu = 0;
  5813. int i, j;
  5814. for_each_possible_cpu(i) {
  5815. struct rt_prio_array *array;
  5816. struct rq *rq;
  5817. rq = cpu_rq(i);
  5818. spin_lock_init(&rq->lock);
  5819. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5820. rq->nr_running = 0;
  5821. rq->clock = 1;
  5822. init_cfs_rq(&rq->cfs, rq);
  5823. #ifdef CONFIG_FAIR_GROUP_SCHED
  5824. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5825. {
  5826. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5827. struct sched_entity *se =
  5828. &per_cpu(init_sched_entity, i);
  5829. init_cfs_rq_p[i] = cfs_rq;
  5830. init_cfs_rq(cfs_rq, rq);
  5831. cfs_rq->tg = &init_task_group;
  5832. list_add(&cfs_rq->leaf_cfs_rq_list,
  5833. &rq->leaf_cfs_rq_list);
  5834. init_sched_entity_p[i] = se;
  5835. se->cfs_rq = &rq->cfs;
  5836. se->my_q = cfs_rq;
  5837. se->load.weight = init_task_group_load;
  5838. se->load.inv_weight =
  5839. div64_64(1ULL<<32, init_task_group_load);
  5840. se->parent = NULL;
  5841. }
  5842. init_task_group.shares = init_task_group_load;
  5843. spin_lock_init(&init_task_group.lock);
  5844. #endif
  5845. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5846. rq->cpu_load[j] = 0;
  5847. #ifdef CONFIG_SMP
  5848. rq->sd = NULL;
  5849. rq->active_balance = 0;
  5850. rq->next_balance = jiffies;
  5851. rq->push_cpu = 0;
  5852. rq->cpu = i;
  5853. rq->migration_thread = NULL;
  5854. INIT_LIST_HEAD(&rq->migration_queue);
  5855. #endif
  5856. atomic_set(&rq->nr_iowait, 0);
  5857. array = &rq->rt.active;
  5858. for (j = 0; j < MAX_RT_PRIO; j++) {
  5859. INIT_LIST_HEAD(array->queue + j);
  5860. __clear_bit(j, array->bitmap);
  5861. }
  5862. highest_cpu = i;
  5863. /* delimiter for bitsearch: */
  5864. __set_bit(MAX_RT_PRIO, array->bitmap);
  5865. }
  5866. set_load_weight(&init_task);
  5867. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5868. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5869. #endif
  5870. #ifdef CONFIG_SMP
  5871. nr_cpu_ids = highest_cpu + 1;
  5872. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5873. #endif
  5874. #ifdef CONFIG_RT_MUTEXES
  5875. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5876. #endif
  5877. /*
  5878. * The boot idle thread does lazy MMU switching as well:
  5879. */
  5880. atomic_inc(&init_mm.mm_count);
  5881. enter_lazy_tlb(&init_mm, current);
  5882. /*
  5883. * Make us the idle thread. Technically, schedule() should not be
  5884. * called from this thread, however somewhere below it might be,
  5885. * but because we are the idle thread, we just pick up running again
  5886. * when this runqueue becomes "idle".
  5887. */
  5888. init_idle(current, smp_processor_id());
  5889. /*
  5890. * During early bootup we pretend to be a normal task:
  5891. */
  5892. current->sched_class = &fair_sched_class;
  5893. }
  5894. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5895. void __might_sleep(char *file, int line)
  5896. {
  5897. #ifdef in_atomic
  5898. static unsigned long prev_jiffy; /* ratelimiting */
  5899. if ((in_atomic() || irqs_disabled()) &&
  5900. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5901. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5902. return;
  5903. prev_jiffy = jiffies;
  5904. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5905. " context at %s:%d\n", file, line);
  5906. printk("in_atomic():%d, irqs_disabled():%d\n",
  5907. in_atomic(), irqs_disabled());
  5908. debug_show_held_locks(current);
  5909. if (irqs_disabled())
  5910. print_irqtrace_events(current);
  5911. dump_stack();
  5912. }
  5913. #endif
  5914. }
  5915. EXPORT_SYMBOL(__might_sleep);
  5916. #endif
  5917. #ifdef CONFIG_MAGIC_SYSRQ
  5918. static void normalize_task(struct rq *rq, struct task_struct *p)
  5919. {
  5920. int on_rq;
  5921. update_rq_clock(rq);
  5922. on_rq = p->se.on_rq;
  5923. if (on_rq)
  5924. deactivate_task(rq, p, 0);
  5925. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5926. if (on_rq) {
  5927. activate_task(rq, p, 0);
  5928. resched_task(rq->curr);
  5929. }
  5930. }
  5931. void normalize_rt_tasks(void)
  5932. {
  5933. struct task_struct *g, *p;
  5934. unsigned long flags;
  5935. struct rq *rq;
  5936. read_lock_irq(&tasklist_lock);
  5937. do_each_thread(g, p) {
  5938. /*
  5939. * Only normalize user tasks:
  5940. */
  5941. if (!p->mm)
  5942. continue;
  5943. p->se.exec_start = 0;
  5944. #ifdef CONFIG_SCHEDSTATS
  5945. p->se.wait_start = 0;
  5946. p->se.sleep_start = 0;
  5947. p->se.block_start = 0;
  5948. #endif
  5949. task_rq(p)->clock = 0;
  5950. if (!rt_task(p)) {
  5951. /*
  5952. * Renice negative nice level userspace
  5953. * tasks back to 0:
  5954. */
  5955. if (TASK_NICE(p) < 0 && p->mm)
  5956. set_user_nice(p, 0);
  5957. continue;
  5958. }
  5959. spin_lock_irqsave(&p->pi_lock, flags);
  5960. rq = __task_rq_lock(p);
  5961. normalize_task(rq, p);
  5962. __task_rq_unlock(rq);
  5963. spin_unlock_irqrestore(&p->pi_lock, flags);
  5964. } while_each_thread(g, p);
  5965. read_unlock_irq(&tasklist_lock);
  5966. }
  5967. #endif /* CONFIG_MAGIC_SYSRQ */
  5968. #ifdef CONFIG_IA64
  5969. /*
  5970. * These functions are only useful for the IA64 MCA handling.
  5971. *
  5972. * They can only be called when the whole system has been
  5973. * stopped - every CPU needs to be quiescent, and no scheduling
  5974. * activity can take place. Using them for anything else would
  5975. * be a serious bug, and as a result, they aren't even visible
  5976. * under any other configuration.
  5977. */
  5978. /**
  5979. * curr_task - return the current task for a given cpu.
  5980. * @cpu: the processor in question.
  5981. *
  5982. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5983. */
  5984. struct task_struct *curr_task(int cpu)
  5985. {
  5986. return cpu_curr(cpu);
  5987. }
  5988. /**
  5989. * set_curr_task - set the current task for a given cpu.
  5990. * @cpu: the processor in question.
  5991. * @p: the task pointer to set.
  5992. *
  5993. * Description: This function must only be used when non-maskable interrupts
  5994. * are serviced on a separate stack. It allows the architecture to switch the
  5995. * notion of the current task on a cpu in a non-blocking manner. This function
  5996. * must be called with all CPU's synchronized, and interrupts disabled, the
  5997. * and caller must save the original value of the current task (see
  5998. * curr_task() above) and restore that value before reenabling interrupts and
  5999. * re-starting the system.
  6000. *
  6001. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6002. */
  6003. void set_curr_task(int cpu, struct task_struct *p)
  6004. {
  6005. cpu_curr(cpu) = p;
  6006. }
  6007. #endif
  6008. #ifdef CONFIG_FAIR_GROUP_SCHED
  6009. /* allocate runqueue etc for a new task group */
  6010. struct task_group *sched_create_group(void)
  6011. {
  6012. struct task_group *tg;
  6013. struct cfs_rq *cfs_rq;
  6014. struct sched_entity *se;
  6015. struct rq *rq;
  6016. int i;
  6017. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6018. if (!tg)
  6019. return ERR_PTR(-ENOMEM);
  6020. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6021. if (!tg->cfs_rq)
  6022. goto err;
  6023. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6024. if (!tg->se)
  6025. goto err;
  6026. for_each_possible_cpu(i) {
  6027. rq = cpu_rq(i);
  6028. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6029. cpu_to_node(i));
  6030. if (!cfs_rq)
  6031. goto err;
  6032. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6033. cpu_to_node(i));
  6034. if (!se)
  6035. goto err;
  6036. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6037. memset(se, 0, sizeof(struct sched_entity));
  6038. tg->cfs_rq[i] = cfs_rq;
  6039. init_cfs_rq(cfs_rq, rq);
  6040. cfs_rq->tg = tg;
  6041. tg->se[i] = se;
  6042. se->cfs_rq = &rq->cfs;
  6043. se->my_q = cfs_rq;
  6044. se->load.weight = NICE_0_LOAD;
  6045. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6046. se->parent = NULL;
  6047. }
  6048. for_each_possible_cpu(i) {
  6049. rq = cpu_rq(i);
  6050. cfs_rq = tg->cfs_rq[i];
  6051. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6052. }
  6053. tg->shares = NICE_0_LOAD;
  6054. spin_lock_init(&tg->lock);
  6055. return tg;
  6056. err:
  6057. for_each_possible_cpu(i) {
  6058. if (tg->cfs_rq)
  6059. kfree(tg->cfs_rq[i]);
  6060. if (tg->se)
  6061. kfree(tg->se[i]);
  6062. }
  6063. kfree(tg->cfs_rq);
  6064. kfree(tg->se);
  6065. kfree(tg);
  6066. return ERR_PTR(-ENOMEM);
  6067. }
  6068. /* rcu callback to free various structures associated with a task group */
  6069. static void free_sched_group(struct rcu_head *rhp)
  6070. {
  6071. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6072. struct cfs_rq *cfs_rq;
  6073. struct sched_entity *se;
  6074. int i;
  6075. /* now it should be safe to free those cfs_rqs */
  6076. for_each_possible_cpu(i) {
  6077. cfs_rq = tg->cfs_rq[i];
  6078. kfree(cfs_rq);
  6079. se = tg->se[i];
  6080. kfree(se);
  6081. }
  6082. kfree(tg->cfs_rq);
  6083. kfree(tg->se);
  6084. kfree(tg);
  6085. }
  6086. /* Destroy runqueue etc associated with a task group */
  6087. void sched_destroy_group(struct task_group *tg)
  6088. {
  6089. struct cfs_rq *cfs_rq = NULL;
  6090. int i;
  6091. for_each_possible_cpu(i) {
  6092. cfs_rq = tg->cfs_rq[i];
  6093. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6094. }
  6095. BUG_ON(!cfs_rq);
  6096. /* wait for possible concurrent references to cfs_rqs complete */
  6097. call_rcu(&tg->rcu, free_sched_group);
  6098. }
  6099. /* change task's runqueue when it moves between groups.
  6100. * The caller of this function should have put the task in its new group
  6101. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6102. * reflect its new group.
  6103. */
  6104. void sched_move_task(struct task_struct *tsk)
  6105. {
  6106. int on_rq, running;
  6107. unsigned long flags;
  6108. struct rq *rq;
  6109. rq = task_rq_lock(tsk, &flags);
  6110. if (tsk->sched_class != &fair_sched_class) {
  6111. set_task_cfs_rq(tsk, task_cpu(tsk));
  6112. goto done;
  6113. }
  6114. update_rq_clock(rq);
  6115. running = task_running(rq, tsk);
  6116. on_rq = tsk->se.on_rq;
  6117. if (on_rq) {
  6118. dequeue_task(rq, tsk, 0);
  6119. if (unlikely(running))
  6120. tsk->sched_class->put_prev_task(rq, tsk);
  6121. }
  6122. set_task_cfs_rq(tsk, task_cpu(tsk));
  6123. if (on_rq) {
  6124. if (unlikely(running))
  6125. tsk->sched_class->set_curr_task(rq);
  6126. enqueue_task(rq, tsk, 0);
  6127. }
  6128. done:
  6129. task_rq_unlock(rq, &flags);
  6130. }
  6131. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6132. {
  6133. struct cfs_rq *cfs_rq = se->cfs_rq;
  6134. struct rq *rq = cfs_rq->rq;
  6135. int on_rq;
  6136. spin_lock_irq(&rq->lock);
  6137. on_rq = se->on_rq;
  6138. if (on_rq)
  6139. dequeue_entity(cfs_rq, se, 0);
  6140. se->load.weight = shares;
  6141. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6142. if (on_rq)
  6143. enqueue_entity(cfs_rq, se, 0);
  6144. spin_unlock_irq(&rq->lock);
  6145. }
  6146. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6147. {
  6148. int i;
  6149. spin_lock(&tg->lock);
  6150. if (tg->shares == shares)
  6151. goto done;
  6152. tg->shares = shares;
  6153. for_each_possible_cpu(i)
  6154. set_se_shares(tg->se[i], shares);
  6155. done:
  6156. spin_unlock(&tg->lock);
  6157. return 0;
  6158. }
  6159. unsigned long sched_group_shares(struct task_group *tg)
  6160. {
  6161. return tg->shares;
  6162. }
  6163. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6164. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6165. /* return corresponding task_group object of a cgroup */
  6166. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6167. {
  6168. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6169. struct task_group, css);
  6170. }
  6171. static struct cgroup_subsys_state *
  6172. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6173. {
  6174. struct task_group *tg;
  6175. if (!cgrp->parent) {
  6176. /* This is early initialization for the top cgroup */
  6177. init_task_group.css.cgroup = cgrp;
  6178. return &init_task_group.css;
  6179. }
  6180. /* we support only 1-level deep hierarchical scheduler atm */
  6181. if (cgrp->parent->parent)
  6182. return ERR_PTR(-EINVAL);
  6183. tg = sched_create_group();
  6184. if (IS_ERR(tg))
  6185. return ERR_PTR(-ENOMEM);
  6186. /* Bind the cgroup to task_group object we just created */
  6187. tg->css.cgroup = cgrp;
  6188. return &tg->css;
  6189. }
  6190. static void
  6191. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6192. {
  6193. struct task_group *tg = cgroup_tg(cgrp);
  6194. sched_destroy_group(tg);
  6195. }
  6196. static int
  6197. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6198. struct task_struct *tsk)
  6199. {
  6200. /* We don't support RT-tasks being in separate groups */
  6201. if (tsk->sched_class != &fair_sched_class)
  6202. return -EINVAL;
  6203. return 0;
  6204. }
  6205. static void
  6206. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6207. struct cgroup *old_cont, struct task_struct *tsk)
  6208. {
  6209. sched_move_task(tsk);
  6210. }
  6211. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6212. u64 shareval)
  6213. {
  6214. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6215. }
  6216. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6217. {
  6218. struct task_group *tg = cgroup_tg(cgrp);
  6219. return (u64) tg->shares;
  6220. }
  6221. static struct cftype cpu_files[] = {
  6222. {
  6223. .name = "shares",
  6224. .read_uint = cpu_shares_read_uint,
  6225. .write_uint = cpu_shares_write_uint,
  6226. },
  6227. };
  6228. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6229. {
  6230. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6231. }
  6232. struct cgroup_subsys cpu_cgroup_subsys = {
  6233. .name = "cpu",
  6234. .create = cpu_cgroup_create,
  6235. .destroy = cpu_cgroup_destroy,
  6236. .can_attach = cpu_cgroup_can_attach,
  6237. .attach = cpu_cgroup_attach,
  6238. .populate = cpu_cgroup_populate,
  6239. .subsys_id = cpu_cgroup_subsys_id,
  6240. .early_init = 1,
  6241. };
  6242. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6243. #ifdef CONFIG_CGROUP_CPUACCT
  6244. /*
  6245. * CPU accounting code for task groups.
  6246. *
  6247. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6248. * (balbir@in.ibm.com).
  6249. */
  6250. /* track cpu usage of a group of tasks */
  6251. struct cpuacct {
  6252. struct cgroup_subsys_state css;
  6253. /* cpuusage holds pointer to a u64-type object on every cpu */
  6254. u64 *cpuusage;
  6255. };
  6256. struct cgroup_subsys cpuacct_subsys;
  6257. /* return cpu accounting group corresponding to this container */
  6258. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6259. {
  6260. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6261. struct cpuacct, css);
  6262. }
  6263. /* return cpu accounting group to which this task belongs */
  6264. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6265. {
  6266. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6267. struct cpuacct, css);
  6268. }
  6269. /* create a new cpu accounting group */
  6270. static struct cgroup_subsys_state *cpuacct_create(
  6271. struct cgroup_subsys *ss, struct cgroup *cont)
  6272. {
  6273. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6274. if (!ca)
  6275. return ERR_PTR(-ENOMEM);
  6276. ca->cpuusage = alloc_percpu(u64);
  6277. if (!ca->cpuusage) {
  6278. kfree(ca);
  6279. return ERR_PTR(-ENOMEM);
  6280. }
  6281. return &ca->css;
  6282. }
  6283. /* destroy an existing cpu accounting group */
  6284. static void
  6285. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6286. {
  6287. struct cpuacct *ca = cgroup_ca(cont);
  6288. free_percpu(ca->cpuusage);
  6289. kfree(ca);
  6290. }
  6291. /* return total cpu usage (in nanoseconds) of a group */
  6292. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6293. {
  6294. struct cpuacct *ca = cgroup_ca(cont);
  6295. u64 totalcpuusage = 0;
  6296. int i;
  6297. for_each_possible_cpu(i) {
  6298. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6299. /*
  6300. * Take rq->lock to make 64-bit addition safe on 32-bit
  6301. * platforms.
  6302. */
  6303. spin_lock_irq(&cpu_rq(i)->lock);
  6304. totalcpuusage += *cpuusage;
  6305. spin_unlock_irq(&cpu_rq(i)->lock);
  6306. }
  6307. return totalcpuusage;
  6308. }
  6309. static struct cftype files[] = {
  6310. {
  6311. .name = "usage",
  6312. .read_uint = cpuusage_read,
  6313. },
  6314. };
  6315. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6316. {
  6317. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6318. }
  6319. /*
  6320. * charge this task's execution time to its accounting group.
  6321. *
  6322. * called with rq->lock held.
  6323. */
  6324. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6325. {
  6326. struct cpuacct *ca;
  6327. if (!cpuacct_subsys.active)
  6328. return;
  6329. ca = task_ca(tsk);
  6330. if (ca) {
  6331. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6332. *cpuusage += cputime;
  6333. }
  6334. }
  6335. struct cgroup_subsys cpuacct_subsys = {
  6336. .name = "cpuacct",
  6337. .create = cpuacct_create,
  6338. .destroy = cpuacct_destroy,
  6339. .populate = cpuacct_populate,
  6340. .subsys_id = cpuacct_subsys_id,
  6341. };
  6342. #endif /* CONFIG_CGROUP_CPUACCT */