ioctl.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/file.h>
  22. #include <linux/fs.h>
  23. #include <linux/fsnotify.h>
  24. #include <linux/pagemap.h>
  25. #include <linux/highmem.h>
  26. #include <linux/time.h>
  27. #include <linux/init.h>
  28. #include <linux/string.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/mount.h>
  31. #include <linux/mpage.h>
  32. #include <linux/namei.h>
  33. #include <linux/swap.h>
  34. #include <linux/writeback.h>
  35. #include <linux/statfs.h>
  36. #include <linux/compat.h>
  37. #include <linux/bit_spinlock.h>
  38. #include <linux/security.h>
  39. #include <linux/xattr.h>
  40. #include <linux/vmalloc.h>
  41. #include <linux/slab.h>
  42. #include "compat.h"
  43. #include "ctree.h"
  44. #include "disk-io.h"
  45. #include "transaction.h"
  46. #include "btrfs_inode.h"
  47. #include "ioctl.h"
  48. #include "print-tree.h"
  49. #include "volumes.h"
  50. #include "locking.h"
  51. /* Mask out flags that are inappropriate for the given type of inode. */
  52. static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
  53. {
  54. if (S_ISDIR(mode))
  55. return flags;
  56. else if (S_ISREG(mode))
  57. return flags & ~FS_DIRSYNC_FL;
  58. else
  59. return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
  60. }
  61. /*
  62. * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
  63. */
  64. static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
  65. {
  66. unsigned int iflags = 0;
  67. if (flags & BTRFS_INODE_SYNC)
  68. iflags |= FS_SYNC_FL;
  69. if (flags & BTRFS_INODE_IMMUTABLE)
  70. iflags |= FS_IMMUTABLE_FL;
  71. if (flags & BTRFS_INODE_APPEND)
  72. iflags |= FS_APPEND_FL;
  73. if (flags & BTRFS_INODE_NODUMP)
  74. iflags |= FS_NODUMP_FL;
  75. if (flags & BTRFS_INODE_NOATIME)
  76. iflags |= FS_NOATIME_FL;
  77. if (flags & BTRFS_INODE_DIRSYNC)
  78. iflags |= FS_DIRSYNC_FL;
  79. return iflags;
  80. }
  81. /*
  82. * Update inode->i_flags based on the btrfs internal flags.
  83. */
  84. void btrfs_update_iflags(struct inode *inode)
  85. {
  86. struct btrfs_inode *ip = BTRFS_I(inode);
  87. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  88. if (ip->flags & BTRFS_INODE_SYNC)
  89. inode->i_flags |= S_SYNC;
  90. if (ip->flags & BTRFS_INODE_IMMUTABLE)
  91. inode->i_flags |= S_IMMUTABLE;
  92. if (ip->flags & BTRFS_INODE_APPEND)
  93. inode->i_flags |= S_APPEND;
  94. if (ip->flags & BTRFS_INODE_NOATIME)
  95. inode->i_flags |= S_NOATIME;
  96. if (ip->flags & BTRFS_INODE_DIRSYNC)
  97. inode->i_flags |= S_DIRSYNC;
  98. }
  99. /*
  100. * Inherit flags from the parent inode.
  101. *
  102. * Unlike extN we don't have any flags we don't want to inherit currently.
  103. */
  104. void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
  105. {
  106. unsigned int flags;
  107. if (!dir)
  108. return;
  109. flags = BTRFS_I(dir)->flags;
  110. if (S_ISREG(inode->i_mode))
  111. flags &= ~BTRFS_INODE_DIRSYNC;
  112. else if (!S_ISDIR(inode->i_mode))
  113. flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
  114. BTRFS_I(inode)->flags = flags;
  115. btrfs_update_iflags(inode);
  116. }
  117. static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
  118. {
  119. struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
  120. unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
  121. if (copy_to_user(arg, &flags, sizeof(flags)))
  122. return -EFAULT;
  123. return 0;
  124. }
  125. static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
  126. {
  127. struct inode *inode = file->f_path.dentry->d_inode;
  128. struct btrfs_inode *ip = BTRFS_I(inode);
  129. struct btrfs_root *root = ip->root;
  130. struct btrfs_trans_handle *trans;
  131. unsigned int flags, oldflags;
  132. int ret;
  133. if (copy_from_user(&flags, arg, sizeof(flags)))
  134. return -EFAULT;
  135. if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
  136. FS_NOATIME_FL | FS_NODUMP_FL | \
  137. FS_SYNC_FL | FS_DIRSYNC_FL))
  138. return -EOPNOTSUPP;
  139. if (!is_owner_or_cap(inode))
  140. return -EACCES;
  141. mutex_lock(&inode->i_mutex);
  142. flags = btrfs_mask_flags(inode->i_mode, flags);
  143. oldflags = btrfs_flags_to_ioctl(ip->flags);
  144. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  145. if (!capable(CAP_LINUX_IMMUTABLE)) {
  146. ret = -EPERM;
  147. goto out_unlock;
  148. }
  149. }
  150. ret = mnt_want_write(file->f_path.mnt);
  151. if (ret)
  152. goto out_unlock;
  153. if (flags & FS_SYNC_FL)
  154. ip->flags |= BTRFS_INODE_SYNC;
  155. else
  156. ip->flags &= ~BTRFS_INODE_SYNC;
  157. if (flags & FS_IMMUTABLE_FL)
  158. ip->flags |= BTRFS_INODE_IMMUTABLE;
  159. else
  160. ip->flags &= ~BTRFS_INODE_IMMUTABLE;
  161. if (flags & FS_APPEND_FL)
  162. ip->flags |= BTRFS_INODE_APPEND;
  163. else
  164. ip->flags &= ~BTRFS_INODE_APPEND;
  165. if (flags & FS_NODUMP_FL)
  166. ip->flags |= BTRFS_INODE_NODUMP;
  167. else
  168. ip->flags &= ~BTRFS_INODE_NODUMP;
  169. if (flags & FS_NOATIME_FL)
  170. ip->flags |= BTRFS_INODE_NOATIME;
  171. else
  172. ip->flags &= ~BTRFS_INODE_NOATIME;
  173. if (flags & FS_DIRSYNC_FL)
  174. ip->flags |= BTRFS_INODE_DIRSYNC;
  175. else
  176. ip->flags &= ~BTRFS_INODE_DIRSYNC;
  177. trans = btrfs_join_transaction(root, 1);
  178. BUG_ON(!trans);
  179. ret = btrfs_update_inode(trans, root, inode);
  180. BUG_ON(ret);
  181. btrfs_update_iflags(inode);
  182. inode->i_ctime = CURRENT_TIME;
  183. btrfs_end_transaction(trans, root);
  184. mnt_drop_write(file->f_path.mnt);
  185. out_unlock:
  186. mutex_unlock(&inode->i_mutex);
  187. return 0;
  188. }
  189. static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
  190. {
  191. struct inode *inode = file->f_path.dentry->d_inode;
  192. return put_user(inode->i_generation, arg);
  193. }
  194. static noinline int create_subvol(struct btrfs_root *root,
  195. struct dentry *dentry,
  196. char *name, int namelen,
  197. u64 *async_transid)
  198. {
  199. struct btrfs_trans_handle *trans;
  200. struct btrfs_key key;
  201. struct btrfs_root_item root_item;
  202. struct btrfs_inode_item *inode_item;
  203. struct extent_buffer *leaf;
  204. struct btrfs_root *new_root;
  205. struct dentry *parent = dget_parent(dentry);
  206. struct inode *dir;
  207. int ret;
  208. int err;
  209. u64 objectid;
  210. u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
  211. u64 index = 0;
  212. ret = btrfs_find_free_objectid(NULL, root->fs_info->tree_root,
  213. 0, &objectid);
  214. if (ret) {
  215. dput(parent);
  216. return ret;
  217. }
  218. dir = parent->d_inode;
  219. /*
  220. * 1 - inode item
  221. * 2 - refs
  222. * 1 - root item
  223. * 2 - dir items
  224. */
  225. trans = btrfs_start_transaction(root, 6);
  226. if (IS_ERR(trans)) {
  227. dput(parent);
  228. return PTR_ERR(trans);
  229. }
  230. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  231. 0, objectid, NULL, 0, 0, 0);
  232. if (IS_ERR(leaf)) {
  233. ret = PTR_ERR(leaf);
  234. goto fail;
  235. }
  236. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  237. btrfs_set_header_bytenr(leaf, leaf->start);
  238. btrfs_set_header_generation(leaf, trans->transid);
  239. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  240. btrfs_set_header_owner(leaf, objectid);
  241. write_extent_buffer(leaf, root->fs_info->fsid,
  242. (unsigned long)btrfs_header_fsid(leaf),
  243. BTRFS_FSID_SIZE);
  244. write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
  245. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  246. BTRFS_UUID_SIZE);
  247. btrfs_mark_buffer_dirty(leaf);
  248. inode_item = &root_item.inode;
  249. memset(inode_item, 0, sizeof(*inode_item));
  250. inode_item->generation = cpu_to_le64(1);
  251. inode_item->size = cpu_to_le64(3);
  252. inode_item->nlink = cpu_to_le32(1);
  253. inode_item->nbytes = cpu_to_le64(root->leafsize);
  254. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  255. btrfs_set_root_bytenr(&root_item, leaf->start);
  256. btrfs_set_root_generation(&root_item, trans->transid);
  257. btrfs_set_root_level(&root_item, 0);
  258. btrfs_set_root_refs(&root_item, 1);
  259. btrfs_set_root_used(&root_item, leaf->len);
  260. btrfs_set_root_last_snapshot(&root_item, 0);
  261. memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
  262. root_item.drop_level = 0;
  263. btrfs_tree_unlock(leaf);
  264. free_extent_buffer(leaf);
  265. leaf = NULL;
  266. btrfs_set_root_dirid(&root_item, new_dirid);
  267. key.objectid = objectid;
  268. key.offset = 0;
  269. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  270. ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
  271. &root_item);
  272. if (ret)
  273. goto fail;
  274. key.offset = (u64)-1;
  275. new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
  276. BUG_ON(IS_ERR(new_root));
  277. btrfs_record_root_in_trans(trans, new_root);
  278. ret = btrfs_create_subvol_root(trans, new_root, new_dirid,
  279. BTRFS_I(dir)->block_group);
  280. /*
  281. * insert the directory item
  282. */
  283. ret = btrfs_set_inode_index(dir, &index);
  284. BUG_ON(ret);
  285. ret = btrfs_insert_dir_item(trans, root,
  286. name, namelen, dir->i_ino, &key,
  287. BTRFS_FT_DIR, index);
  288. if (ret)
  289. goto fail;
  290. btrfs_i_size_write(dir, dir->i_size + namelen * 2);
  291. ret = btrfs_update_inode(trans, root, dir);
  292. BUG_ON(ret);
  293. ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
  294. objectid, root->root_key.objectid,
  295. dir->i_ino, index, name, namelen);
  296. BUG_ON(ret);
  297. d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
  298. fail:
  299. dput(parent);
  300. if (async_transid) {
  301. *async_transid = trans->transid;
  302. err = btrfs_commit_transaction_async(trans, root, 1);
  303. } else {
  304. err = btrfs_commit_transaction(trans, root);
  305. }
  306. if (err && !ret)
  307. ret = err;
  308. return ret;
  309. }
  310. static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
  311. char *name, int namelen, u64 *async_transid)
  312. {
  313. struct inode *inode;
  314. struct dentry *parent;
  315. struct btrfs_pending_snapshot *pending_snapshot;
  316. struct btrfs_trans_handle *trans;
  317. int ret;
  318. if (!root->ref_cows)
  319. return -EINVAL;
  320. pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
  321. if (!pending_snapshot)
  322. return -ENOMEM;
  323. btrfs_init_block_rsv(&pending_snapshot->block_rsv);
  324. pending_snapshot->dentry = dentry;
  325. pending_snapshot->root = root;
  326. trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
  327. if (IS_ERR(trans)) {
  328. ret = PTR_ERR(trans);
  329. goto fail;
  330. }
  331. ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
  332. BUG_ON(ret);
  333. list_add(&pending_snapshot->list,
  334. &trans->transaction->pending_snapshots);
  335. if (async_transid) {
  336. *async_transid = trans->transid;
  337. ret = btrfs_commit_transaction_async(trans,
  338. root->fs_info->extent_root, 1);
  339. } else {
  340. ret = btrfs_commit_transaction(trans,
  341. root->fs_info->extent_root);
  342. }
  343. BUG_ON(ret);
  344. ret = pending_snapshot->error;
  345. if (ret)
  346. goto fail;
  347. btrfs_orphan_cleanup(pending_snapshot->snap);
  348. parent = dget_parent(dentry);
  349. inode = btrfs_lookup_dentry(parent->d_inode, dentry);
  350. dput(parent);
  351. if (IS_ERR(inode)) {
  352. ret = PTR_ERR(inode);
  353. goto fail;
  354. }
  355. BUG_ON(!inode);
  356. d_instantiate(dentry, inode);
  357. ret = 0;
  358. fail:
  359. kfree(pending_snapshot);
  360. return ret;
  361. }
  362. /* copy of check_sticky in fs/namei.c()
  363. * It's inline, so penalty for filesystems that don't use sticky bit is
  364. * minimal.
  365. */
  366. static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
  367. {
  368. uid_t fsuid = current_fsuid();
  369. if (!(dir->i_mode & S_ISVTX))
  370. return 0;
  371. if (inode->i_uid == fsuid)
  372. return 0;
  373. if (dir->i_uid == fsuid)
  374. return 0;
  375. return !capable(CAP_FOWNER);
  376. }
  377. /* copy of may_delete in fs/namei.c()
  378. * Check whether we can remove a link victim from directory dir, check
  379. * whether the type of victim is right.
  380. * 1. We can't do it if dir is read-only (done in permission())
  381. * 2. We should have write and exec permissions on dir
  382. * 3. We can't remove anything from append-only dir
  383. * 4. We can't do anything with immutable dir (done in permission())
  384. * 5. If the sticky bit on dir is set we should either
  385. * a. be owner of dir, or
  386. * b. be owner of victim, or
  387. * c. have CAP_FOWNER capability
  388. * 6. If the victim is append-only or immutable we can't do antyhing with
  389. * links pointing to it.
  390. * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
  391. * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
  392. * 9. We can't remove a root or mountpoint.
  393. * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
  394. * nfs_async_unlink().
  395. */
  396. static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
  397. {
  398. int error;
  399. if (!victim->d_inode)
  400. return -ENOENT;
  401. BUG_ON(victim->d_parent->d_inode != dir);
  402. audit_inode_child(victim, dir);
  403. error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
  404. if (error)
  405. return error;
  406. if (IS_APPEND(dir))
  407. return -EPERM;
  408. if (btrfs_check_sticky(dir, victim->d_inode)||
  409. IS_APPEND(victim->d_inode)||
  410. IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
  411. return -EPERM;
  412. if (isdir) {
  413. if (!S_ISDIR(victim->d_inode->i_mode))
  414. return -ENOTDIR;
  415. if (IS_ROOT(victim))
  416. return -EBUSY;
  417. } else if (S_ISDIR(victim->d_inode->i_mode))
  418. return -EISDIR;
  419. if (IS_DEADDIR(dir))
  420. return -ENOENT;
  421. if (victim->d_flags & DCACHE_NFSFS_RENAMED)
  422. return -EBUSY;
  423. return 0;
  424. }
  425. /* copy of may_create in fs/namei.c() */
  426. static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
  427. {
  428. if (child->d_inode)
  429. return -EEXIST;
  430. if (IS_DEADDIR(dir))
  431. return -ENOENT;
  432. return inode_permission(dir, MAY_WRITE | MAY_EXEC);
  433. }
  434. /*
  435. * Create a new subvolume below @parent. This is largely modeled after
  436. * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
  437. * inside this filesystem so it's quite a bit simpler.
  438. */
  439. static noinline int btrfs_mksubvol(struct path *parent,
  440. char *name, int namelen,
  441. struct btrfs_root *snap_src,
  442. u64 *async_transid)
  443. {
  444. struct inode *dir = parent->dentry->d_inode;
  445. struct dentry *dentry;
  446. int error;
  447. mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
  448. dentry = lookup_one_len(name, parent->dentry, namelen);
  449. error = PTR_ERR(dentry);
  450. if (IS_ERR(dentry))
  451. goto out_unlock;
  452. error = -EEXIST;
  453. if (dentry->d_inode)
  454. goto out_dput;
  455. error = mnt_want_write(parent->mnt);
  456. if (error)
  457. goto out_dput;
  458. error = btrfs_may_create(dir, dentry);
  459. if (error)
  460. goto out_drop_write;
  461. down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
  462. if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
  463. goto out_up_read;
  464. if (snap_src) {
  465. error = create_snapshot(snap_src, dentry,
  466. name, namelen, async_transid);
  467. } else {
  468. error = create_subvol(BTRFS_I(dir)->root, dentry,
  469. name, namelen, async_transid);
  470. }
  471. if (!error)
  472. fsnotify_mkdir(dir, dentry);
  473. out_up_read:
  474. up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
  475. out_drop_write:
  476. mnt_drop_write(parent->mnt);
  477. out_dput:
  478. dput(dentry);
  479. out_unlock:
  480. mutex_unlock(&dir->i_mutex);
  481. return error;
  482. }
  483. static int should_defrag_range(struct inode *inode, u64 start, u64 len,
  484. int thresh, u64 *last_len, u64 *skip,
  485. u64 *defrag_end)
  486. {
  487. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  488. struct extent_map *em = NULL;
  489. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  490. int ret = 1;
  491. if (thresh == 0)
  492. thresh = 256 * 1024;
  493. /*
  494. * make sure that once we start defragging and extent, we keep on
  495. * defragging it
  496. */
  497. if (start < *defrag_end)
  498. return 1;
  499. *skip = 0;
  500. /*
  501. * hopefully we have this extent in the tree already, try without
  502. * the full extent lock
  503. */
  504. read_lock(&em_tree->lock);
  505. em = lookup_extent_mapping(em_tree, start, len);
  506. read_unlock(&em_tree->lock);
  507. if (!em) {
  508. /* get the big lock and read metadata off disk */
  509. lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
  510. em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
  511. unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
  512. if (IS_ERR(em))
  513. return 0;
  514. }
  515. /* this will cover holes, and inline extents */
  516. if (em->block_start >= EXTENT_MAP_LAST_BYTE)
  517. ret = 0;
  518. /*
  519. * we hit a real extent, if it is big don't bother defragging it again
  520. */
  521. if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
  522. ret = 0;
  523. /*
  524. * last_len ends up being a counter of how many bytes we've defragged.
  525. * every time we choose not to defrag an extent, we reset *last_len
  526. * so that the next tiny extent will force a defrag.
  527. *
  528. * The end result of this is that tiny extents before a single big
  529. * extent will force at least part of that big extent to be defragged.
  530. */
  531. if (ret) {
  532. *last_len += len;
  533. *defrag_end = extent_map_end(em);
  534. } else {
  535. *last_len = 0;
  536. *skip = extent_map_end(em);
  537. *defrag_end = 0;
  538. }
  539. free_extent_map(em);
  540. return ret;
  541. }
  542. static int btrfs_defrag_file(struct file *file,
  543. struct btrfs_ioctl_defrag_range_args *range)
  544. {
  545. struct inode *inode = fdentry(file)->d_inode;
  546. struct btrfs_root *root = BTRFS_I(inode)->root;
  547. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  548. struct btrfs_ordered_extent *ordered;
  549. struct page *page;
  550. unsigned long last_index;
  551. unsigned long ra_pages = root->fs_info->bdi.ra_pages;
  552. unsigned long total_read = 0;
  553. u64 page_start;
  554. u64 page_end;
  555. u64 last_len = 0;
  556. u64 skip = 0;
  557. u64 defrag_end = 0;
  558. unsigned long i;
  559. int ret;
  560. if (inode->i_size == 0)
  561. return 0;
  562. if (range->start + range->len > range->start) {
  563. last_index = min_t(u64, inode->i_size - 1,
  564. range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
  565. } else {
  566. last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
  567. }
  568. i = range->start >> PAGE_CACHE_SHIFT;
  569. while (i <= last_index) {
  570. if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
  571. PAGE_CACHE_SIZE,
  572. range->extent_thresh,
  573. &last_len, &skip,
  574. &defrag_end)) {
  575. unsigned long next;
  576. /*
  577. * the should_defrag function tells us how much to skip
  578. * bump our counter by the suggested amount
  579. */
  580. next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  581. i = max(i + 1, next);
  582. continue;
  583. }
  584. if (total_read % ra_pages == 0) {
  585. btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i,
  586. min(last_index, i + ra_pages - 1));
  587. }
  588. total_read++;
  589. mutex_lock(&inode->i_mutex);
  590. if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
  591. BTRFS_I(inode)->force_compress = 1;
  592. ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
  593. if (ret)
  594. goto err_unlock;
  595. again:
  596. if (inode->i_size == 0 ||
  597. i > ((inode->i_size - 1) >> PAGE_CACHE_SHIFT)) {
  598. ret = 0;
  599. goto err_reservations;
  600. }
  601. page = grab_cache_page(inode->i_mapping, i);
  602. if (!page) {
  603. ret = -ENOMEM;
  604. goto err_reservations;
  605. }
  606. if (!PageUptodate(page)) {
  607. btrfs_readpage(NULL, page);
  608. lock_page(page);
  609. if (!PageUptodate(page)) {
  610. unlock_page(page);
  611. page_cache_release(page);
  612. ret = -EIO;
  613. goto err_reservations;
  614. }
  615. }
  616. if (page->mapping != inode->i_mapping) {
  617. unlock_page(page);
  618. page_cache_release(page);
  619. goto again;
  620. }
  621. wait_on_page_writeback(page);
  622. if (PageDirty(page)) {
  623. btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
  624. goto loop_unlock;
  625. }
  626. page_start = (u64)page->index << PAGE_CACHE_SHIFT;
  627. page_end = page_start + PAGE_CACHE_SIZE - 1;
  628. lock_extent(io_tree, page_start, page_end, GFP_NOFS);
  629. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  630. if (ordered) {
  631. unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
  632. unlock_page(page);
  633. page_cache_release(page);
  634. btrfs_start_ordered_extent(inode, ordered, 1);
  635. btrfs_put_ordered_extent(ordered);
  636. goto again;
  637. }
  638. set_page_extent_mapped(page);
  639. /*
  640. * this makes sure page_mkwrite is called on the
  641. * page if it is dirtied again later
  642. */
  643. clear_page_dirty_for_io(page);
  644. clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start,
  645. page_end, EXTENT_DIRTY | EXTENT_DELALLOC |
  646. EXTENT_DO_ACCOUNTING, GFP_NOFS);
  647. btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
  648. ClearPageChecked(page);
  649. set_page_dirty(page);
  650. unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
  651. loop_unlock:
  652. unlock_page(page);
  653. page_cache_release(page);
  654. mutex_unlock(&inode->i_mutex);
  655. balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1);
  656. i++;
  657. }
  658. if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
  659. filemap_flush(inode->i_mapping);
  660. if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
  661. /* the filemap_flush will queue IO into the worker threads, but
  662. * we have to make sure the IO is actually started and that
  663. * ordered extents get created before we return
  664. */
  665. atomic_inc(&root->fs_info->async_submit_draining);
  666. while (atomic_read(&root->fs_info->nr_async_submits) ||
  667. atomic_read(&root->fs_info->async_delalloc_pages)) {
  668. wait_event(root->fs_info->async_submit_wait,
  669. (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
  670. atomic_read(&root->fs_info->async_delalloc_pages) == 0));
  671. }
  672. atomic_dec(&root->fs_info->async_submit_draining);
  673. mutex_lock(&inode->i_mutex);
  674. BTRFS_I(inode)->force_compress = 0;
  675. mutex_unlock(&inode->i_mutex);
  676. }
  677. return 0;
  678. err_reservations:
  679. btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
  680. err_unlock:
  681. mutex_unlock(&inode->i_mutex);
  682. return ret;
  683. }
  684. static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
  685. void __user *arg)
  686. {
  687. u64 new_size;
  688. u64 old_size;
  689. u64 devid = 1;
  690. struct btrfs_ioctl_vol_args *vol_args;
  691. struct btrfs_trans_handle *trans;
  692. struct btrfs_device *device = NULL;
  693. char *sizestr;
  694. char *devstr = NULL;
  695. int ret = 0;
  696. int mod = 0;
  697. if (root->fs_info->sb->s_flags & MS_RDONLY)
  698. return -EROFS;
  699. if (!capable(CAP_SYS_ADMIN))
  700. return -EPERM;
  701. vol_args = memdup_user(arg, sizeof(*vol_args));
  702. if (IS_ERR(vol_args))
  703. return PTR_ERR(vol_args);
  704. vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
  705. mutex_lock(&root->fs_info->volume_mutex);
  706. sizestr = vol_args->name;
  707. devstr = strchr(sizestr, ':');
  708. if (devstr) {
  709. char *end;
  710. sizestr = devstr + 1;
  711. *devstr = '\0';
  712. devstr = vol_args->name;
  713. devid = simple_strtoull(devstr, &end, 10);
  714. printk(KERN_INFO "resizing devid %llu\n",
  715. (unsigned long long)devid);
  716. }
  717. device = btrfs_find_device(root, devid, NULL, NULL);
  718. if (!device) {
  719. printk(KERN_INFO "resizer unable to find device %llu\n",
  720. (unsigned long long)devid);
  721. ret = -EINVAL;
  722. goto out_unlock;
  723. }
  724. if (!strcmp(sizestr, "max"))
  725. new_size = device->bdev->bd_inode->i_size;
  726. else {
  727. if (sizestr[0] == '-') {
  728. mod = -1;
  729. sizestr++;
  730. } else if (sizestr[0] == '+') {
  731. mod = 1;
  732. sizestr++;
  733. }
  734. new_size = memparse(sizestr, NULL);
  735. if (new_size == 0) {
  736. ret = -EINVAL;
  737. goto out_unlock;
  738. }
  739. }
  740. old_size = device->total_bytes;
  741. if (mod < 0) {
  742. if (new_size > old_size) {
  743. ret = -EINVAL;
  744. goto out_unlock;
  745. }
  746. new_size = old_size - new_size;
  747. } else if (mod > 0) {
  748. new_size = old_size + new_size;
  749. }
  750. if (new_size < 256 * 1024 * 1024) {
  751. ret = -EINVAL;
  752. goto out_unlock;
  753. }
  754. if (new_size > device->bdev->bd_inode->i_size) {
  755. ret = -EFBIG;
  756. goto out_unlock;
  757. }
  758. do_div(new_size, root->sectorsize);
  759. new_size *= root->sectorsize;
  760. printk(KERN_INFO "new size for %s is %llu\n",
  761. device->name, (unsigned long long)new_size);
  762. if (new_size > old_size) {
  763. trans = btrfs_start_transaction(root, 0);
  764. ret = btrfs_grow_device(trans, device, new_size);
  765. btrfs_commit_transaction(trans, root);
  766. } else {
  767. ret = btrfs_shrink_device(device, new_size);
  768. }
  769. out_unlock:
  770. mutex_unlock(&root->fs_info->volume_mutex);
  771. kfree(vol_args);
  772. return ret;
  773. }
  774. static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
  775. char *name,
  776. unsigned long fd,
  777. int subvol,
  778. u64 *transid)
  779. {
  780. struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
  781. struct file *src_file;
  782. int namelen;
  783. int ret = 0;
  784. if (root->fs_info->sb->s_flags & MS_RDONLY)
  785. return -EROFS;
  786. namelen = strlen(name);
  787. if (strchr(name, '/')) {
  788. ret = -EINVAL;
  789. goto out;
  790. }
  791. if (subvol) {
  792. ret = btrfs_mksubvol(&file->f_path, name, namelen,
  793. NULL, transid);
  794. } else {
  795. struct inode *src_inode;
  796. src_file = fget(fd);
  797. if (!src_file) {
  798. ret = -EINVAL;
  799. goto out;
  800. }
  801. src_inode = src_file->f_path.dentry->d_inode;
  802. if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
  803. printk(KERN_INFO "btrfs: Snapshot src from "
  804. "another FS\n");
  805. ret = -EINVAL;
  806. fput(src_file);
  807. goto out;
  808. }
  809. ret = btrfs_mksubvol(&file->f_path, name, namelen,
  810. BTRFS_I(src_inode)->root,
  811. transid);
  812. fput(src_file);
  813. }
  814. out:
  815. return ret;
  816. }
  817. static noinline int btrfs_ioctl_snap_create(struct file *file,
  818. void __user *arg, int subvol)
  819. {
  820. struct btrfs_ioctl_vol_args *vol_args;
  821. int ret;
  822. vol_args = memdup_user(arg, sizeof(*vol_args));
  823. if (IS_ERR(vol_args))
  824. return PTR_ERR(vol_args);
  825. vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
  826. ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
  827. vol_args->fd, subvol, NULL);
  828. kfree(vol_args);
  829. return ret;
  830. }
  831. static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
  832. void __user *arg, int subvol)
  833. {
  834. struct btrfs_ioctl_vol_args_v2 *vol_args;
  835. int ret;
  836. u64 transid = 0;
  837. u64 *ptr = NULL;
  838. vol_args = memdup_user(arg, sizeof(*vol_args));
  839. if (IS_ERR(vol_args))
  840. return PTR_ERR(vol_args);
  841. vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
  842. if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ASYNC) {
  843. ret = -EINVAL;
  844. goto out;
  845. }
  846. if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
  847. ptr = &transid;
  848. ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
  849. vol_args->fd, subvol, ptr);
  850. if (ret == 0 && ptr &&
  851. copy_to_user(arg +
  852. offsetof(struct btrfs_ioctl_vol_args_v2,
  853. transid), ptr, sizeof(*ptr)))
  854. ret = -EFAULT;
  855. out:
  856. kfree(vol_args);
  857. return ret;
  858. }
  859. /*
  860. * helper to check if the subvolume references other subvolumes
  861. */
  862. static noinline int may_destroy_subvol(struct btrfs_root *root)
  863. {
  864. struct btrfs_path *path;
  865. struct btrfs_key key;
  866. int ret;
  867. path = btrfs_alloc_path();
  868. if (!path)
  869. return -ENOMEM;
  870. key.objectid = root->root_key.objectid;
  871. key.type = BTRFS_ROOT_REF_KEY;
  872. key.offset = (u64)-1;
  873. ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
  874. &key, path, 0, 0);
  875. if (ret < 0)
  876. goto out;
  877. BUG_ON(ret == 0);
  878. ret = 0;
  879. if (path->slots[0] > 0) {
  880. path->slots[0]--;
  881. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  882. if (key.objectid == root->root_key.objectid &&
  883. key.type == BTRFS_ROOT_REF_KEY)
  884. ret = -ENOTEMPTY;
  885. }
  886. out:
  887. btrfs_free_path(path);
  888. return ret;
  889. }
  890. static noinline int key_in_sk(struct btrfs_key *key,
  891. struct btrfs_ioctl_search_key *sk)
  892. {
  893. struct btrfs_key test;
  894. int ret;
  895. test.objectid = sk->min_objectid;
  896. test.type = sk->min_type;
  897. test.offset = sk->min_offset;
  898. ret = btrfs_comp_cpu_keys(key, &test);
  899. if (ret < 0)
  900. return 0;
  901. test.objectid = sk->max_objectid;
  902. test.type = sk->max_type;
  903. test.offset = sk->max_offset;
  904. ret = btrfs_comp_cpu_keys(key, &test);
  905. if (ret > 0)
  906. return 0;
  907. return 1;
  908. }
  909. static noinline int copy_to_sk(struct btrfs_root *root,
  910. struct btrfs_path *path,
  911. struct btrfs_key *key,
  912. struct btrfs_ioctl_search_key *sk,
  913. char *buf,
  914. unsigned long *sk_offset,
  915. int *num_found)
  916. {
  917. u64 found_transid;
  918. struct extent_buffer *leaf;
  919. struct btrfs_ioctl_search_header sh;
  920. unsigned long item_off;
  921. unsigned long item_len;
  922. int nritems;
  923. int i;
  924. int slot;
  925. int found = 0;
  926. int ret = 0;
  927. leaf = path->nodes[0];
  928. slot = path->slots[0];
  929. nritems = btrfs_header_nritems(leaf);
  930. if (btrfs_header_generation(leaf) > sk->max_transid) {
  931. i = nritems;
  932. goto advance_key;
  933. }
  934. found_transid = btrfs_header_generation(leaf);
  935. for (i = slot; i < nritems; i++) {
  936. item_off = btrfs_item_ptr_offset(leaf, i);
  937. item_len = btrfs_item_size_nr(leaf, i);
  938. if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
  939. item_len = 0;
  940. if (sizeof(sh) + item_len + *sk_offset >
  941. BTRFS_SEARCH_ARGS_BUFSIZE) {
  942. ret = 1;
  943. goto overflow;
  944. }
  945. btrfs_item_key_to_cpu(leaf, key, i);
  946. if (!key_in_sk(key, sk))
  947. continue;
  948. sh.objectid = key->objectid;
  949. sh.offset = key->offset;
  950. sh.type = key->type;
  951. sh.len = item_len;
  952. sh.transid = found_transid;
  953. /* copy search result header */
  954. memcpy(buf + *sk_offset, &sh, sizeof(sh));
  955. *sk_offset += sizeof(sh);
  956. if (item_len) {
  957. char *p = buf + *sk_offset;
  958. /* copy the item */
  959. read_extent_buffer(leaf, p,
  960. item_off, item_len);
  961. *sk_offset += item_len;
  962. }
  963. found++;
  964. if (*num_found >= sk->nr_items)
  965. break;
  966. }
  967. advance_key:
  968. ret = 0;
  969. if (key->offset < (u64)-1 && key->offset < sk->max_offset)
  970. key->offset++;
  971. else if (key->type < (u8)-1 && key->type < sk->max_type) {
  972. key->offset = 0;
  973. key->type++;
  974. } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
  975. key->offset = 0;
  976. key->type = 0;
  977. key->objectid++;
  978. } else
  979. ret = 1;
  980. overflow:
  981. *num_found += found;
  982. return ret;
  983. }
  984. static noinline int search_ioctl(struct inode *inode,
  985. struct btrfs_ioctl_search_args *args)
  986. {
  987. struct btrfs_root *root;
  988. struct btrfs_key key;
  989. struct btrfs_key max_key;
  990. struct btrfs_path *path;
  991. struct btrfs_ioctl_search_key *sk = &args->key;
  992. struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
  993. int ret;
  994. int num_found = 0;
  995. unsigned long sk_offset = 0;
  996. path = btrfs_alloc_path();
  997. if (!path)
  998. return -ENOMEM;
  999. if (sk->tree_id == 0) {
  1000. /* search the root of the inode that was passed */
  1001. root = BTRFS_I(inode)->root;
  1002. } else {
  1003. key.objectid = sk->tree_id;
  1004. key.type = BTRFS_ROOT_ITEM_KEY;
  1005. key.offset = (u64)-1;
  1006. root = btrfs_read_fs_root_no_name(info, &key);
  1007. if (IS_ERR(root)) {
  1008. printk(KERN_ERR "could not find root %llu\n",
  1009. sk->tree_id);
  1010. btrfs_free_path(path);
  1011. return -ENOENT;
  1012. }
  1013. }
  1014. key.objectid = sk->min_objectid;
  1015. key.type = sk->min_type;
  1016. key.offset = sk->min_offset;
  1017. max_key.objectid = sk->max_objectid;
  1018. max_key.type = sk->max_type;
  1019. max_key.offset = sk->max_offset;
  1020. path->keep_locks = 1;
  1021. while(1) {
  1022. ret = btrfs_search_forward(root, &key, &max_key, path, 0,
  1023. sk->min_transid);
  1024. if (ret != 0) {
  1025. if (ret > 0)
  1026. ret = 0;
  1027. goto err;
  1028. }
  1029. ret = copy_to_sk(root, path, &key, sk, args->buf,
  1030. &sk_offset, &num_found);
  1031. btrfs_release_path(root, path);
  1032. if (ret || num_found >= sk->nr_items)
  1033. break;
  1034. }
  1035. ret = 0;
  1036. err:
  1037. sk->nr_items = num_found;
  1038. btrfs_free_path(path);
  1039. return ret;
  1040. }
  1041. static noinline int btrfs_ioctl_tree_search(struct file *file,
  1042. void __user *argp)
  1043. {
  1044. struct btrfs_ioctl_search_args *args;
  1045. struct inode *inode;
  1046. int ret;
  1047. if (!capable(CAP_SYS_ADMIN))
  1048. return -EPERM;
  1049. args = memdup_user(argp, sizeof(*args));
  1050. if (IS_ERR(args))
  1051. return PTR_ERR(args);
  1052. inode = fdentry(file)->d_inode;
  1053. ret = search_ioctl(inode, args);
  1054. if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
  1055. ret = -EFAULT;
  1056. kfree(args);
  1057. return ret;
  1058. }
  1059. /*
  1060. * Search INODE_REFs to identify path name of 'dirid' directory
  1061. * in a 'tree_id' tree. and sets path name to 'name'.
  1062. */
  1063. static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
  1064. u64 tree_id, u64 dirid, char *name)
  1065. {
  1066. struct btrfs_root *root;
  1067. struct btrfs_key key;
  1068. char *ptr;
  1069. int ret = -1;
  1070. int slot;
  1071. int len;
  1072. int total_len = 0;
  1073. struct btrfs_inode_ref *iref;
  1074. struct extent_buffer *l;
  1075. struct btrfs_path *path;
  1076. if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
  1077. name[0]='\0';
  1078. return 0;
  1079. }
  1080. path = btrfs_alloc_path();
  1081. if (!path)
  1082. return -ENOMEM;
  1083. ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
  1084. key.objectid = tree_id;
  1085. key.type = BTRFS_ROOT_ITEM_KEY;
  1086. key.offset = (u64)-1;
  1087. root = btrfs_read_fs_root_no_name(info, &key);
  1088. if (IS_ERR(root)) {
  1089. printk(KERN_ERR "could not find root %llu\n", tree_id);
  1090. ret = -ENOENT;
  1091. goto out;
  1092. }
  1093. key.objectid = dirid;
  1094. key.type = BTRFS_INODE_REF_KEY;
  1095. key.offset = (u64)-1;
  1096. while(1) {
  1097. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1098. if (ret < 0)
  1099. goto out;
  1100. l = path->nodes[0];
  1101. slot = path->slots[0];
  1102. if (ret > 0 && slot > 0)
  1103. slot--;
  1104. btrfs_item_key_to_cpu(l, &key, slot);
  1105. if (ret > 0 && (key.objectid != dirid ||
  1106. key.type != BTRFS_INODE_REF_KEY)) {
  1107. ret = -ENOENT;
  1108. goto out;
  1109. }
  1110. iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
  1111. len = btrfs_inode_ref_name_len(l, iref);
  1112. ptr -= len + 1;
  1113. total_len += len + 1;
  1114. if (ptr < name)
  1115. goto out;
  1116. *(ptr + len) = '/';
  1117. read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
  1118. if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
  1119. break;
  1120. btrfs_release_path(root, path);
  1121. key.objectid = key.offset;
  1122. key.offset = (u64)-1;
  1123. dirid = key.objectid;
  1124. }
  1125. if (ptr < name)
  1126. goto out;
  1127. memcpy(name, ptr, total_len);
  1128. name[total_len]='\0';
  1129. ret = 0;
  1130. out:
  1131. btrfs_free_path(path);
  1132. return ret;
  1133. }
  1134. static noinline int btrfs_ioctl_ino_lookup(struct file *file,
  1135. void __user *argp)
  1136. {
  1137. struct btrfs_ioctl_ino_lookup_args *args;
  1138. struct inode *inode;
  1139. int ret;
  1140. if (!capable(CAP_SYS_ADMIN))
  1141. return -EPERM;
  1142. args = memdup_user(argp, sizeof(*args));
  1143. if (IS_ERR(args))
  1144. return PTR_ERR(args);
  1145. inode = fdentry(file)->d_inode;
  1146. if (args->treeid == 0)
  1147. args->treeid = BTRFS_I(inode)->root->root_key.objectid;
  1148. ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
  1149. args->treeid, args->objectid,
  1150. args->name);
  1151. if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
  1152. ret = -EFAULT;
  1153. kfree(args);
  1154. return ret;
  1155. }
  1156. static noinline int btrfs_ioctl_snap_destroy(struct file *file,
  1157. void __user *arg)
  1158. {
  1159. struct dentry *parent = fdentry(file);
  1160. struct dentry *dentry;
  1161. struct inode *dir = parent->d_inode;
  1162. struct inode *inode;
  1163. struct btrfs_root *root = BTRFS_I(dir)->root;
  1164. struct btrfs_root *dest = NULL;
  1165. struct btrfs_ioctl_vol_args *vol_args;
  1166. struct btrfs_trans_handle *trans;
  1167. int namelen;
  1168. int ret;
  1169. int err = 0;
  1170. vol_args = memdup_user(arg, sizeof(*vol_args));
  1171. if (IS_ERR(vol_args))
  1172. return PTR_ERR(vol_args);
  1173. vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
  1174. namelen = strlen(vol_args->name);
  1175. if (strchr(vol_args->name, '/') ||
  1176. strncmp(vol_args->name, "..", namelen) == 0) {
  1177. err = -EINVAL;
  1178. goto out;
  1179. }
  1180. err = mnt_want_write(file->f_path.mnt);
  1181. if (err)
  1182. goto out;
  1183. mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
  1184. dentry = lookup_one_len(vol_args->name, parent, namelen);
  1185. if (IS_ERR(dentry)) {
  1186. err = PTR_ERR(dentry);
  1187. goto out_unlock_dir;
  1188. }
  1189. if (!dentry->d_inode) {
  1190. err = -ENOENT;
  1191. goto out_dput;
  1192. }
  1193. inode = dentry->d_inode;
  1194. dest = BTRFS_I(inode)->root;
  1195. if (!capable(CAP_SYS_ADMIN)){
  1196. /*
  1197. * Regular user. Only allow this with a special mount
  1198. * option, when the user has write+exec access to the
  1199. * subvol root, and when rmdir(2) would have been
  1200. * allowed.
  1201. *
  1202. * Note that this is _not_ check that the subvol is
  1203. * empty or doesn't contain data that we wouldn't
  1204. * otherwise be able to delete.
  1205. *
  1206. * Users who want to delete empty subvols should try
  1207. * rmdir(2).
  1208. */
  1209. err = -EPERM;
  1210. if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
  1211. goto out_dput;
  1212. /*
  1213. * Do not allow deletion if the parent dir is the same
  1214. * as the dir to be deleted. That means the ioctl
  1215. * must be called on the dentry referencing the root
  1216. * of the subvol, not a random directory contained
  1217. * within it.
  1218. */
  1219. err = -EINVAL;
  1220. if (root == dest)
  1221. goto out_dput;
  1222. err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
  1223. if (err)
  1224. goto out_dput;
  1225. /* check if subvolume may be deleted by a non-root user */
  1226. err = btrfs_may_delete(dir, dentry, 1);
  1227. if (err)
  1228. goto out_dput;
  1229. }
  1230. if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
  1231. err = -EINVAL;
  1232. goto out_dput;
  1233. }
  1234. mutex_lock(&inode->i_mutex);
  1235. err = d_invalidate(dentry);
  1236. if (err)
  1237. goto out_unlock;
  1238. down_write(&root->fs_info->subvol_sem);
  1239. err = may_destroy_subvol(dest);
  1240. if (err)
  1241. goto out_up_write;
  1242. trans = btrfs_start_transaction(root, 0);
  1243. if (IS_ERR(trans)) {
  1244. err = PTR_ERR(trans);
  1245. goto out_up_write;
  1246. }
  1247. trans->block_rsv = &root->fs_info->global_block_rsv;
  1248. ret = btrfs_unlink_subvol(trans, root, dir,
  1249. dest->root_key.objectid,
  1250. dentry->d_name.name,
  1251. dentry->d_name.len);
  1252. BUG_ON(ret);
  1253. btrfs_record_root_in_trans(trans, dest);
  1254. memset(&dest->root_item.drop_progress, 0,
  1255. sizeof(dest->root_item.drop_progress));
  1256. dest->root_item.drop_level = 0;
  1257. btrfs_set_root_refs(&dest->root_item, 0);
  1258. if (!xchg(&dest->orphan_item_inserted, 1)) {
  1259. ret = btrfs_insert_orphan_item(trans,
  1260. root->fs_info->tree_root,
  1261. dest->root_key.objectid);
  1262. BUG_ON(ret);
  1263. }
  1264. ret = btrfs_end_transaction(trans, root);
  1265. BUG_ON(ret);
  1266. inode->i_flags |= S_DEAD;
  1267. out_up_write:
  1268. up_write(&root->fs_info->subvol_sem);
  1269. out_unlock:
  1270. mutex_unlock(&inode->i_mutex);
  1271. if (!err) {
  1272. shrink_dcache_sb(root->fs_info->sb);
  1273. btrfs_invalidate_inodes(dest);
  1274. d_delete(dentry);
  1275. }
  1276. out_dput:
  1277. dput(dentry);
  1278. out_unlock_dir:
  1279. mutex_unlock(&dir->i_mutex);
  1280. mnt_drop_write(file->f_path.mnt);
  1281. out:
  1282. kfree(vol_args);
  1283. return err;
  1284. }
  1285. static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
  1286. {
  1287. struct inode *inode = fdentry(file)->d_inode;
  1288. struct btrfs_root *root = BTRFS_I(inode)->root;
  1289. struct btrfs_ioctl_defrag_range_args *range;
  1290. int ret;
  1291. ret = mnt_want_write(file->f_path.mnt);
  1292. if (ret)
  1293. return ret;
  1294. switch (inode->i_mode & S_IFMT) {
  1295. case S_IFDIR:
  1296. if (!capable(CAP_SYS_ADMIN)) {
  1297. ret = -EPERM;
  1298. goto out;
  1299. }
  1300. ret = btrfs_defrag_root(root, 0);
  1301. if (ret)
  1302. goto out;
  1303. ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
  1304. break;
  1305. case S_IFREG:
  1306. if (!(file->f_mode & FMODE_WRITE)) {
  1307. ret = -EINVAL;
  1308. goto out;
  1309. }
  1310. range = kzalloc(sizeof(*range), GFP_KERNEL);
  1311. if (!range) {
  1312. ret = -ENOMEM;
  1313. goto out;
  1314. }
  1315. if (argp) {
  1316. if (copy_from_user(range, argp,
  1317. sizeof(*range))) {
  1318. ret = -EFAULT;
  1319. kfree(range);
  1320. goto out;
  1321. }
  1322. /* compression requires us to start the IO */
  1323. if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
  1324. range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
  1325. range->extent_thresh = (u32)-1;
  1326. }
  1327. } else {
  1328. /* the rest are all set to zero by kzalloc */
  1329. range->len = (u64)-1;
  1330. }
  1331. ret = btrfs_defrag_file(file, range);
  1332. kfree(range);
  1333. break;
  1334. default:
  1335. ret = -EINVAL;
  1336. }
  1337. out:
  1338. mnt_drop_write(file->f_path.mnt);
  1339. return ret;
  1340. }
  1341. static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
  1342. {
  1343. struct btrfs_ioctl_vol_args *vol_args;
  1344. int ret;
  1345. if (!capable(CAP_SYS_ADMIN))
  1346. return -EPERM;
  1347. vol_args = memdup_user(arg, sizeof(*vol_args));
  1348. if (IS_ERR(vol_args))
  1349. return PTR_ERR(vol_args);
  1350. vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
  1351. ret = btrfs_init_new_device(root, vol_args->name);
  1352. kfree(vol_args);
  1353. return ret;
  1354. }
  1355. static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
  1356. {
  1357. struct btrfs_ioctl_vol_args *vol_args;
  1358. int ret;
  1359. if (!capable(CAP_SYS_ADMIN))
  1360. return -EPERM;
  1361. if (root->fs_info->sb->s_flags & MS_RDONLY)
  1362. return -EROFS;
  1363. vol_args = memdup_user(arg, sizeof(*vol_args));
  1364. if (IS_ERR(vol_args))
  1365. return PTR_ERR(vol_args);
  1366. vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
  1367. ret = btrfs_rm_device(root, vol_args->name);
  1368. kfree(vol_args);
  1369. return ret;
  1370. }
  1371. static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
  1372. u64 off, u64 olen, u64 destoff)
  1373. {
  1374. struct inode *inode = fdentry(file)->d_inode;
  1375. struct btrfs_root *root = BTRFS_I(inode)->root;
  1376. struct file *src_file;
  1377. struct inode *src;
  1378. struct btrfs_trans_handle *trans;
  1379. struct btrfs_path *path;
  1380. struct extent_buffer *leaf;
  1381. char *buf;
  1382. struct btrfs_key key;
  1383. u32 nritems;
  1384. int slot;
  1385. int ret;
  1386. u64 len = olen;
  1387. u64 bs = root->fs_info->sb->s_blocksize;
  1388. u64 hint_byte;
  1389. /*
  1390. * TODO:
  1391. * - split compressed inline extents. annoying: we need to
  1392. * decompress into destination's address_space (the file offset
  1393. * may change, so source mapping won't do), then recompress (or
  1394. * otherwise reinsert) a subrange.
  1395. * - allow ranges within the same file to be cloned (provided
  1396. * they don't overlap)?
  1397. */
  1398. /* the destination must be opened for writing */
  1399. if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
  1400. return -EINVAL;
  1401. ret = mnt_want_write(file->f_path.mnt);
  1402. if (ret)
  1403. return ret;
  1404. src_file = fget(srcfd);
  1405. if (!src_file) {
  1406. ret = -EBADF;
  1407. goto out_drop_write;
  1408. }
  1409. src = src_file->f_dentry->d_inode;
  1410. ret = -EINVAL;
  1411. if (src == inode)
  1412. goto out_fput;
  1413. /* the src must be open for reading */
  1414. if (!(src_file->f_mode & FMODE_READ))
  1415. goto out_fput;
  1416. ret = -EISDIR;
  1417. if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
  1418. goto out_fput;
  1419. ret = -EXDEV;
  1420. if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
  1421. goto out_fput;
  1422. ret = -ENOMEM;
  1423. buf = vmalloc(btrfs_level_size(root, 0));
  1424. if (!buf)
  1425. goto out_fput;
  1426. path = btrfs_alloc_path();
  1427. if (!path) {
  1428. vfree(buf);
  1429. goto out_fput;
  1430. }
  1431. path->reada = 2;
  1432. if (inode < src) {
  1433. mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
  1434. mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
  1435. } else {
  1436. mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
  1437. mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
  1438. }
  1439. /* determine range to clone */
  1440. ret = -EINVAL;
  1441. if (off + len > src->i_size || off + len < off)
  1442. goto out_unlock;
  1443. if (len == 0)
  1444. olen = len = src->i_size - off;
  1445. /* if we extend to eof, continue to block boundary */
  1446. if (off + len == src->i_size)
  1447. len = ALIGN(src->i_size, bs) - off;
  1448. /* verify the end result is block aligned */
  1449. if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
  1450. !IS_ALIGNED(destoff, bs))
  1451. goto out_unlock;
  1452. /* do any pending delalloc/csum calc on src, one way or
  1453. another, and lock file content */
  1454. while (1) {
  1455. struct btrfs_ordered_extent *ordered;
  1456. lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
  1457. ordered = btrfs_lookup_first_ordered_extent(src, off+len);
  1458. if (!ordered &&
  1459. !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
  1460. EXTENT_DELALLOC, 0, NULL))
  1461. break;
  1462. unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
  1463. if (ordered)
  1464. btrfs_put_ordered_extent(ordered);
  1465. btrfs_wait_ordered_range(src, off, len);
  1466. }
  1467. /* clone data */
  1468. key.objectid = src->i_ino;
  1469. key.type = BTRFS_EXTENT_DATA_KEY;
  1470. key.offset = 0;
  1471. while (1) {
  1472. /*
  1473. * note the key will change type as we walk through the
  1474. * tree.
  1475. */
  1476. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1477. if (ret < 0)
  1478. goto out;
  1479. nritems = btrfs_header_nritems(path->nodes[0]);
  1480. if (path->slots[0] >= nritems) {
  1481. ret = btrfs_next_leaf(root, path);
  1482. if (ret < 0)
  1483. goto out;
  1484. if (ret > 0)
  1485. break;
  1486. nritems = btrfs_header_nritems(path->nodes[0]);
  1487. }
  1488. leaf = path->nodes[0];
  1489. slot = path->slots[0];
  1490. btrfs_item_key_to_cpu(leaf, &key, slot);
  1491. if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
  1492. key.objectid != src->i_ino)
  1493. break;
  1494. if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
  1495. struct btrfs_file_extent_item *extent;
  1496. int type;
  1497. u32 size;
  1498. struct btrfs_key new_key;
  1499. u64 disko = 0, diskl = 0;
  1500. u64 datao = 0, datal = 0;
  1501. u8 comp;
  1502. u64 endoff;
  1503. size = btrfs_item_size_nr(leaf, slot);
  1504. read_extent_buffer(leaf, buf,
  1505. btrfs_item_ptr_offset(leaf, slot),
  1506. size);
  1507. extent = btrfs_item_ptr(leaf, slot,
  1508. struct btrfs_file_extent_item);
  1509. comp = btrfs_file_extent_compression(leaf, extent);
  1510. type = btrfs_file_extent_type(leaf, extent);
  1511. if (type == BTRFS_FILE_EXTENT_REG ||
  1512. type == BTRFS_FILE_EXTENT_PREALLOC) {
  1513. disko = btrfs_file_extent_disk_bytenr(leaf,
  1514. extent);
  1515. diskl = btrfs_file_extent_disk_num_bytes(leaf,
  1516. extent);
  1517. datao = btrfs_file_extent_offset(leaf, extent);
  1518. datal = btrfs_file_extent_num_bytes(leaf,
  1519. extent);
  1520. } else if (type == BTRFS_FILE_EXTENT_INLINE) {
  1521. /* take upper bound, may be compressed */
  1522. datal = btrfs_file_extent_ram_bytes(leaf,
  1523. extent);
  1524. }
  1525. btrfs_release_path(root, path);
  1526. if (key.offset + datal <= off ||
  1527. key.offset >= off+len)
  1528. goto next;
  1529. memcpy(&new_key, &key, sizeof(new_key));
  1530. new_key.objectid = inode->i_ino;
  1531. new_key.offset = key.offset + destoff - off;
  1532. trans = btrfs_start_transaction(root, 1);
  1533. if (IS_ERR(trans)) {
  1534. ret = PTR_ERR(trans);
  1535. goto out;
  1536. }
  1537. if (type == BTRFS_FILE_EXTENT_REG ||
  1538. type == BTRFS_FILE_EXTENT_PREALLOC) {
  1539. if (off > key.offset) {
  1540. datao += off - key.offset;
  1541. datal -= off - key.offset;
  1542. }
  1543. if (key.offset + datal > off + len)
  1544. datal = off + len - key.offset;
  1545. ret = btrfs_drop_extents(trans, inode,
  1546. new_key.offset,
  1547. new_key.offset + datal,
  1548. &hint_byte, 1);
  1549. BUG_ON(ret);
  1550. ret = btrfs_insert_empty_item(trans, root, path,
  1551. &new_key, size);
  1552. BUG_ON(ret);
  1553. leaf = path->nodes[0];
  1554. slot = path->slots[0];
  1555. write_extent_buffer(leaf, buf,
  1556. btrfs_item_ptr_offset(leaf, slot),
  1557. size);
  1558. extent = btrfs_item_ptr(leaf, slot,
  1559. struct btrfs_file_extent_item);
  1560. /* disko == 0 means it's a hole */
  1561. if (!disko)
  1562. datao = 0;
  1563. btrfs_set_file_extent_offset(leaf, extent,
  1564. datao);
  1565. btrfs_set_file_extent_num_bytes(leaf, extent,
  1566. datal);
  1567. if (disko) {
  1568. inode_add_bytes(inode, datal);
  1569. ret = btrfs_inc_extent_ref(trans, root,
  1570. disko, diskl, 0,
  1571. root->root_key.objectid,
  1572. inode->i_ino,
  1573. new_key.offset - datao);
  1574. BUG_ON(ret);
  1575. }
  1576. } else if (type == BTRFS_FILE_EXTENT_INLINE) {
  1577. u64 skip = 0;
  1578. u64 trim = 0;
  1579. if (off > key.offset) {
  1580. skip = off - key.offset;
  1581. new_key.offset += skip;
  1582. }
  1583. if (key.offset + datal > off+len)
  1584. trim = key.offset + datal - (off+len);
  1585. if (comp && (skip || trim)) {
  1586. ret = -EINVAL;
  1587. btrfs_end_transaction(trans, root);
  1588. goto out;
  1589. }
  1590. size -= skip + trim;
  1591. datal -= skip + trim;
  1592. ret = btrfs_drop_extents(trans, inode,
  1593. new_key.offset,
  1594. new_key.offset + datal,
  1595. &hint_byte, 1);
  1596. BUG_ON(ret);
  1597. ret = btrfs_insert_empty_item(trans, root, path,
  1598. &new_key, size);
  1599. BUG_ON(ret);
  1600. if (skip) {
  1601. u32 start =
  1602. btrfs_file_extent_calc_inline_size(0);
  1603. memmove(buf+start, buf+start+skip,
  1604. datal);
  1605. }
  1606. leaf = path->nodes[0];
  1607. slot = path->slots[0];
  1608. write_extent_buffer(leaf, buf,
  1609. btrfs_item_ptr_offset(leaf, slot),
  1610. size);
  1611. inode_add_bytes(inode, datal);
  1612. }
  1613. btrfs_mark_buffer_dirty(leaf);
  1614. btrfs_release_path(root, path);
  1615. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1616. /*
  1617. * we round up to the block size at eof when
  1618. * determining which extents to clone above,
  1619. * but shouldn't round up the file size
  1620. */
  1621. endoff = new_key.offset + datal;
  1622. if (endoff > destoff+olen)
  1623. endoff = destoff+olen;
  1624. if (endoff > inode->i_size)
  1625. btrfs_i_size_write(inode, endoff);
  1626. BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
  1627. ret = btrfs_update_inode(trans, root, inode);
  1628. BUG_ON(ret);
  1629. btrfs_end_transaction(trans, root);
  1630. }
  1631. next:
  1632. btrfs_release_path(root, path);
  1633. key.offset++;
  1634. }
  1635. ret = 0;
  1636. out:
  1637. btrfs_release_path(root, path);
  1638. unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
  1639. out_unlock:
  1640. mutex_unlock(&src->i_mutex);
  1641. mutex_unlock(&inode->i_mutex);
  1642. vfree(buf);
  1643. btrfs_free_path(path);
  1644. out_fput:
  1645. fput(src_file);
  1646. out_drop_write:
  1647. mnt_drop_write(file->f_path.mnt);
  1648. return ret;
  1649. }
  1650. static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
  1651. {
  1652. struct btrfs_ioctl_clone_range_args args;
  1653. if (copy_from_user(&args, argp, sizeof(args)))
  1654. return -EFAULT;
  1655. return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
  1656. args.src_length, args.dest_offset);
  1657. }
  1658. /*
  1659. * there are many ways the trans_start and trans_end ioctls can lead
  1660. * to deadlocks. They should only be used by applications that
  1661. * basically own the machine, and have a very in depth understanding
  1662. * of all the possible deadlocks and enospc problems.
  1663. */
  1664. static long btrfs_ioctl_trans_start(struct file *file)
  1665. {
  1666. struct inode *inode = fdentry(file)->d_inode;
  1667. struct btrfs_root *root = BTRFS_I(inode)->root;
  1668. struct btrfs_trans_handle *trans;
  1669. int ret;
  1670. ret = -EPERM;
  1671. if (!capable(CAP_SYS_ADMIN))
  1672. goto out;
  1673. ret = -EINPROGRESS;
  1674. if (file->private_data)
  1675. goto out;
  1676. ret = mnt_want_write(file->f_path.mnt);
  1677. if (ret)
  1678. goto out;
  1679. mutex_lock(&root->fs_info->trans_mutex);
  1680. root->fs_info->open_ioctl_trans++;
  1681. mutex_unlock(&root->fs_info->trans_mutex);
  1682. ret = -ENOMEM;
  1683. trans = btrfs_start_ioctl_transaction(root, 0);
  1684. if (!trans)
  1685. goto out_drop;
  1686. file->private_data = trans;
  1687. return 0;
  1688. out_drop:
  1689. mutex_lock(&root->fs_info->trans_mutex);
  1690. root->fs_info->open_ioctl_trans--;
  1691. mutex_unlock(&root->fs_info->trans_mutex);
  1692. mnt_drop_write(file->f_path.mnt);
  1693. out:
  1694. return ret;
  1695. }
  1696. static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
  1697. {
  1698. struct inode *inode = fdentry(file)->d_inode;
  1699. struct btrfs_root *root = BTRFS_I(inode)->root;
  1700. struct btrfs_root *new_root;
  1701. struct btrfs_dir_item *di;
  1702. struct btrfs_trans_handle *trans;
  1703. struct btrfs_path *path;
  1704. struct btrfs_key location;
  1705. struct btrfs_disk_key disk_key;
  1706. struct btrfs_super_block *disk_super;
  1707. u64 features;
  1708. u64 objectid = 0;
  1709. u64 dir_id;
  1710. if (!capable(CAP_SYS_ADMIN))
  1711. return -EPERM;
  1712. if (copy_from_user(&objectid, argp, sizeof(objectid)))
  1713. return -EFAULT;
  1714. if (!objectid)
  1715. objectid = root->root_key.objectid;
  1716. location.objectid = objectid;
  1717. location.type = BTRFS_ROOT_ITEM_KEY;
  1718. location.offset = (u64)-1;
  1719. new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
  1720. if (IS_ERR(new_root))
  1721. return PTR_ERR(new_root);
  1722. if (btrfs_root_refs(&new_root->root_item) == 0)
  1723. return -ENOENT;
  1724. path = btrfs_alloc_path();
  1725. if (!path)
  1726. return -ENOMEM;
  1727. path->leave_spinning = 1;
  1728. trans = btrfs_start_transaction(root, 1);
  1729. if (!trans) {
  1730. btrfs_free_path(path);
  1731. return -ENOMEM;
  1732. }
  1733. dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
  1734. di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
  1735. dir_id, "default", 7, 1);
  1736. if (IS_ERR_OR_NULL(di)) {
  1737. btrfs_free_path(path);
  1738. btrfs_end_transaction(trans, root);
  1739. printk(KERN_ERR "Umm, you don't have the default dir item, "
  1740. "this isn't going to work\n");
  1741. return -ENOENT;
  1742. }
  1743. btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
  1744. btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
  1745. btrfs_mark_buffer_dirty(path->nodes[0]);
  1746. btrfs_free_path(path);
  1747. disk_super = &root->fs_info->super_copy;
  1748. features = btrfs_super_incompat_flags(disk_super);
  1749. if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
  1750. features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
  1751. btrfs_set_super_incompat_flags(disk_super, features);
  1752. }
  1753. btrfs_end_transaction(trans, root);
  1754. return 0;
  1755. }
  1756. static void get_block_group_info(struct list_head *groups_list,
  1757. struct btrfs_ioctl_space_info *space)
  1758. {
  1759. struct btrfs_block_group_cache *block_group;
  1760. space->total_bytes = 0;
  1761. space->used_bytes = 0;
  1762. space->flags = 0;
  1763. list_for_each_entry(block_group, groups_list, list) {
  1764. space->flags = block_group->flags;
  1765. space->total_bytes += block_group->key.offset;
  1766. space->used_bytes +=
  1767. btrfs_block_group_used(&block_group->item);
  1768. }
  1769. }
  1770. long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
  1771. {
  1772. struct btrfs_ioctl_space_args space_args;
  1773. struct btrfs_ioctl_space_info space;
  1774. struct btrfs_ioctl_space_info *dest;
  1775. struct btrfs_ioctl_space_info *dest_orig;
  1776. struct btrfs_ioctl_space_info *user_dest;
  1777. struct btrfs_space_info *info;
  1778. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  1779. BTRFS_BLOCK_GROUP_SYSTEM,
  1780. BTRFS_BLOCK_GROUP_METADATA,
  1781. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  1782. int num_types = 4;
  1783. int alloc_size;
  1784. int ret = 0;
  1785. int slot_count = 0;
  1786. int i, c;
  1787. if (copy_from_user(&space_args,
  1788. (struct btrfs_ioctl_space_args __user *)arg,
  1789. sizeof(space_args)))
  1790. return -EFAULT;
  1791. for (i = 0; i < num_types; i++) {
  1792. struct btrfs_space_info *tmp;
  1793. info = NULL;
  1794. rcu_read_lock();
  1795. list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
  1796. list) {
  1797. if (tmp->flags == types[i]) {
  1798. info = tmp;
  1799. break;
  1800. }
  1801. }
  1802. rcu_read_unlock();
  1803. if (!info)
  1804. continue;
  1805. down_read(&info->groups_sem);
  1806. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  1807. if (!list_empty(&info->block_groups[c]))
  1808. slot_count++;
  1809. }
  1810. up_read(&info->groups_sem);
  1811. }
  1812. /* space_slots == 0 means they are asking for a count */
  1813. if (space_args.space_slots == 0) {
  1814. space_args.total_spaces = slot_count;
  1815. goto out;
  1816. }
  1817. slot_count = min_t(int, space_args.space_slots, slot_count);
  1818. alloc_size = sizeof(*dest) * slot_count;
  1819. /* we generally have at most 6 or so space infos, one for each raid
  1820. * level. So, a whole page should be more than enough for everyone
  1821. */
  1822. if (alloc_size > PAGE_CACHE_SIZE)
  1823. return -ENOMEM;
  1824. space_args.total_spaces = 0;
  1825. dest = kmalloc(alloc_size, GFP_NOFS);
  1826. if (!dest)
  1827. return -ENOMEM;
  1828. dest_orig = dest;
  1829. /* now we have a buffer to copy into */
  1830. for (i = 0; i < num_types; i++) {
  1831. struct btrfs_space_info *tmp;
  1832. info = NULL;
  1833. rcu_read_lock();
  1834. list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
  1835. list) {
  1836. if (tmp->flags == types[i]) {
  1837. info = tmp;
  1838. break;
  1839. }
  1840. }
  1841. rcu_read_unlock();
  1842. if (!info)
  1843. continue;
  1844. down_read(&info->groups_sem);
  1845. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  1846. if (!list_empty(&info->block_groups[c])) {
  1847. get_block_group_info(&info->block_groups[c],
  1848. &space);
  1849. memcpy(dest, &space, sizeof(space));
  1850. dest++;
  1851. space_args.total_spaces++;
  1852. }
  1853. }
  1854. up_read(&info->groups_sem);
  1855. }
  1856. user_dest = (struct btrfs_ioctl_space_info *)
  1857. (arg + sizeof(struct btrfs_ioctl_space_args));
  1858. if (copy_to_user(user_dest, dest_orig, alloc_size))
  1859. ret = -EFAULT;
  1860. kfree(dest_orig);
  1861. out:
  1862. if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
  1863. ret = -EFAULT;
  1864. return ret;
  1865. }
  1866. /*
  1867. * there are many ways the trans_start and trans_end ioctls can lead
  1868. * to deadlocks. They should only be used by applications that
  1869. * basically own the machine, and have a very in depth understanding
  1870. * of all the possible deadlocks and enospc problems.
  1871. */
  1872. long btrfs_ioctl_trans_end(struct file *file)
  1873. {
  1874. struct inode *inode = fdentry(file)->d_inode;
  1875. struct btrfs_root *root = BTRFS_I(inode)->root;
  1876. struct btrfs_trans_handle *trans;
  1877. trans = file->private_data;
  1878. if (!trans)
  1879. return -EINVAL;
  1880. file->private_data = NULL;
  1881. btrfs_end_transaction(trans, root);
  1882. mutex_lock(&root->fs_info->trans_mutex);
  1883. root->fs_info->open_ioctl_trans--;
  1884. mutex_unlock(&root->fs_info->trans_mutex);
  1885. mnt_drop_write(file->f_path.mnt);
  1886. return 0;
  1887. }
  1888. static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
  1889. {
  1890. struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
  1891. struct btrfs_trans_handle *trans;
  1892. u64 transid;
  1893. trans = btrfs_start_transaction(root, 0);
  1894. transid = trans->transid;
  1895. btrfs_commit_transaction_async(trans, root, 0);
  1896. if (argp)
  1897. if (copy_to_user(argp, &transid, sizeof(transid)))
  1898. return -EFAULT;
  1899. return 0;
  1900. }
  1901. static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
  1902. {
  1903. struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
  1904. u64 transid;
  1905. if (argp) {
  1906. if (copy_from_user(&transid, argp, sizeof(transid)))
  1907. return -EFAULT;
  1908. } else {
  1909. transid = 0; /* current trans */
  1910. }
  1911. return btrfs_wait_for_commit(root, transid);
  1912. }
  1913. long btrfs_ioctl(struct file *file, unsigned int
  1914. cmd, unsigned long arg)
  1915. {
  1916. struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
  1917. void __user *argp = (void __user *)arg;
  1918. switch (cmd) {
  1919. case FS_IOC_GETFLAGS:
  1920. return btrfs_ioctl_getflags(file, argp);
  1921. case FS_IOC_SETFLAGS:
  1922. return btrfs_ioctl_setflags(file, argp);
  1923. case FS_IOC_GETVERSION:
  1924. return btrfs_ioctl_getversion(file, argp);
  1925. case BTRFS_IOC_SNAP_CREATE:
  1926. return btrfs_ioctl_snap_create(file, argp, 0);
  1927. case BTRFS_IOC_SNAP_CREATE_V2:
  1928. return btrfs_ioctl_snap_create_v2(file, argp, 0);
  1929. case BTRFS_IOC_SUBVOL_CREATE:
  1930. return btrfs_ioctl_snap_create(file, argp, 1);
  1931. case BTRFS_IOC_SNAP_DESTROY:
  1932. return btrfs_ioctl_snap_destroy(file, argp);
  1933. case BTRFS_IOC_DEFAULT_SUBVOL:
  1934. return btrfs_ioctl_default_subvol(file, argp);
  1935. case BTRFS_IOC_DEFRAG:
  1936. return btrfs_ioctl_defrag(file, NULL);
  1937. case BTRFS_IOC_DEFRAG_RANGE:
  1938. return btrfs_ioctl_defrag(file, argp);
  1939. case BTRFS_IOC_RESIZE:
  1940. return btrfs_ioctl_resize(root, argp);
  1941. case BTRFS_IOC_ADD_DEV:
  1942. return btrfs_ioctl_add_dev(root, argp);
  1943. case BTRFS_IOC_RM_DEV:
  1944. return btrfs_ioctl_rm_dev(root, argp);
  1945. case BTRFS_IOC_BALANCE:
  1946. return btrfs_balance(root->fs_info->dev_root);
  1947. case BTRFS_IOC_CLONE:
  1948. return btrfs_ioctl_clone(file, arg, 0, 0, 0);
  1949. case BTRFS_IOC_CLONE_RANGE:
  1950. return btrfs_ioctl_clone_range(file, argp);
  1951. case BTRFS_IOC_TRANS_START:
  1952. return btrfs_ioctl_trans_start(file);
  1953. case BTRFS_IOC_TRANS_END:
  1954. return btrfs_ioctl_trans_end(file);
  1955. case BTRFS_IOC_TREE_SEARCH:
  1956. return btrfs_ioctl_tree_search(file, argp);
  1957. case BTRFS_IOC_INO_LOOKUP:
  1958. return btrfs_ioctl_ino_lookup(file, argp);
  1959. case BTRFS_IOC_SPACE_INFO:
  1960. return btrfs_ioctl_space_info(root, argp);
  1961. case BTRFS_IOC_SYNC:
  1962. btrfs_sync_fs(file->f_dentry->d_sb, 1);
  1963. return 0;
  1964. case BTRFS_IOC_START_SYNC:
  1965. return btrfs_ioctl_start_sync(file, argp);
  1966. case BTRFS_IOC_WAIT_SYNC:
  1967. return btrfs_ioctl_wait_sync(file, argp);
  1968. }
  1969. return -ENOTTY;
  1970. }