inode.c 212 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/file.h>
  22. #include <linux/fs.h>
  23. #include <linux/pagemap.h>
  24. #include <linux/highmem.h>
  25. #include <linux/time.h>
  26. #include <linux/init.h>
  27. #include <linux/string.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/mpage.h>
  30. #include <linux/swap.h>
  31. #include <linux/writeback.h>
  32. #include <linux/statfs.h>
  33. #include <linux/compat.h>
  34. #include <linux/bit_spinlock.h>
  35. #include <linux/xattr.h>
  36. #include <linux/posix_acl.h>
  37. #include <linux/falloc.h>
  38. #include <linux/slab.h>
  39. #include <linux/ratelimit.h>
  40. #include <linux/mount.h>
  41. #include "compat.h"
  42. #include "ctree.h"
  43. #include "disk-io.h"
  44. #include "transaction.h"
  45. #include "btrfs_inode.h"
  46. #include "ioctl.h"
  47. #include "print-tree.h"
  48. #include "ordered-data.h"
  49. #include "xattr.h"
  50. #include "tree-log.h"
  51. #include "volumes.h"
  52. #include "compression.h"
  53. #include "locking.h"
  54. #include "free-space-cache.h"
  55. #include "inode-map.h"
  56. struct btrfs_iget_args {
  57. u64 ino;
  58. struct btrfs_root *root;
  59. };
  60. static const struct inode_operations btrfs_dir_inode_operations;
  61. static const struct inode_operations btrfs_symlink_inode_operations;
  62. static const struct inode_operations btrfs_dir_ro_inode_operations;
  63. static const struct inode_operations btrfs_special_inode_operations;
  64. static const struct inode_operations btrfs_file_inode_operations;
  65. static const struct address_space_operations btrfs_aops;
  66. static const struct address_space_operations btrfs_symlink_aops;
  67. static const struct file_operations btrfs_dir_file_operations;
  68. static struct extent_io_ops btrfs_extent_io_ops;
  69. static struct kmem_cache *btrfs_inode_cachep;
  70. static struct kmem_cache *btrfs_delalloc_work_cachep;
  71. struct kmem_cache *btrfs_trans_handle_cachep;
  72. struct kmem_cache *btrfs_transaction_cachep;
  73. struct kmem_cache *btrfs_path_cachep;
  74. struct kmem_cache *btrfs_free_space_cachep;
  75. #define S_SHIFT 12
  76. static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  77. [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
  78. [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
  79. [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
  80. [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
  81. [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
  82. [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
  83. [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
  84. };
  85. static int btrfs_setsize(struct inode *inode, loff_t newsize);
  86. static int btrfs_truncate(struct inode *inode);
  87. static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  88. static noinline int cow_file_range(struct inode *inode,
  89. struct page *locked_page,
  90. u64 start, u64 end, int *page_started,
  91. unsigned long *nr_written, int unlock);
  92. static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
  93. u64 len, u64 orig_start,
  94. u64 block_start, u64 block_len,
  95. u64 orig_block_len, int type);
  96. static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
  97. struct inode *inode, struct inode *dir,
  98. const struct qstr *qstr)
  99. {
  100. int err;
  101. err = btrfs_init_acl(trans, inode, dir);
  102. if (!err)
  103. err = btrfs_xattr_security_init(trans, inode, dir, qstr);
  104. return err;
  105. }
  106. /*
  107. * this does all the hard work for inserting an inline extent into
  108. * the btree. The caller should have done a btrfs_drop_extents so that
  109. * no overlapping inline items exist in the btree
  110. */
  111. static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
  112. struct btrfs_root *root, struct inode *inode,
  113. u64 start, size_t size, size_t compressed_size,
  114. int compress_type,
  115. struct page **compressed_pages)
  116. {
  117. struct btrfs_key key;
  118. struct btrfs_path *path;
  119. struct extent_buffer *leaf;
  120. struct page *page = NULL;
  121. char *kaddr;
  122. unsigned long ptr;
  123. struct btrfs_file_extent_item *ei;
  124. int err = 0;
  125. int ret;
  126. size_t cur_size = size;
  127. size_t datasize;
  128. unsigned long offset;
  129. if (compressed_size && compressed_pages)
  130. cur_size = compressed_size;
  131. path = btrfs_alloc_path();
  132. if (!path)
  133. return -ENOMEM;
  134. path->leave_spinning = 1;
  135. key.objectid = btrfs_ino(inode);
  136. key.offset = start;
  137. btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
  138. datasize = btrfs_file_extent_calc_inline_size(cur_size);
  139. inode_add_bytes(inode, size);
  140. ret = btrfs_insert_empty_item(trans, root, path, &key,
  141. datasize);
  142. if (ret) {
  143. err = ret;
  144. goto fail;
  145. }
  146. leaf = path->nodes[0];
  147. ei = btrfs_item_ptr(leaf, path->slots[0],
  148. struct btrfs_file_extent_item);
  149. btrfs_set_file_extent_generation(leaf, ei, trans->transid);
  150. btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
  151. btrfs_set_file_extent_encryption(leaf, ei, 0);
  152. btrfs_set_file_extent_other_encoding(leaf, ei, 0);
  153. btrfs_set_file_extent_ram_bytes(leaf, ei, size);
  154. ptr = btrfs_file_extent_inline_start(ei);
  155. if (compress_type != BTRFS_COMPRESS_NONE) {
  156. struct page *cpage;
  157. int i = 0;
  158. while (compressed_size > 0) {
  159. cpage = compressed_pages[i];
  160. cur_size = min_t(unsigned long, compressed_size,
  161. PAGE_CACHE_SIZE);
  162. kaddr = kmap_atomic(cpage);
  163. write_extent_buffer(leaf, kaddr, ptr, cur_size);
  164. kunmap_atomic(kaddr);
  165. i++;
  166. ptr += cur_size;
  167. compressed_size -= cur_size;
  168. }
  169. btrfs_set_file_extent_compression(leaf, ei,
  170. compress_type);
  171. } else {
  172. page = find_get_page(inode->i_mapping,
  173. start >> PAGE_CACHE_SHIFT);
  174. btrfs_set_file_extent_compression(leaf, ei, 0);
  175. kaddr = kmap_atomic(page);
  176. offset = start & (PAGE_CACHE_SIZE - 1);
  177. write_extent_buffer(leaf, kaddr + offset, ptr, size);
  178. kunmap_atomic(kaddr);
  179. page_cache_release(page);
  180. }
  181. btrfs_mark_buffer_dirty(leaf);
  182. btrfs_free_path(path);
  183. /*
  184. * we're an inline extent, so nobody can
  185. * extend the file past i_size without locking
  186. * a page we already have locked.
  187. *
  188. * We must do any isize and inode updates
  189. * before we unlock the pages. Otherwise we
  190. * could end up racing with unlink.
  191. */
  192. BTRFS_I(inode)->disk_i_size = inode->i_size;
  193. ret = btrfs_update_inode(trans, root, inode);
  194. return ret;
  195. fail:
  196. btrfs_free_path(path);
  197. return err;
  198. }
  199. /*
  200. * conditionally insert an inline extent into the file. This
  201. * does the checks required to make sure the data is small enough
  202. * to fit as an inline extent.
  203. */
  204. static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
  205. struct btrfs_root *root,
  206. struct inode *inode, u64 start, u64 end,
  207. size_t compressed_size, int compress_type,
  208. struct page **compressed_pages)
  209. {
  210. u64 isize = i_size_read(inode);
  211. u64 actual_end = min(end + 1, isize);
  212. u64 inline_len = actual_end - start;
  213. u64 aligned_end = (end + root->sectorsize - 1) &
  214. ~((u64)root->sectorsize - 1);
  215. u64 data_len = inline_len;
  216. int ret;
  217. if (compressed_size)
  218. data_len = compressed_size;
  219. if (start > 0 ||
  220. actual_end >= PAGE_CACHE_SIZE ||
  221. data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
  222. (!compressed_size &&
  223. (actual_end & (root->sectorsize - 1)) == 0) ||
  224. end + 1 < isize ||
  225. data_len > root->fs_info->max_inline) {
  226. return 1;
  227. }
  228. ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
  229. if (ret)
  230. return ret;
  231. if (isize > actual_end)
  232. inline_len = min_t(u64, isize, actual_end);
  233. ret = insert_inline_extent(trans, root, inode, start,
  234. inline_len, compressed_size,
  235. compress_type, compressed_pages);
  236. if (ret && ret != -ENOSPC) {
  237. btrfs_abort_transaction(trans, root, ret);
  238. return ret;
  239. } else if (ret == -ENOSPC) {
  240. return 1;
  241. }
  242. btrfs_delalloc_release_metadata(inode, end + 1 - start);
  243. btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
  244. return 0;
  245. }
  246. struct async_extent {
  247. u64 start;
  248. u64 ram_size;
  249. u64 compressed_size;
  250. struct page **pages;
  251. unsigned long nr_pages;
  252. int compress_type;
  253. struct list_head list;
  254. };
  255. struct async_cow {
  256. struct inode *inode;
  257. struct btrfs_root *root;
  258. struct page *locked_page;
  259. u64 start;
  260. u64 end;
  261. struct list_head extents;
  262. struct btrfs_work work;
  263. };
  264. static noinline int add_async_extent(struct async_cow *cow,
  265. u64 start, u64 ram_size,
  266. u64 compressed_size,
  267. struct page **pages,
  268. unsigned long nr_pages,
  269. int compress_type)
  270. {
  271. struct async_extent *async_extent;
  272. async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
  273. BUG_ON(!async_extent); /* -ENOMEM */
  274. async_extent->start = start;
  275. async_extent->ram_size = ram_size;
  276. async_extent->compressed_size = compressed_size;
  277. async_extent->pages = pages;
  278. async_extent->nr_pages = nr_pages;
  279. async_extent->compress_type = compress_type;
  280. list_add_tail(&async_extent->list, &cow->extents);
  281. return 0;
  282. }
  283. /*
  284. * we create compressed extents in two phases. The first
  285. * phase compresses a range of pages that have already been
  286. * locked (both pages and state bits are locked).
  287. *
  288. * This is done inside an ordered work queue, and the compression
  289. * is spread across many cpus. The actual IO submission is step
  290. * two, and the ordered work queue takes care of making sure that
  291. * happens in the same order things were put onto the queue by
  292. * writepages and friends.
  293. *
  294. * If this code finds it can't get good compression, it puts an
  295. * entry onto the work queue to write the uncompressed bytes. This
  296. * makes sure that both compressed inodes and uncompressed inodes
  297. * are written in the same order that the flusher thread sent them
  298. * down.
  299. */
  300. static noinline int compress_file_range(struct inode *inode,
  301. struct page *locked_page,
  302. u64 start, u64 end,
  303. struct async_cow *async_cow,
  304. int *num_added)
  305. {
  306. struct btrfs_root *root = BTRFS_I(inode)->root;
  307. struct btrfs_trans_handle *trans;
  308. u64 num_bytes;
  309. u64 blocksize = root->sectorsize;
  310. u64 actual_end;
  311. u64 isize = i_size_read(inode);
  312. int ret = 0;
  313. struct page **pages = NULL;
  314. unsigned long nr_pages;
  315. unsigned long nr_pages_ret = 0;
  316. unsigned long total_compressed = 0;
  317. unsigned long total_in = 0;
  318. unsigned long max_compressed = 128 * 1024;
  319. unsigned long max_uncompressed = 128 * 1024;
  320. int i;
  321. int will_compress;
  322. int compress_type = root->fs_info->compress_type;
  323. /* if this is a small write inside eof, kick off a defrag */
  324. if ((end - start + 1) < 16 * 1024 &&
  325. (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
  326. btrfs_add_inode_defrag(NULL, inode);
  327. actual_end = min_t(u64, isize, end + 1);
  328. again:
  329. will_compress = 0;
  330. nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
  331. nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
  332. /*
  333. * we don't want to send crud past the end of i_size through
  334. * compression, that's just a waste of CPU time. So, if the
  335. * end of the file is before the start of our current
  336. * requested range of bytes, we bail out to the uncompressed
  337. * cleanup code that can deal with all of this.
  338. *
  339. * It isn't really the fastest way to fix things, but this is a
  340. * very uncommon corner.
  341. */
  342. if (actual_end <= start)
  343. goto cleanup_and_bail_uncompressed;
  344. total_compressed = actual_end - start;
  345. /* we want to make sure that amount of ram required to uncompress
  346. * an extent is reasonable, so we limit the total size in ram
  347. * of a compressed extent to 128k. This is a crucial number
  348. * because it also controls how easily we can spread reads across
  349. * cpus for decompression.
  350. *
  351. * We also want to make sure the amount of IO required to do
  352. * a random read is reasonably small, so we limit the size of
  353. * a compressed extent to 128k.
  354. */
  355. total_compressed = min(total_compressed, max_uncompressed);
  356. num_bytes = (end - start + blocksize) & ~(blocksize - 1);
  357. num_bytes = max(blocksize, num_bytes);
  358. total_in = 0;
  359. ret = 0;
  360. /*
  361. * we do compression for mount -o compress and when the
  362. * inode has not been flagged as nocompress. This flag can
  363. * change at any time if we discover bad compression ratios.
  364. */
  365. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
  366. (btrfs_test_opt(root, COMPRESS) ||
  367. (BTRFS_I(inode)->force_compress) ||
  368. (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
  369. WARN_ON(pages);
  370. pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
  371. if (!pages) {
  372. /* just bail out to the uncompressed code */
  373. goto cont;
  374. }
  375. if (BTRFS_I(inode)->force_compress)
  376. compress_type = BTRFS_I(inode)->force_compress;
  377. ret = btrfs_compress_pages(compress_type,
  378. inode->i_mapping, start,
  379. total_compressed, pages,
  380. nr_pages, &nr_pages_ret,
  381. &total_in,
  382. &total_compressed,
  383. max_compressed);
  384. if (!ret) {
  385. unsigned long offset = total_compressed &
  386. (PAGE_CACHE_SIZE - 1);
  387. struct page *page = pages[nr_pages_ret - 1];
  388. char *kaddr;
  389. /* zero the tail end of the last page, we might be
  390. * sending it down to disk
  391. */
  392. if (offset) {
  393. kaddr = kmap_atomic(page);
  394. memset(kaddr + offset, 0,
  395. PAGE_CACHE_SIZE - offset);
  396. kunmap_atomic(kaddr);
  397. }
  398. will_compress = 1;
  399. }
  400. }
  401. cont:
  402. if (start == 0) {
  403. trans = btrfs_join_transaction(root);
  404. if (IS_ERR(trans)) {
  405. ret = PTR_ERR(trans);
  406. trans = NULL;
  407. goto cleanup_and_out;
  408. }
  409. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  410. /* lets try to make an inline extent */
  411. if (ret || total_in < (actual_end - start)) {
  412. /* we didn't compress the entire range, try
  413. * to make an uncompressed inline extent.
  414. */
  415. ret = cow_file_range_inline(trans, root, inode,
  416. start, end, 0, 0, NULL);
  417. } else {
  418. /* try making a compressed inline extent */
  419. ret = cow_file_range_inline(trans, root, inode,
  420. start, end,
  421. total_compressed,
  422. compress_type, pages);
  423. }
  424. if (ret <= 0) {
  425. /*
  426. * inline extent creation worked or returned error,
  427. * we don't need to create any more async work items.
  428. * Unlock and free up our temp pages.
  429. */
  430. extent_clear_unlock_delalloc(inode,
  431. &BTRFS_I(inode)->io_tree,
  432. start, end, NULL,
  433. EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
  434. EXTENT_CLEAR_DELALLOC |
  435. EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
  436. btrfs_end_transaction(trans, root);
  437. goto free_pages_out;
  438. }
  439. btrfs_end_transaction(trans, root);
  440. }
  441. if (will_compress) {
  442. /*
  443. * we aren't doing an inline extent round the compressed size
  444. * up to a block size boundary so the allocator does sane
  445. * things
  446. */
  447. total_compressed = (total_compressed + blocksize - 1) &
  448. ~(blocksize - 1);
  449. /*
  450. * one last check to make sure the compression is really a
  451. * win, compare the page count read with the blocks on disk
  452. */
  453. total_in = (total_in + PAGE_CACHE_SIZE - 1) &
  454. ~(PAGE_CACHE_SIZE - 1);
  455. if (total_compressed >= total_in) {
  456. will_compress = 0;
  457. } else {
  458. num_bytes = total_in;
  459. }
  460. }
  461. if (!will_compress && pages) {
  462. /*
  463. * the compression code ran but failed to make things smaller,
  464. * free any pages it allocated and our page pointer array
  465. */
  466. for (i = 0; i < nr_pages_ret; i++) {
  467. WARN_ON(pages[i]->mapping);
  468. page_cache_release(pages[i]);
  469. }
  470. kfree(pages);
  471. pages = NULL;
  472. total_compressed = 0;
  473. nr_pages_ret = 0;
  474. /* flag the file so we don't compress in the future */
  475. if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
  476. !(BTRFS_I(inode)->force_compress)) {
  477. BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
  478. }
  479. }
  480. if (will_compress) {
  481. *num_added += 1;
  482. /* the async work queues will take care of doing actual
  483. * allocation on disk for these compressed pages,
  484. * and will submit them to the elevator.
  485. */
  486. add_async_extent(async_cow, start, num_bytes,
  487. total_compressed, pages, nr_pages_ret,
  488. compress_type);
  489. if (start + num_bytes < end) {
  490. start += num_bytes;
  491. pages = NULL;
  492. cond_resched();
  493. goto again;
  494. }
  495. } else {
  496. cleanup_and_bail_uncompressed:
  497. /*
  498. * No compression, but we still need to write the pages in
  499. * the file we've been given so far. redirty the locked
  500. * page if it corresponds to our extent and set things up
  501. * for the async work queue to run cow_file_range to do
  502. * the normal delalloc dance
  503. */
  504. if (page_offset(locked_page) >= start &&
  505. page_offset(locked_page) <= end) {
  506. __set_page_dirty_nobuffers(locked_page);
  507. /* unlocked later on in the async handlers */
  508. }
  509. add_async_extent(async_cow, start, end - start + 1,
  510. 0, NULL, 0, BTRFS_COMPRESS_NONE);
  511. *num_added += 1;
  512. }
  513. out:
  514. return ret;
  515. free_pages_out:
  516. for (i = 0; i < nr_pages_ret; i++) {
  517. WARN_ON(pages[i]->mapping);
  518. page_cache_release(pages[i]);
  519. }
  520. kfree(pages);
  521. goto out;
  522. cleanup_and_out:
  523. extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
  524. start, end, NULL,
  525. EXTENT_CLEAR_UNLOCK_PAGE |
  526. EXTENT_CLEAR_DIRTY |
  527. EXTENT_CLEAR_DELALLOC |
  528. EXTENT_SET_WRITEBACK |
  529. EXTENT_END_WRITEBACK);
  530. if (!trans || IS_ERR(trans))
  531. btrfs_error(root->fs_info, ret, "Failed to join transaction");
  532. else
  533. btrfs_abort_transaction(trans, root, ret);
  534. goto free_pages_out;
  535. }
  536. /*
  537. * phase two of compressed writeback. This is the ordered portion
  538. * of the code, which only gets called in the order the work was
  539. * queued. We walk all the async extents created by compress_file_range
  540. * and send them down to the disk.
  541. */
  542. static noinline int submit_compressed_extents(struct inode *inode,
  543. struct async_cow *async_cow)
  544. {
  545. struct async_extent *async_extent;
  546. u64 alloc_hint = 0;
  547. struct btrfs_trans_handle *trans;
  548. struct btrfs_key ins;
  549. struct extent_map *em;
  550. struct btrfs_root *root = BTRFS_I(inode)->root;
  551. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  552. struct extent_io_tree *io_tree;
  553. int ret = 0;
  554. if (list_empty(&async_cow->extents))
  555. return 0;
  556. while (!list_empty(&async_cow->extents)) {
  557. async_extent = list_entry(async_cow->extents.next,
  558. struct async_extent, list);
  559. list_del(&async_extent->list);
  560. io_tree = &BTRFS_I(inode)->io_tree;
  561. retry:
  562. /* did the compression code fall back to uncompressed IO? */
  563. if (!async_extent->pages) {
  564. int page_started = 0;
  565. unsigned long nr_written = 0;
  566. lock_extent(io_tree, async_extent->start,
  567. async_extent->start +
  568. async_extent->ram_size - 1);
  569. /* allocate blocks */
  570. ret = cow_file_range(inode, async_cow->locked_page,
  571. async_extent->start,
  572. async_extent->start +
  573. async_extent->ram_size - 1,
  574. &page_started, &nr_written, 0);
  575. /* JDM XXX */
  576. /*
  577. * if page_started, cow_file_range inserted an
  578. * inline extent and took care of all the unlocking
  579. * and IO for us. Otherwise, we need to submit
  580. * all those pages down to the drive.
  581. */
  582. if (!page_started && !ret)
  583. extent_write_locked_range(io_tree,
  584. inode, async_extent->start,
  585. async_extent->start +
  586. async_extent->ram_size - 1,
  587. btrfs_get_extent,
  588. WB_SYNC_ALL);
  589. kfree(async_extent);
  590. cond_resched();
  591. continue;
  592. }
  593. lock_extent(io_tree, async_extent->start,
  594. async_extent->start + async_extent->ram_size - 1);
  595. trans = btrfs_join_transaction(root);
  596. if (IS_ERR(trans)) {
  597. ret = PTR_ERR(trans);
  598. } else {
  599. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  600. ret = btrfs_reserve_extent(trans, root,
  601. async_extent->compressed_size,
  602. async_extent->compressed_size,
  603. 0, alloc_hint, &ins, 1);
  604. if (ret && ret != -ENOSPC)
  605. btrfs_abort_transaction(trans, root, ret);
  606. btrfs_end_transaction(trans, root);
  607. }
  608. if (ret) {
  609. int i;
  610. for (i = 0; i < async_extent->nr_pages; i++) {
  611. WARN_ON(async_extent->pages[i]->mapping);
  612. page_cache_release(async_extent->pages[i]);
  613. }
  614. kfree(async_extent->pages);
  615. async_extent->nr_pages = 0;
  616. async_extent->pages = NULL;
  617. unlock_extent(io_tree, async_extent->start,
  618. async_extent->start +
  619. async_extent->ram_size - 1);
  620. if (ret == -ENOSPC)
  621. goto retry;
  622. goto out_free; /* JDM: Requeue? */
  623. }
  624. /*
  625. * here we're doing allocation and writeback of the
  626. * compressed pages
  627. */
  628. btrfs_drop_extent_cache(inode, async_extent->start,
  629. async_extent->start +
  630. async_extent->ram_size - 1, 0);
  631. em = alloc_extent_map();
  632. BUG_ON(!em); /* -ENOMEM */
  633. em->start = async_extent->start;
  634. em->len = async_extent->ram_size;
  635. em->orig_start = em->start;
  636. em->block_start = ins.objectid;
  637. em->block_len = ins.offset;
  638. em->orig_block_len = ins.offset;
  639. em->bdev = root->fs_info->fs_devices->latest_bdev;
  640. em->compress_type = async_extent->compress_type;
  641. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  642. set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  643. em->generation = -1;
  644. while (1) {
  645. write_lock(&em_tree->lock);
  646. ret = add_extent_mapping(em_tree, em);
  647. if (!ret)
  648. list_move(&em->list,
  649. &em_tree->modified_extents);
  650. write_unlock(&em_tree->lock);
  651. if (ret != -EEXIST) {
  652. free_extent_map(em);
  653. break;
  654. }
  655. btrfs_drop_extent_cache(inode, async_extent->start,
  656. async_extent->start +
  657. async_extent->ram_size - 1, 0);
  658. }
  659. ret = btrfs_add_ordered_extent_compress(inode,
  660. async_extent->start,
  661. ins.objectid,
  662. async_extent->ram_size,
  663. ins.offset,
  664. BTRFS_ORDERED_COMPRESSED,
  665. async_extent->compress_type);
  666. BUG_ON(ret); /* -ENOMEM */
  667. /*
  668. * clear dirty, set writeback and unlock the pages.
  669. */
  670. extent_clear_unlock_delalloc(inode,
  671. &BTRFS_I(inode)->io_tree,
  672. async_extent->start,
  673. async_extent->start +
  674. async_extent->ram_size - 1,
  675. NULL, EXTENT_CLEAR_UNLOCK_PAGE |
  676. EXTENT_CLEAR_UNLOCK |
  677. EXTENT_CLEAR_DELALLOC |
  678. EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
  679. ret = btrfs_submit_compressed_write(inode,
  680. async_extent->start,
  681. async_extent->ram_size,
  682. ins.objectid,
  683. ins.offset, async_extent->pages,
  684. async_extent->nr_pages);
  685. BUG_ON(ret); /* -ENOMEM */
  686. alloc_hint = ins.objectid + ins.offset;
  687. kfree(async_extent);
  688. cond_resched();
  689. }
  690. ret = 0;
  691. out:
  692. return ret;
  693. out_free:
  694. kfree(async_extent);
  695. goto out;
  696. }
  697. static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
  698. u64 num_bytes)
  699. {
  700. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  701. struct extent_map *em;
  702. u64 alloc_hint = 0;
  703. read_lock(&em_tree->lock);
  704. em = search_extent_mapping(em_tree, start, num_bytes);
  705. if (em) {
  706. /*
  707. * if block start isn't an actual block number then find the
  708. * first block in this inode and use that as a hint. If that
  709. * block is also bogus then just don't worry about it.
  710. */
  711. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  712. free_extent_map(em);
  713. em = search_extent_mapping(em_tree, 0, 0);
  714. if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
  715. alloc_hint = em->block_start;
  716. if (em)
  717. free_extent_map(em);
  718. } else {
  719. alloc_hint = em->block_start;
  720. free_extent_map(em);
  721. }
  722. }
  723. read_unlock(&em_tree->lock);
  724. return alloc_hint;
  725. }
  726. /*
  727. * when extent_io.c finds a delayed allocation range in the file,
  728. * the call backs end up in this code. The basic idea is to
  729. * allocate extents on disk for the range, and create ordered data structs
  730. * in ram to track those extents.
  731. *
  732. * locked_page is the page that writepage had locked already. We use
  733. * it to make sure we don't do extra locks or unlocks.
  734. *
  735. * *page_started is set to one if we unlock locked_page and do everything
  736. * required to start IO on it. It may be clean and already done with
  737. * IO when we return.
  738. */
  739. static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
  740. struct inode *inode,
  741. struct btrfs_root *root,
  742. struct page *locked_page,
  743. u64 start, u64 end, int *page_started,
  744. unsigned long *nr_written,
  745. int unlock)
  746. {
  747. u64 alloc_hint = 0;
  748. u64 num_bytes;
  749. unsigned long ram_size;
  750. u64 disk_num_bytes;
  751. u64 cur_alloc_size;
  752. u64 blocksize = root->sectorsize;
  753. struct btrfs_key ins;
  754. struct extent_map *em;
  755. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  756. int ret = 0;
  757. BUG_ON(btrfs_is_free_space_inode(inode));
  758. num_bytes = (end - start + blocksize) & ~(blocksize - 1);
  759. num_bytes = max(blocksize, num_bytes);
  760. disk_num_bytes = num_bytes;
  761. /* if this is a small write inside eof, kick off defrag */
  762. if (num_bytes < 64 * 1024 &&
  763. (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
  764. btrfs_add_inode_defrag(trans, inode);
  765. if (start == 0) {
  766. /* lets try to make an inline extent */
  767. ret = cow_file_range_inline(trans, root, inode,
  768. start, end, 0, 0, NULL);
  769. if (ret == 0) {
  770. extent_clear_unlock_delalloc(inode,
  771. &BTRFS_I(inode)->io_tree,
  772. start, end, NULL,
  773. EXTENT_CLEAR_UNLOCK_PAGE |
  774. EXTENT_CLEAR_UNLOCK |
  775. EXTENT_CLEAR_DELALLOC |
  776. EXTENT_CLEAR_DIRTY |
  777. EXTENT_SET_WRITEBACK |
  778. EXTENT_END_WRITEBACK);
  779. *nr_written = *nr_written +
  780. (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
  781. *page_started = 1;
  782. goto out;
  783. } else if (ret < 0) {
  784. btrfs_abort_transaction(trans, root, ret);
  785. goto out_unlock;
  786. }
  787. }
  788. BUG_ON(disk_num_bytes >
  789. btrfs_super_total_bytes(root->fs_info->super_copy));
  790. alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
  791. btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
  792. while (disk_num_bytes > 0) {
  793. unsigned long op;
  794. cur_alloc_size = disk_num_bytes;
  795. ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
  796. root->sectorsize, 0, alloc_hint,
  797. &ins, 1);
  798. if (ret < 0) {
  799. btrfs_abort_transaction(trans, root, ret);
  800. goto out_unlock;
  801. }
  802. em = alloc_extent_map();
  803. BUG_ON(!em); /* -ENOMEM */
  804. em->start = start;
  805. em->orig_start = em->start;
  806. ram_size = ins.offset;
  807. em->len = ins.offset;
  808. em->block_start = ins.objectid;
  809. em->block_len = ins.offset;
  810. em->orig_block_len = ins.offset;
  811. em->bdev = root->fs_info->fs_devices->latest_bdev;
  812. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  813. em->generation = -1;
  814. while (1) {
  815. write_lock(&em_tree->lock);
  816. ret = add_extent_mapping(em_tree, em);
  817. if (!ret)
  818. list_move(&em->list,
  819. &em_tree->modified_extents);
  820. write_unlock(&em_tree->lock);
  821. if (ret != -EEXIST) {
  822. free_extent_map(em);
  823. break;
  824. }
  825. btrfs_drop_extent_cache(inode, start,
  826. start + ram_size - 1, 0);
  827. }
  828. cur_alloc_size = ins.offset;
  829. ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
  830. ram_size, cur_alloc_size, 0);
  831. BUG_ON(ret); /* -ENOMEM */
  832. if (root->root_key.objectid ==
  833. BTRFS_DATA_RELOC_TREE_OBJECTID) {
  834. ret = btrfs_reloc_clone_csums(inode, start,
  835. cur_alloc_size);
  836. if (ret) {
  837. btrfs_abort_transaction(trans, root, ret);
  838. goto out_unlock;
  839. }
  840. }
  841. if (disk_num_bytes < cur_alloc_size)
  842. break;
  843. /* we're not doing compressed IO, don't unlock the first
  844. * page (which the caller expects to stay locked), don't
  845. * clear any dirty bits and don't set any writeback bits
  846. *
  847. * Do set the Private2 bit so we know this page was properly
  848. * setup for writepage
  849. */
  850. op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
  851. op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
  852. EXTENT_SET_PRIVATE2;
  853. extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
  854. start, start + ram_size - 1,
  855. locked_page, op);
  856. disk_num_bytes -= cur_alloc_size;
  857. num_bytes -= cur_alloc_size;
  858. alloc_hint = ins.objectid + ins.offset;
  859. start += cur_alloc_size;
  860. }
  861. out:
  862. return ret;
  863. out_unlock:
  864. extent_clear_unlock_delalloc(inode,
  865. &BTRFS_I(inode)->io_tree,
  866. start, end, locked_page,
  867. EXTENT_CLEAR_UNLOCK_PAGE |
  868. EXTENT_CLEAR_UNLOCK |
  869. EXTENT_CLEAR_DELALLOC |
  870. EXTENT_CLEAR_DIRTY |
  871. EXTENT_SET_WRITEBACK |
  872. EXTENT_END_WRITEBACK);
  873. goto out;
  874. }
  875. static noinline int cow_file_range(struct inode *inode,
  876. struct page *locked_page,
  877. u64 start, u64 end, int *page_started,
  878. unsigned long *nr_written,
  879. int unlock)
  880. {
  881. struct btrfs_trans_handle *trans;
  882. struct btrfs_root *root = BTRFS_I(inode)->root;
  883. int ret;
  884. trans = btrfs_join_transaction(root);
  885. if (IS_ERR(trans)) {
  886. extent_clear_unlock_delalloc(inode,
  887. &BTRFS_I(inode)->io_tree,
  888. start, end, locked_page,
  889. EXTENT_CLEAR_UNLOCK_PAGE |
  890. EXTENT_CLEAR_UNLOCK |
  891. EXTENT_CLEAR_DELALLOC |
  892. EXTENT_CLEAR_DIRTY |
  893. EXTENT_SET_WRITEBACK |
  894. EXTENT_END_WRITEBACK);
  895. return PTR_ERR(trans);
  896. }
  897. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  898. ret = __cow_file_range(trans, inode, root, locked_page, start, end,
  899. page_started, nr_written, unlock);
  900. btrfs_end_transaction(trans, root);
  901. return ret;
  902. }
  903. /*
  904. * work queue call back to started compression on a file and pages
  905. */
  906. static noinline void async_cow_start(struct btrfs_work *work)
  907. {
  908. struct async_cow *async_cow;
  909. int num_added = 0;
  910. async_cow = container_of(work, struct async_cow, work);
  911. compress_file_range(async_cow->inode, async_cow->locked_page,
  912. async_cow->start, async_cow->end, async_cow,
  913. &num_added);
  914. if (num_added == 0) {
  915. btrfs_add_delayed_iput(async_cow->inode);
  916. async_cow->inode = NULL;
  917. }
  918. }
  919. /*
  920. * work queue call back to submit previously compressed pages
  921. */
  922. static noinline void async_cow_submit(struct btrfs_work *work)
  923. {
  924. struct async_cow *async_cow;
  925. struct btrfs_root *root;
  926. unsigned long nr_pages;
  927. async_cow = container_of(work, struct async_cow, work);
  928. root = async_cow->root;
  929. nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
  930. PAGE_CACHE_SHIFT;
  931. if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
  932. 5 * 1024 * 1024 &&
  933. waitqueue_active(&root->fs_info->async_submit_wait))
  934. wake_up(&root->fs_info->async_submit_wait);
  935. if (async_cow->inode)
  936. submit_compressed_extents(async_cow->inode, async_cow);
  937. }
  938. static noinline void async_cow_free(struct btrfs_work *work)
  939. {
  940. struct async_cow *async_cow;
  941. async_cow = container_of(work, struct async_cow, work);
  942. if (async_cow->inode)
  943. btrfs_add_delayed_iput(async_cow->inode);
  944. kfree(async_cow);
  945. }
  946. static int cow_file_range_async(struct inode *inode, struct page *locked_page,
  947. u64 start, u64 end, int *page_started,
  948. unsigned long *nr_written)
  949. {
  950. struct async_cow *async_cow;
  951. struct btrfs_root *root = BTRFS_I(inode)->root;
  952. unsigned long nr_pages;
  953. u64 cur_end;
  954. int limit = 10 * 1024 * 1024;
  955. clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
  956. 1, 0, NULL, GFP_NOFS);
  957. while (start < end) {
  958. async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
  959. BUG_ON(!async_cow); /* -ENOMEM */
  960. async_cow->inode = igrab(inode);
  961. async_cow->root = root;
  962. async_cow->locked_page = locked_page;
  963. async_cow->start = start;
  964. if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
  965. cur_end = end;
  966. else
  967. cur_end = min(end, start + 512 * 1024 - 1);
  968. async_cow->end = cur_end;
  969. INIT_LIST_HEAD(&async_cow->extents);
  970. async_cow->work.func = async_cow_start;
  971. async_cow->work.ordered_func = async_cow_submit;
  972. async_cow->work.ordered_free = async_cow_free;
  973. async_cow->work.flags = 0;
  974. nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
  975. PAGE_CACHE_SHIFT;
  976. atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
  977. btrfs_queue_worker(&root->fs_info->delalloc_workers,
  978. &async_cow->work);
  979. if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
  980. wait_event(root->fs_info->async_submit_wait,
  981. (atomic_read(&root->fs_info->async_delalloc_pages) <
  982. limit));
  983. }
  984. while (atomic_read(&root->fs_info->async_submit_draining) &&
  985. atomic_read(&root->fs_info->async_delalloc_pages)) {
  986. wait_event(root->fs_info->async_submit_wait,
  987. (atomic_read(&root->fs_info->async_delalloc_pages) ==
  988. 0));
  989. }
  990. *nr_written += nr_pages;
  991. start = cur_end + 1;
  992. }
  993. *page_started = 1;
  994. return 0;
  995. }
  996. static noinline int csum_exist_in_range(struct btrfs_root *root,
  997. u64 bytenr, u64 num_bytes)
  998. {
  999. int ret;
  1000. struct btrfs_ordered_sum *sums;
  1001. LIST_HEAD(list);
  1002. ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
  1003. bytenr + num_bytes - 1, &list, 0);
  1004. if (ret == 0 && list_empty(&list))
  1005. return 0;
  1006. while (!list_empty(&list)) {
  1007. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  1008. list_del(&sums->list);
  1009. kfree(sums);
  1010. }
  1011. return 1;
  1012. }
  1013. /*
  1014. * when nowcow writeback call back. This checks for snapshots or COW copies
  1015. * of the extents that exist in the file, and COWs the file as required.
  1016. *
  1017. * If no cow copies or snapshots exist, we write directly to the existing
  1018. * blocks on disk
  1019. */
  1020. static noinline int run_delalloc_nocow(struct inode *inode,
  1021. struct page *locked_page,
  1022. u64 start, u64 end, int *page_started, int force,
  1023. unsigned long *nr_written)
  1024. {
  1025. struct btrfs_root *root = BTRFS_I(inode)->root;
  1026. struct btrfs_trans_handle *trans;
  1027. struct extent_buffer *leaf;
  1028. struct btrfs_path *path;
  1029. struct btrfs_file_extent_item *fi;
  1030. struct btrfs_key found_key;
  1031. u64 cow_start;
  1032. u64 cur_offset;
  1033. u64 extent_end;
  1034. u64 extent_offset;
  1035. u64 disk_bytenr;
  1036. u64 num_bytes;
  1037. u64 disk_num_bytes;
  1038. int extent_type;
  1039. int ret, err;
  1040. int type;
  1041. int nocow;
  1042. int check_prev = 1;
  1043. bool nolock;
  1044. u64 ino = btrfs_ino(inode);
  1045. path = btrfs_alloc_path();
  1046. if (!path) {
  1047. extent_clear_unlock_delalloc(inode,
  1048. &BTRFS_I(inode)->io_tree,
  1049. start, end, locked_page,
  1050. EXTENT_CLEAR_UNLOCK_PAGE |
  1051. EXTENT_CLEAR_UNLOCK |
  1052. EXTENT_CLEAR_DELALLOC |
  1053. EXTENT_CLEAR_DIRTY |
  1054. EXTENT_SET_WRITEBACK |
  1055. EXTENT_END_WRITEBACK);
  1056. return -ENOMEM;
  1057. }
  1058. nolock = btrfs_is_free_space_inode(inode);
  1059. if (nolock)
  1060. trans = btrfs_join_transaction_nolock(root);
  1061. else
  1062. trans = btrfs_join_transaction(root);
  1063. if (IS_ERR(trans)) {
  1064. extent_clear_unlock_delalloc(inode,
  1065. &BTRFS_I(inode)->io_tree,
  1066. start, end, locked_page,
  1067. EXTENT_CLEAR_UNLOCK_PAGE |
  1068. EXTENT_CLEAR_UNLOCK |
  1069. EXTENT_CLEAR_DELALLOC |
  1070. EXTENT_CLEAR_DIRTY |
  1071. EXTENT_SET_WRITEBACK |
  1072. EXTENT_END_WRITEBACK);
  1073. btrfs_free_path(path);
  1074. return PTR_ERR(trans);
  1075. }
  1076. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  1077. cow_start = (u64)-1;
  1078. cur_offset = start;
  1079. while (1) {
  1080. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  1081. cur_offset, 0);
  1082. if (ret < 0) {
  1083. btrfs_abort_transaction(trans, root, ret);
  1084. goto error;
  1085. }
  1086. if (ret > 0 && path->slots[0] > 0 && check_prev) {
  1087. leaf = path->nodes[0];
  1088. btrfs_item_key_to_cpu(leaf, &found_key,
  1089. path->slots[0] - 1);
  1090. if (found_key.objectid == ino &&
  1091. found_key.type == BTRFS_EXTENT_DATA_KEY)
  1092. path->slots[0]--;
  1093. }
  1094. check_prev = 0;
  1095. next_slot:
  1096. leaf = path->nodes[0];
  1097. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  1098. ret = btrfs_next_leaf(root, path);
  1099. if (ret < 0) {
  1100. btrfs_abort_transaction(trans, root, ret);
  1101. goto error;
  1102. }
  1103. if (ret > 0)
  1104. break;
  1105. leaf = path->nodes[0];
  1106. }
  1107. nocow = 0;
  1108. disk_bytenr = 0;
  1109. num_bytes = 0;
  1110. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  1111. if (found_key.objectid > ino ||
  1112. found_key.type > BTRFS_EXTENT_DATA_KEY ||
  1113. found_key.offset > end)
  1114. break;
  1115. if (found_key.offset > cur_offset) {
  1116. extent_end = found_key.offset;
  1117. extent_type = 0;
  1118. goto out_check;
  1119. }
  1120. fi = btrfs_item_ptr(leaf, path->slots[0],
  1121. struct btrfs_file_extent_item);
  1122. extent_type = btrfs_file_extent_type(leaf, fi);
  1123. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  1124. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  1125. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1126. extent_offset = btrfs_file_extent_offset(leaf, fi);
  1127. extent_end = found_key.offset +
  1128. btrfs_file_extent_num_bytes(leaf, fi);
  1129. disk_num_bytes =
  1130. btrfs_file_extent_disk_num_bytes(leaf, fi);
  1131. if (extent_end <= start) {
  1132. path->slots[0]++;
  1133. goto next_slot;
  1134. }
  1135. if (disk_bytenr == 0)
  1136. goto out_check;
  1137. if (btrfs_file_extent_compression(leaf, fi) ||
  1138. btrfs_file_extent_encryption(leaf, fi) ||
  1139. btrfs_file_extent_other_encoding(leaf, fi))
  1140. goto out_check;
  1141. if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
  1142. goto out_check;
  1143. if (btrfs_extent_readonly(root, disk_bytenr))
  1144. goto out_check;
  1145. if (btrfs_cross_ref_exist(trans, root, ino,
  1146. found_key.offset -
  1147. extent_offset, disk_bytenr))
  1148. goto out_check;
  1149. disk_bytenr += extent_offset;
  1150. disk_bytenr += cur_offset - found_key.offset;
  1151. num_bytes = min(end + 1, extent_end) - cur_offset;
  1152. /*
  1153. * force cow if csum exists in the range.
  1154. * this ensure that csum for a given extent are
  1155. * either valid or do not exist.
  1156. */
  1157. if (csum_exist_in_range(root, disk_bytenr, num_bytes))
  1158. goto out_check;
  1159. nocow = 1;
  1160. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  1161. extent_end = found_key.offset +
  1162. btrfs_file_extent_inline_len(leaf, fi);
  1163. extent_end = ALIGN(extent_end, root->sectorsize);
  1164. } else {
  1165. BUG_ON(1);
  1166. }
  1167. out_check:
  1168. if (extent_end <= start) {
  1169. path->slots[0]++;
  1170. goto next_slot;
  1171. }
  1172. if (!nocow) {
  1173. if (cow_start == (u64)-1)
  1174. cow_start = cur_offset;
  1175. cur_offset = extent_end;
  1176. if (cur_offset > end)
  1177. break;
  1178. path->slots[0]++;
  1179. goto next_slot;
  1180. }
  1181. btrfs_release_path(path);
  1182. if (cow_start != (u64)-1) {
  1183. ret = __cow_file_range(trans, inode, root, locked_page,
  1184. cow_start, found_key.offset - 1,
  1185. page_started, nr_written, 1);
  1186. if (ret) {
  1187. btrfs_abort_transaction(trans, root, ret);
  1188. goto error;
  1189. }
  1190. cow_start = (u64)-1;
  1191. }
  1192. if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  1193. struct extent_map *em;
  1194. struct extent_map_tree *em_tree;
  1195. em_tree = &BTRFS_I(inode)->extent_tree;
  1196. em = alloc_extent_map();
  1197. BUG_ON(!em); /* -ENOMEM */
  1198. em->start = cur_offset;
  1199. em->orig_start = found_key.offset - extent_offset;
  1200. em->len = num_bytes;
  1201. em->block_len = num_bytes;
  1202. em->block_start = disk_bytenr;
  1203. em->orig_block_len = disk_num_bytes;
  1204. em->bdev = root->fs_info->fs_devices->latest_bdev;
  1205. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  1206. set_bit(EXTENT_FLAG_FILLING, &em->flags);
  1207. em->generation = -1;
  1208. while (1) {
  1209. write_lock(&em_tree->lock);
  1210. ret = add_extent_mapping(em_tree, em);
  1211. if (!ret)
  1212. list_move(&em->list,
  1213. &em_tree->modified_extents);
  1214. write_unlock(&em_tree->lock);
  1215. if (ret != -EEXIST) {
  1216. free_extent_map(em);
  1217. break;
  1218. }
  1219. btrfs_drop_extent_cache(inode, em->start,
  1220. em->start + em->len - 1, 0);
  1221. }
  1222. type = BTRFS_ORDERED_PREALLOC;
  1223. } else {
  1224. type = BTRFS_ORDERED_NOCOW;
  1225. }
  1226. ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
  1227. num_bytes, num_bytes, type);
  1228. BUG_ON(ret); /* -ENOMEM */
  1229. if (root->root_key.objectid ==
  1230. BTRFS_DATA_RELOC_TREE_OBJECTID) {
  1231. ret = btrfs_reloc_clone_csums(inode, cur_offset,
  1232. num_bytes);
  1233. if (ret) {
  1234. btrfs_abort_transaction(trans, root, ret);
  1235. goto error;
  1236. }
  1237. }
  1238. extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
  1239. cur_offset, cur_offset + num_bytes - 1,
  1240. locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
  1241. EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
  1242. EXTENT_SET_PRIVATE2);
  1243. cur_offset = extent_end;
  1244. if (cur_offset > end)
  1245. break;
  1246. }
  1247. btrfs_release_path(path);
  1248. if (cur_offset <= end && cow_start == (u64)-1) {
  1249. cow_start = cur_offset;
  1250. cur_offset = end;
  1251. }
  1252. if (cow_start != (u64)-1) {
  1253. ret = __cow_file_range(trans, inode, root, locked_page,
  1254. cow_start, end,
  1255. page_started, nr_written, 1);
  1256. if (ret) {
  1257. btrfs_abort_transaction(trans, root, ret);
  1258. goto error;
  1259. }
  1260. }
  1261. error:
  1262. err = btrfs_end_transaction(trans, root);
  1263. if (!ret)
  1264. ret = err;
  1265. if (ret && cur_offset < end)
  1266. extent_clear_unlock_delalloc(inode,
  1267. &BTRFS_I(inode)->io_tree,
  1268. cur_offset, end, locked_page,
  1269. EXTENT_CLEAR_UNLOCK_PAGE |
  1270. EXTENT_CLEAR_UNLOCK |
  1271. EXTENT_CLEAR_DELALLOC |
  1272. EXTENT_CLEAR_DIRTY |
  1273. EXTENT_SET_WRITEBACK |
  1274. EXTENT_END_WRITEBACK);
  1275. btrfs_free_path(path);
  1276. return ret;
  1277. }
  1278. /*
  1279. * extent_io.c call back to do delayed allocation processing
  1280. */
  1281. static int run_delalloc_range(struct inode *inode, struct page *locked_page,
  1282. u64 start, u64 end, int *page_started,
  1283. unsigned long *nr_written)
  1284. {
  1285. int ret;
  1286. struct btrfs_root *root = BTRFS_I(inode)->root;
  1287. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
  1288. ret = run_delalloc_nocow(inode, locked_page, start, end,
  1289. page_started, 1, nr_written);
  1290. } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
  1291. ret = run_delalloc_nocow(inode, locked_page, start, end,
  1292. page_started, 0, nr_written);
  1293. } else if (!btrfs_test_opt(root, COMPRESS) &&
  1294. !(BTRFS_I(inode)->force_compress) &&
  1295. !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
  1296. ret = cow_file_range(inode, locked_page, start, end,
  1297. page_started, nr_written, 1);
  1298. } else {
  1299. set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1300. &BTRFS_I(inode)->runtime_flags);
  1301. ret = cow_file_range_async(inode, locked_page, start, end,
  1302. page_started, nr_written);
  1303. }
  1304. return ret;
  1305. }
  1306. static void btrfs_split_extent_hook(struct inode *inode,
  1307. struct extent_state *orig, u64 split)
  1308. {
  1309. /* not delalloc, ignore it */
  1310. if (!(orig->state & EXTENT_DELALLOC))
  1311. return;
  1312. spin_lock(&BTRFS_I(inode)->lock);
  1313. BTRFS_I(inode)->outstanding_extents++;
  1314. spin_unlock(&BTRFS_I(inode)->lock);
  1315. }
  1316. /*
  1317. * extent_io.c merge_extent_hook, used to track merged delayed allocation
  1318. * extents so we can keep track of new extents that are just merged onto old
  1319. * extents, such as when we are doing sequential writes, so we can properly
  1320. * account for the metadata space we'll need.
  1321. */
  1322. static void btrfs_merge_extent_hook(struct inode *inode,
  1323. struct extent_state *new,
  1324. struct extent_state *other)
  1325. {
  1326. /* not delalloc, ignore it */
  1327. if (!(other->state & EXTENT_DELALLOC))
  1328. return;
  1329. spin_lock(&BTRFS_I(inode)->lock);
  1330. BTRFS_I(inode)->outstanding_extents--;
  1331. spin_unlock(&BTRFS_I(inode)->lock);
  1332. }
  1333. /*
  1334. * extent_io.c set_bit_hook, used to track delayed allocation
  1335. * bytes in this file, and to maintain the list of inodes that
  1336. * have pending delalloc work to be done.
  1337. */
  1338. static void btrfs_set_bit_hook(struct inode *inode,
  1339. struct extent_state *state, int *bits)
  1340. {
  1341. /*
  1342. * set_bit and clear bit hooks normally require _irqsave/restore
  1343. * but in this case, we are only testing for the DELALLOC
  1344. * bit, which is only set or cleared with irqs on
  1345. */
  1346. if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
  1347. struct btrfs_root *root = BTRFS_I(inode)->root;
  1348. u64 len = state->end + 1 - state->start;
  1349. bool do_list = !btrfs_is_free_space_inode(inode);
  1350. if (*bits & EXTENT_FIRST_DELALLOC) {
  1351. *bits &= ~EXTENT_FIRST_DELALLOC;
  1352. } else {
  1353. spin_lock(&BTRFS_I(inode)->lock);
  1354. BTRFS_I(inode)->outstanding_extents++;
  1355. spin_unlock(&BTRFS_I(inode)->lock);
  1356. }
  1357. spin_lock(&root->fs_info->delalloc_lock);
  1358. BTRFS_I(inode)->delalloc_bytes += len;
  1359. root->fs_info->delalloc_bytes += len;
  1360. if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
  1361. list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
  1362. &root->fs_info->delalloc_inodes);
  1363. }
  1364. spin_unlock(&root->fs_info->delalloc_lock);
  1365. }
  1366. }
  1367. /*
  1368. * extent_io.c clear_bit_hook, see set_bit_hook for why
  1369. */
  1370. static void btrfs_clear_bit_hook(struct inode *inode,
  1371. struct extent_state *state, int *bits)
  1372. {
  1373. /*
  1374. * set_bit and clear bit hooks normally require _irqsave/restore
  1375. * but in this case, we are only testing for the DELALLOC
  1376. * bit, which is only set or cleared with irqs on
  1377. */
  1378. if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
  1379. struct btrfs_root *root = BTRFS_I(inode)->root;
  1380. u64 len = state->end + 1 - state->start;
  1381. bool do_list = !btrfs_is_free_space_inode(inode);
  1382. if (*bits & EXTENT_FIRST_DELALLOC) {
  1383. *bits &= ~EXTENT_FIRST_DELALLOC;
  1384. } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
  1385. spin_lock(&BTRFS_I(inode)->lock);
  1386. BTRFS_I(inode)->outstanding_extents--;
  1387. spin_unlock(&BTRFS_I(inode)->lock);
  1388. }
  1389. if (*bits & EXTENT_DO_ACCOUNTING)
  1390. btrfs_delalloc_release_metadata(inode, len);
  1391. if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
  1392. && do_list)
  1393. btrfs_free_reserved_data_space(inode, len);
  1394. spin_lock(&root->fs_info->delalloc_lock);
  1395. root->fs_info->delalloc_bytes -= len;
  1396. BTRFS_I(inode)->delalloc_bytes -= len;
  1397. if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
  1398. !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
  1399. list_del_init(&BTRFS_I(inode)->delalloc_inodes);
  1400. }
  1401. spin_unlock(&root->fs_info->delalloc_lock);
  1402. }
  1403. }
  1404. /*
  1405. * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
  1406. * we don't create bios that span stripes or chunks
  1407. */
  1408. int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
  1409. size_t size, struct bio *bio,
  1410. unsigned long bio_flags)
  1411. {
  1412. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  1413. u64 logical = (u64)bio->bi_sector << 9;
  1414. u64 length = 0;
  1415. u64 map_length;
  1416. int ret;
  1417. if (bio_flags & EXTENT_BIO_COMPRESSED)
  1418. return 0;
  1419. length = bio->bi_size;
  1420. map_length = length;
  1421. ret = btrfs_map_block(root->fs_info, READ, logical,
  1422. &map_length, NULL, 0);
  1423. /* Will always return 0 with map_multi == NULL */
  1424. BUG_ON(ret < 0);
  1425. if (map_length < length + size)
  1426. return 1;
  1427. return 0;
  1428. }
  1429. /*
  1430. * in order to insert checksums into the metadata in large chunks,
  1431. * we wait until bio submission time. All the pages in the bio are
  1432. * checksummed and sums are attached onto the ordered extent record.
  1433. *
  1434. * At IO completion time the cums attached on the ordered extent record
  1435. * are inserted into the btree
  1436. */
  1437. static int __btrfs_submit_bio_start(struct inode *inode, int rw,
  1438. struct bio *bio, int mirror_num,
  1439. unsigned long bio_flags,
  1440. u64 bio_offset)
  1441. {
  1442. struct btrfs_root *root = BTRFS_I(inode)->root;
  1443. int ret = 0;
  1444. ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
  1445. BUG_ON(ret); /* -ENOMEM */
  1446. return 0;
  1447. }
  1448. /*
  1449. * in order to insert checksums into the metadata in large chunks,
  1450. * we wait until bio submission time. All the pages in the bio are
  1451. * checksummed and sums are attached onto the ordered extent record.
  1452. *
  1453. * At IO completion time the cums attached on the ordered extent record
  1454. * are inserted into the btree
  1455. */
  1456. static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  1457. int mirror_num, unsigned long bio_flags,
  1458. u64 bio_offset)
  1459. {
  1460. struct btrfs_root *root = BTRFS_I(inode)->root;
  1461. int ret;
  1462. ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
  1463. if (ret)
  1464. bio_endio(bio, ret);
  1465. return ret;
  1466. }
  1467. /*
  1468. * extent_io.c submission hook. This does the right thing for csum calculation
  1469. * on write, or reading the csums from the tree before a read
  1470. */
  1471. static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  1472. int mirror_num, unsigned long bio_flags,
  1473. u64 bio_offset)
  1474. {
  1475. struct btrfs_root *root = BTRFS_I(inode)->root;
  1476. int ret = 0;
  1477. int skip_sum;
  1478. int metadata = 0;
  1479. int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
  1480. skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  1481. if (btrfs_is_free_space_inode(inode))
  1482. metadata = 2;
  1483. if (!(rw & REQ_WRITE)) {
  1484. ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
  1485. if (ret)
  1486. goto out;
  1487. if (bio_flags & EXTENT_BIO_COMPRESSED) {
  1488. ret = btrfs_submit_compressed_read(inode, bio,
  1489. mirror_num,
  1490. bio_flags);
  1491. goto out;
  1492. } else if (!skip_sum) {
  1493. ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
  1494. if (ret)
  1495. goto out;
  1496. }
  1497. goto mapit;
  1498. } else if (async && !skip_sum) {
  1499. /* csum items have already been cloned */
  1500. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  1501. goto mapit;
  1502. /* we're doing a write, do the async checksumming */
  1503. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  1504. inode, rw, bio, mirror_num,
  1505. bio_flags, bio_offset,
  1506. __btrfs_submit_bio_start,
  1507. __btrfs_submit_bio_done);
  1508. goto out;
  1509. } else if (!skip_sum) {
  1510. ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
  1511. if (ret)
  1512. goto out;
  1513. }
  1514. mapit:
  1515. ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
  1516. out:
  1517. if (ret < 0)
  1518. bio_endio(bio, ret);
  1519. return ret;
  1520. }
  1521. /*
  1522. * given a list of ordered sums record them in the inode. This happens
  1523. * at IO completion time based on sums calculated at bio submission time.
  1524. */
  1525. static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
  1526. struct inode *inode, u64 file_offset,
  1527. struct list_head *list)
  1528. {
  1529. struct btrfs_ordered_sum *sum;
  1530. list_for_each_entry(sum, list, list) {
  1531. btrfs_csum_file_blocks(trans,
  1532. BTRFS_I(inode)->root->fs_info->csum_root, sum);
  1533. }
  1534. return 0;
  1535. }
  1536. int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
  1537. struct extent_state **cached_state)
  1538. {
  1539. WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
  1540. return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
  1541. cached_state, GFP_NOFS);
  1542. }
  1543. /* see btrfs_writepage_start_hook for details on why this is required */
  1544. struct btrfs_writepage_fixup {
  1545. struct page *page;
  1546. struct btrfs_work work;
  1547. };
  1548. static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
  1549. {
  1550. struct btrfs_writepage_fixup *fixup;
  1551. struct btrfs_ordered_extent *ordered;
  1552. struct extent_state *cached_state = NULL;
  1553. struct page *page;
  1554. struct inode *inode;
  1555. u64 page_start;
  1556. u64 page_end;
  1557. int ret;
  1558. fixup = container_of(work, struct btrfs_writepage_fixup, work);
  1559. page = fixup->page;
  1560. again:
  1561. lock_page(page);
  1562. if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
  1563. ClearPageChecked(page);
  1564. goto out_page;
  1565. }
  1566. inode = page->mapping->host;
  1567. page_start = page_offset(page);
  1568. page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
  1569. lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
  1570. &cached_state);
  1571. /* already ordered? We're done */
  1572. if (PagePrivate2(page))
  1573. goto out;
  1574. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  1575. if (ordered) {
  1576. unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
  1577. page_end, &cached_state, GFP_NOFS);
  1578. unlock_page(page);
  1579. btrfs_start_ordered_extent(inode, ordered, 1);
  1580. btrfs_put_ordered_extent(ordered);
  1581. goto again;
  1582. }
  1583. ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
  1584. if (ret) {
  1585. mapping_set_error(page->mapping, ret);
  1586. end_extent_writepage(page, ret, page_start, page_end);
  1587. ClearPageChecked(page);
  1588. goto out;
  1589. }
  1590. btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
  1591. ClearPageChecked(page);
  1592. set_page_dirty(page);
  1593. out:
  1594. unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
  1595. &cached_state, GFP_NOFS);
  1596. out_page:
  1597. unlock_page(page);
  1598. page_cache_release(page);
  1599. kfree(fixup);
  1600. }
  1601. /*
  1602. * There are a few paths in the higher layers of the kernel that directly
  1603. * set the page dirty bit without asking the filesystem if it is a
  1604. * good idea. This causes problems because we want to make sure COW
  1605. * properly happens and the data=ordered rules are followed.
  1606. *
  1607. * In our case any range that doesn't have the ORDERED bit set
  1608. * hasn't been properly setup for IO. We kick off an async process
  1609. * to fix it up. The async helper will wait for ordered extents, set
  1610. * the delalloc bit and make it safe to write the page.
  1611. */
  1612. static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
  1613. {
  1614. struct inode *inode = page->mapping->host;
  1615. struct btrfs_writepage_fixup *fixup;
  1616. struct btrfs_root *root = BTRFS_I(inode)->root;
  1617. /* this page is properly in the ordered list */
  1618. if (TestClearPagePrivate2(page))
  1619. return 0;
  1620. if (PageChecked(page))
  1621. return -EAGAIN;
  1622. fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
  1623. if (!fixup)
  1624. return -EAGAIN;
  1625. SetPageChecked(page);
  1626. page_cache_get(page);
  1627. fixup->work.func = btrfs_writepage_fixup_worker;
  1628. fixup->page = page;
  1629. btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
  1630. return -EBUSY;
  1631. }
  1632. static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
  1633. struct inode *inode, u64 file_pos,
  1634. u64 disk_bytenr, u64 disk_num_bytes,
  1635. u64 num_bytes, u64 ram_bytes,
  1636. u8 compression, u8 encryption,
  1637. u16 other_encoding, int extent_type)
  1638. {
  1639. struct btrfs_root *root = BTRFS_I(inode)->root;
  1640. struct btrfs_file_extent_item *fi;
  1641. struct btrfs_path *path;
  1642. struct extent_buffer *leaf;
  1643. struct btrfs_key ins;
  1644. int ret;
  1645. path = btrfs_alloc_path();
  1646. if (!path)
  1647. return -ENOMEM;
  1648. path->leave_spinning = 1;
  1649. /*
  1650. * we may be replacing one extent in the tree with another.
  1651. * The new extent is pinned in the extent map, and we don't want
  1652. * to drop it from the cache until it is completely in the btree.
  1653. *
  1654. * So, tell btrfs_drop_extents to leave this extent in the cache.
  1655. * the caller is expected to unpin it and allow it to be merged
  1656. * with the others.
  1657. */
  1658. ret = btrfs_drop_extents(trans, root, inode, file_pos,
  1659. file_pos + num_bytes, 0);
  1660. if (ret)
  1661. goto out;
  1662. ins.objectid = btrfs_ino(inode);
  1663. ins.offset = file_pos;
  1664. ins.type = BTRFS_EXTENT_DATA_KEY;
  1665. ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
  1666. if (ret)
  1667. goto out;
  1668. leaf = path->nodes[0];
  1669. fi = btrfs_item_ptr(leaf, path->slots[0],
  1670. struct btrfs_file_extent_item);
  1671. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1672. btrfs_set_file_extent_type(leaf, fi, extent_type);
  1673. btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
  1674. btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
  1675. btrfs_set_file_extent_offset(leaf, fi, 0);
  1676. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1677. btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
  1678. btrfs_set_file_extent_compression(leaf, fi, compression);
  1679. btrfs_set_file_extent_encryption(leaf, fi, encryption);
  1680. btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
  1681. btrfs_mark_buffer_dirty(leaf);
  1682. btrfs_release_path(path);
  1683. inode_add_bytes(inode, num_bytes);
  1684. ins.objectid = disk_bytenr;
  1685. ins.offset = disk_num_bytes;
  1686. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1687. ret = btrfs_alloc_reserved_file_extent(trans, root,
  1688. root->root_key.objectid,
  1689. btrfs_ino(inode), file_pos, &ins);
  1690. out:
  1691. btrfs_free_path(path);
  1692. return ret;
  1693. }
  1694. /*
  1695. * helper function for btrfs_finish_ordered_io, this
  1696. * just reads in some of the csum leaves to prime them into ram
  1697. * before we start the transaction. It limits the amount of btree
  1698. * reads required while inside the transaction.
  1699. */
  1700. /* as ordered data IO finishes, this gets called so we can finish
  1701. * an ordered extent if the range of bytes in the file it covers are
  1702. * fully written.
  1703. */
  1704. static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
  1705. {
  1706. struct inode *inode = ordered_extent->inode;
  1707. struct btrfs_root *root = BTRFS_I(inode)->root;
  1708. struct btrfs_trans_handle *trans = NULL;
  1709. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  1710. struct extent_state *cached_state = NULL;
  1711. int compress_type = 0;
  1712. int ret;
  1713. bool nolock;
  1714. nolock = btrfs_is_free_space_inode(inode);
  1715. if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
  1716. ret = -EIO;
  1717. goto out;
  1718. }
  1719. if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
  1720. BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
  1721. btrfs_ordered_update_i_size(inode, 0, ordered_extent);
  1722. if (nolock)
  1723. trans = btrfs_join_transaction_nolock(root);
  1724. else
  1725. trans = btrfs_join_transaction(root);
  1726. if (IS_ERR(trans)) {
  1727. ret = PTR_ERR(trans);
  1728. trans = NULL;
  1729. goto out;
  1730. }
  1731. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  1732. ret = btrfs_update_inode_fallback(trans, root, inode);
  1733. if (ret) /* -ENOMEM or corruption */
  1734. btrfs_abort_transaction(trans, root, ret);
  1735. goto out;
  1736. }
  1737. lock_extent_bits(io_tree, ordered_extent->file_offset,
  1738. ordered_extent->file_offset + ordered_extent->len - 1,
  1739. 0, &cached_state);
  1740. if (nolock)
  1741. trans = btrfs_join_transaction_nolock(root);
  1742. else
  1743. trans = btrfs_join_transaction(root);
  1744. if (IS_ERR(trans)) {
  1745. ret = PTR_ERR(trans);
  1746. trans = NULL;
  1747. goto out_unlock;
  1748. }
  1749. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  1750. if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
  1751. compress_type = ordered_extent->compress_type;
  1752. if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
  1753. BUG_ON(compress_type);
  1754. ret = btrfs_mark_extent_written(trans, inode,
  1755. ordered_extent->file_offset,
  1756. ordered_extent->file_offset +
  1757. ordered_extent->len);
  1758. } else {
  1759. BUG_ON(root == root->fs_info->tree_root);
  1760. ret = insert_reserved_file_extent(trans, inode,
  1761. ordered_extent->file_offset,
  1762. ordered_extent->start,
  1763. ordered_extent->disk_len,
  1764. ordered_extent->len,
  1765. ordered_extent->len,
  1766. compress_type, 0, 0,
  1767. BTRFS_FILE_EXTENT_REG);
  1768. }
  1769. unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
  1770. ordered_extent->file_offset, ordered_extent->len,
  1771. trans->transid);
  1772. if (ret < 0) {
  1773. btrfs_abort_transaction(trans, root, ret);
  1774. goto out_unlock;
  1775. }
  1776. add_pending_csums(trans, inode, ordered_extent->file_offset,
  1777. &ordered_extent->list);
  1778. btrfs_ordered_update_i_size(inode, 0, ordered_extent);
  1779. ret = btrfs_update_inode_fallback(trans, root, inode);
  1780. if (ret) { /* -ENOMEM or corruption */
  1781. btrfs_abort_transaction(trans, root, ret);
  1782. goto out_unlock;
  1783. }
  1784. ret = 0;
  1785. out_unlock:
  1786. unlock_extent_cached(io_tree, ordered_extent->file_offset,
  1787. ordered_extent->file_offset +
  1788. ordered_extent->len - 1, &cached_state, GFP_NOFS);
  1789. out:
  1790. if (root != root->fs_info->tree_root)
  1791. btrfs_delalloc_release_metadata(inode, ordered_extent->len);
  1792. if (trans)
  1793. btrfs_end_transaction(trans, root);
  1794. if (ret)
  1795. clear_extent_uptodate(io_tree, ordered_extent->file_offset,
  1796. ordered_extent->file_offset +
  1797. ordered_extent->len - 1, NULL, GFP_NOFS);
  1798. /*
  1799. * This needs to be done to make sure anybody waiting knows we are done
  1800. * updating everything for this ordered extent.
  1801. */
  1802. btrfs_remove_ordered_extent(inode, ordered_extent);
  1803. /* once for us */
  1804. btrfs_put_ordered_extent(ordered_extent);
  1805. /* once for the tree */
  1806. btrfs_put_ordered_extent(ordered_extent);
  1807. return ret;
  1808. }
  1809. static void finish_ordered_fn(struct btrfs_work *work)
  1810. {
  1811. struct btrfs_ordered_extent *ordered_extent;
  1812. ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
  1813. btrfs_finish_ordered_io(ordered_extent);
  1814. }
  1815. static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
  1816. struct extent_state *state, int uptodate)
  1817. {
  1818. struct inode *inode = page->mapping->host;
  1819. struct btrfs_root *root = BTRFS_I(inode)->root;
  1820. struct btrfs_ordered_extent *ordered_extent = NULL;
  1821. struct btrfs_workers *workers;
  1822. trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
  1823. ClearPagePrivate2(page);
  1824. if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
  1825. end - start + 1, uptodate))
  1826. return 0;
  1827. ordered_extent->work.func = finish_ordered_fn;
  1828. ordered_extent->work.flags = 0;
  1829. if (btrfs_is_free_space_inode(inode))
  1830. workers = &root->fs_info->endio_freespace_worker;
  1831. else
  1832. workers = &root->fs_info->endio_write_workers;
  1833. btrfs_queue_worker(workers, &ordered_extent->work);
  1834. return 0;
  1835. }
  1836. /*
  1837. * when reads are done, we need to check csums to verify the data is correct
  1838. * if there's a match, we allow the bio to finish. If not, the code in
  1839. * extent_io.c will try to find good copies for us.
  1840. */
  1841. static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  1842. struct extent_state *state, int mirror)
  1843. {
  1844. size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
  1845. struct inode *inode = page->mapping->host;
  1846. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  1847. char *kaddr;
  1848. u64 private = ~(u32)0;
  1849. int ret;
  1850. struct btrfs_root *root = BTRFS_I(inode)->root;
  1851. u32 csum = ~(u32)0;
  1852. if (PageChecked(page)) {
  1853. ClearPageChecked(page);
  1854. goto good;
  1855. }
  1856. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
  1857. goto good;
  1858. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
  1859. test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
  1860. clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
  1861. GFP_NOFS);
  1862. return 0;
  1863. }
  1864. if (state && state->start == start) {
  1865. private = state->private;
  1866. ret = 0;
  1867. } else {
  1868. ret = get_state_private(io_tree, start, &private);
  1869. }
  1870. kaddr = kmap_atomic(page);
  1871. if (ret)
  1872. goto zeroit;
  1873. csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
  1874. btrfs_csum_final(csum, (char *)&csum);
  1875. if (csum != private)
  1876. goto zeroit;
  1877. kunmap_atomic(kaddr);
  1878. good:
  1879. return 0;
  1880. zeroit:
  1881. printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
  1882. "private %llu\n",
  1883. (unsigned long long)btrfs_ino(page->mapping->host),
  1884. (unsigned long long)start, csum,
  1885. (unsigned long long)private);
  1886. memset(kaddr + offset, 1, end - start + 1);
  1887. flush_dcache_page(page);
  1888. kunmap_atomic(kaddr);
  1889. if (private == 0)
  1890. return 0;
  1891. return -EIO;
  1892. }
  1893. struct delayed_iput {
  1894. struct list_head list;
  1895. struct inode *inode;
  1896. };
  1897. /* JDM: If this is fs-wide, why can't we add a pointer to
  1898. * btrfs_inode instead and avoid the allocation? */
  1899. void btrfs_add_delayed_iput(struct inode *inode)
  1900. {
  1901. struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
  1902. struct delayed_iput *delayed;
  1903. if (atomic_add_unless(&inode->i_count, -1, 1))
  1904. return;
  1905. delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
  1906. delayed->inode = inode;
  1907. spin_lock(&fs_info->delayed_iput_lock);
  1908. list_add_tail(&delayed->list, &fs_info->delayed_iputs);
  1909. spin_unlock(&fs_info->delayed_iput_lock);
  1910. }
  1911. void btrfs_run_delayed_iputs(struct btrfs_root *root)
  1912. {
  1913. LIST_HEAD(list);
  1914. struct btrfs_fs_info *fs_info = root->fs_info;
  1915. struct delayed_iput *delayed;
  1916. int empty;
  1917. spin_lock(&fs_info->delayed_iput_lock);
  1918. empty = list_empty(&fs_info->delayed_iputs);
  1919. spin_unlock(&fs_info->delayed_iput_lock);
  1920. if (empty)
  1921. return;
  1922. spin_lock(&fs_info->delayed_iput_lock);
  1923. list_splice_init(&fs_info->delayed_iputs, &list);
  1924. spin_unlock(&fs_info->delayed_iput_lock);
  1925. while (!list_empty(&list)) {
  1926. delayed = list_entry(list.next, struct delayed_iput, list);
  1927. list_del(&delayed->list);
  1928. iput(delayed->inode);
  1929. kfree(delayed);
  1930. }
  1931. }
  1932. enum btrfs_orphan_cleanup_state {
  1933. ORPHAN_CLEANUP_STARTED = 1,
  1934. ORPHAN_CLEANUP_DONE = 2,
  1935. };
  1936. /*
  1937. * This is called in transaction commit time. If there are no orphan
  1938. * files in the subvolume, it removes orphan item and frees block_rsv
  1939. * structure.
  1940. */
  1941. void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
  1942. struct btrfs_root *root)
  1943. {
  1944. struct btrfs_block_rsv *block_rsv;
  1945. int ret;
  1946. if (atomic_read(&root->orphan_inodes) ||
  1947. root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
  1948. return;
  1949. spin_lock(&root->orphan_lock);
  1950. if (atomic_read(&root->orphan_inodes)) {
  1951. spin_unlock(&root->orphan_lock);
  1952. return;
  1953. }
  1954. if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
  1955. spin_unlock(&root->orphan_lock);
  1956. return;
  1957. }
  1958. block_rsv = root->orphan_block_rsv;
  1959. root->orphan_block_rsv = NULL;
  1960. spin_unlock(&root->orphan_lock);
  1961. if (root->orphan_item_inserted &&
  1962. btrfs_root_refs(&root->root_item) > 0) {
  1963. ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
  1964. root->root_key.objectid);
  1965. BUG_ON(ret);
  1966. root->orphan_item_inserted = 0;
  1967. }
  1968. if (block_rsv) {
  1969. WARN_ON(block_rsv->size > 0);
  1970. btrfs_free_block_rsv(root, block_rsv);
  1971. }
  1972. }
  1973. /*
  1974. * This creates an orphan entry for the given inode in case something goes
  1975. * wrong in the middle of an unlink/truncate.
  1976. *
  1977. * NOTE: caller of this function should reserve 5 units of metadata for
  1978. * this function.
  1979. */
  1980. int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
  1981. {
  1982. struct btrfs_root *root = BTRFS_I(inode)->root;
  1983. struct btrfs_block_rsv *block_rsv = NULL;
  1984. int reserve = 0;
  1985. int insert = 0;
  1986. int ret;
  1987. if (!root->orphan_block_rsv) {
  1988. block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1989. if (!block_rsv)
  1990. return -ENOMEM;
  1991. }
  1992. spin_lock(&root->orphan_lock);
  1993. if (!root->orphan_block_rsv) {
  1994. root->orphan_block_rsv = block_rsv;
  1995. } else if (block_rsv) {
  1996. btrfs_free_block_rsv(root, block_rsv);
  1997. block_rsv = NULL;
  1998. }
  1999. if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2000. &BTRFS_I(inode)->runtime_flags)) {
  2001. #if 0
  2002. /*
  2003. * For proper ENOSPC handling, we should do orphan
  2004. * cleanup when mounting. But this introduces backward
  2005. * compatibility issue.
  2006. */
  2007. if (!xchg(&root->orphan_item_inserted, 1))
  2008. insert = 2;
  2009. else
  2010. insert = 1;
  2011. #endif
  2012. insert = 1;
  2013. atomic_inc(&root->orphan_inodes);
  2014. }
  2015. if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
  2016. &BTRFS_I(inode)->runtime_flags))
  2017. reserve = 1;
  2018. spin_unlock(&root->orphan_lock);
  2019. /* grab metadata reservation from transaction handle */
  2020. if (reserve) {
  2021. ret = btrfs_orphan_reserve_metadata(trans, inode);
  2022. BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
  2023. }
  2024. /* insert an orphan item to track this unlinked/truncated file */
  2025. if (insert >= 1) {
  2026. ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
  2027. if (ret && ret != -EEXIST) {
  2028. clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2029. &BTRFS_I(inode)->runtime_flags);
  2030. btrfs_abort_transaction(trans, root, ret);
  2031. return ret;
  2032. }
  2033. ret = 0;
  2034. }
  2035. /* insert an orphan item to track subvolume contains orphan files */
  2036. if (insert >= 2) {
  2037. ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
  2038. root->root_key.objectid);
  2039. if (ret && ret != -EEXIST) {
  2040. btrfs_abort_transaction(trans, root, ret);
  2041. return ret;
  2042. }
  2043. }
  2044. return 0;
  2045. }
  2046. /*
  2047. * We have done the truncate/delete so we can go ahead and remove the orphan
  2048. * item for this particular inode.
  2049. */
  2050. int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
  2051. {
  2052. struct btrfs_root *root = BTRFS_I(inode)->root;
  2053. int delete_item = 0;
  2054. int release_rsv = 0;
  2055. int ret = 0;
  2056. spin_lock(&root->orphan_lock);
  2057. if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2058. &BTRFS_I(inode)->runtime_flags))
  2059. delete_item = 1;
  2060. if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
  2061. &BTRFS_I(inode)->runtime_flags))
  2062. release_rsv = 1;
  2063. spin_unlock(&root->orphan_lock);
  2064. if (trans && delete_item) {
  2065. ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
  2066. BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
  2067. }
  2068. if (release_rsv) {
  2069. btrfs_orphan_release_metadata(inode);
  2070. atomic_dec(&root->orphan_inodes);
  2071. }
  2072. return 0;
  2073. }
  2074. /*
  2075. * this cleans up any orphans that may be left on the list from the last use
  2076. * of this root.
  2077. */
  2078. int btrfs_orphan_cleanup(struct btrfs_root *root)
  2079. {
  2080. struct btrfs_path *path;
  2081. struct extent_buffer *leaf;
  2082. struct btrfs_key key, found_key;
  2083. struct btrfs_trans_handle *trans;
  2084. struct inode *inode;
  2085. u64 last_objectid = 0;
  2086. int ret = 0, nr_unlink = 0, nr_truncate = 0;
  2087. if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
  2088. return 0;
  2089. path = btrfs_alloc_path();
  2090. if (!path) {
  2091. ret = -ENOMEM;
  2092. goto out;
  2093. }
  2094. path->reada = -1;
  2095. key.objectid = BTRFS_ORPHAN_OBJECTID;
  2096. btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
  2097. key.offset = (u64)-1;
  2098. while (1) {
  2099. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2100. if (ret < 0)
  2101. goto out;
  2102. /*
  2103. * if ret == 0 means we found what we were searching for, which
  2104. * is weird, but possible, so only screw with path if we didn't
  2105. * find the key and see if we have stuff that matches
  2106. */
  2107. if (ret > 0) {
  2108. ret = 0;
  2109. if (path->slots[0] == 0)
  2110. break;
  2111. path->slots[0]--;
  2112. }
  2113. /* pull out the item */
  2114. leaf = path->nodes[0];
  2115. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  2116. /* make sure the item matches what we want */
  2117. if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
  2118. break;
  2119. if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
  2120. break;
  2121. /* release the path since we're done with it */
  2122. btrfs_release_path(path);
  2123. /*
  2124. * this is where we are basically btrfs_lookup, without the
  2125. * crossing root thing. we store the inode number in the
  2126. * offset of the orphan item.
  2127. */
  2128. if (found_key.offset == last_objectid) {
  2129. printk(KERN_ERR "btrfs: Error removing orphan entry, "
  2130. "stopping orphan cleanup\n");
  2131. ret = -EINVAL;
  2132. goto out;
  2133. }
  2134. last_objectid = found_key.offset;
  2135. found_key.objectid = found_key.offset;
  2136. found_key.type = BTRFS_INODE_ITEM_KEY;
  2137. found_key.offset = 0;
  2138. inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
  2139. ret = PTR_RET(inode);
  2140. if (ret && ret != -ESTALE)
  2141. goto out;
  2142. if (ret == -ESTALE && root == root->fs_info->tree_root) {
  2143. struct btrfs_root *dead_root;
  2144. struct btrfs_fs_info *fs_info = root->fs_info;
  2145. int is_dead_root = 0;
  2146. /*
  2147. * this is an orphan in the tree root. Currently these
  2148. * could come from 2 sources:
  2149. * a) a snapshot deletion in progress
  2150. * b) a free space cache inode
  2151. * We need to distinguish those two, as the snapshot
  2152. * orphan must not get deleted.
  2153. * find_dead_roots already ran before us, so if this
  2154. * is a snapshot deletion, we should find the root
  2155. * in the dead_roots list
  2156. */
  2157. spin_lock(&fs_info->trans_lock);
  2158. list_for_each_entry(dead_root, &fs_info->dead_roots,
  2159. root_list) {
  2160. if (dead_root->root_key.objectid ==
  2161. found_key.objectid) {
  2162. is_dead_root = 1;
  2163. break;
  2164. }
  2165. }
  2166. spin_unlock(&fs_info->trans_lock);
  2167. if (is_dead_root) {
  2168. /* prevent this orphan from being found again */
  2169. key.offset = found_key.objectid - 1;
  2170. continue;
  2171. }
  2172. }
  2173. /*
  2174. * Inode is already gone but the orphan item is still there,
  2175. * kill the orphan item.
  2176. */
  2177. if (ret == -ESTALE) {
  2178. trans = btrfs_start_transaction(root, 1);
  2179. if (IS_ERR(trans)) {
  2180. ret = PTR_ERR(trans);
  2181. goto out;
  2182. }
  2183. printk(KERN_ERR "auto deleting %Lu\n",
  2184. found_key.objectid);
  2185. ret = btrfs_del_orphan_item(trans, root,
  2186. found_key.objectid);
  2187. BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
  2188. btrfs_end_transaction(trans, root);
  2189. continue;
  2190. }
  2191. /*
  2192. * add this inode to the orphan list so btrfs_orphan_del does
  2193. * the proper thing when we hit it
  2194. */
  2195. set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  2196. &BTRFS_I(inode)->runtime_flags);
  2197. /* if we have links, this was a truncate, lets do that */
  2198. if (inode->i_nlink) {
  2199. if (!S_ISREG(inode->i_mode)) {
  2200. WARN_ON(1);
  2201. iput(inode);
  2202. continue;
  2203. }
  2204. nr_truncate++;
  2205. /* 1 for the orphan item deletion. */
  2206. trans = btrfs_start_transaction(root, 1);
  2207. if (IS_ERR(trans)) {
  2208. ret = PTR_ERR(trans);
  2209. goto out;
  2210. }
  2211. ret = btrfs_orphan_add(trans, inode);
  2212. btrfs_end_transaction(trans, root);
  2213. if (ret)
  2214. goto out;
  2215. ret = btrfs_truncate(inode);
  2216. } else {
  2217. nr_unlink++;
  2218. }
  2219. /* this will do delete_inode and everything for us */
  2220. iput(inode);
  2221. if (ret)
  2222. goto out;
  2223. }
  2224. /* release the path since we're done with it */
  2225. btrfs_release_path(path);
  2226. root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
  2227. if (root->orphan_block_rsv)
  2228. btrfs_block_rsv_release(root, root->orphan_block_rsv,
  2229. (u64)-1);
  2230. if (root->orphan_block_rsv || root->orphan_item_inserted) {
  2231. trans = btrfs_join_transaction(root);
  2232. if (!IS_ERR(trans))
  2233. btrfs_end_transaction(trans, root);
  2234. }
  2235. if (nr_unlink)
  2236. printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
  2237. if (nr_truncate)
  2238. printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
  2239. out:
  2240. if (ret)
  2241. printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
  2242. btrfs_free_path(path);
  2243. return ret;
  2244. }
  2245. /*
  2246. * very simple check to peek ahead in the leaf looking for xattrs. If we
  2247. * don't find any xattrs, we know there can't be any acls.
  2248. *
  2249. * slot is the slot the inode is in, objectid is the objectid of the inode
  2250. */
  2251. static noinline int acls_after_inode_item(struct extent_buffer *leaf,
  2252. int slot, u64 objectid)
  2253. {
  2254. u32 nritems = btrfs_header_nritems(leaf);
  2255. struct btrfs_key found_key;
  2256. int scanned = 0;
  2257. slot++;
  2258. while (slot < nritems) {
  2259. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2260. /* we found a different objectid, there must not be acls */
  2261. if (found_key.objectid != objectid)
  2262. return 0;
  2263. /* we found an xattr, assume we've got an acl */
  2264. if (found_key.type == BTRFS_XATTR_ITEM_KEY)
  2265. return 1;
  2266. /*
  2267. * we found a key greater than an xattr key, there can't
  2268. * be any acls later on
  2269. */
  2270. if (found_key.type > BTRFS_XATTR_ITEM_KEY)
  2271. return 0;
  2272. slot++;
  2273. scanned++;
  2274. /*
  2275. * it goes inode, inode backrefs, xattrs, extents,
  2276. * so if there are a ton of hard links to an inode there can
  2277. * be a lot of backrefs. Don't waste time searching too hard,
  2278. * this is just an optimization
  2279. */
  2280. if (scanned >= 8)
  2281. break;
  2282. }
  2283. /* we hit the end of the leaf before we found an xattr or
  2284. * something larger than an xattr. We have to assume the inode
  2285. * has acls
  2286. */
  2287. return 1;
  2288. }
  2289. /*
  2290. * read an inode from the btree into the in-memory inode
  2291. */
  2292. static void btrfs_read_locked_inode(struct inode *inode)
  2293. {
  2294. struct btrfs_path *path;
  2295. struct extent_buffer *leaf;
  2296. struct btrfs_inode_item *inode_item;
  2297. struct btrfs_timespec *tspec;
  2298. struct btrfs_root *root = BTRFS_I(inode)->root;
  2299. struct btrfs_key location;
  2300. int maybe_acls;
  2301. u32 rdev;
  2302. int ret;
  2303. bool filled = false;
  2304. ret = btrfs_fill_inode(inode, &rdev);
  2305. if (!ret)
  2306. filled = true;
  2307. path = btrfs_alloc_path();
  2308. if (!path)
  2309. goto make_bad;
  2310. path->leave_spinning = 1;
  2311. memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
  2312. ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
  2313. if (ret)
  2314. goto make_bad;
  2315. leaf = path->nodes[0];
  2316. if (filled)
  2317. goto cache_acl;
  2318. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  2319. struct btrfs_inode_item);
  2320. inode->i_mode = btrfs_inode_mode(leaf, inode_item);
  2321. set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
  2322. i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
  2323. i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
  2324. btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
  2325. tspec = btrfs_inode_atime(inode_item);
  2326. inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
  2327. inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
  2328. tspec = btrfs_inode_mtime(inode_item);
  2329. inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
  2330. inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
  2331. tspec = btrfs_inode_ctime(inode_item);
  2332. inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
  2333. inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
  2334. inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
  2335. BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
  2336. BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
  2337. /*
  2338. * If we were modified in the current generation and evicted from memory
  2339. * and then re-read we need to do a full sync since we don't have any
  2340. * idea about which extents were modified before we were evicted from
  2341. * cache.
  2342. */
  2343. if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
  2344. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  2345. &BTRFS_I(inode)->runtime_flags);
  2346. inode->i_version = btrfs_inode_sequence(leaf, inode_item);
  2347. inode->i_generation = BTRFS_I(inode)->generation;
  2348. inode->i_rdev = 0;
  2349. rdev = btrfs_inode_rdev(leaf, inode_item);
  2350. BTRFS_I(inode)->index_cnt = (u64)-1;
  2351. BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
  2352. cache_acl:
  2353. /*
  2354. * try to precache a NULL acl entry for files that don't have
  2355. * any xattrs or acls
  2356. */
  2357. maybe_acls = acls_after_inode_item(leaf, path->slots[0],
  2358. btrfs_ino(inode));
  2359. if (!maybe_acls)
  2360. cache_no_acl(inode);
  2361. btrfs_free_path(path);
  2362. switch (inode->i_mode & S_IFMT) {
  2363. case S_IFREG:
  2364. inode->i_mapping->a_ops = &btrfs_aops;
  2365. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  2366. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  2367. inode->i_fop = &btrfs_file_operations;
  2368. inode->i_op = &btrfs_file_inode_operations;
  2369. break;
  2370. case S_IFDIR:
  2371. inode->i_fop = &btrfs_dir_file_operations;
  2372. if (root == root->fs_info->tree_root)
  2373. inode->i_op = &btrfs_dir_ro_inode_operations;
  2374. else
  2375. inode->i_op = &btrfs_dir_inode_operations;
  2376. break;
  2377. case S_IFLNK:
  2378. inode->i_op = &btrfs_symlink_inode_operations;
  2379. inode->i_mapping->a_ops = &btrfs_symlink_aops;
  2380. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  2381. break;
  2382. default:
  2383. inode->i_op = &btrfs_special_inode_operations;
  2384. init_special_inode(inode, inode->i_mode, rdev);
  2385. break;
  2386. }
  2387. btrfs_update_iflags(inode);
  2388. return;
  2389. make_bad:
  2390. btrfs_free_path(path);
  2391. make_bad_inode(inode);
  2392. }
  2393. /*
  2394. * given a leaf and an inode, copy the inode fields into the leaf
  2395. */
  2396. static void fill_inode_item(struct btrfs_trans_handle *trans,
  2397. struct extent_buffer *leaf,
  2398. struct btrfs_inode_item *item,
  2399. struct inode *inode)
  2400. {
  2401. btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
  2402. btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
  2403. btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
  2404. btrfs_set_inode_mode(leaf, item, inode->i_mode);
  2405. btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
  2406. btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
  2407. inode->i_atime.tv_sec);
  2408. btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
  2409. inode->i_atime.tv_nsec);
  2410. btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
  2411. inode->i_mtime.tv_sec);
  2412. btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
  2413. inode->i_mtime.tv_nsec);
  2414. btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
  2415. inode->i_ctime.tv_sec);
  2416. btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
  2417. inode->i_ctime.tv_nsec);
  2418. btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
  2419. btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
  2420. btrfs_set_inode_sequence(leaf, item, inode->i_version);
  2421. btrfs_set_inode_transid(leaf, item, trans->transid);
  2422. btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
  2423. btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
  2424. btrfs_set_inode_block_group(leaf, item, 0);
  2425. }
  2426. /*
  2427. * copy everything in the in-memory inode into the btree.
  2428. */
  2429. static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
  2430. struct btrfs_root *root, struct inode *inode)
  2431. {
  2432. struct btrfs_inode_item *inode_item;
  2433. struct btrfs_path *path;
  2434. struct extent_buffer *leaf;
  2435. int ret;
  2436. path = btrfs_alloc_path();
  2437. if (!path)
  2438. return -ENOMEM;
  2439. path->leave_spinning = 1;
  2440. ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
  2441. 1);
  2442. if (ret) {
  2443. if (ret > 0)
  2444. ret = -ENOENT;
  2445. goto failed;
  2446. }
  2447. btrfs_unlock_up_safe(path, 1);
  2448. leaf = path->nodes[0];
  2449. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  2450. struct btrfs_inode_item);
  2451. fill_inode_item(trans, leaf, inode_item, inode);
  2452. btrfs_mark_buffer_dirty(leaf);
  2453. btrfs_set_inode_last_trans(trans, inode);
  2454. ret = 0;
  2455. failed:
  2456. btrfs_free_path(path);
  2457. return ret;
  2458. }
  2459. /*
  2460. * copy everything in the in-memory inode into the btree.
  2461. */
  2462. noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
  2463. struct btrfs_root *root, struct inode *inode)
  2464. {
  2465. int ret;
  2466. /*
  2467. * If the inode is a free space inode, we can deadlock during commit
  2468. * if we put it into the delayed code.
  2469. *
  2470. * The data relocation inode should also be directly updated
  2471. * without delay
  2472. */
  2473. if (!btrfs_is_free_space_inode(inode)
  2474. && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
  2475. btrfs_update_root_times(trans, root);
  2476. ret = btrfs_delayed_update_inode(trans, root, inode);
  2477. if (!ret)
  2478. btrfs_set_inode_last_trans(trans, inode);
  2479. return ret;
  2480. }
  2481. return btrfs_update_inode_item(trans, root, inode);
  2482. }
  2483. noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
  2484. struct btrfs_root *root,
  2485. struct inode *inode)
  2486. {
  2487. int ret;
  2488. ret = btrfs_update_inode(trans, root, inode);
  2489. if (ret == -ENOSPC)
  2490. return btrfs_update_inode_item(trans, root, inode);
  2491. return ret;
  2492. }
  2493. /*
  2494. * unlink helper that gets used here in inode.c and in the tree logging
  2495. * recovery code. It remove a link in a directory with a given name, and
  2496. * also drops the back refs in the inode to the directory
  2497. */
  2498. static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
  2499. struct btrfs_root *root,
  2500. struct inode *dir, struct inode *inode,
  2501. const char *name, int name_len)
  2502. {
  2503. struct btrfs_path *path;
  2504. int ret = 0;
  2505. struct extent_buffer *leaf;
  2506. struct btrfs_dir_item *di;
  2507. struct btrfs_key key;
  2508. u64 index;
  2509. u64 ino = btrfs_ino(inode);
  2510. u64 dir_ino = btrfs_ino(dir);
  2511. path = btrfs_alloc_path();
  2512. if (!path) {
  2513. ret = -ENOMEM;
  2514. goto out;
  2515. }
  2516. path->leave_spinning = 1;
  2517. di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
  2518. name, name_len, -1);
  2519. if (IS_ERR(di)) {
  2520. ret = PTR_ERR(di);
  2521. goto err;
  2522. }
  2523. if (!di) {
  2524. ret = -ENOENT;
  2525. goto err;
  2526. }
  2527. leaf = path->nodes[0];
  2528. btrfs_dir_item_key_to_cpu(leaf, di, &key);
  2529. ret = btrfs_delete_one_dir_name(trans, root, path, di);
  2530. if (ret)
  2531. goto err;
  2532. btrfs_release_path(path);
  2533. ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
  2534. dir_ino, &index);
  2535. if (ret) {
  2536. printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
  2537. "inode %llu parent %llu\n", name_len, name,
  2538. (unsigned long long)ino, (unsigned long long)dir_ino);
  2539. btrfs_abort_transaction(trans, root, ret);
  2540. goto err;
  2541. }
  2542. ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
  2543. if (ret) {
  2544. btrfs_abort_transaction(trans, root, ret);
  2545. goto err;
  2546. }
  2547. ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
  2548. inode, dir_ino);
  2549. if (ret != 0 && ret != -ENOENT) {
  2550. btrfs_abort_transaction(trans, root, ret);
  2551. goto err;
  2552. }
  2553. ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
  2554. dir, index);
  2555. if (ret == -ENOENT)
  2556. ret = 0;
  2557. err:
  2558. btrfs_free_path(path);
  2559. if (ret)
  2560. goto out;
  2561. btrfs_i_size_write(dir, dir->i_size - name_len * 2);
  2562. inode_inc_iversion(inode);
  2563. inode_inc_iversion(dir);
  2564. inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  2565. ret = btrfs_update_inode(trans, root, dir);
  2566. out:
  2567. return ret;
  2568. }
  2569. int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
  2570. struct btrfs_root *root,
  2571. struct inode *dir, struct inode *inode,
  2572. const char *name, int name_len)
  2573. {
  2574. int ret;
  2575. ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
  2576. if (!ret) {
  2577. btrfs_drop_nlink(inode);
  2578. ret = btrfs_update_inode(trans, root, inode);
  2579. }
  2580. return ret;
  2581. }
  2582. /* helper to check if there is any shared block in the path */
  2583. static int check_path_shared(struct btrfs_root *root,
  2584. struct btrfs_path *path)
  2585. {
  2586. struct extent_buffer *eb;
  2587. int level;
  2588. u64 refs = 1;
  2589. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  2590. int ret;
  2591. if (!path->nodes[level])
  2592. break;
  2593. eb = path->nodes[level];
  2594. if (!btrfs_block_can_be_shared(root, eb))
  2595. continue;
  2596. ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
  2597. &refs, NULL);
  2598. if (refs > 1)
  2599. return 1;
  2600. }
  2601. return 0;
  2602. }
  2603. /*
  2604. * helper to start transaction for unlink and rmdir.
  2605. *
  2606. * unlink and rmdir are special in btrfs, they do not always free space.
  2607. * so in enospc case, we should make sure they will free space before
  2608. * allowing them to use the global metadata reservation.
  2609. */
  2610. static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
  2611. struct dentry *dentry)
  2612. {
  2613. struct btrfs_trans_handle *trans;
  2614. struct btrfs_root *root = BTRFS_I(dir)->root;
  2615. struct btrfs_path *path;
  2616. struct btrfs_dir_item *di;
  2617. struct inode *inode = dentry->d_inode;
  2618. u64 index;
  2619. int check_link = 1;
  2620. int err = -ENOSPC;
  2621. int ret;
  2622. u64 ino = btrfs_ino(inode);
  2623. u64 dir_ino = btrfs_ino(dir);
  2624. /*
  2625. * 1 for the possible orphan item
  2626. * 1 for the dir item
  2627. * 1 for the dir index
  2628. * 1 for the inode ref
  2629. * 1 for the inode ref in the tree log
  2630. * 2 for the dir entries in the log
  2631. * 1 for the inode
  2632. */
  2633. trans = btrfs_start_transaction(root, 8);
  2634. if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
  2635. return trans;
  2636. if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
  2637. return ERR_PTR(-ENOSPC);
  2638. /* check if there is someone else holds reference */
  2639. if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
  2640. return ERR_PTR(-ENOSPC);
  2641. if (atomic_read(&inode->i_count) > 2)
  2642. return ERR_PTR(-ENOSPC);
  2643. if (xchg(&root->fs_info->enospc_unlink, 1))
  2644. return ERR_PTR(-ENOSPC);
  2645. path = btrfs_alloc_path();
  2646. if (!path) {
  2647. root->fs_info->enospc_unlink = 0;
  2648. return ERR_PTR(-ENOMEM);
  2649. }
  2650. /* 1 for the orphan item */
  2651. trans = btrfs_start_transaction(root, 1);
  2652. if (IS_ERR(trans)) {
  2653. btrfs_free_path(path);
  2654. root->fs_info->enospc_unlink = 0;
  2655. return trans;
  2656. }
  2657. path->skip_locking = 1;
  2658. path->search_commit_root = 1;
  2659. ret = btrfs_lookup_inode(trans, root, path,
  2660. &BTRFS_I(dir)->location, 0);
  2661. if (ret < 0) {
  2662. err = ret;
  2663. goto out;
  2664. }
  2665. if (ret == 0) {
  2666. if (check_path_shared(root, path))
  2667. goto out;
  2668. } else {
  2669. check_link = 0;
  2670. }
  2671. btrfs_release_path(path);
  2672. ret = btrfs_lookup_inode(trans, root, path,
  2673. &BTRFS_I(inode)->location, 0);
  2674. if (ret < 0) {
  2675. err = ret;
  2676. goto out;
  2677. }
  2678. if (ret == 0) {
  2679. if (check_path_shared(root, path))
  2680. goto out;
  2681. } else {
  2682. check_link = 0;
  2683. }
  2684. btrfs_release_path(path);
  2685. if (ret == 0 && S_ISREG(inode->i_mode)) {
  2686. ret = btrfs_lookup_file_extent(trans, root, path,
  2687. ino, (u64)-1, 0);
  2688. if (ret < 0) {
  2689. err = ret;
  2690. goto out;
  2691. }
  2692. BUG_ON(ret == 0); /* Corruption */
  2693. if (check_path_shared(root, path))
  2694. goto out;
  2695. btrfs_release_path(path);
  2696. }
  2697. if (!check_link) {
  2698. err = 0;
  2699. goto out;
  2700. }
  2701. di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
  2702. dentry->d_name.name, dentry->d_name.len, 0);
  2703. if (IS_ERR(di)) {
  2704. err = PTR_ERR(di);
  2705. goto out;
  2706. }
  2707. if (di) {
  2708. if (check_path_shared(root, path))
  2709. goto out;
  2710. } else {
  2711. err = 0;
  2712. goto out;
  2713. }
  2714. btrfs_release_path(path);
  2715. ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
  2716. dentry->d_name.len, ino, dir_ino, 0,
  2717. &index);
  2718. if (ret) {
  2719. err = ret;
  2720. goto out;
  2721. }
  2722. if (check_path_shared(root, path))
  2723. goto out;
  2724. btrfs_release_path(path);
  2725. /*
  2726. * This is a commit root search, if we can lookup inode item and other
  2727. * relative items in the commit root, it means the transaction of
  2728. * dir/file creation has been committed, and the dir index item that we
  2729. * delay to insert has also been inserted into the commit root. So
  2730. * we needn't worry about the delayed insertion of the dir index item
  2731. * here.
  2732. */
  2733. di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
  2734. dentry->d_name.name, dentry->d_name.len, 0);
  2735. if (IS_ERR(di)) {
  2736. err = PTR_ERR(di);
  2737. goto out;
  2738. }
  2739. BUG_ON(ret == -ENOENT);
  2740. if (check_path_shared(root, path))
  2741. goto out;
  2742. err = 0;
  2743. out:
  2744. btrfs_free_path(path);
  2745. /* Migrate the orphan reservation over */
  2746. if (!err)
  2747. err = btrfs_block_rsv_migrate(trans->block_rsv,
  2748. &root->fs_info->global_block_rsv,
  2749. trans->bytes_reserved);
  2750. if (err) {
  2751. btrfs_end_transaction(trans, root);
  2752. root->fs_info->enospc_unlink = 0;
  2753. return ERR_PTR(err);
  2754. }
  2755. trans->block_rsv = &root->fs_info->global_block_rsv;
  2756. return trans;
  2757. }
  2758. static void __unlink_end_trans(struct btrfs_trans_handle *trans,
  2759. struct btrfs_root *root)
  2760. {
  2761. if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
  2762. btrfs_block_rsv_release(root, trans->block_rsv,
  2763. trans->bytes_reserved);
  2764. trans->block_rsv = &root->fs_info->trans_block_rsv;
  2765. BUG_ON(!root->fs_info->enospc_unlink);
  2766. root->fs_info->enospc_unlink = 0;
  2767. }
  2768. btrfs_end_transaction(trans, root);
  2769. }
  2770. static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
  2771. {
  2772. struct btrfs_root *root = BTRFS_I(dir)->root;
  2773. struct btrfs_trans_handle *trans;
  2774. struct inode *inode = dentry->d_inode;
  2775. int ret;
  2776. trans = __unlink_start_trans(dir, dentry);
  2777. if (IS_ERR(trans))
  2778. return PTR_ERR(trans);
  2779. btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
  2780. ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
  2781. dentry->d_name.name, dentry->d_name.len);
  2782. if (ret)
  2783. goto out;
  2784. if (inode->i_nlink == 0) {
  2785. ret = btrfs_orphan_add(trans, inode);
  2786. if (ret)
  2787. goto out;
  2788. }
  2789. out:
  2790. __unlink_end_trans(trans, root);
  2791. btrfs_btree_balance_dirty(root);
  2792. return ret;
  2793. }
  2794. int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
  2795. struct btrfs_root *root,
  2796. struct inode *dir, u64 objectid,
  2797. const char *name, int name_len)
  2798. {
  2799. struct btrfs_path *path;
  2800. struct extent_buffer *leaf;
  2801. struct btrfs_dir_item *di;
  2802. struct btrfs_key key;
  2803. u64 index;
  2804. int ret;
  2805. u64 dir_ino = btrfs_ino(dir);
  2806. path = btrfs_alloc_path();
  2807. if (!path)
  2808. return -ENOMEM;
  2809. di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
  2810. name, name_len, -1);
  2811. if (IS_ERR_OR_NULL(di)) {
  2812. if (!di)
  2813. ret = -ENOENT;
  2814. else
  2815. ret = PTR_ERR(di);
  2816. goto out;
  2817. }
  2818. leaf = path->nodes[0];
  2819. btrfs_dir_item_key_to_cpu(leaf, di, &key);
  2820. WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
  2821. ret = btrfs_delete_one_dir_name(trans, root, path, di);
  2822. if (ret) {
  2823. btrfs_abort_transaction(trans, root, ret);
  2824. goto out;
  2825. }
  2826. btrfs_release_path(path);
  2827. ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
  2828. objectid, root->root_key.objectid,
  2829. dir_ino, &index, name, name_len);
  2830. if (ret < 0) {
  2831. if (ret != -ENOENT) {
  2832. btrfs_abort_transaction(trans, root, ret);
  2833. goto out;
  2834. }
  2835. di = btrfs_search_dir_index_item(root, path, dir_ino,
  2836. name, name_len);
  2837. if (IS_ERR_OR_NULL(di)) {
  2838. if (!di)
  2839. ret = -ENOENT;
  2840. else
  2841. ret = PTR_ERR(di);
  2842. btrfs_abort_transaction(trans, root, ret);
  2843. goto out;
  2844. }
  2845. leaf = path->nodes[0];
  2846. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2847. btrfs_release_path(path);
  2848. index = key.offset;
  2849. }
  2850. btrfs_release_path(path);
  2851. ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
  2852. if (ret) {
  2853. btrfs_abort_transaction(trans, root, ret);
  2854. goto out;
  2855. }
  2856. btrfs_i_size_write(dir, dir->i_size - name_len * 2);
  2857. inode_inc_iversion(dir);
  2858. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  2859. ret = btrfs_update_inode_fallback(trans, root, dir);
  2860. if (ret)
  2861. btrfs_abort_transaction(trans, root, ret);
  2862. out:
  2863. btrfs_free_path(path);
  2864. return ret;
  2865. }
  2866. static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
  2867. {
  2868. struct inode *inode = dentry->d_inode;
  2869. int err = 0;
  2870. struct btrfs_root *root = BTRFS_I(dir)->root;
  2871. struct btrfs_trans_handle *trans;
  2872. if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
  2873. return -ENOTEMPTY;
  2874. if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
  2875. return -EPERM;
  2876. trans = __unlink_start_trans(dir, dentry);
  2877. if (IS_ERR(trans))
  2878. return PTR_ERR(trans);
  2879. if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
  2880. err = btrfs_unlink_subvol(trans, root, dir,
  2881. BTRFS_I(inode)->location.objectid,
  2882. dentry->d_name.name,
  2883. dentry->d_name.len);
  2884. goto out;
  2885. }
  2886. err = btrfs_orphan_add(trans, inode);
  2887. if (err)
  2888. goto out;
  2889. /* now the directory is empty */
  2890. err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
  2891. dentry->d_name.name, dentry->d_name.len);
  2892. if (!err)
  2893. btrfs_i_size_write(inode, 0);
  2894. out:
  2895. __unlink_end_trans(trans, root);
  2896. btrfs_btree_balance_dirty(root);
  2897. return err;
  2898. }
  2899. /*
  2900. * this can truncate away extent items, csum items and directory items.
  2901. * It starts at a high offset and removes keys until it can't find
  2902. * any higher than new_size
  2903. *
  2904. * csum items that cross the new i_size are truncated to the new size
  2905. * as well.
  2906. *
  2907. * min_type is the minimum key type to truncate down to. If set to 0, this
  2908. * will kill all the items on this inode, including the INODE_ITEM_KEY.
  2909. */
  2910. int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
  2911. struct btrfs_root *root,
  2912. struct inode *inode,
  2913. u64 new_size, u32 min_type)
  2914. {
  2915. struct btrfs_path *path;
  2916. struct extent_buffer *leaf;
  2917. struct btrfs_file_extent_item *fi;
  2918. struct btrfs_key key;
  2919. struct btrfs_key found_key;
  2920. u64 extent_start = 0;
  2921. u64 extent_num_bytes = 0;
  2922. u64 extent_offset = 0;
  2923. u64 item_end = 0;
  2924. u64 mask = root->sectorsize - 1;
  2925. u32 found_type = (u8)-1;
  2926. int found_extent;
  2927. int del_item;
  2928. int pending_del_nr = 0;
  2929. int pending_del_slot = 0;
  2930. int extent_type = -1;
  2931. int ret;
  2932. int err = 0;
  2933. u64 ino = btrfs_ino(inode);
  2934. BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
  2935. path = btrfs_alloc_path();
  2936. if (!path)
  2937. return -ENOMEM;
  2938. path->reada = -1;
  2939. /*
  2940. * We want to drop from the next block forward in case this new size is
  2941. * not block aligned since we will be keeping the last block of the
  2942. * extent just the way it is.
  2943. */
  2944. if (root->ref_cows || root == root->fs_info->tree_root)
  2945. btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
  2946. /*
  2947. * This function is also used to drop the items in the log tree before
  2948. * we relog the inode, so if root != BTRFS_I(inode)->root, it means
  2949. * it is used to drop the loged items. So we shouldn't kill the delayed
  2950. * items.
  2951. */
  2952. if (min_type == 0 && root == BTRFS_I(inode)->root)
  2953. btrfs_kill_delayed_inode_items(inode);
  2954. key.objectid = ino;
  2955. key.offset = (u64)-1;
  2956. key.type = (u8)-1;
  2957. search_again:
  2958. path->leave_spinning = 1;
  2959. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  2960. if (ret < 0) {
  2961. err = ret;
  2962. goto out;
  2963. }
  2964. if (ret > 0) {
  2965. /* there are no items in the tree for us to truncate, we're
  2966. * done
  2967. */
  2968. if (path->slots[0] == 0)
  2969. goto out;
  2970. path->slots[0]--;
  2971. }
  2972. while (1) {
  2973. fi = NULL;
  2974. leaf = path->nodes[0];
  2975. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  2976. found_type = btrfs_key_type(&found_key);
  2977. if (found_key.objectid != ino)
  2978. break;
  2979. if (found_type < min_type)
  2980. break;
  2981. item_end = found_key.offset;
  2982. if (found_type == BTRFS_EXTENT_DATA_KEY) {
  2983. fi = btrfs_item_ptr(leaf, path->slots[0],
  2984. struct btrfs_file_extent_item);
  2985. extent_type = btrfs_file_extent_type(leaf, fi);
  2986. if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
  2987. item_end +=
  2988. btrfs_file_extent_num_bytes(leaf, fi);
  2989. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  2990. item_end += btrfs_file_extent_inline_len(leaf,
  2991. fi);
  2992. }
  2993. item_end--;
  2994. }
  2995. if (found_type > min_type) {
  2996. del_item = 1;
  2997. } else {
  2998. if (item_end < new_size)
  2999. break;
  3000. if (found_key.offset >= new_size)
  3001. del_item = 1;
  3002. else
  3003. del_item = 0;
  3004. }
  3005. found_extent = 0;
  3006. /* FIXME, shrink the extent if the ref count is only 1 */
  3007. if (found_type != BTRFS_EXTENT_DATA_KEY)
  3008. goto delete;
  3009. if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
  3010. u64 num_dec;
  3011. extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
  3012. if (!del_item) {
  3013. u64 orig_num_bytes =
  3014. btrfs_file_extent_num_bytes(leaf, fi);
  3015. extent_num_bytes = new_size -
  3016. found_key.offset + root->sectorsize - 1;
  3017. extent_num_bytes = extent_num_bytes &
  3018. ~((u64)root->sectorsize - 1);
  3019. btrfs_set_file_extent_num_bytes(leaf, fi,
  3020. extent_num_bytes);
  3021. num_dec = (orig_num_bytes -
  3022. extent_num_bytes);
  3023. if (root->ref_cows && extent_start != 0)
  3024. inode_sub_bytes(inode, num_dec);
  3025. btrfs_mark_buffer_dirty(leaf);
  3026. } else {
  3027. extent_num_bytes =
  3028. btrfs_file_extent_disk_num_bytes(leaf,
  3029. fi);
  3030. extent_offset = found_key.offset -
  3031. btrfs_file_extent_offset(leaf, fi);
  3032. /* FIXME blocksize != 4096 */
  3033. num_dec = btrfs_file_extent_num_bytes(leaf, fi);
  3034. if (extent_start != 0) {
  3035. found_extent = 1;
  3036. if (root->ref_cows)
  3037. inode_sub_bytes(inode, num_dec);
  3038. }
  3039. }
  3040. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  3041. /*
  3042. * we can't truncate inline items that have had
  3043. * special encodings
  3044. */
  3045. if (!del_item &&
  3046. btrfs_file_extent_compression(leaf, fi) == 0 &&
  3047. btrfs_file_extent_encryption(leaf, fi) == 0 &&
  3048. btrfs_file_extent_other_encoding(leaf, fi) == 0) {
  3049. u32 size = new_size - found_key.offset;
  3050. if (root->ref_cows) {
  3051. inode_sub_bytes(inode, item_end + 1 -
  3052. new_size);
  3053. }
  3054. size =
  3055. btrfs_file_extent_calc_inline_size(size);
  3056. btrfs_truncate_item(trans, root, path,
  3057. size, 1);
  3058. } else if (root->ref_cows) {
  3059. inode_sub_bytes(inode, item_end + 1 -
  3060. found_key.offset);
  3061. }
  3062. }
  3063. delete:
  3064. if (del_item) {
  3065. if (!pending_del_nr) {
  3066. /* no pending yet, add ourselves */
  3067. pending_del_slot = path->slots[0];
  3068. pending_del_nr = 1;
  3069. } else if (pending_del_nr &&
  3070. path->slots[0] + 1 == pending_del_slot) {
  3071. /* hop on the pending chunk */
  3072. pending_del_nr++;
  3073. pending_del_slot = path->slots[0];
  3074. } else {
  3075. BUG();
  3076. }
  3077. } else {
  3078. break;
  3079. }
  3080. if (found_extent && (root->ref_cows ||
  3081. root == root->fs_info->tree_root)) {
  3082. btrfs_set_path_blocking(path);
  3083. ret = btrfs_free_extent(trans, root, extent_start,
  3084. extent_num_bytes, 0,
  3085. btrfs_header_owner(leaf),
  3086. ino, extent_offset, 0);
  3087. BUG_ON(ret);
  3088. }
  3089. if (found_type == BTRFS_INODE_ITEM_KEY)
  3090. break;
  3091. if (path->slots[0] == 0 ||
  3092. path->slots[0] != pending_del_slot) {
  3093. if (pending_del_nr) {
  3094. ret = btrfs_del_items(trans, root, path,
  3095. pending_del_slot,
  3096. pending_del_nr);
  3097. if (ret) {
  3098. btrfs_abort_transaction(trans,
  3099. root, ret);
  3100. goto error;
  3101. }
  3102. pending_del_nr = 0;
  3103. }
  3104. btrfs_release_path(path);
  3105. goto search_again;
  3106. } else {
  3107. path->slots[0]--;
  3108. }
  3109. }
  3110. out:
  3111. if (pending_del_nr) {
  3112. ret = btrfs_del_items(trans, root, path, pending_del_slot,
  3113. pending_del_nr);
  3114. if (ret)
  3115. btrfs_abort_transaction(trans, root, ret);
  3116. }
  3117. error:
  3118. btrfs_free_path(path);
  3119. return err;
  3120. }
  3121. /*
  3122. * btrfs_truncate_page - read, zero a chunk and write a page
  3123. * @inode - inode that we're zeroing
  3124. * @from - the offset to start zeroing
  3125. * @len - the length to zero, 0 to zero the entire range respective to the
  3126. * offset
  3127. * @front - zero up to the offset instead of from the offset on
  3128. *
  3129. * This will find the page for the "from" offset and cow the page and zero the
  3130. * part we want to zero. This is used with truncate and hole punching.
  3131. */
  3132. int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
  3133. int front)
  3134. {
  3135. struct address_space *mapping = inode->i_mapping;
  3136. struct btrfs_root *root = BTRFS_I(inode)->root;
  3137. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  3138. struct btrfs_ordered_extent *ordered;
  3139. struct extent_state *cached_state = NULL;
  3140. char *kaddr;
  3141. u32 blocksize = root->sectorsize;
  3142. pgoff_t index = from >> PAGE_CACHE_SHIFT;
  3143. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  3144. struct page *page;
  3145. gfp_t mask = btrfs_alloc_write_mask(mapping);
  3146. int ret = 0;
  3147. u64 page_start;
  3148. u64 page_end;
  3149. if ((offset & (blocksize - 1)) == 0 &&
  3150. (!len || ((len & (blocksize - 1)) == 0)))
  3151. goto out;
  3152. ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
  3153. if (ret)
  3154. goto out;
  3155. again:
  3156. page = find_or_create_page(mapping, index, mask);
  3157. if (!page) {
  3158. btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
  3159. ret = -ENOMEM;
  3160. goto out;
  3161. }
  3162. page_start = page_offset(page);
  3163. page_end = page_start + PAGE_CACHE_SIZE - 1;
  3164. if (!PageUptodate(page)) {
  3165. ret = btrfs_readpage(NULL, page);
  3166. lock_page(page);
  3167. if (page->mapping != mapping) {
  3168. unlock_page(page);
  3169. page_cache_release(page);
  3170. goto again;
  3171. }
  3172. if (!PageUptodate(page)) {
  3173. ret = -EIO;
  3174. goto out_unlock;
  3175. }
  3176. }
  3177. wait_on_page_writeback(page);
  3178. lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
  3179. set_page_extent_mapped(page);
  3180. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  3181. if (ordered) {
  3182. unlock_extent_cached(io_tree, page_start, page_end,
  3183. &cached_state, GFP_NOFS);
  3184. unlock_page(page);
  3185. page_cache_release(page);
  3186. btrfs_start_ordered_extent(inode, ordered, 1);
  3187. btrfs_put_ordered_extent(ordered);
  3188. goto again;
  3189. }
  3190. clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
  3191. EXTENT_DIRTY | EXTENT_DELALLOC |
  3192. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  3193. 0, 0, &cached_state, GFP_NOFS);
  3194. ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
  3195. &cached_state);
  3196. if (ret) {
  3197. unlock_extent_cached(io_tree, page_start, page_end,
  3198. &cached_state, GFP_NOFS);
  3199. goto out_unlock;
  3200. }
  3201. if (offset != PAGE_CACHE_SIZE) {
  3202. if (!len)
  3203. len = PAGE_CACHE_SIZE - offset;
  3204. kaddr = kmap(page);
  3205. if (front)
  3206. memset(kaddr, 0, offset);
  3207. else
  3208. memset(kaddr + offset, 0, len);
  3209. flush_dcache_page(page);
  3210. kunmap(page);
  3211. }
  3212. ClearPageChecked(page);
  3213. set_page_dirty(page);
  3214. unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
  3215. GFP_NOFS);
  3216. out_unlock:
  3217. if (ret)
  3218. btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
  3219. unlock_page(page);
  3220. page_cache_release(page);
  3221. out:
  3222. return ret;
  3223. }
  3224. /*
  3225. * This function puts in dummy file extents for the area we're creating a hole
  3226. * for. So if we are truncating this file to a larger size we need to insert
  3227. * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
  3228. * the range between oldsize and size
  3229. */
  3230. int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
  3231. {
  3232. struct btrfs_trans_handle *trans;
  3233. struct btrfs_root *root = BTRFS_I(inode)->root;
  3234. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  3235. struct extent_map *em = NULL;
  3236. struct extent_state *cached_state = NULL;
  3237. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  3238. u64 mask = root->sectorsize - 1;
  3239. u64 hole_start = (oldsize + mask) & ~mask;
  3240. u64 block_end = (size + mask) & ~mask;
  3241. u64 last_byte;
  3242. u64 cur_offset;
  3243. u64 hole_size;
  3244. int err = 0;
  3245. if (size <= hole_start)
  3246. return 0;
  3247. while (1) {
  3248. struct btrfs_ordered_extent *ordered;
  3249. btrfs_wait_ordered_range(inode, hole_start,
  3250. block_end - hole_start);
  3251. lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
  3252. &cached_state);
  3253. ordered = btrfs_lookup_ordered_extent(inode, hole_start);
  3254. if (!ordered)
  3255. break;
  3256. unlock_extent_cached(io_tree, hole_start, block_end - 1,
  3257. &cached_state, GFP_NOFS);
  3258. btrfs_put_ordered_extent(ordered);
  3259. }
  3260. cur_offset = hole_start;
  3261. while (1) {
  3262. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  3263. block_end - cur_offset, 0);
  3264. if (IS_ERR(em)) {
  3265. err = PTR_ERR(em);
  3266. break;
  3267. }
  3268. last_byte = min(extent_map_end(em), block_end);
  3269. last_byte = (last_byte + mask) & ~mask;
  3270. if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  3271. struct extent_map *hole_em;
  3272. hole_size = last_byte - cur_offset;
  3273. trans = btrfs_start_transaction(root, 3);
  3274. if (IS_ERR(trans)) {
  3275. err = PTR_ERR(trans);
  3276. break;
  3277. }
  3278. err = btrfs_drop_extents(trans, root, inode,
  3279. cur_offset,
  3280. cur_offset + hole_size, 1);
  3281. if (err) {
  3282. btrfs_abort_transaction(trans, root, err);
  3283. btrfs_end_transaction(trans, root);
  3284. break;
  3285. }
  3286. err = btrfs_insert_file_extent(trans, root,
  3287. btrfs_ino(inode), cur_offset, 0,
  3288. 0, hole_size, 0, hole_size,
  3289. 0, 0, 0);
  3290. if (err) {
  3291. btrfs_abort_transaction(trans, root, err);
  3292. btrfs_end_transaction(trans, root);
  3293. break;
  3294. }
  3295. btrfs_drop_extent_cache(inode, cur_offset,
  3296. cur_offset + hole_size - 1, 0);
  3297. hole_em = alloc_extent_map();
  3298. if (!hole_em) {
  3299. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  3300. &BTRFS_I(inode)->runtime_flags);
  3301. goto next;
  3302. }
  3303. hole_em->start = cur_offset;
  3304. hole_em->len = hole_size;
  3305. hole_em->orig_start = cur_offset;
  3306. hole_em->block_start = EXTENT_MAP_HOLE;
  3307. hole_em->block_len = 0;
  3308. hole_em->orig_block_len = 0;
  3309. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  3310. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  3311. hole_em->generation = trans->transid;
  3312. while (1) {
  3313. write_lock(&em_tree->lock);
  3314. err = add_extent_mapping(em_tree, hole_em);
  3315. if (!err)
  3316. list_move(&hole_em->list,
  3317. &em_tree->modified_extents);
  3318. write_unlock(&em_tree->lock);
  3319. if (err != -EEXIST)
  3320. break;
  3321. btrfs_drop_extent_cache(inode, cur_offset,
  3322. cur_offset +
  3323. hole_size - 1, 0);
  3324. }
  3325. free_extent_map(hole_em);
  3326. next:
  3327. btrfs_update_inode(trans, root, inode);
  3328. btrfs_end_transaction(trans, root);
  3329. }
  3330. free_extent_map(em);
  3331. em = NULL;
  3332. cur_offset = last_byte;
  3333. if (cur_offset >= block_end)
  3334. break;
  3335. }
  3336. free_extent_map(em);
  3337. unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
  3338. GFP_NOFS);
  3339. return err;
  3340. }
  3341. static int btrfs_setsize(struct inode *inode, loff_t newsize)
  3342. {
  3343. struct btrfs_root *root = BTRFS_I(inode)->root;
  3344. struct btrfs_trans_handle *trans;
  3345. loff_t oldsize = i_size_read(inode);
  3346. int ret;
  3347. if (newsize == oldsize)
  3348. return 0;
  3349. if (newsize > oldsize) {
  3350. truncate_pagecache(inode, oldsize, newsize);
  3351. ret = btrfs_cont_expand(inode, oldsize, newsize);
  3352. if (ret)
  3353. return ret;
  3354. trans = btrfs_start_transaction(root, 1);
  3355. if (IS_ERR(trans))
  3356. return PTR_ERR(trans);
  3357. i_size_write(inode, newsize);
  3358. btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
  3359. ret = btrfs_update_inode(trans, root, inode);
  3360. btrfs_end_transaction(trans, root);
  3361. } else {
  3362. /*
  3363. * We're truncating a file that used to have good data down to
  3364. * zero. Make sure it gets into the ordered flush list so that
  3365. * any new writes get down to disk quickly.
  3366. */
  3367. if (newsize == 0)
  3368. set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  3369. &BTRFS_I(inode)->runtime_flags);
  3370. /*
  3371. * 1 for the orphan item we're going to add
  3372. * 1 for the orphan item deletion.
  3373. */
  3374. trans = btrfs_start_transaction(root, 2);
  3375. if (IS_ERR(trans))
  3376. return PTR_ERR(trans);
  3377. /*
  3378. * We need to do this in case we fail at _any_ point during the
  3379. * actual truncate. Once we do the truncate_setsize we could
  3380. * invalidate pages which forces any outstanding ordered io to
  3381. * be instantly completed which will give us extents that need
  3382. * to be truncated. If we fail to get an orphan inode down we
  3383. * could have left over extents that were never meant to live,
  3384. * so we need to garuntee from this point on that everything
  3385. * will be consistent.
  3386. */
  3387. ret = btrfs_orphan_add(trans, inode);
  3388. btrfs_end_transaction(trans, root);
  3389. if (ret)
  3390. return ret;
  3391. /* we don't support swapfiles, so vmtruncate shouldn't fail */
  3392. truncate_setsize(inode, newsize);
  3393. ret = btrfs_truncate(inode);
  3394. if (ret && inode->i_nlink)
  3395. btrfs_orphan_del(NULL, inode);
  3396. }
  3397. return ret;
  3398. }
  3399. static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
  3400. {
  3401. struct inode *inode = dentry->d_inode;
  3402. struct btrfs_root *root = BTRFS_I(inode)->root;
  3403. int err;
  3404. if (btrfs_root_readonly(root))
  3405. return -EROFS;
  3406. err = inode_change_ok(inode, attr);
  3407. if (err)
  3408. return err;
  3409. if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
  3410. err = btrfs_setsize(inode, attr->ia_size);
  3411. if (err)
  3412. return err;
  3413. }
  3414. if (attr->ia_valid) {
  3415. setattr_copy(inode, attr);
  3416. inode_inc_iversion(inode);
  3417. err = btrfs_dirty_inode(inode);
  3418. if (!err && attr->ia_valid & ATTR_MODE)
  3419. err = btrfs_acl_chmod(inode);
  3420. }
  3421. return err;
  3422. }
  3423. void btrfs_evict_inode(struct inode *inode)
  3424. {
  3425. struct btrfs_trans_handle *trans;
  3426. struct btrfs_root *root = BTRFS_I(inode)->root;
  3427. struct btrfs_block_rsv *rsv, *global_rsv;
  3428. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  3429. int ret;
  3430. trace_btrfs_inode_evict(inode);
  3431. truncate_inode_pages(&inode->i_data, 0);
  3432. if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
  3433. btrfs_is_free_space_inode(inode)))
  3434. goto no_delete;
  3435. if (is_bad_inode(inode)) {
  3436. btrfs_orphan_del(NULL, inode);
  3437. goto no_delete;
  3438. }
  3439. /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
  3440. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  3441. if (root->fs_info->log_root_recovering) {
  3442. BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  3443. &BTRFS_I(inode)->runtime_flags));
  3444. goto no_delete;
  3445. }
  3446. if (inode->i_nlink > 0) {
  3447. BUG_ON(btrfs_root_refs(&root->root_item) != 0);
  3448. goto no_delete;
  3449. }
  3450. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  3451. if (!rsv) {
  3452. btrfs_orphan_del(NULL, inode);
  3453. goto no_delete;
  3454. }
  3455. rsv->size = min_size;
  3456. rsv->failfast = 1;
  3457. global_rsv = &root->fs_info->global_block_rsv;
  3458. btrfs_i_size_write(inode, 0);
  3459. /*
  3460. * This is a bit simpler than btrfs_truncate since we've already
  3461. * reserved our space for our orphan item in the unlink, so we just
  3462. * need to reserve some slack space in case we add bytes and update
  3463. * inode item when doing the truncate.
  3464. */
  3465. while (1) {
  3466. ret = btrfs_block_rsv_refill(root, rsv, min_size,
  3467. BTRFS_RESERVE_FLUSH_LIMIT);
  3468. /*
  3469. * Try and steal from the global reserve since we will
  3470. * likely not use this space anyway, we want to try as
  3471. * hard as possible to get this to work.
  3472. */
  3473. if (ret)
  3474. ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
  3475. if (ret) {
  3476. printk(KERN_WARNING "Could not get space for a "
  3477. "delete, will truncate on mount %d\n", ret);
  3478. btrfs_orphan_del(NULL, inode);
  3479. btrfs_free_block_rsv(root, rsv);
  3480. goto no_delete;
  3481. }
  3482. trans = btrfs_start_transaction_lflush(root, 1);
  3483. if (IS_ERR(trans)) {
  3484. btrfs_orphan_del(NULL, inode);
  3485. btrfs_free_block_rsv(root, rsv);
  3486. goto no_delete;
  3487. }
  3488. trans->block_rsv = rsv;
  3489. ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
  3490. if (ret != -ENOSPC)
  3491. break;
  3492. trans->block_rsv = &root->fs_info->trans_block_rsv;
  3493. ret = btrfs_update_inode(trans, root, inode);
  3494. BUG_ON(ret);
  3495. btrfs_end_transaction(trans, root);
  3496. trans = NULL;
  3497. btrfs_btree_balance_dirty(root);
  3498. }
  3499. btrfs_free_block_rsv(root, rsv);
  3500. if (ret == 0) {
  3501. trans->block_rsv = root->orphan_block_rsv;
  3502. ret = btrfs_orphan_del(trans, inode);
  3503. BUG_ON(ret);
  3504. }
  3505. trans->block_rsv = &root->fs_info->trans_block_rsv;
  3506. if (!(root == root->fs_info->tree_root ||
  3507. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
  3508. btrfs_return_ino(root, btrfs_ino(inode));
  3509. btrfs_end_transaction(trans, root);
  3510. btrfs_btree_balance_dirty(root);
  3511. no_delete:
  3512. clear_inode(inode);
  3513. return;
  3514. }
  3515. /*
  3516. * this returns the key found in the dir entry in the location pointer.
  3517. * If no dir entries were found, location->objectid is 0.
  3518. */
  3519. static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
  3520. struct btrfs_key *location)
  3521. {
  3522. const char *name = dentry->d_name.name;
  3523. int namelen = dentry->d_name.len;
  3524. struct btrfs_dir_item *di;
  3525. struct btrfs_path *path;
  3526. struct btrfs_root *root = BTRFS_I(dir)->root;
  3527. int ret = 0;
  3528. path = btrfs_alloc_path();
  3529. if (!path)
  3530. return -ENOMEM;
  3531. di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
  3532. namelen, 0);
  3533. if (IS_ERR(di))
  3534. ret = PTR_ERR(di);
  3535. if (IS_ERR_OR_NULL(di))
  3536. goto out_err;
  3537. btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
  3538. out:
  3539. btrfs_free_path(path);
  3540. return ret;
  3541. out_err:
  3542. location->objectid = 0;
  3543. goto out;
  3544. }
  3545. /*
  3546. * when we hit a tree root in a directory, the btrfs part of the inode
  3547. * needs to be changed to reflect the root directory of the tree root. This
  3548. * is kind of like crossing a mount point.
  3549. */
  3550. static int fixup_tree_root_location(struct btrfs_root *root,
  3551. struct inode *dir,
  3552. struct dentry *dentry,
  3553. struct btrfs_key *location,
  3554. struct btrfs_root **sub_root)
  3555. {
  3556. struct btrfs_path *path;
  3557. struct btrfs_root *new_root;
  3558. struct btrfs_root_ref *ref;
  3559. struct extent_buffer *leaf;
  3560. int ret;
  3561. int err = 0;
  3562. path = btrfs_alloc_path();
  3563. if (!path) {
  3564. err = -ENOMEM;
  3565. goto out;
  3566. }
  3567. err = -ENOENT;
  3568. ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
  3569. BTRFS_I(dir)->root->root_key.objectid,
  3570. location->objectid);
  3571. if (ret) {
  3572. if (ret < 0)
  3573. err = ret;
  3574. goto out;
  3575. }
  3576. leaf = path->nodes[0];
  3577. ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
  3578. if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
  3579. btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
  3580. goto out;
  3581. ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
  3582. (unsigned long)(ref + 1),
  3583. dentry->d_name.len);
  3584. if (ret)
  3585. goto out;
  3586. btrfs_release_path(path);
  3587. new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
  3588. if (IS_ERR(new_root)) {
  3589. err = PTR_ERR(new_root);
  3590. goto out;
  3591. }
  3592. if (btrfs_root_refs(&new_root->root_item) == 0) {
  3593. err = -ENOENT;
  3594. goto out;
  3595. }
  3596. *sub_root = new_root;
  3597. location->objectid = btrfs_root_dirid(&new_root->root_item);
  3598. location->type = BTRFS_INODE_ITEM_KEY;
  3599. location->offset = 0;
  3600. err = 0;
  3601. out:
  3602. btrfs_free_path(path);
  3603. return err;
  3604. }
  3605. static void inode_tree_add(struct inode *inode)
  3606. {
  3607. struct btrfs_root *root = BTRFS_I(inode)->root;
  3608. struct btrfs_inode *entry;
  3609. struct rb_node **p;
  3610. struct rb_node *parent;
  3611. u64 ino = btrfs_ino(inode);
  3612. again:
  3613. p = &root->inode_tree.rb_node;
  3614. parent = NULL;
  3615. if (inode_unhashed(inode))
  3616. return;
  3617. spin_lock(&root->inode_lock);
  3618. while (*p) {
  3619. parent = *p;
  3620. entry = rb_entry(parent, struct btrfs_inode, rb_node);
  3621. if (ino < btrfs_ino(&entry->vfs_inode))
  3622. p = &parent->rb_left;
  3623. else if (ino > btrfs_ino(&entry->vfs_inode))
  3624. p = &parent->rb_right;
  3625. else {
  3626. WARN_ON(!(entry->vfs_inode.i_state &
  3627. (I_WILL_FREE | I_FREEING)));
  3628. rb_erase(parent, &root->inode_tree);
  3629. RB_CLEAR_NODE(parent);
  3630. spin_unlock(&root->inode_lock);
  3631. goto again;
  3632. }
  3633. }
  3634. rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
  3635. rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
  3636. spin_unlock(&root->inode_lock);
  3637. }
  3638. static void inode_tree_del(struct inode *inode)
  3639. {
  3640. struct btrfs_root *root = BTRFS_I(inode)->root;
  3641. int empty = 0;
  3642. spin_lock(&root->inode_lock);
  3643. if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
  3644. rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
  3645. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  3646. empty = RB_EMPTY_ROOT(&root->inode_tree);
  3647. }
  3648. spin_unlock(&root->inode_lock);
  3649. /*
  3650. * Free space cache has inodes in the tree root, but the tree root has a
  3651. * root_refs of 0, so this could end up dropping the tree root as a
  3652. * snapshot, so we need the extra !root->fs_info->tree_root check to
  3653. * make sure we don't drop it.
  3654. */
  3655. if (empty && btrfs_root_refs(&root->root_item) == 0 &&
  3656. root != root->fs_info->tree_root) {
  3657. synchronize_srcu(&root->fs_info->subvol_srcu);
  3658. spin_lock(&root->inode_lock);
  3659. empty = RB_EMPTY_ROOT(&root->inode_tree);
  3660. spin_unlock(&root->inode_lock);
  3661. if (empty)
  3662. btrfs_add_dead_root(root);
  3663. }
  3664. }
  3665. void btrfs_invalidate_inodes(struct btrfs_root *root)
  3666. {
  3667. struct rb_node *node;
  3668. struct rb_node *prev;
  3669. struct btrfs_inode *entry;
  3670. struct inode *inode;
  3671. u64 objectid = 0;
  3672. WARN_ON(btrfs_root_refs(&root->root_item) != 0);
  3673. spin_lock(&root->inode_lock);
  3674. again:
  3675. node = root->inode_tree.rb_node;
  3676. prev = NULL;
  3677. while (node) {
  3678. prev = node;
  3679. entry = rb_entry(node, struct btrfs_inode, rb_node);
  3680. if (objectid < btrfs_ino(&entry->vfs_inode))
  3681. node = node->rb_left;
  3682. else if (objectid > btrfs_ino(&entry->vfs_inode))
  3683. node = node->rb_right;
  3684. else
  3685. break;
  3686. }
  3687. if (!node) {
  3688. while (prev) {
  3689. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  3690. if (objectid <= btrfs_ino(&entry->vfs_inode)) {
  3691. node = prev;
  3692. break;
  3693. }
  3694. prev = rb_next(prev);
  3695. }
  3696. }
  3697. while (node) {
  3698. entry = rb_entry(node, struct btrfs_inode, rb_node);
  3699. objectid = btrfs_ino(&entry->vfs_inode) + 1;
  3700. inode = igrab(&entry->vfs_inode);
  3701. if (inode) {
  3702. spin_unlock(&root->inode_lock);
  3703. if (atomic_read(&inode->i_count) > 1)
  3704. d_prune_aliases(inode);
  3705. /*
  3706. * btrfs_drop_inode will have it removed from
  3707. * the inode cache when its usage count
  3708. * hits zero.
  3709. */
  3710. iput(inode);
  3711. cond_resched();
  3712. spin_lock(&root->inode_lock);
  3713. goto again;
  3714. }
  3715. if (cond_resched_lock(&root->inode_lock))
  3716. goto again;
  3717. node = rb_next(node);
  3718. }
  3719. spin_unlock(&root->inode_lock);
  3720. }
  3721. static int btrfs_init_locked_inode(struct inode *inode, void *p)
  3722. {
  3723. struct btrfs_iget_args *args = p;
  3724. inode->i_ino = args->ino;
  3725. BTRFS_I(inode)->root = args->root;
  3726. return 0;
  3727. }
  3728. static int btrfs_find_actor(struct inode *inode, void *opaque)
  3729. {
  3730. struct btrfs_iget_args *args = opaque;
  3731. return args->ino == btrfs_ino(inode) &&
  3732. args->root == BTRFS_I(inode)->root;
  3733. }
  3734. static struct inode *btrfs_iget_locked(struct super_block *s,
  3735. u64 objectid,
  3736. struct btrfs_root *root)
  3737. {
  3738. struct inode *inode;
  3739. struct btrfs_iget_args args;
  3740. args.ino = objectid;
  3741. args.root = root;
  3742. inode = iget5_locked(s, objectid, btrfs_find_actor,
  3743. btrfs_init_locked_inode,
  3744. (void *)&args);
  3745. return inode;
  3746. }
  3747. /* Get an inode object given its location and corresponding root.
  3748. * Returns in *is_new if the inode was read from disk
  3749. */
  3750. struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
  3751. struct btrfs_root *root, int *new)
  3752. {
  3753. struct inode *inode;
  3754. inode = btrfs_iget_locked(s, location->objectid, root);
  3755. if (!inode)
  3756. return ERR_PTR(-ENOMEM);
  3757. if (inode->i_state & I_NEW) {
  3758. BTRFS_I(inode)->root = root;
  3759. memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
  3760. btrfs_read_locked_inode(inode);
  3761. if (!is_bad_inode(inode)) {
  3762. inode_tree_add(inode);
  3763. unlock_new_inode(inode);
  3764. if (new)
  3765. *new = 1;
  3766. } else {
  3767. unlock_new_inode(inode);
  3768. iput(inode);
  3769. inode = ERR_PTR(-ESTALE);
  3770. }
  3771. }
  3772. return inode;
  3773. }
  3774. static struct inode *new_simple_dir(struct super_block *s,
  3775. struct btrfs_key *key,
  3776. struct btrfs_root *root)
  3777. {
  3778. struct inode *inode = new_inode(s);
  3779. if (!inode)
  3780. return ERR_PTR(-ENOMEM);
  3781. BTRFS_I(inode)->root = root;
  3782. memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
  3783. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  3784. inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
  3785. inode->i_op = &btrfs_dir_ro_inode_operations;
  3786. inode->i_fop = &simple_dir_operations;
  3787. inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
  3788. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
  3789. return inode;
  3790. }
  3791. struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
  3792. {
  3793. struct inode *inode;
  3794. struct btrfs_root *root = BTRFS_I(dir)->root;
  3795. struct btrfs_root *sub_root = root;
  3796. struct btrfs_key location;
  3797. int index;
  3798. int ret = 0;
  3799. if (dentry->d_name.len > BTRFS_NAME_LEN)
  3800. return ERR_PTR(-ENAMETOOLONG);
  3801. if (unlikely(d_need_lookup(dentry))) {
  3802. memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
  3803. kfree(dentry->d_fsdata);
  3804. dentry->d_fsdata = NULL;
  3805. /* This thing is hashed, drop it for now */
  3806. d_drop(dentry);
  3807. } else {
  3808. ret = btrfs_inode_by_name(dir, dentry, &location);
  3809. }
  3810. if (ret < 0)
  3811. return ERR_PTR(ret);
  3812. if (location.objectid == 0)
  3813. return NULL;
  3814. if (location.type == BTRFS_INODE_ITEM_KEY) {
  3815. inode = btrfs_iget(dir->i_sb, &location, root, NULL);
  3816. return inode;
  3817. }
  3818. BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
  3819. index = srcu_read_lock(&root->fs_info->subvol_srcu);
  3820. ret = fixup_tree_root_location(root, dir, dentry,
  3821. &location, &sub_root);
  3822. if (ret < 0) {
  3823. if (ret != -ENOENT)
  3824. inode = ERR_PTR(ret);
  3825. else
  3826. inode = new_simple_dir(dir->i_sb, &location, sub_root);
  3827. } else {
  3828. inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
  3829. }
  3830. srcu_read_unlock(&root->fs_info->subvol_srcu, index);
  3831. if (!IS_ERR(inode) && root != sub_root) {
  3832. down_read(&root->fs_info->cleanup_work_sem);
  3833. if (!(inode->i_sb->s_flags & MS_RDONLY))
  3834. ret = btrfs_orphan_cleanup(sub_root);
  3835. up_read(&root->fs_info->cleanup_work_sem);
  3836. if (ret)
  3837. inode = ERR_PTR(ret);
  3838. }
  3839. return inode;
  3840. }
  3841. static int btrfs_dentry_delete(const struct dentry *dentry)
  3842. {
  3843. struct btrfs_root *root;
  3844. struct inode *inode = dentry->d_inode;
  3845. if (!inode && !IS_ROOT(dentry))
  3846. inode = dentry->d_parent->d_inode;
  3847. if (inode) {
  3848. root = BTRFS_I(inode)->root;
  3849. if (btrfs_root_refs(&root->root_item) == 0)
  3850. return 1;
  3851. if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
  3852. return 1;
  3853. }
  3854. return 0;
  3855. }
  3856. static void btrfs_dentry_release(struct dentry *dentry)
  3857. {
  3858. if (dentry->d_fsdata)
  3859. kfree(dentry->d_fsdata);
  3860. }
  3861. static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
  3862. unsigned int flags)
  3863. {
  3864. struct dentry *ret;
  3865. ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
  3866. if (unlikely(d_need_lookup(dentry))) {
  3867. spin_lock(&dentry->d_lock);
  3868. dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
  3869. spin_unlock(&dentry->d_lock);
  3870. }
  3871. return ret;
  3872. }
  3873. unsigned char btrfs_filetype_table[] = {
  3874. DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
  3875. };
  3876. static int btrfs_real_readdir(struct file *filp, void *dirent,
  3877. filldir_t filldir)
  3878. {
  3879. struct inode *inode = filp->f_dentry->d_inode;
  3880. struct btrfs_root *root = BTRFS_I(inode)->root;
  3881. struct btrfs_item *item;
  3882. struct btrfs_dir_item *di;
  3883. struct btrfs_key key;
  3884. struct btrfs_key found_key;
  3885. struct btrfs_path *path;
  3886. struct list_head ins_list;
  3887. struct list_head del_list;
  3888. int ret;
  3889. struct extent_buffer *leaf;
  3890. int slot;
  3891. unsigned char d_type;
  3892. int over = 0;
  3893. u32 di_cur;
  3894. u32 di_total;
  3895. u32 di_len;
  3896. int key_type = BTRFS_DIR_INDEX_KEY;
  3897. char tmp_name[32];
  3898. char *name_ptr;
  3899. int name_len;
  3900. int is_curr = 0; /* filp->f_pos points to the current index? */
  3901. /* FIXME, use a real flag for deciding about the key type */
  3902. if (root->fs_info->tree_root == root)
  3903. key_type = BTRFS_DIR_ITEM_KEY;
  3904. /* special case for "." */
  3905. if (filp->f_pos == 0) {
  3906. over = filldir(dirent, ".", 1,
  3907. filp->f_pos, btrfs_ino(inode), DT_DIR);
  3908. if (over)
  3909. return 0;
  3910. filp->f_pos = 1;
  3911. }
  3912. /* special case for .., just use the back ref */
  3913. if (filp->f_pos == 1) {
  3914. u64 pino = parent_ino(filp->f_path.dentry);
  3915. over = filldir(dirent, "..", 2,
  3916. filp->f_pos, pino, DT_DIR);
  3917. if (over)
  3918. return 0;
  3919. filp->f_pos = 2;
  3920. }
  3921. path = btrfs_alloc_path();
  3922. if (!path)
  3923. return -ENOMEM;
  3924. path->reada = 1;
  3925. if (key_type == BTRFS_DIR_INDEX_KEY) {
  3926. INIT_LIST_HEAD(&ins_list);
  3927. INIT_LIST_HEAD(&del_list);
  3928. btrfs_get_delayed_items(inode, &ins_list, &del_list);
  3929. }
  3930. btrfs_set_key_type(&key, key_type);
  3931. key.offset = filp->f_pos;
  3932. key.objectid = btrfs_ino(inode);
  3933. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3934. if (ret < 0)
  3935. goto err;
  3936. while (1) {
  3937. leaf = path->nodes[0];
  3938. slot = path->slots[0];
  3939. if (slot >= btrfs_header_nritems(leaf)) {
  3940. ret = btrfs_next_leaf(root, path);
  3941. if (ret < 0)
  3942. goto err;
  3943. else if (ret > 0)
  3944. break;
  3945. continue;
  3946. }
  3947. item = btrfs_item_nr(leaf, slot);
  3948. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3949. if (found_key.objectid != key.objectid)
  3950. break;
  3951. if (btrfs_key_type(&found_key) != key_type)
  3952. break;
  3953. if (found_key.offset < filp->f_pos)
  3954. goto next;
  3955. if (key_type == BTRFS_DIR_INDEX_KEY &&
  3956. btrfs_should_delete_dir_index(&del_list,
  3957. found_key.offset))
  3958. goto next;
  3959. filp->f_pos = found_key.offset;
  3960. is_curr = 1;
  3961. di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
  3962. di_cur = 0;
  3963. di_total = btrfs_item_size(leaf, item);
  3964. while (di_cur < di_total) {
  3965. struct btrfs_key location;
  3966. if (verify_dir_item(root, leaf, di))
  3967. break;
  3968. name_len = btrfs_dir_name_len(leaf, di);
  3969. if (name_len <= sizeof(tmp_name)) {
  3970. name_ptr = tmp_name;
  3971. } else {
  3972. name_ptr = kmalloc(name_len, GFP_NOFS);
  3973. if (!name_ptr) {
  3974. ret = -ENOMEM;
  3975. goto err;
  3976. }
  3977. }
  3978. read_extent_buffer(leaf, name_ptr,
  3979. (unsigned long)(di + 1), name_len);
  3980. d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
  3981. btrfs_dir_item_key_to_cpu(leaf, di, &location);
  3982. /* is this a reference to our own snapshot? If so
  3983. * skip it.
  3984. *
  3985. * In contrast to old kernels, we insert the snapshot's
  3986. * dir item and dir index after it has been created, so
  3987. * we won't find a reference to our own snapshot. We
  3988. * still keep the following code for backward
  3989. * compatibility.
  3990. */
  3991. if (location.type == BTRFS_ROOT_ITEM_KEY &&
  3992. location.objectid == root->root_key.objectid) {
  3993. over = 0;
  3994. goto skip;
  3995. }
  3996. over = filldir(dirent, name_ptr, name_len,
  3997. found_key.offset, location.objectid,
  3998. d_type);
  3999. skip:
  4000. if (name_ptr != tmp_name)
  4001. kfree(name_ptr);
  4002. if (over)
  4003. goto nopos;
  4004. di_len = btrfs_dir_name_len(leaf, di) +
  4005. btrfs_dir_data_len(leaf, di) + sizeof(*di);
  4006. di_cur += di_len;
  4007. di = (struct btrfs_dir_item *)((char *)di + di_len);
  4008. }
  4009. next:
  4010. path->slots[0]++;
  4011. }
  4012. if (key_type == BTRFS_DIR_INDEX_KEY) {
  4013. if (is_curr)
  4014. filp->f_pos++;
  4015. ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
  4016. &ins_list);
  4017. if (ret)
  4018. goto nopos;
  4019. }
  4020. /* Reached end of directory/root. Bump pos past the last item. */
  4021. if (key_type == BTRFS_DIR_INDEX_KEY)
  4022. /*
  4023. * 32-bit glibc will use getdents64, but then strtol -
  4024. * so the last number we can serve is this.
  4025. */
  4026. filp->f_pos = 0x7fffffff;
  4027. else
  4028. filp->f_pos++;
  4029. nopos:
  4030. ret = 0;
  4031. err:
  4032. if (key_type == BTRFS_DIR_INDEX_KEY)
  4033. btrfs_put_delayed_items(&ins_list, &del_list);
  4034. btrfs_free_path(path);
  4035. return ret;
  4036. }
  4037. int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  4038. {
  4039. struct btrfs_root *root = BTRFS_I(inode)->root;
  4040. struct btrfs_trans_handle *trans;
  4041. int ret = 0;
  4042. bool nolock = false;
  4043. if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
  4044. return 0;
  4045. if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
  4046. nolock = true;
  4047. if (wbc->sync_mode == WB_SYNC_ALL) {
  4048. if (nolock)
  4049. trans = btrfs_join_transaction_nolock(root);
  4050. else
  4051. trans = btrfs_join_transaction(root);
  4052. if (IS_ERR(trans))
  4053. return PTR_ERR(trans);
  4054. ret = btrfs_commit_transaction(trans, root);
  4055. }
  4056. return ret;
  4057. }
  4058. /*
  4059. * This is somewhat expensive, updating the tree every time the
  4060. * inode changes. But, it is most likely to find the inode in cache.
  4061. * FIXME, needs more benchmarking...there are no reasons other than performance
  4062. * to keep or drop this code.
  4063. */
  4064. int btrfs_dirty_inode(struct inode *inode)
  4065. {
  4066. struct btrfs_root *root = BTRFS_I(inode)->root;
  4067. struct btrfs_trans_handle *trans;
  4068. int ret;
  4069. if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
  4070. return 0;
  4071. trans = btrfs_join_transaction(root);
  4072. if (IS_ERR(trans))
  4073. return PTR_ERR(trans);
  4074. ret = btrfs_update_inode(trans, root, inode);
  4075. if (ret && ret == -ENOSPC) {
  4076. /* whoops, lets try again with the full transaction */
  4077. btrfs_end_transaction(trans, root);
  4078. trans = btrfs_start_transaction(root, 1);
  4079. if (IS_ERR(trans))
  4080. return PTR_ERR(trans);
  4081. ret = btrfs_update_inode(trans, root, inode);
  4082. }
  4083. btrfs_end_transaction(trans, root);
  4084. if (BTRFS_I(inode)->delayed_node)
  4085. btrfs_balance_delayed_items(root);
  4086. return ret;
  4087. }
  4088. /*
  4089. * This is a copy of file_update_time. We need this so we can return error on
  4090. * ENOSPC for updating the inode in the case of file write and mmap writes.
  4091. */
  4092. static int btrfs_update_time(struct inode *inode, struct timespec *now,
  4093. int flags)
  4094. {
  4095. struct btrfs_root *root = BTRFS_I(inode)->root;
  4096. if (btrfs_root_readonly(root))
  4097. return -EROFS;
  4098. if (flags & S_VERSION)
  4099. inode_inc_iversion(inode);
  4100. if (flags & S_CTIME)
  4101. inode->i_ctime = *now;
  4102. if (flags & S_MTIME)
  4103. inode->i_mtime = *now;
  4104. if (flags & S_ATIME)
  4105. inode->i_atime = *now;
  4106. return btrfs_dirty_inode(inode);
  4107. }
  4108. /*
  4109. * find the highest existing sequence number in a directory
  4110. * and then set the in-memory index_cnt variable to reflect
  4111. * free sequence numbers
  4112. */
  4113. static int btrfs_set_inode_index_count(struct inode *inode)
  4114. {
  4115. struct btrfs_root *root = BTRFS_I(inode)->root;
  4116. struct btrfs_key key, found_key;
  4117. struct btrfs_path *path;
  4118. struct extent_buffer *leaf;
  4119. int ret;
  4120. key.objectid = btrfs_ino(inode);
  4121. btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
  4122. key.offset = (u64)-1;
  4123. path = btrfs_alloc_path();
  4124. if (!path)
  4125. return -ENOMEM;
  4126. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  4127. if (ret < 0)
  4128. goto out;
  4129. /* FIXME: we should be able to handle this */
  4130. if (ret == 0)
  4131. goto out;
  4132. ret = 0;
  4133. /*
  4134. * MAGIC NUMBER EXPLANATION:
  4135. * since we search a directory based on f_pos we have to start at 2
  4136. * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
  4137. * else has to start at 2
  4138. */
  4139. if (path->slots[0] == 0) {
  4140. BTRFS_I(inode)->index_cnt = 2;
  4141. goto out;
  4142. }
  4143. path->slots[0]--;
  4144. leaf = path->nodes[0];
  4145. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  4146. if (found_key.objectid != btrfs_ino(inode) ||
  4147. btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
  4148. BTRFS_I(inode)->index_cnt = 2;
  4149. goto out;
  4150. }
  4151. BTRFS_I(inode)->index_cnt = found_key.offset + 1;
  4152. out:
  4153. btrfs_free_path(path);
  4154. return ret;
  4155. }
  4156. /*
  4157. * helper to find a free sequence number in a given directory. This current
  4158. * code is very simple, later versions will do smarter things in the btree
  4159. */
  4160. int btrfs_set_inode_index(struct inode *dir, u64 *index)
  4161. {
  4162. int ret = 0;
  4163. if (BTRFS_I(dir)->index_cnt == (u64)-1) {
  4164. ret = btrfs_inode_delayed_dir_index_count(dir);
  4165. if (ret) {
  4166. ret = btrfs_set_inode_index_count(dir);
  4167. if (ret)
  4168. return ret;
  4169. }
  4170. }
  4171. *index = BTRFS_I(dir)->index_cnt;
  4172. BTRFS_I(dir)->index_cnt++;
  4173. return ret;
  4174. }
  4175. static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
  4176. struct btrfs_root *root,
  4177. struct inode *dir,
  4178. const char *name, int name_len,
  4179. u64 ref_objectid, u64 objectid,
  4180. umode_t mode, u64 *index)
  4181. {
  4182. struct inode *inode;
  4183. struct btrfs_inode_item *inode_item;
  4184. struct btrfs_key *location;
  4185. struct btrfs_path *path;
  4186. struct btrfs_inode_ref *ref;
  4187. struct btrfs_key key[2];
  4188. u32 sizes[2];
  4189. unsigned long ptr;
  4190. int ret;
  4191. int owner;
  4192. path = btrfs_alloc_path();
  4193. if (!path)
  4194. return ERR_PTR(-ENOMEM);
  4195. inode = new_inode(root->fs_info->sb);
  4196. if (!inode) {
  4197. btrfs_free_path(path);
  4198. return ERR_PTR(-ENOMEM);
  4199. }
  4200. /*
  4201. * we have to initialize this early, so we can reclaim the inode
  4202. * number if we fail afterwards in this function.
  4203. */
  4204. inode->i_ino = objectid;
  4205. if (dir) {
  4206. trace_btrfs_inode_request(dir);
  4207. ret = btrfs_set_inode_index(dir, index);
  4208. if (ret) {
  4209. btrfs_free_path(path);
  4210. iput(inode);
  4211. return ERR_PTR(ret);
  4212. }
  4213. }
  4214. /*
  4215. * index_cnt is ignored for everything but a dir,
  4216. * btrfs_get_inode_index_count has an explanation for the magic
  4217. * number
  4218. */
  4219. BTRFS_I(inode)->index_cnt = 2;
  4220. BTRFS_I(inode)->root = root;
  4221. BTRFS_I(inode)->generation = trans->transid;
  4222. inode->i_generation = BTRFS_I(inode)->generation;
  4223. /*
  4224. * We could have gotten an inode number from somebody who was fsynced
  4225. * and then removed in this same transaction, so let's just set full
  4226. * sync since it will be a full sync anyway and this will blow away the
  4227. * old info in the log.
  4228. */
  4229. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
  4230. if (S_ISDIR(mode))
  4231. owner = 0;
  4232. else
  4233. owner = 1;
  4234. key[0].objectid = objectid;
  4235. btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
  4236. key[0].offset = 0;
  4237. /*
  4238. * Start new inodes with an inode_ref. This is slightly more
  4239. * efficient for small numbers of hard links since they will
  4240. * be packed into one item. Extended refs will kick in if we
  4241. * add more hard links than can fit in the ref item.
  4242. */
  4243. key[1].objectid = objectid;
  4244. btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
  4245. key[1].offset = ref_objectid;
  4246. sizes[0] = sizeof(struct btrfs_inode_item);
  4247. sizes[1] = name_len + sizeof(*ref);
  4248. path->leave_spinning = 1;
  4249. ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
  4250. if (ret != 0)
  4251. goto fail;
  4252. inode_init_owner(inode, dir, mode);
  4253. inode_set_bytes(inode, 0);
  4254. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
  4255. inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  4256. struct btrfs_inode_item);
  4257. memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
  4258. sizeof(*inode_item));
  4259. fill_inode_item(trans, path->nodes[0], inode_item, inode);
  4260. ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
  4261. struct btrfs_inode_ref);
  4262. btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
  4263. btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
  4264. ptr = (unsigned long)(ref + 1);
  4265. write_extent_buffer(path->nodes[0], name, ptr, name_len);
  4266. btrfs_mark_buffer_dirty(path->nodes[0]);
  4267. btrfs_free_path(path);
  4268. location = &BTRFS_I(inode)->location;
  4269. location->objectid = objectid;
  4270. location->offset = 0;
  4271. btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
  4272. btrfs_inherit_iflags(inode, dir);
  4273. if (S_ISREG(mode)) {
  4274. if (btrfs_test_opt(root, NODATASUM))
  4275. BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
  4276. if (btrfs_test_opt(root, NODATACOW))
  4277. BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
  4278. }
  4279. insert_inode_hash(inode);
  4280. inode_tree_add(inode);
  4281. trace_btrfs_inode_new(inode);
  4282. btrfs_set_inode_last_trans(trans, inode);
  4283. btrfs_update_root_times(trans, root);
  4284. return inode;
  4285. fail:
  4286. if (dir)
  4287. BTRFS_I(dir)->index_cnt--;
  4288. btrfs_free_path(path);
  4289. iput(inode);
  4290. return ERR_PTR(ret);
  4291. }
  4292. static inline u8 btrfs_inode_type(struct inode *inode)
  4293. {
  4294. return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
  4295. }
  4296. /*
  4297. * utility function to add 'inode' into 'parent_inode' with
  4298. * a give name and a given sequence number.
  4299. * if 'add_backref' is true, also insert a backref from the
  4300. * inode to the parent directory.
  4301. */
  4302. int btrfs_add_link(struct btrfs_trans_handle *trans,
  4303. struct inode *parent_inode, struct inode *inode,
  4304. const char *name, int name_len, int add_backref, u64 index)
  4305. {
  4306. int ret = 0;
  4307. struct btrfs_key key;
  4308. struct btrfs_root *root = BTRFS_I(parent_inode)->root;
  4309. u64 ino = btrfs_ino(inode);
  4310. u64 parent_ino = btrfs_ino(parent_inode);
  4311. if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
  4312. memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
  4313. } else {
  4314. key.objectid = ino;
  4315. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  4316. key.offset = 0;
  4317. }
  4318. if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
  4319. ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
  4320. key.objectid, root->root_key.objectid,
  4321. parent_ino, index, name, name_len);
  4322. } else if (add_backref) {
  4323. ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
  4324. parent_ino, index);
  4325. }
  4326. /* Nothing to clean up yet */
  4327. if (ret)
  4328. return ret;
  4329. ret = btrfs_insert_dir_item(trans, root, name, name_len,
  4330. parent_inode, &key,
  4331. btrfs_inode_type(inode), index);
  4332. if (ret == -EEXIST || ret == -EOVERFLOW)
  4333. goto fail_dir_item;
  4334. else if (ret) {
  4335. btrfs_abort_transaction(trans, root, ret);
  4336. return ret;
  4337. }
  4338. btrfs_i_size_write(parent_inode, parent_inode->i_size +
  4339. name_len * 2);
  4340. inode_inc_iversion(parent_inode);
  4341. parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
  4342. ret = btrfs_update_inode(trans, root, parent_inode);
  4343. if (ret)
  4344. btrfs_abort_transaction(trans, root, ret);
  4345. return ret;
  4346. fail_dir_item:
  4347. if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
  4348. u64 local_index;
  4349. int err;
  4350. err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
  4351. key.objectid, root->root_key.objectid,
  4352. parent_ino, &local_index, name, name_len);
  4353. } else if (add_backref) {
  4354. u64 local_index;
  4355. int err;
  4356. err = btrfs_del_inode_ref(trans, root, name, name_len,
  4357. ino, parent_ino, &local_index);
  4358. }
  4359. return ret;
  4360. }
  4361. static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
  4362. struct inode *dir, struct dentry *dentry,
  4363. struct inode *inode, int backref, u64 index)
  4364. {
  4365. int err = btrfs_add_link(trans, dir, inode,
  4366. dentry->d_name.name, dentry->d_name.len,
  4367. backref, index);
  4368. if (err > 0)
  4369. err = -EEXIST;
  4370. return err;
  4371. }
  4372. static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
  4373. umode_t mode, dev_t rdev)
  4374. {
  4375. struct btrfs_trans_handle *trans;
  4376. struct btrfs_root *root = BTRFS_I(dir)->root;
  4377. struct inode *inode = NULL;
  4378. int err;
  4379. int drop_inode = 0;
  4380. u64 objectid;
  4381. u64 index = 0;
  4382. if (!new_valid_dev(rdev))
  4383. return -EINVAL;
  4384. /*
  4385. * 2 for inode item and ref
  4386. * 2 for dir items
  4387. * 1 for xattr if selinux is on
  4388. */
  4389. trans = btrfs_start_transaction(root, 5);
  4390. if (IS_ERR(trans))
  4391. return PTR_ERR(trans);
  4392. err = btrfs_find_free_ino(root, &objectid);
  4393. if (err)
  4394. goto out_unlock;
  4395. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  4396. dentry->d_name.len, btrfs_ino(dir), objectid,
  4397. mode, &index);
  4398. if (IS_ERR(inode)) {
  4399. err = PTR_ERR(inode);
  4400. goto out_unlock;
  4401. }
  4402. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  4403. if (err) {
  4404. drop_inode = 1;
  4405. goto out_unlock;
  4406. }
  4407. err = btrfs_update_inode(trans, root, inode);
  4408. if (err) {
  4409. drop_inode = 1;
  4410. goto out_unlock;
  4411. }
  4412. /*
  4413. * If the active LSM wants to access the inode during
  4414. * d_instantiate it needs these. Smack checks to see
  4415. * if the filesystem supports xattrs by looking at the
  4416. * ops vector.
  4417. */
  4418. inode->i_op = &btrfs_special_inode_operations;
  4419. err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
  4420. if (err)
  4421. drop_inode = 1;
  4422. else {
  4423. init_special_inode(inode, inode->i_mode, rdev);
  4424. btrfs_update_inode(trans, root, inode);
  4425. d_instantiate(dentry, inode);
  4426. }
  4427. out_unlock:
  4428. btrfs_end_transaction(trans, root);
  4429. btrfs_btree_balance_dirty(root);
  4430. if (drop_inode) {
  4431. inode_dec_link_count(inode);
  4432. iput(inode);
  4433. }
  4434. return err;
  4435. }
  4436. static int btrfs_create(struct inode *dir, struct dentry *dentry,
  4437. umode_t mode, bool excl)
  4438. {
  4439. struct btrfs_trans_handle *trans;
  4440. struct btrfs_root *root = BTRFS_I(dir)->root;
  4441. struct inode *inode = NULL;
  4442. int drop_inode_on_err = 0;
  4443. int err;
  4444. u64 objectid;
  4445. u64 index = 0;
  4446. /*
  4447. * 2 for inode item and ref
  4448. * 2 for dir items
  4449. * 1 for xattr if selinux is on
  4450. */
  4451. trans = btrfs_start_transaction(root, 5);
  4452. if (IS_ERR(trans))
  4453. return PTR_ERR(trans);
  4454. err = btrfs_find_free_ino(root, &objectid);
  4455. if (err)
  4456. goto out_unlock;
  4457. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  4458. dentry->d_name.len, btrfs_ino(dir), objectid,
  4459. mode, &index);
  4460. if (IS_ERR(inode)) {
  4461. err = PTR_ERR(inode);
  4462. goto out_unlock;
  4463. }
  4464. drop_inode_on_err = 1;
  4465. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  4466. if (err)
  4467. goto out_unlock;
  4468. err = btrfs_update_inode(trans, root, inode);
  4469. if (err)
  4470. goto out_unlock;
  4471. /*
  4472. * If the active LSM wants to access the inode during
  4473. * d_instantiate it needs these. Smack checks to see
  4474. * if the filesystem supports xattrs by looking at the
  4475. * ops vector.
  4476. */
  4477. inode->i_fop = &btrfs_file_operations;
  4478. inode->i_op = &btrfs_file_inode_operations;
  4479. err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
  4480. if (err)
  4481. goto out_unlock;
  4482. inode->i_mapping->a_ops = &btrfs_aops;
  4483. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  4484. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  4485. d_instantiate(dentry, inode);
  4486. out_unlock:
  4487. btrfs_end_transaction(trans, root);
  4488. if (err && drop_inode_on_err) {
  4489. inode_dec_link_count(inode);
  4490. iput(inode);
  4491. }
  4492. btrfs_btree_balance_dirty(root);
  4493. return err;
  4494. }
  4495. static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
  4496. struct dentry *dentry)
  4497. {
  4498. struct btrfs_trans_handle *trans;
  4499. struct btrfs_root *root = BTRFS_I(dir)->root;
  4500. struct inode *inode = old_dentry->d_inode;
  4501. u64 index;
  4502. int err;
  4503. int drop_inode = 0;
  4504. /* do not allow sys_link's with other subvols of the same device */
  4505. if (root->objectid != BTRFS_I(inode)->root->objectid)
  4506. return -EXDEV;
  4507. if (inode->i_nlink >= BTRFS_LINK_MAX)
  4508. return -EMLINK;
  4509. err = btrfs_set_inode_index(dir, &index);
  4510. if (err)
  4511. goto fail;
  4512. /*
  4513. * 2 items for inode and inode ref
  4514. * 2 items for dir items
  4515. * 1 item for parent inode
  4516. */
  4517. trans = btrfs_start_transaction(root, 5);
  4518. if (IS_ERR(trans)) {
  4519. err = PTR_ERR(trans);
  4520. goto fail;
  4521. }
  4522. btrfs_inc_nlink(inode);
  4523. inode_inc_iversion(inode);
  4524. inode->i_ctime = CURRENT_TIME;
  4525. ihold(inode);
  4526. set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
  4527. err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
  4528. if (err) {
  4529. drop_inode = 1;
  4530. } else {
  4531. struct dentry *parent = dentry->d_parent;
  4532. err = btrfs_update_inode(trans, root, inode);
  4533. if (err)
  4534. goto fail;
  4535. d_instantiate(dentry, inode);
  4536. btrfs_log_new_name(trans, inode, NULL, parent);
  4537. }
  4538. btrfs_end_transaction(trans, root);
  4539. fail:
  4540. if (drop_inode) {
  4541. inode_dec_link_count(inode);
  4542. iput(inode);
  4543. }
  4544. btrfs_btree_balance_dirty(root);
  4545. return err;
  4546. }
  4547. static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  4548. {
  4549. struct inode *inode = NULL;
  4550. struct btrfs_trans_handle *trans;
  4551. struct btrfs_root *root = BTRFS_I(dir)->root;
  4552. int err = 0;
  4553. int drop_on_err = 0;
  4554. u64 objectid = 0;
  4555. u64 index = 0;
  4556. /*
  4557. * 2 items for inode and ref
  4558. * 2 items for dir items
  4559. * 1 for xattr if selinux is on
  4560. */
  4561. trans = btrfs_start_transaction(root, 5);
  4562. if (IS_ERR(trans))
  4563. return PTR_ERR(trans);
  4564. err = btrfs_find_free_ino(root, &objectid);
  4565. if (err)
  4566. goto out_fail;
  4567. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  4568. dentry->d_name.len, btrfs_ino(dir), objectid,
  4569. S_IFDIR | mode, &index);
  4570. if (IS_ERR(inode)) {
  4571. err = PTR_ERR(inode);
  4572. goto out_fail;
  4573. }
  4574. drop_on_err = 1;
  4575. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  4576. if (err)
  4577. goto out_fail;
  4578. inode->i_op = &btrfs_dir_inode_operations;
  4579. inode->i_fop = &btrfs_dir_file_operations;
  4580. btrfs_i_size_write(inode, 0);
  4581. err = btrfs_update_inode(trans, root, inode);
  4582. if (err)
  4583. goto out_fail;
  4584. err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
  4585. dentry->d_name.len, 0, index);
  4586. if (err)
  4587. goto out_fail;
  4588. d_instantiate(dentry, inode);
  4589. drop_on_err = 0;
  4590. out_fail:
  4591. btrfs_end_transaction(trans, root);
  4592. if (drop_on_err)
  4593. iput(inode);
  4594. btrfs_btree_balance_dirty(root);
  4595. return err;
  4596. }
  4597. /* helper for btfs_get_extent. Given an existing extent in the tree,
  4598. * and an extent that you want to insert, deal with overlap and insert
  4599. * the new extent into the tree.
  4600. */
  4601. static int merge_extent_mapping(struct extent_map_tree *em_tree,
  4602. struct extent_map *existing,
  4603. struct extent_map *em,
  4604. u64 map_start, u64 map_len)
  4605. {
  4606. u64 start_diff;
  4607. BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
  4608. start_diff = map_start - em->start;
  4609. em->start = map_start;
  4610. em->len = map_len;
  4611. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  4612. !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
  4613. em->block_start += start_diff;
  4614. em->block_len -= start_diff;
  4615. }
  4616. return add_extent_mapping(em_tree, em);
  4617. }
  4618. static noinline int uncompress_inline(struct btrfs_path *path,
  4619. struct inode *inode, struct page *page,
  4620. size_t pg_offset, u64 extent_offset,
  4621. struct btrfs_file_extent_item *item)
  4622. {
  4623. int ret;
  4624. struct extent_buffer *leaf = path->nodes[0];
  4625. char *tmp;
  4626. size_t max_size;
  4627. unsigned long inline_size;
  4628. unsigned long ptr;
  4629. int compress_type;
  4630. WARN_ON(pg_offset != 0);
  4631. compress_type = btrfs_file_extent_compression(leaf, item);
  4632. max_size = btrfs_file_extent_ram_bytes(leaf, item);
  4633. inline_size = btrfs_file_extent_inline_item_len(leaf,
  4634. btrfs_item_nr(leaf, path->slots[0]));
  4635. tmp = kmalloc(inline_size, GFP_NOFS);
  4636. if (!tmp)
  4637. return -ENOMEM;
  4638. ptr = btrfs_file_extent_inline_start(item);
  4639. read_extent_buffer(leaf, tmp, ptr, inline_size);
  4640. max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
  4641. ret = btrfs_decompress(compress_type, tmp, page,
  4642. extent_offset, inline_size, max_size);
  4643. if (ret) {
  4644. char *kaddr = kmap_atomic(page);
  4645. unsigned long copy_size = min_t(u64,
  4646. PAGE_CACHE_SIZE - pg_offset,
  4647. max_size - extent_offset);
  4648. memset(kaddr + pg_offset, 0, copy_size);
  4649. kunmap_atomic(kaddr);
  4650. }
  4651. kfree(tmp);
  4652. return 0;
  4653. }
  4654. /*
  4655. * a bit scary, this does extent mapping from logical file offset to the disk.
  4656. * the ugly parts come from merging extents from the disk with the in-ram
  4657. * representation. This gets more complex because of the data=ordered code,
  4658. * where the in-ram extents might be locked pending data=ordered completion.
  4659. *
  4660. * This also copies inline extents directly into the page.
  4661. */
  4662. struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
  4663. size_t pg_offset, u64 start, u64 len,
  4664. int create)
  4665. {
  4666. int ret;
  4667. int err = 0;
  4668. u64 bytenr;
  4669. u64 extent_start = 0;
  4670. u64 extent_end = 0;
  4671. u64 objectid = btrfs_ino(inode);
  4672. u32 found_type;
  4673. struct btrfs_path *path = NULL;
  4674. struct btrfs_root *root = BTRFS_I(inode)->root;
  4675. struct btrfs_file_extent_item *item;
  4676. struct extent_buffer *leaf;
  4677. struct btrfs_key found_key;
  4678. struct extent_map *em = NULL;
  4679. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  4680. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  4681. struct btrfs_trans_handle *trans = NULL;
  4682. int compress_type;
  4683. again:
  4684. read_lock(&em_tree->lock);
  4685. em = lookup_extent_mapping(em_tree, start, len);
  4686. if (em)
  4687. em->bdev = root->fs_info->fs_devices->latest_bdev;
  4688. read_unlock(&em_tree->lock);
  4689. if (em) {
  4690. if (em->start > start || em->start + em->len <= start)
  4691. free_extent_map(em);
  4692. else if (em->block_start == EXTENT_MAP_INLINE && page)
  4693. free_extent_map(em);
  4694. else
  4695. goto out;
  4696. }
  4697. em = alloc_extent_map();
  4698. if (!em) {
  4699. err = -ENOMEM;
  4700. goto out;
  4701. }
  4702. em->bdev = root->fs_info->fs_devices->latest_bdev;
  4703. em->start = EXTENT_MAP_HOLE;
  4704. em->orig_start = EXTENT_MAP_HOLE;
  4705. em->len = (u64)-1;
  4706. em->block_len = (u64)-1;
  4707. if (!path) {
  4708. path = btrfs_alloc_path();
  4709. if (!path) {
  4710. err = -ENOMEM;
  4711. goto out;
  4712. }
  4713. /*
  4714. * Chances are we'll be called again, so go ahead and do
  4715. * readahead
  4716. */
  4717. path->reada = 1;
  4718. }
  4719. ret = btrfs_lookup_file_extent(trans, root, path,
  4720. objectid, start, trans != NULL);
  4721. if (ret < 0) {
  4722. err = ret;
  4723. goto out;
  4724. }
  4725. if (ret != 0) {
  4726. if (path->slots[0] == 0)
  4727. goto not_found;
  4728. path->slots[0]--;
  4729. }
  4730. leaf = path->nodes[0];
  4731. item = btrfs_item_ptr(leaf, path->slots[0],
  4732. struct btrfs_file_extent_item);
  4733. /* are we inside the extent that was found? */
  4734. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  4735. found_type = btrfs_key_type(&found_key);
  4736. if (found_key.objectid != objectid ||
  4737. found_type != BTRFS_EXTENT_DATA_KEY) {
  4738. goto not_found;
  4739. }
  4740. found_type = btrfs_file_extent_type(leaf, item);
  4741. extent_start = found_key.offset;
  4742. compress_type = btrfs_file_extent_compression(leaf, item);
  4743. if (found_type == BTRFS_FILE_EXTENT_REG ||
  4744. found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  4745. extent_end = extent_start +
  4746. btrfs_file_extent_num_bytes(leaf, item);
  4747. } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
  4748. size_t size;
  4749. size = btrfs_file_extent_inline_len(leaf, item);
  4750. extent_end = (extent_start + size + root->sectorsize - 1) &
  4751. ~((u64)root->sectorsize - 1);
  4752. }
  4753. if (start >= extent_end) {
  4754. path->slots[0]++;
  4755. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  4756. ret = btrfs_next_leaf(root, path);
  4757. if (ret < 0) {
  4758. err = ret;
  4759. goto out;
  4760. }
  4761. if (ret > 0)
  4762. goto not_found;
  4763. leaf = path->nodes[0];
  4764. }
  4765. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  4766. if (found_key.objectid != objectid ||
  4767. found_key.type != BTRFS_EXTENT_DATA_KEY)
  4768. goto not_found;
  4769. if (start + len <= found_key.offset)
  4770. goto not_found;
  4771. em->start = start;
  4772. em->orig_start = start;
  4773. em->len = found_key.offset - start;
  4774. goto not_found_em;
  4775. }
  4776. if (found_type == BTRFS_FILE_EXTENT_REG ||
  4777. found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  4778. em->start = extent_start;
  4779. em->len = extent_end - extent_start;
  4780. em->orig_start = extent_start -
  4781. btrfs_file_extent_offset(leaf, item);
  4782. em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
  4783. item);
  4784. bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
  4785. if (bytenr == 0) {
  4786. em->block_start = EXTENT_MAP_HOLE;
  4787. goto insert;
  4788. }
  4789. if (compress_type != BTRFS_COMPRESS_NONE) {
  4790. set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  4791. em->compress_type = compress_type;
  4792. em->block_start = bytenr;
  4793. em->block_len = em->orig_block_len;
  4794. } else {
  4795. bytenr += btrfs_file_extent_offset(leaf, item);
  4796. em->block_start = bytenr;
  4797. em->block_len = em->len;
  4798. if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
  4799. set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
  4800. }
  4801. goto insert;
  4802. } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
  4803. unsigned long ptr;
  4804. char *map;
  4805. size_t size;
  4806. size_t extent_offset;
  4807. size_t copy_size;
  4808. em->block_start = EXTENT_MAP_INLINE;
  4809. if (!page || create) {
  4810. em->start = extent_start;
  4811. em->len = extent_end - extent_start;
  4812. goto out;
  4813. }
  4814. size = btrfs_file_extent_inline_len(leaf, item);
  4815. extent_offset = page_offset(page) + pg_offset - extent_start;
  4816. copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
  4817. size - extent_offset);
  4818. em->start = extent_start + extent_offset;
  4819. em->len = (copy_size + root->sectorsize - 1) &
  4820. ~((u64)root->sectorsize - 1);
  4821. em->orig_block_len = em->len;
  4822. em->orig_start = em->start;
  4823. if (compress_type) {
  4824. set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  4825. em->compress_type = compress_type;
  4826. }
  4827. ptr = btrfs_file_extent_inline_start(item) + extent_offset;
  4828. if (create == 0 && !PageUptodate(page)) {
  4829. if (btrfs_file_extent_compression(leaf, item) !=
  4830. BTRFS_COMPRESS_NONE) {
  4831. ret = uncompress_inline(path, inode, page,
  4832. pg_offset,
  4833. extent_offset, item);
  4834. BUG_ON(ret); /* -ENOMEM */
  4835. } else {
  4836. map = kmap(page);
  4837. read_extent_buffer(leaf, map + pg_offset, ptr,
  4838. copy_size);
  4839. if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
  4840. memset(map + pg_offset + copy_size, 0,
  4841. PAGE_CACHE_SIZE - pg_offset -
  4842. copy_size);
  4843. }
  4844. kunmap(page);
  4845. }
  4846. flush_dcache_page(page);
  4847. } else if (create && PageUptodate(page)) {
  4848. BUG();
  4849. if (!trans) {
  4850. kunmap(page);
  4851. free_extent_map(em);
  4852. em = NULL;
  4853. btrfs_release_path(path);
  4854. trans = btrfs_join_transaction(root);
  4855. if (IS_ERR(trans))
  4856. return ERR_CAST(trans);
  4857. goto again;
  4858. }
  4859. map = kmap(page);
  4860. write_extent_buffer(leaf, map + pg_offset, ptr,
  4861. copy_size);
  4862. kunmap(page);
  4863. btrfs_mark_buffer_dirty(leaf);
  4864. }
  4865. set_extent_uptodate(io_tree, em->start,
  4866. extent_map_end(em) - 1, NULL, GFP_NOFS);
  4867. goto insert;
  4868. } else {
  4869. WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
  4870. }
  4871. not_found:
  4872. em->start = start;
  4873. em->orig_start = start;
  4874. em->len = len;
  4875. not_found_em:
  4876. em->block_start = EXTENT_MAP_HOLE;
  4877. set_bit(EXTENT_FLAG_VACANCY, &em->flags);
  4878. insert:
  4879. btrfs_release_path(path);
  4880. if (em->start > start || extent_map_end(em) <= start) {
  4881. printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
  4882. "[%llu %llu]\n", (unsigned long long)em->start,
  4883. (unsigned long long)em->len,
  4884. (unsigned long long)start,
  4885. (unsigned long long)len);
  4886. err = -EIO;
  4887. goto out;
  4888. }
  4889. err = 0;
  4890. write_lock(&em_tree->lock);
  4891. ret = add_extent_mapping(em_tree, em);
  4892. /* it is possible that someone inserted the extent into the tree
  4893. * while we had the lock dropped. It is also possible that
  4894. * an overlapping map exists in the tree
  4895. */
  4896. if (ret == -EEXIST) {
  4897. struct extent_map *existing;
  4898. ret = 0;
  4899. existing = lookup_extent_mapping(em_tree, start, len);
  4900. if (existing && (existing->start > start ||
  4901. existing->start + existing->len <= start)) {
  4902. free_extent_map(existing);
  4903. existing = NULL;
  4904. }
  4905. if (!existing) {
  4906. existing = lookup_extent_mapping(em_tree, em->start,
  4907. em->len);
  4908. if (existing) {
  4909. err = merge_extent_mapping(em_tree, existing,
  4910. em, start,
  4911. root->sectorsize);
  4912. free_extent_map(existing);
  4913. if (err) {
  4914. free_extent_map(em);
  4915. em = NULL;
  4916. }
  4917. } else {
  4918. err = -EIO;
  4919. free_extent_map(em);
  4920. em = NULL;
  4921. }
  4922. } else {
  4923. free_extent_map(em);
  4924. em = existing;
  4925. err = 0;
  4926. }
  4927. }
  4928. write_unlock(&em_tree->lock);
  4929. out:
  4930. if (em)
  4931. trace_btrfs_get_extent(root, em);
  4932. if (path)
  4933. btrfs_free_path(path);
  4934. if (trans) {
  4935. ret = btrfs_end_transaction(trans, root);
  4936. if (!err)
  4937. err = ret;
  4938. }
  4939. if (err) {
  4940. free_extent_map(em);
  4941. return ERR_PTR(err);
  4942. }
  4943. BUG_ON(!em); /* Error is always set */
  4944. return em;
  4945. }
  4946. struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
  4947. size_t pg_offset, u64 start, u64 len,
  4948. int create)
  4949. {
  4950. struct extent_map *em;
  4951. struct extent_map *hole_em = NULL;
  4952. u64 range_start = start;
  4953. u64 end;
  4954. u64 found;
  4955. u64 found_end;
  4956. int err = 0;
  4957. em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
  4958. if (IS_ERR(em))
  4959. return em;
  4960. if (em) {
  4961. /*
  4962. * if our em maps to
  4963. * - a hole or
  4964. * - a pre-alloc extent,
  4965. * there might actually be delalloc bytes behind it.
  4966. */
  4967. if (em->block_start != EXTENT_MAP_HOLE &&
  4968. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  4969. return em;
  4970. else
  4971. hole_em = em;
  4972. }
  4973. /* check to see if we've wrapped (len == -1 or similar) */
  4974. end = start + len;
  4975. if (end < start)
  4976. end = (u64)-1;
  4977. else
  4978. end -= 1;
  4979. em = NULL;
  4980. /* ok, we didn't find anything, lets look for delalloc */
  4981. found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
  4982. end, len, EXTENT_DELALLOC, 1);
  4983. found_end = range_start + found;
  4984. if (found_end < range_start)
  4985. found_end = (u64)-1;
  4986. /*
  4987. * we didn't find anything useful, return
  4988. * the original results from get_extent()
  4989. */
  4990. if (range_start > end || found_end <= start) {
  4991. em = hole_em;
  4992. hole_em = NULL;
  4993. goto out;
  4994. }
  4995. /* adjust the range_start to make sure it doesn't
  4996. * go backwards from the start they passed in
  4997. */
  4998. range_start = max(start,range_start);
  4999. found = found_end - range_start;
  5000. if (found > 0) {
  5001. u64 hole_start = start;
  5002. u64 hole_len = len;
  5003. em = alloc_extent_map();
  5004. if (!em) {
  5005. err = -ENOMEM;
  5006. goto out;
  5007. }
  5008. /*
  5009. * when btrfs_get_extent can't find anything it
  5010. * returns one huge hole
  5011. *
  5012. * make sure what it found really fits our range, and
  5013. * adjust to make sure it is based on the start from
  5014. * the caller
  5015. */
  5016. if (hole_em) {
  5017. u64 calc_end = extent_map_end(hole_em);
  5018. if (calc_end <= start || (hole_em->start > end)) {
  5019. free_extent_map(hole_em);
  5020. hole_em = NULL;
  5021. } else {
  5022. hole_start = max(hole_em->start, start);
  5023. hole_len = calc_end - hole_start;
  5024. }
  5025. }
  5026. em->bdev = NULL;
  5027. if (hole_em && range_start > hole_start) {
  5028. /* our hole starts before our delalloc, so we
  5029. * have to return just the parts of the hole
  5030. * that go until the delalloc starts
  5031. */
  5032. em->len = min(hole_len,
  5033. range_start - hole_start);
  5034. em->start = hole_start;
  5035. em->orig_start = hole_start;
  5036. /*
  5037. * don't adjust block start at all,
  5038. * it is fixed at EXTENT_MAP_HOLE
  5039. */
  5040. em->block_start = hole_em->block_start;
  5041. em->block_len = hole_len;
  5042. if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
  5043. set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
  5044. } else {
  5045. em->start = range_start;
  5046. em->len = found;
  5047. em->orig_start = range_start;
  5048. em->block_start = EXTENT_MAP_DELALLOC;
  5049. em->block_len = found;
  5050. }
  5051. } else if (hole_em) {
  5052. return hole_em;
  5053. }
  5054. out:
  5055. free_extent_map(hole_em);
  5056. if (err) {
  5057. free_extent_map(em);
  5058. return ERR_PTR(err);
  5059. }
  5060. return em;
  5061. }
  5062. static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
  5063. u64 start, u64 len)
  5064. {
  5065. struct btrfs_root *root = BTRFS_I(inode)->root;
  5066. struct btrfs_trans_handle *trans;
  5067. struct extent_map *em;
  5068. struct btrfs_key ins;
  5069. u64 alloc_hint;
  5070. int ret;
  5071. trans = btrfs_join_transaction(root);
  5072. if (IS_ERR(trans))
  5073. return ERR_CAST(trans);
  5074. trans->block_rsv = &root->fs_info->delalloc_block_rsv;
  5075. alloc_hint = get_extent_allocation_hint(inode, start, len);
  5076. ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
  5077. alloc_hint, &ins, 1);
  5078. if (ret) {
  5079. em = ERR_PTR(ret);
  5080. goto out;
  5081. }
  5082. em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
  5083. ins.offset, ins.offset, 0);
  5084. if (IS_ERR(em))
  5085. goto out;
  5086. ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
  5087. ins.offset, ins.offset, 0);
  5088. if (ret) {
  5089. btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
  5090. em = ERR_PTR(ret);
  5091. }
  5092. out:
  5093. btrfs_end_transaction(trans, root);
  5094. return em;
  5095. }
  5096. /*
  5097. * returns 1 when the nocow is safe, < 1 on error, 0 if the
  5098. * block must be cow'd
  5099. */
  5100. static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
  5101. struct inode *inode, u64 offset, u64 len)
  5102. {
  5103. struct btrfs_path *path;
  5104. int ret;
  5105. struct extent_buffer *leaf;
  5106. struct btrfs_root *root = BTRFS_I(inode)->root;
  5107. struct btrfs_file_extent_item *fi;
  5108. struct btrfs_key key;
  5109. u64 disk_bytenr;
  5110. u64 backref_offset;
  5111. u64 extent_end;
  5112. u64 num_bytes;
  5113. int slot;
  5114. int found_type;
  5115. path = btrfs_alloc_path();
  5116. if (!path)
  5117. return -ENOMEM;
  5118. ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
  5119. offset, 0);
  5120. if (ret < 0)
  5121. goto out;
  5122. slot = path->slots[0];
  5123. if (ret == 1) {
  5124. if (slot == 0) {
  5125. /* can't find the item, must cow */
  5126. ret = 0;
  5127. goto out;
  5128. }
  5129. slot--;
  5130. }
  5131. ret = 0;
  5132. leaf = path->nodes[0];
  5133. btrfs_item_key_to_cpu(leaf, &key, slot);
  5134. if (key.objectid != btrfs_ino(inode) ||
  5135. key.type != BTRFS_EXTENT_DATA_KEY) {
  5136. /* not our file or wrong item type, must cow */
  5137. goto out;
  5138. }
  5139. if (key.offset > offset) {
  5140. /* Wrong offset, must cow */
  5141. goto out;
  5142. }
  5143. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  5144. found_type = btrfs_file_extent_type(leaf, fi);
  5145. if (found_type != BTRFS_FILE_EXTENT_REG &&
  5146. found_type != BTRFS_FILE_EXTENT_PREALLOC) {
  5147. /* not a regular extent, must cow */
  5148. goto out;
  5149. }
  5150. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  5151. backref_offset = btrfs_file_extent_offset(leaf, fi);
  5152. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  5153. if (extent_end < offset + len) {
  5154. /* extent doesn't include our full range, must cow */
  5155. goto out;
  5156. }
  5157. if (btrfs_extent_readonly(root, disk_bytenr))
  5158. goto out;
  5159. /*
  5160. * look for other files referencing this extent, if we
  5161. * find any we must cow
  5162. */
  5163. if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
  5164. key.offset - backref_offset, disk_bytenr))
  5165. goto out;
  5166. /*
  5167. * adjust disk_bytenr and num_bytes to cover just the bytes
  5168. * in this extent we are about to write. If there
  5169. * are any csums in that range we have to cow in order
  5170. * to keep the csums correct
  5171. */
  5172. disk_bytenr += backref_offset;
  5173. disk_bytenr += offset - key.offset;
  5174. num_bytes = min(offset + len, extent_end) - offset;
  5175. if (csum_exist_in_range(root, disk_bytenr, num_bytes))
  5176. goto out;
  5177. /*
  5178. * all of the above have passed, it is safe to overwrite this extent
  5179. * without cow
  5180. */
  5181. ret = 1;
  5182. out:
  5183. btrfs_free_path(path);
  5184. return ret;
  5185. }
  5186. static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
  5187. struct extent_state **cached_state, int writing)
  5188. {
  5189. struct btrfs_ordered_extent *ordered;
  5190. int ret = 0;
  5191. while (1) {
  5192. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  5193. 0, cached_state);
  5194. /*
  5195. * We're concerned with the entire range that we're going to be
  5196. * doing DIO to, so we need to make sure theres no ordered
  5197. * extents in this range.
  5198. */
  5199. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  5200. lockend - lockstart + 1);
  5201. /*
  5202. * We need to make sure there are no buffered pages in this
  5203. * range either, we could have raced between the invalidate in
  5204. * generic_file_direct_write and locking the extent. The
  5205. * invalidate needs to happen so that reads after a write do not
  5206. * get stale data.
  5207. */
  5208. if (!ordered && (!writing ||
  5209. !test_range_bit(&BTRFS_I(inode)->io_tree,
  5210. lockstart, lockend, EXTENT_UPTODATE, 0,
  5211. *cached_state)))
  5212. break;
  5213. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  5214. cached_state, GFP_NOFS);
  5215. if (ordered) {
  5216. btrfs_start_ordered_extent(inode, ordered, 1);
  5217. btrfs_put_ordered_extent(ordered);
  5218. } else {
  5219. /* Screw you mmap */
  5220. ret = filemap_write_and_wait_range(inode->i_mapping,
  5221. lockstart,
  5222. lockend);
  5223. if (ret)
  5224. break;
  5225. /*
  5226. * If we found a page that couldn't be invalidated just
  5227. * fall back to buffered.
  5228. */
  5229. ret = invalidate_inode_pages2_range(inode->i_mapping,
  5230. lockstart >> PAGE_CACHE_SHIFT,
  5231. lockend >> PAGE_CACHE_SHIFT);
  5232. if (ret)
  5233. break;
  5234. }
  5235. cond_resched();
  5236. }
  5237. return ret;
  5238. }
  5239. static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
  5240. u64 len, u64 orig_start,
  5241. u64 block_start, u64 block_len,
  5242. u64 orig_block_len, int type)
  5243. {
  5244. struct extent_map_tree *em_tree;
  5245. struct extent_map *em;
  5246. struct btrfs_root *root = BTRFS_I(inode)->root;
  5247. int ret;
  5248. em_tree = &BTRFS_I(inode)->extent_tree;
  5249. em = alloc_extent_map();
  5250. if (!em)
  5251. return ERR_PTR(-ENOMEM);
  5252. em->start = start;
  5253. em->orig_start = orig_start;
  5254. em->len = len;
  5255. em->block_len = block_len;
  5256. em->block_start = block_start;
  5257. em->bdev = root->fs_info->fs_devices->latest_bdev;
  5258. em->orig_block_len = orig_block_len;
  5259. em->generation = -1;
  5260. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  5261. if (type == BTRFS_ORDERED_PREALLOC)
  5262. set_bit(EXTENT_FLAG_FILLING, &em->flags);
  5263. do {
  5264. btrfs_drop_extent_cache(inode, em->start,
  5265. em->start + em->len - 1, 0);
  5266. write_lock(&em_tree->lock);
  5267. ret = add_extent_mapping(em_tree, em);
  5268. if (!ret)
  5269. list_move(&em->list,
  5270. &em_tree->modified_extents);
  5271. write_unlock(&em_tree->lock);
  5272. } while (ret == -EEXIST);
  5273. if (ret) {
  5274. free_extent_map(em);
  5275. return ERR_PTR(ret);
  5276. }
  5277. return em;
  5278. }
  5279. static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
  5280. struct buffer_head *bh_result, int create)
  5281. {
  5282. struct extent_map *em;
  5283. struct btrfs_root *root = BTRFS_I(inode)->root;
  5284. struct extent_state *cached_state = NULL;
  5285. u64 start = iblock << inode->i_blkbits;
  5286. u64 lockstart, lockend;
  5287. u64 len = bh_result->b_size;
  5288. struct btrfs_trans_handle *trans;
  5289. int unlock_bits = EXTENT_LOCKED;
  5290. int ret;
  5291. if (create) {
  5292. ret = btrfs_delalloc_reserve_space(inode, len);
  5293. if (ret)
  5294. return ret;
  5295. unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
  5296. } else {
  5297. len = min_t(u64, len, root->sectorsize);
  5298. }
  5299. lockstart = start;
  5300. lockend = start + len - 1;
  5301. /*
  5302. * If this errors out it's because we couldn't invalidate pagecache for
  5303. * this range and we need to fallback to buffered.
  5304. */
  5305. if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
  5306. return -ENOTBLK;
  5307. if (create) {
  5308. ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  5309. lockend, EXTENT_DELALLOC, NULL,
  5310. &cached_state, GFP_NOFS);
  5311. if (ret)
  5312. goto unlock_err;
  5313. }
  5314. em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
  5315. if (IS_ERR(em)) {
  5316. ret = PTR_ERR(em);
  5317. goto unlock_err;
  5318. }
  5319. /*
  5320. * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
  5321. * io. INLINE is special, and we could probably kludge it in here, but
  5322. * it's still buffered so for safety lets just fall back to the generic
  5323. * buffered path.
  5324. *
  5325. * For COMPRESSED we _have_ to read the entire extent in so we can
  5326. * decompress it, so there will be buffering required no matter what we
  5327. * do, so go ahead and fallback to buffered.
  5328. *
  5329. * We return -ENOTBLK because thats what makes DIO go ahead and go back
  5330. * to buffered IO. Don't blame me, this is the price we pay for using
  5331. * the generic code.
  5332. */
  5333. if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
  5334. em->block_start == EXTENT_MAP_INLINE) {
  5335. free_extent_map(em);
  5336. ret = -ENOTBLK;
  5337. goto unlock_err;
  5338. }
  5339. /* Just a good old fashioned hole, return */
  5340. if (!create && (em->block_start == EXTENT_MAP_HOLE ||
  5341. test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  5342. free_extent_map(em);
  5343. ret = 0;
  5344. goto unlock_err;
  5345. }
  5346. /*
  5347. * We don't allocate a new extent in the following cases
  5348. *
  5349. * 1) The inode is marked as NODATACOW. In this case we'll just use the
  5350. * existing extent.
  5351. * 2) The extent is marked as PREALLOC. We're good to go here and can
  5352. * just use the extent.
  5353. *
  5354. */
  5355. if (!create) {
  5356. len = min(len, em->len - (start - em->start));
  5357. lockstart = start + len;
  5358. goto unlock;
  5359. }
  5360. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
  5361. ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
  5362. em->block_start != EXTENT_MAP_HOLE)) {
  5363. int type;
  5364. int ret;
  5365. u64 block_start;
  5366. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  5367. type = BTRFS_ORDERED_PREALLOC;
  5368. else
  5369. type = BTRFS_ORDERED_NOCOW;
  5370. len = min(len, em->len - (start - em->start));
  5371. block_start = em->block_start + (start - em->start);
  5372. /*
  5373. * we're not going to log anything, but we do need
  5374. * to make sure the current transaction stays open
  5375. * while we look for nocow cross refs
  5376. */
  5377. trans = btrfs_join_transaction(root);
  5378. if (IS_ERR(trans))
  5379. goto must_cow;
  5380. if (can_nocow_odirect(trans, inode, start, len) == 1) {
  5381. u64 orig_start = em->orig_start;
  5382. u64 orig_block_len = em->orig_block_len;
  5383. if (type == BTRFS_ORDERED_PREALLOC) {
  5384. free_extent_map(em);
  5385. em = create_pinned_em(inode, start, len,
  5386. orig_start,
  5387. block_start, len,
  5388. orig_block_len, type);
  5389. if (IS_ERR(em)) {
  5390. btrfs_end_transaction(trans, root);
  5391. goto unlock_err;
  5392. }
  5393. }
  5394. ret = btrfs_add_ordered_extent_dio(inode, start,
  5395. block_start, len, len, type);
  5396. btrfs_end_transaction(trans, root);
  5397. if (ret) {
  5398. free_extent_map(em);
  5399. goto unlock_err;
  5400. }
  5401. goto unlock;
  5402. }
  5403. btrfs_end_transaction(trans, root);
  5404. }
  5405. must_cow:
  5406. /*
  5407. * this will cow the extent, reset the len in case we changed
  5408. * it above
  5409. */
  5410. len = bh_result->b_size;
  5411. free_extent_map(em);
  5412. em = btrfs_new_extent_direct(inode, start, len);
  5413. if (IS_ERR(em)) {
  5414. ret = PTR_ERR(em);
  5415. goto unlock_err;
  5416. }
  5417. len = min(len, em->len - (start - em->start));
  5418. unlock:
  5419. bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
  5420. inode->i_blkbits;
  5421. bh_result->b_size = len;
  5422. bh_result->b_bdev = em->bdev;
  5423. set_buffer_mapped(bh_result);
  5424. if (create) {
  5425. if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  5426. set_buffer_new(bh_result);
  5427. /*
  5428. * Need to update the i_size under the extent lock so buffered
  5429. * readers will get the updated i_size when we unlock.
  5430. */
  5431. if (start + len > i_size_read(inode))
  5432. i_size_write(inode, start + len);
  5433. }
  5434. /*
  5435. * In the case of write we need to clear and unlock the entire range,
  5436. * in the case of read we need to unlock only the end area that we
  5437. * aren't using if there is any left over space.
  5438. */
  5439. if (lockstart < lockend) {
  5440. if (create && len < lockend - lockstart) {
  5441. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  5442. lockstart + len - 1,
  5443. unlock_bits | EXTENT_DEFRAG, 1, 0,
  5444. &cached_state, GFP_NOFS);
  5445. /*
  5446. * Beside unlock, we also need to cleanup reserved space
  5447. * for the left range by attaching EXTENT_DO_ACCOUNTING.
  5448. */
  5449. clear_extent_bit(&BTRFS_I(inode)->io_tree,
  5450. lockstart + len, lockend,
  5451. unlock_bits | EXTENT_DO_ACCOUNTING |
  5452. EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
  5453. } else {
  5454. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  5455. lockend, unlock_bits, 1, 0,
  5456. &cached_state, GFP_NOFS);
  5457. }
  5458. } else {
  5459. free_extent_state(cached_state);
  5460. }
  5461. free_extent_map(em);
  5462. return 0;
  5463. unlock_err:
  5464. if (create)
  5465. unlock_bits |= EXTENT_DO_ACCOUNTING;
  5466. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  5467. unlock_bits, 1, 0, &cached_state, GFP_NOFS);
  5468. return ret;
  5469. }
  5470. struct btrfs_dio_private {
  5471. struct inode *inode;
  5472. u64 logical_offset;
  5473. u64 disk_bytenr;
  5474. u64 bytes;
  5475. void *private;
  5476. /* number of bios pending for this dio */
  5477. atomic_t pending_bios;
  5478. /* IO errors */
  5479. int errors;
  5480. struct bio *orig_bio;
  5481. };
  5482. static void btrfs_endio_direct_read(struct bio *bio, int err)
  5483. {
  5484. struct btrfs_dio_private *dip = bio->bi_private;
  5485. struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
  5486. struct bio_vec *bvec = bio->bi_io_vec;
  5487. struct inode *inode = dip->inode;
  5488. struct btrfs_root *root = BTRFS_I(inode)->root;
  5489. u64 start;
  5490. start = dip->logical_offset;
  5491. do {
  5492. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
  5493. struct page *page = bvec->bv_page;
  5494. char *kaddr;
  5495. u32 csum = ~(u32)0;
  5496. u64 private = ~(u32)0;
  5497. unsigned long flags;
  5498. if (get_state_private(&BTRFS_I(inode)->io_tree,
  5499. start, &private))
  5500. goto failed;
  5501. local_irq_save(flags);
  5502. kaddr = kmap_atomic(page);
  5503. csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
  5504. csum, bvec->bv_len);
  5505. btrfs_csum_final(csum, (char *)&csum);
  5506. kunmap_atomic(kaddr);
  5507. local_irq_restore(flags);
  5508. flush_dcache_page(bvec->bv_page);
  5509. if (csum != private) {
  5510. failed:
  5511. printk(KERN_ERR "btrfs csum failed ino %llu off"
  5512. " %llu csum %u private %u\n",
  5513. (unsigned long long)btrfs_ino(inode),
  5514. (unsigned long long)start,
  5515. csum, (unsigned)private);
  5516. err = -EIO;
  5517. }
  5518. }
  5519. start += bvec->bv_len;
  5520. bvec++;
  5521. } while (bvec <= bvec_end);
  5522. unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
  5523. dip->logical_offset + dip->bytes - 1);
  5524. bio->bi_private = dip->private;
  5525. kfree(dip);
  5526. /* If we had a csum failure make sure to clear the uptodate flag */
  5527. if (err)
  5528. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  5529. dio_end_io(bio, err);
  5530. }
  5531. static void btrfs_endio_direct_write(struct bio *bio, int err)
  5532. {
  5533. struct btrfs_dio_private *dip = bio->bi_private;
  5534. struct inode *inode = dip->inode;
  5535. struct btrfs_root *root = BTRFS_I(inode)->root;
  5536. struct btrfs_ordered_extent *ordered = NULL;
  5537. u64 ordered_offset = dip->logical_offset;
  5538. u64 ordered_bytes = dip->bytes;
  5539. int ret;
  5540. if (err)
  5541. goto out_done;
  5542. again:
  5543. ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
  5544. &ordered_offset,
  5545. ordered_bytes, !err);
  5546. if (!ret)
  5547. goto out_test;
  5548. ordered->work.func = finish_ordered_fn;
  5549. ordered->work.flags = 0;
  5550. btrfs_queue_worker(&root->fs_info->endio_write_workers,
  5551. &ordered->work);
  5552. out_test:
  5553. /*
  5554. * our bio might span multiple ordered extents. If we haven't
  5555. * completed the accounting for the whole dio, go back and try again
  5556. */
  5557. if (ordered_offset < dip->logical_offset + dip->bytes) {
  5558. ordered_bytes = dip->logical_offset + dip->bytes -
  5559. ordered_offset;
  5560. ordered = NULL;
  5561. goto again;
  5562. }
  5563. out_done:
  5564. bio->bi_private = dip->private;
  5565. kfree(dip);
  5566. /* If we had an error make sure to clear the uptodate flag */
  5567. if (err)
  5568. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  5569. dio_end_io(bio, err);
  5570. }
  5571. static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
  5572. struct bio *bio, int mirror_num,
  5573. unsigned long bio_flags, u64 offset)
  5574. {
  5575. int ret;
  5576. struct btrfs_root *root = BTRFS_I(inode)->root;
  5577. ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
  5578. BUG_ON(ret); /* -ENOMEM */
  5579. return 0;
  5580. }
  5581. static void btrfs_end_dio_bio(struct bio *bio, int err)
  5582. {
  5583. struct btrfs_dio_private *dip = bio->bi_private;
  5584. if (err) {
  5585. printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
  5586. "sector %#Lx len %u err no %d\n",
  5587. (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
  5588. (unsigned long long)bio->bi_sector, bio->bi_size, err);
  5589. dip->errors = 1;
  5590. /*
  5591. * before atomic variable goto zero, we must make sure
  5592. * dip->errors is perceived to be set.
  5593. */
  5594. smp_mb__before_atomic_dec();
  5595. }
  5596. /* if there are more bios still pending for this dio, just exit */
  5597. if (!atomic_dec_and_test(&dip->pending_bios))
  5598. goto out;
  5599. if (dip->errors)
  5600. bio_io_error(dip->orig_bio);
  5601. else {
  5602. set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
  5603. bio_endio(dip->orig_bio, 0);
  5604. }
  5605. out:
  5606. bio_put(bio);
  5607. }
  5608. static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
  5609. u64 first_sector, gfp_t gfp_flags)
  5610. {
  5611. int nr_vecs = bio_get_nr_vecs(bdev);
  5612. return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
  5613. }
  5614. static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
  5615. int rw, u64 file_offset, int skip_sum,
  5616. int async_submit)
  5617. {
  5618. int write = rw & REQ_WRITE;
  5619. struct btrfs_root *root = BTRFS_I(inode)->root;
  5620. int ret;
  5621. if (async_submit)
  5622. async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
  5623. bio_get(bio);
  5624. if (!write) {
  5625. ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
  5626. if (ret)
  5627. goto err;
  5628. }
  5629. if (skip_sum)
  5630. goto map;
  5631. if (write && async_submit) {
  5632. ret = btrfs_wq_submit_bio(root->fs_info,
  5633. inode, rw, bio, 0, 0,
  5634. file_offset,
  5635. __btrfs_submit_bio_start_direct_io,
  5636. __btrfs_submit_bio_done);
  5637. goto err;
  5638. } else if (write) {
  5639. /*
  5640. * If we aren't doing async submit, calculate the csum of the
  5641. * bio now.
  5642. */
  5643. ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
  5644. if (ret)
  5645. goto err;
  5646. } else if (!skip_sum) {
  5647. ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
  5648. if (ret)
  5649. goto err;
  5650. }
  5651. map:
  5652. ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
  5653. err:
  5654. bio_put(bio);
  5655. return ret;
  5656. }
  5657. static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
  5658. int skip_sum)
  5659. {
  5660. struct inode *inode = dip->inode;
  5661. struct btrfs_root *root = BTRFS_I(inode)->root;
  5662. struct bio *bio;
  5663. struct bio *orig_bio = dip->orig_bio;
  5664. struct bio_vec *bvec = orig_bio->bi_io_vec;
  5665. u64 start_sector = orig_bio->bi_sector;
  5666. u64 file_offset = dip->logical_offset;
  5667. u64 submit_len = 0;
  5668. u64 map_length;
  5669. int nr_pages = 0;
  5670. int ret = 0;
  5671. int async_submit = 0;
  5672. map_length = orig_bio->bi_size;
  5673. ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
  5674. &map_length, NULL, 0);
  5675. if (ret) {
  5676. bio_put(orig_bio);
  5677. return -EIO;
  5678. }
  5679. if (map_length >= orig_bio->bi_size) {
  5680. bio = orig_bio;
  5681. goto submit;
  5682. }
  5683. async_submit = 1;
  5684. bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
  5685. if (!bio)
  5686. return -ENOMEM;
  5687. bio->bi_private = dip;
  5688. bio->bi_end_io = btrfs_end_dio_bio;
  5689. atomic_inc(&dip->pending_bios);
  5690. while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
  5691. if (unlikely(map_length < submit_len + bvec->bv_len ||
  5692. bio_add_page(bio, bvec->bv_page, bvec->bv_len,
  5693. bvec->bv_offset) < bvec->bv_len)) {
  5694. /*
  5695. * inc the count before we submit the bio so
  5696. * we know the end IO handler won't happen before
  5697. * we inc the count. Otherwise, the dip might get freed
  5698. * before we're done setting it up
  5699. */
  5700. atomic_inc(&dip->pending_bios);
  5701. ret = __btrfs_submit_dio_bio(bio, inode, rw,
  5702. file_offset, skip_sum,
  5703. async_submit);
  5704. if (ret) {
  5705. bio_put(bio);
  5706. atomic_dec(&dip->pending_bios);
  5707. goto out_err;
  5708. }
  5709. start_sector += submit_len >> 9;
  5710. file_offset += submit_len;
  5711. submit_len = 0;
  5712. nr_pages = 0;
  5713. bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
  5714. start_sector, GFP_NOFS);
  5715. if (!bio)
  5716. goto out_err;
  5717. bio->bi_private = dip;
  5718. bio->bi_end_io = btrfs_end_dio_bio;
  5719. map_length = orig_bio->bi_size;
  5720. ret = btrfs_map_block(root->fs_info, READ,
  5721. start_sector << 9,
  5722. &map_length, NULL, 0);
  5723. if (ret) {
  5724. bio_put(bio);
  5725. goto out_err;
  5726. }
  5727. } else {
  5728. submit_len += bvec->bv_len;
  5729. nr_pages ++;
  5730. bvec++;
  5731. }
  5732. }
  5733. submit:
  5734. ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
  5735. async_submit);
  5736. if (!ret)
  5737. return 0;
  5738. bio_put(bio);
  5739. out_err:
  5740. dip->errors = 1;
  5741. /*
  5742. * before atomic variable goto zero, we must
  5743. * make sure dip->errors is perceived to be set.
  5744. */
  5745. smp_mb__before_atomic_dec();
  5746. if (atomic_dec_and_test(&dip->pending_bios))
  5747. bio_io_error(dip->orig_bio);
  5748. /* bio_end_io() will handle error, so we needn't return it */
  5749. return 0;
  5750. }
  5751. static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
  5752. loff_t file_offset)
  5753. {
  5754. struct btrfs_root *root = BTRFS_I(inode)->root;
  5755. struct btrfs_dio_private *dip;
  5756. struct bio_vec *bvec = bio->bi_io_vec;
  5757. int skip_sum;
  5758. int write = rw & REQ_WRITE;
  5759. int ret = 0;
  5760. skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  5761. dip = kmalloc(sizeof(*dip), GFP_NOFS);
  5762. if (!dip) {
  5763. ret = -ENOMEM;
  5764. goto free_ordered;
  5765. }
  5766. dip->private = bio->bi_private;
  5767. dip->inode = inode;
  5768. dip->logical_offset = file_offset;
  5769. dip->bytes = 0;
  5770. do {
  5771. dip->bytes += bvec->bv_len;
  5772. bvec++;
  5773. } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
  5774. dip->disk_bytenr = (u64)bio->bi_sector << 9;
  5775. bio->bi_private = dip;
  5776. dip->errors = 0;
  5777. dip->orig_bio = bio;
  5778. atomic_set(&dip->pending_bios, 0);
  5779. if (write)
  5780. bio->bi_end_io = btrfs_endio_direct_write;
  5781. else
  5782. bio->bi_end_io = btrfs_endio_direct_read;
  5783. ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
  5784. if (!ret)
  5785. return;
  5786. free_ordered:
  5787. /*
  5788. * If this is a write, we need to clean up the reserved space and kill
  5789. * the ordered extent.
  5790. */
  5791. if (write) {
  5792. struct btrfs_ordered_extent *ordered;
  5793. ordered = btrfs_lookup_ordered_extent(inode, file_offset);
  5794. if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
  5795. !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
  5796. btrfs_free_reserved_extent(root, ordered->start,
  5797. ordered->disk_len);
  5798. btrfs_put_ordered_extent(ordered);
  5799. btrfs_put_ordered_extent(ordered);
  5800. }
  5801. bio_endio(bio, ret);
  5802. }
  5803. static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
  5804. const struct iovec *iov, loff_t offset,
  5805. unsigned long nr_segs)
  5806. {
  5807. int seg;
  5808. int i;
  5809. size_t size;
  5810. unsigned long addr;
  5811. unsigned blocksize_mask = root->sectorsize - 1;
  5812. ssize_t retval = -EINVAL;
  5813. loff_t end = offset;
  5814. if (offset & blocksize_mask)
  5815. goto out;
  5816. /* Check the memory alignment. Blocks cannot straddle pages */
  5817. for (seg = 0; seg < nr_segs; seg++) {
  5818. addr = (unsigned long)iov[seg].iov_base;
  5819. size = iov[seg].iov_len;
  5820. end += size;
  5821. if ((addr & blocksize_mask) || (size & blocksize_mask))
  5822. goto out;
  5823. /* If this is a write we don't need to check anymore */
  5824. if (rw & WRITE)
  5825. continue;
  5826. /*
  5827. * Check to make sure we don't have duplicate iov_base's in this
  5828. * iovec, if so return EINVAL, otherwise we'll get csum errors
  5829. * when reading back.
  5830. */
  5831. for (i = seg + 1; i < nr_segs; i++) {
  5832. if (iov[seg].iov_base == iov[i].iov_base)
  5833. goto out;
  5834. }
  5835. }
  5836. retval = 0;
  5837. out:
  5838. return retval;
  5839. }
  5840. static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
  5841. const struct iovec *iov, loff_t offset,
  5842. unsigned long nr_segs)
  5843. {
  5844. struct file *file = iocb->ki_filp;
  5845. struct inode *inode = file->f_mapping->host;
  5846. if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
  5847. offset, nr_segs))
  5848. return 0;
  5849. return __blockdev_direct_IO(rw, iocb, inode,
  5850. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
  5851. iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
  5852. btrfs_submit_direct, 0);
  5853. }
  5854. #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
  5855. static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  5856. __u64 start, __u64 len)
  5857. {
  5858. int ret;
  5859. ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
  5860. if (ret)
  5861. return ret;
  5862. return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
  5863. }
  5864. int btrfs_readpage(struct file *file, struct page *page)
  5865. {
  5866. struct extent_io_tree *tree;
  5867. tree = &BTRFS_I(page->mapping->host)->io_tree;
  5868. return extent_read_full_page(tree, page, btrfs_get_extent, 0);
  5869. }
  5870. static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
  5871. {
  5872. struct extent_io_tree *tree;
  5873. if (current->flags & PF_MEMALLOC) {
  5874. redirty_page_for_writepage(wbc, page);
  5875. unlock_page(page);
  5876. return 0;
  5877. }
  5878. tree = &BTRFS_I(page->mapping->host)->io_tree;
  5879. return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
  5880. }
  5881. int btrfs_writepages(struct address_space *mapping,
  5882. struct writeback_control *wbc)
  5883. {
  5884. struct extent_io_tree *tree;
  5885. tree = &BTRFS_I(mapping->host)->io_tree;
  5886. return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
  5887. }
  5888. static int
  5889. btrfs_readpages(struct file *file, struct address_space *mapping,
  5890. struct list_head *pages, unsigned nr_pages)
  5891. {
  5892. struct extent_io_tree *tree;
  5893. tree = &BTRFS_I(mapping->host)->io_tree;
  5894. return extent_readpages(tree, mapping, pages, nr_pages,
  5895. btrfs_get_extent);
  5896. }
  5897. static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
  5898. {
  5899. struct extent_io_tree *tree;
  5900. struct extent_map_tree *map;
  5901. int ret;
  5902. tree = &BTRFS_I(page->mapping->host)->io_tree;
  5903. map = &BTRFS_I(page->mapping->host)->extent_tree;
  5904. ret = try_release_extent_mapping(map, tree, page, gfp_flags);
  5905. if (ret == 1) {
  5906. ClearPagePrivate(page);
  5907. set_page_private(page, 0);
  5908. page_cache_release(page);
  5909. }
  5910. return ret;
  5911. }
  5912. static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
  5913. {
  5914. if (PageWriteback(page) || PageDirty(page))
  5915. return 0;
  5916. return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
  5917. }
  5918. static void btrfs_invalidatepage(struct page *page, unsigned long offset)
  5919. {
  5920. struct inode *inode = page->mapping->host;
  5921. struct extent_io_tree *tree;
  5922. struct btrfs_ordered_extent *ordered;
  5923. struct extent_state *cached_state = NULL;
  5924. u64 page_start = page_offset(page);
  5925. u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
  5926. /*
  5927. * we have the page locked, so new writeback can't start,
  5928. * and the dirty bit won't be cleared while we are here.
  5929. *
  5930. * Wait for IO on this page so that we can safely clear
  5931. * the PagePrivate2 bit and do ordered accounting
  5932. */
  5933. wait_on_page_writeback(page);
  5934. tree = &BTRFS_I(inode)->io_tree;
  5935. if (offset) {
  5936. btrfs_releasepage(page, GFP_NOFS);
  5937. return;
  5938. }
  5939. lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
  5940. ordered = btrfs_lookup_ordered_extent(inode,
  5941. page_offset(page));
  5942. if (ordered) {
  5943. /*
  5944. * IO on this page will never be started, so we need
  5945. * to account for any ordered extents now
  5946. */
  5947. clear_extent_bit(tree, page_start, page_end,
  5948. EXTENT_DIRTY | EXTENT_DELALLOC |
  5949. EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
  5950. EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
  5951. /*
  5952. * whoever cleared the private bit is responsible
  5953. * for the finish_ordered_io
  5954. */
  5955. if (TestClearPagePrivate2(page) &&
  5956. btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
  5957. PAGE_CACHE_SIZE, 1)) {
  5958. btrfs_finish_ordered_io(ordered);
  5959. }
  5960. btrfs_put_ordered_extent(ordered);
  5961. cached_state = NULL;
  5962. lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
  5963. }
  5964. clear_extent_bit(tree, page_start, page_end,
  5965. EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
  5966. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
  5967. &cached_state, GFP_NOFS);
  5968. __btrfs_releasepage(page, GFP_NOFS);
  5969. ClearPageChecked(page);
  5970. if (PagePrivate(page)) {
  5971. ClearPagePrivate(page);
  5972. set_page_private(page, 0);
  5973. page_cache_release(page);
  5974. }
  5975. }
  5976. /*
  5977. * btrfs_page_mkwrite() is not allowed to change the file size as it gets
  5978. * called from a page fault handler when a page is first dirtied. Hence we must
  5979. * be careful to check for EOF conditions here. We set the page up correctly
  5980. * for a written page which means we get ENOSPC checking when writing into
  5981. * holes and correct delalloc and unwritten extent mapping on filesystems that
  5982. * support these features.
  5983. *
  5984. * We are not allowed to take the i_mutex here so we have to play games to
  5985. * protect against truncate races as the page could now be beyond EOF. Because
  5986. * vmtruncate() writes the inode size before removing pages, once we have the
  5987. * page lock we can determine safely if the page is beyond EOF. If it is not
  5988. * beyond EOF, then the page is guaranteed safe against truncation until we
  5989. * unlock the page.
  5990. */
  5991. int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  5992. {
  5993. struct page *page = vmf->page;
  5994. struct inode *inode = fdentry(vma->vm_file)->d_inode;
  5995. struct btrfs_root *root = BTRFS_I(inode)->root;
  5996. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  5997. struct btrfs_ordered_extent *ordered;
  5998. struct extent_state *cached_state = NULL;
  5999. char *kaddr;
  6000. unsigned long zero_start;
  6001. loff_t size;
  6002. int ret;
  6003. int reserved = 0;
  6004. u64 page_start;
  6005. u64 page_end;
  6006. sb_start_pagefault(inode->i_sb);
  6007. ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
  6008. if (!ret) {
  6009. ret = file_update_time(vma->vm_file);
  6010. reserved = 1;
  6011. }
  6012. if (ret) {
  6013. if (ret == -ENOMEM)
  6014. ret = VM_FAULT_OOM;
  6015. else /* -ENOSPC, -EIO, etc */
  6016. ret = VM_FAULT_SIGBUS;
  6017. if (reserved)
  6018. goto out;
  6019. goto out_noreserve;
  6020. }
  6021. ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
  6022. again:
  6023. lock_page(page);
  6024. size = i_size_read(inode);
  6025. page_start = page_offset(page);
  6026. page_end = page_start + PAGE_CACHE_SIZE - 1;
  6027. if ((page->mapping != inode->i_mapping) ||
  6028. (page_start >= size)) {
  6029. /* page got truncated out from underneath us */
  6030. goto out_unlock;
  6031. }
  6032. wait_on_page_writeback(page);
  6033. lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
  6034. set_page_extent_mapped(page);
  6035. /*
  6036. * we can't set the delalloc bits if there are pending ordered
  6037. * extents. Drop our locks and wait for them to finish
  6038. */
  6039. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  6040. if (ordered) {
  6041. unlock_extent_cached(io_tree, page_start, page_end,
  6042. &cached_state, GFP_NOFS);
  6043. unlock_page(page);
  6044. btrfs_start_ordered_extent(inode, ordered, 1);
  6045. btrfs_put_ordered_extent(ordered);
  6046. goto again;
  6047. }
  6048. /*
  6049. * XXX - page_mkwrite gets called every time the page is dirtied, even
  6050. * if it was already dirty, so for space accounting reasons we need to
  6051. * clear any delalloc bits for the range we are fixing to save. There
  6052. * is probably a better way to do this, but for now keep consistent with
  6053. * prepare_pages in the normal write path.
  6054. */
  6055. clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
  6056. EXTENT_DIRTY | EXTENT_DELALLOC |
  6057. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  6058. 0, 0, &cached_state, GFP_NOFS);
  6059. ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
  6060. &cached_state);
  6061. if (ret) {
  6062. unlock_extent_cached(io_tree, page_start, page_end,
  6063. &cached_state, GFP_NOFS);
  6064. ret = VM_FAULT_SIGBUS;
  6065. goto out_unlock;
  6066. }
  6067. ret = 0;
  6068. /* page is wholly or partially inside EOF */
  6069. if (page_start + PAGE_CACHE_SIZE > size)
  6070. zero_start = size & ~PAGE_CACHE_MASK;
  6071. else
  6072. zero_start = PAGE_CACHE_SIZE;
  6073. if (zero_start != PAGE_CACHE_SIZE) {
  6074. kaddr = kmap(page);
  6075. memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
  6076. flush_dcache_page(page);
  6077. kunmap(page);
  6078. }
  6079. ClearPageChecked(page);
  6080. set_page_dirty(page);
  6081. SetPageUptodate(page);
  6082. BTRFS_I(inode)->last_trans = root->fs_info->generation;
  6083. BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
  6084. BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
  6085. unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
  6086. out_unlock:
  6087. if (!ret) {
  6088. sb_end_pagefault(inode->i_sb);
  6089. return VM_FAULT_LOCKED;
  6090. }
  6091. unlock_page(page);
  6092. out:
  6093. btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
  6094. out_noreserve:
  6095. sb_end_pagefault(inode->i_sb);
  6096. return ret;
  6097. }
  6098. static int btrfs_truncate(struct inode *inode)
  6099. {
  6100. struct btrfs_root *root = BTRFS_I(inode)->root;
  6101. struct btrfs_block_rsv *rsv;
  6102. int ret;
  6103. int err = 0;
  6104. struct btrfs_trans_handle *trans;
  6105. u64 mask = root->sectorsize - 1;
  6106. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  6107. ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
  6108. if (ret)
  6109. return ret;
  6110. btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
  6111. btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
  6112. /*
  6113. * Yes ladies and gentelment, this is indeed ugly. The fact is we have
  6114. * 3 things going on here
  6115. *
  6116. * 1) We need to reserve space for our orphan item and the space to
  6117. * delete our orphan item. Lord knows we don't want to have a dangling
  6118. * orphan item because we didn't reserve space to remove it.
  6119. *
  6120. * 2) We need to reserve space to update our inode.
  6121. *
  6122. * 3) We need to have something to cache all the space that is going to
  6123. * be free'd up by the truncate operation, but also have some slack
  6124. * space reserved in case it uses space during the truncate (thank you
  6125. * very much snapshotting).
  6126. *
  6127. * And we need these to all be seperate. The fact is we can use alot of
  6128. * space doing the truncate, and we have no earthly idea how much space
  6129. * we will use, so we need the truncate reservation to be seperate so it
  6130. * doesn't end up using space reserved for updating the inode or
  6131. * removing the orphan item. We also need to be able to stop the
  6132. * transaction and start a new one, which means we need to be able to
  6133. * update the inode several times, and we have no idea of knowing how
  6134. * many times that will be, so we can't just reserve 1 item for the
  6135. * entirety of the opration, so that has to be done seperately as well.
  6136. * Then there is the orphan item, which does indeed need to be held on
  6137. * to for the whole operation, and we need nobody to touch this reserved
  6138. * space except the orphan code.
  6139. *
  6140. * So that leaves us with
  6141. *
  6142. * 1) root->orphan_block_rsv - for the orphan deletion.
  6143. * 2) rsv - for the truncate reservation, which we will steal from the
  6144. * transaction reservation.
  6145. * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
  6146. * updating the inode.
  6147. */
  6148. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  6149. if (!rsv)
  6150. return -ENOMEM;
  6151. rsv->size = min_size;
  6152. rsv->failfast = 1;
  6153. /*
  6154. * 1 for the truncate slack space
  6155. * 1 for updating the inode.
  6156. */
  6157. trans = btrfs_start_transaction(root, 2);
  6158. if (IS_ERR(trans)) {
  6159. err = PTR_ERR(trans);
  6160. goto out;
  6161. }
  6162. /* Migrate the slack space for the truncate to our reserve */
  6163. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  6164. min_size);
  6165. BUG_ON(ret);
  6166. /*
  6167. * setattr is responsible for setting the ordered_data_close flag,
  6168. * but that is only tested during the last file release. That
  6169. * could happen well after the next commit, leaving a great big
  6170. * window where new writes may get lost if someone chooses to write
  6171. * to this file after truncating to zero
  6172. *
  6173. * The inode doesn't have any dirty data here, and so if we commit
  6174. * this is a noop. If someone immediately starts writing to the inode
  6175. * it is very likely we'll catch some of their writes in this
  6176. * transaction, and the commit will find this file on the ordered
  6177. * data list with good things to send down.
  6178. *
  6179. * This is a best effort solution, there is still a window where
  6180. * using truncate to replace the contents of the file will
  6181. * end up with a zero length file after a crash.
  6182. */
  6183. if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  6184. &BTRFS_I(inode)->runtime_flags))
  6185. btrfs_add_ordered_operation(trans, root, inode);
  6186. /*
  6187. * So if we truncate and then write and fsync we normally would just
  6188. * write the extents that changed, which is a problem if we need to
  6189. * first truncate that entire inode. So set this flag so we write out
  6190. * all of the extents in the inode to the sync log so we're completely
  6191. * safe.
  6192. */
  6193. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
  6194. trans->block_rsv = rsv;
  6195. while (1) {
  6196. ret = btrfs_truncate_inode_items(trans, root, inode,
  6197. inode->i_size,
  6198. BTRFS_EXTENT_DATA_KEY);
  6199. if (ret != -ENOSPC) {
  6200. err = ret;
  6201. break;
  6202. }
  6203. trans->block_rsv = &root->fs_info->trans_block_rsv;
  6204. ret = btrfs_update_inode(trans, root, inode);
  6205. if (ret) {
  6206. err = ret;
  6207. break;
  6208. }
  6209. btrfs_end_transaction(trans, root);
  6210. btrfs_btree_balance_dirty(root);
  6211. trans = btrfs_start_transaction(root, 2);
  6212. if (IS_ERR(trans)) {
  6213. ret = err = PTR_ERR(trans);
  6214. trans = NULL;
  6215. break;
  6216. }
  6217. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  6218. rsv, min_size);
  6219. BUG_ON(ret); /* shouldn't happen */
  6220. trans->block_rsv = rsv;
  6221. }
  6222. if (ret == 0 && inode->i_nlink > 0) {
  6223. trans->block_rsv = root->orphan_block_rsv;
  6224. ret = btrfs_orphan_del(trans, inode);
  6225. if (ret)
  6226. err = ret;
  6227. }
  6228. if (trans) {
  6229. trans->block_rsv = &root->fs_info->trans_block_rsv;
  6230. ret = btrfs_update_inode(trans, root, inode);
  6231. if (ret && !err)
  6232. err = ret;
  6233. ret = btrfs_end_transaction(trans, root);
  6234. btrfs_btree_balance_dirty(root);
  6235. }
  6236. out:
  6237. btrfs_free_block_rsv(root, rsv);
  6238. if (ret && !err)
  6239. err = ret;
  6240. return err;
  6241. }
  6242. /*
  6243. * create a new subvolume directory/inode (helper for the ioctl).
  6244. */
  6245. int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
  6246. struct btrfs_root *new_root, u64 new_dirid)
  6247. {
  6248. struct inode *inode;
  6249. int err;
  6250. u64 index = 0;
  6251. inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
  6252. new_dirid, new_dirid,
  6253. S_IFDIR | (~current_umask() & S_IRWXUGO),
  6254. &index);
  6255. if (IS_ERR(inode))
  6256. return PTR_ERR(inode);
  6257. inode->i_op = &btrfs_dir_inode_operations;
  6258. inode->i_fop = &btrfs_dir_file_operations;
  6259. set_nlink(inode, 1);
  6260. btrfs_i_size_write(inode, 0);
  6261. err = btrfs_update_inode(trans, new_root, inode);
  6262. iput(inode);
  6263. return err;
  6264. }
  6265. struct inode *btrfs_alloc_inode(struct super_block *sb)
  6266. {
  6267. struct btrfs_inode *ei;
  6268. struct inode *inode;
  6269. ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
  6270. if (!ei)
  6271. return NULL;
  6272. ei->root = NULL;
  6273. ei->generation = 0;
  6274. ei->last_trans = 0;
  6275. ei->last_sub_trans = 0;
  6276. ei->logged_trans = 0;
  6277. ei->delalloc_bytes = 0;
  6278. ei->disk_i_size = 0;
  6279. ei->flags = 0;
  6280. ei->csum_bytes = 0;
  6281. ei->index_cnt = (u64)-1;
  6282. ei->last_unlink_trans = 0;
  6283. ei->last_log_commit = 0;
  6284. spin_lock_init(&ei->lock);
  6285. ei->outstanding_extents = 0;
  6286. ei->reserved_extents = 0;
  6287. ei->runtime_flags = 0;
  6288. ei->force_compress = BTRFS_COMPRESS_NONE;
  6289. ei->delayed_node = NULL;
  6290. inode = &ei->vfs_inode;
  6291. extent_map_tree_init(&ei->extent_tree);
  6292. extent_io_tree_init(&ei->io_tree, &inode->i_data);
  6293. extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
  6294. ei->io_tree.track_uptodate = 1;
  6295. ei->io_failure_tree.track_uptodate = 1;
  6296. atomic_set(&ei->sync_writers, 0);
  6297. mutex_init(&ei->log_mutex);
  6298. mutex_init(&ei->delalloc_mutex);
  6299. btrfs_ordered_inode_tree_init(&ei->ordered_tree);
  6300. INIT_LIST_HEAD(&ei->delalloc_inodes);
  6301. INIT_LIST_HEAD(&ei->ordered_operations);
  6302. RB_CLEAR_NODE(&ei->rb_node);
  6303. return inode;
  6304. }
  6305. static void btrfs_i_callback(struct rcu_head *head)
  6306. {
  6307. struct inode *inode = container_of(head, struct inode, i_rcu);
  6308. kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
  6309. }
  6310. void btrfs_destroy_inode(struct inode *inode)
  6311. {
  6312. struct btrfs_ordered_extent *ordered;
  6313. struct btrfs_root *root = BTRFS_I(inode)->root;
  6314. WARN_ON(!hlist_empty(&inode->i_dentry));
  6315. WARN_ON(inode->i_data.nrpages);
  6316. WARN_ON(BTRFS_I(inode)->outstanding_extents);
  6317. WARN_ON(BTRFS_I(inode)->reserved_extents);
  6318. WARN_ON(BTRFS_I(inode)->delalloc_bytes);
  6319. WARN_ON(BTRFS_I(inode)->csum_bytes);
  6320. /*
  6321. * This can happen where we create an inode, but somebody else also
  6322. * created the same inode and we need to destroy the one we already
  6323. * created.
  6324. */
  6325. if (!root)
  6326. goto free;
  6327. /*
  6328. * Make sure we're properly removed from the ordered operation
  6329. * lists.
  6330. */
  6331. smp_mb();
  6332. if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
  6333. spin_lock(&root->fs_info->ordered_extent_lock);
  6334. list_del_init(&BTRFS_I(inode)->ordered_operations);
  6335. spin_unlock(&root->fs_info->ordered_extent_lock);
  6336. }
  6337. if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
  6338. &BTRFS_I(inode)->runtime_flags)) {
  6339. printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
  6340. (unsigned long long)btrfs_ino(inode));
  6341. atomic_dec(&root->orphan_inodes);
  6342. }
  6343. while (1) {
  6344. ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
  6345. if (!ordered)
  6346. break;
  6347. else {
  6348. printk(KERN_ERR "btrfs found ordered "
  6349. "extent %llu %llu on inode cleanup\n",
  6350. (unsigned long long)ordered->file_offset,
  6351. (unsigned long long)ordered->len);
  6352. btrfs_remove_ordered_extent(inode, ordered);
  6353. btrfs_put_ordered_extent(ordered);
  6354. btrfs_put_ordered_extent(ordered);
  6355. }
  6356. }
  6357. inode_tree_del(inode);
  6358. btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
  6359. free:
  6360. btrfs_remove_delayed_node(inode);
  6361. call_rcu(&inode->i_rcu, btrfs_i_callback);
  6362. }
  6363. int btrfs_drop_inode(struct inode *inode)
  6364. {
  6365. struct btrfs_root *root = BTRFS_I(inode)->root;
  6366. if (btrfs_root_refs(&root->root_item) == 0 &&
  6367. !btrfs_is_free_space_inode(inode))
  6368. return 1;
  6369. else
  6370. return generic_drop_inode(inode);
  6371. }
  6372. static void init_once(void *foo)
  6373. {
  6374. struct btrfs_inode *ei = (struct btrfs_inode *) foo;
  6375. inode_init_once(&ei->vfs_inode);
  6376. }
  6377. void btrfs_destroy_cachep(void)
  6378. {
  6379. /*
  6380. * Make sure all delayed rcu free inodes are flushed before we
  6381. * destroy cache.
  6382. */
  6383. rcu_barrier();
  6384. if (btrfs_inode_cachep)
  6385. kmem_cache_destroy(btrfs_inode_cachep);
  6386. if (btrfs_trans_handle_cachep)
  6387. kmem_cache_destroy(btrfs_trans_handle_cachep);
  6388. if (btrfs_transaction_cachep)
  6389. kmem_cache_destroy(btrfs_transaction_cachep);
  6390. if (btrfs_path_cachep)
  6391. kmem_cache_destroy(btrfs_path_cachep);
  6392. if (btrfs_free_space_cachep)
  6393. kmem_cache_destroy(btrfs_free_space_cachep);
  6394. if (btrfs_delalloc_work_cachep)
  6395. kmem_cache_destroy(btrfs_delalloc_work_cachep);
  6396. }
  6397. int btrfs_init_cachep(void)
  6398. {
  6399. btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
  6400. sizeof(struct btrfs_inode), 0,
  6401. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
  6402. if (!btrfs_inode_cachep)
  6403. goto fail;
  6404. btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
  6405. sizeof(struct btrfs_trans_handle), 0,
  6406. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  6407. if (!btrfs_trans_handle_cachep)
  6408. goto fail;
  6409. btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
  6410. sizeof(struct btrfs_transaction), 0,
  6411. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  6412. if (!btrfs_transaction_cachep)
  6413. goto fail;
  6414. btrfs_path_cachep = kmem_cache_create("btrfs_path",
  6415. sizeof(struct btrfs_path), 0,
  6416. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  6417. if (!btrfs_path_cachep)
  6418. goto fail;
  6419. btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
  6420. sizeof(struct btrfs_free_space), 0,
  6421. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  6422. if (!btrfs_free_space_cachep)
  6423. goto fail;
  6424. btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
  6425. sizeof(struct btrfs_delalloc_work), 0,
  6426. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  6427. NULL);
  6428. if (!btrfs_delalloc_work_cachep)
  6429. goto fail;
  6430. return 0;
  6431. fail:
  6432. btrfs_destroy_cachep();
  6433. return -ENOMEM;
  6434. }
  6435. static int btrfs_getattr(struct vfsmount *mnt,
  6436. struct dentry *dentry, struct kstat *stat)
  6437. {
  6438. struct inode *inode = dentry->d_inode;
  6439. u32 blocksize = inode->i_sb->s_blocksize;
  6440. generic_fillattr(inode, stat);
  6441. stat->dev = BTRFS_I(inode)->root->anon_dev;
  6442. stat->blksize = PAGE_CACHE_SIZE;
  6443. stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
  6444. ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
  6445. return 0;
  6446. }
  6447. /*
  6448. * If a file is moved, it will inherit the cow and compression flags of the new
  6449. * directory.
  6450. */
  6451. static void fixup_inode_flags(struct inode *dir, struct inode *inode)
  6452. {
  6453. struct btrfs_inode *b_dir = BTRFS_I(dir);
  6454. struct btrfs_inode *b_inode = BTRFS_I(inode);
  6455. if (b_dir->flags & BTRFS_INODE_NODATACOW)
  6456. b_inode->flags |= BTRFS_INODE_NODATACOW;
  6457. else
  6458. b_inode->flags &= ~BTRFS_INODE_NODATACOW;
  6459. if (b_dir->flags & BTRFS_INODE_COMPRESS) {
  6460. b_inode->flags |= BTRFS_INODE_COMPRESS;
  6461. b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
  6462. } else {
  6463. b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
  6464. BTRFS_INODE_NOCOMPRESS);
  6465. }
  6466. }
  6467. static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
  6468. struct inode *new_dir, struct dentry *new_dentry)
  6469. {
  6470. struct btrfs_trans_handle *trans;
  6471. struct btrfs_root *root = BTRFS_I(old_dir)->root;
  6472. struct btrfs_root *dest = BTRFS_I(new_dir)->root;
  6473. struct inode *new_inode = new_dentry->d_inode;
  6474. struct inode *old_inode = old_dentry->d_inode;
  6475. struct timespec ctime = CURRENT_TIME;
  6476. u64 index = 0;
  6477. u64 root_objectid;
  6478. int ret;
  6479. u64 old_ino = btrfs_ino(old_inode);
  6480. if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
  6481. return -EPERM;
  6482. /* we only allow rename subvolume link between subvolumes */
  6483. if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
  6484. return -EXDEV;
  6485. if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
  6486. (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
  6487. return -ENOTEMPTY;
  6488. if (S_ISDIR(old_inode->i_mode) && new_inode &&
  6489. new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
  6490. return -ENOTEMPTY;
  6491. /* check for collisions, even if the name isn't there */
  6492. ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
  6493. new_dentry->d_name.name,
  6494. new_dentry->d_name.len);
  6495. if (ret) {
  6496. if (ret == -EEXIST) {
  6497. /* we shouldn't get
  6498. * eexist without a new_inode */
  6499. if (!new_inode) {
  6500. WARN_ON(1);
  6501. return ret;
  6502. }
  6503. } else {
  6504. /* maybe -EOVERFLOW */
  6505. return ret;
  6506. }
  6507. }
  6508. ret = 0;
  6509. /*
  6510. * we're using rename to replace one file with another.
  6511. * and the replacement file is large. Start IO on it now so
  6512. * we don't add too much work to the end of the transaction
  6513. */
  6514. if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
  6515. old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  6516. filemap_flush(old_inode->i_mapping);
  6517. /* close the racy window with snapshot create/destroy ioctl */
  6518. if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
  6519. down_read(&root->fs_info->subvol_sem);
  6520. /*
  6521. * We want to reserve the absolute worst case amount of items. So if
  6522. * both inodes are subvols and we need to unlink them then that would
  6523. * require 4 item modifications, but if they are both normal inodes it
  6524. * would require 5 item modifications, so we'll assume their normal
  6525. * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
  6526. * should cover the worst case number of items we'll modify.
  6527. */
  6528. trans = btrfs_start_transaction(root, 20);
  6529. if (IS_ERR(trans)) {
  6530. ret = PTR_ERR(trans);
  6531. goto out_notrans;
  6532. }
  6533. if (dest != root)
  6534. btrfs_record_root_in_trans(trans, dest);
  6535. ret = btrfs_set_inode_index(new_dir, &index);
  6536. if (ret)
  6537. goto out_fail;
  6538. if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
  6539. /* force full log commit if subvolume involved. */
  6540. root->fs_info->last_trans_log_full_commit = trans->transid;
  6541. } else {
  6542. ret = btrfs_insert_inode_ref(trans, dest,
  6543. new_dentry->d_name.name,
  6544. new_dentry->d_name.len,
  6545. old_ino,
  6546. btrfs_ino(new_dir), index);
  6547. if (ret)
  6548. goto out_fail;
  6549. /*
  6550. * this is an ugly little race, but the rename is required
  6551. * to make sure that if we crash, the inode is either at the
  6552. * old name or the new one. pinning the log transaction lets
  6553. * us make sure we don't allow a log commit to come in after
  6554. * we unlink the name but before we add the new name back in.
  6555. */
  6556. btrfs_pin_log_trans(root);
  6557. }
  6558. /*
  6559. * make sure the inode gets flushed if it is replacing
  6560. * something.
  6561. */
  6562. if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
  6563. btrfs_add_ordered_operation(trans, root, old_inode);
  6564. inode_inc_iversion(old_dir);
  6565. inode_inc_iversion(new_dir);
  6566. inode_inc_iversion(old_inode);
  6567. old_dir->i_ctime = old_dir->i_mtime = ctime;
  6568. new_dir->i_ctime = new_dir->i_mtime = ctime;
  6569. old_inode->i_ctime = ctime;
  6570. if (old_dentry->d_parent != new_dentry->d_parent)
  6571. btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
  6572. if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
  6573. root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
  6574. ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
  6575. old_dentry->d_name.name,
  6576. old_dentry->d_name.len);
  6577. } else {
  6578. ret = __btrfs_unlink_inode(trans, root, old_dir,
  6579. old_dentry->d_inode,
  6580. old_dentry->d_name.name,
  6581. old_dentry->d_name.len);
  6582. if (!ret)
  6583. ret = btrfs_update_inode(trans, root, old_inode);
  6584. }
  6585. if (ret) {
  6586. btrfs_abort_transaction(trans, root, ret);
  6587. goto out_fail;
  6588. }
  6589. if (new_inode) {
  6590. inode_inc_iversion(new_inode);
  6591. new_inode->i_ctime = CURRENT_TIME;
  6592. if (unlikely(btrfs_ino(new_inode) ==
  6593. BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
  6594. root_objectid = BTRFS_I(new_inode)->location.objectid;
  6595. ret = btrfs_unlink_subvol(trans, dest, new_dir,
  6596. root_objectid,
  6597. new_dentry->d_name.name,
  6598. new_dentry->d_name.len);
  6599. BUG_ON(new_inode->i_nlink == 0);
  6600. } else {
  6601. ret = btrfs_unlink_inode(trans, dest, new_dir,
  6602. new_dentry->d_inode,
  6603. new_dentry->d_name.name,
  6604. new_dentry->d_name.len);
  6605. }
  6606. if (!ret && new_inode->i_nlink == 0) {
  6607. ret = btrfs_orphan_add(trans, new_dentry->d_inode);
  6608. BUG_ON(ret);
  6609. }
  6610. if (ret) {
  6611. btrfs_abort_transaction(trans, root, ret);
  6612. goto out_fail;
  6613. }
  6614. }
  6615. fixup_inode_flags(new_dir, old_inode);
  6616. ret = btrfs_add_link(trans, new_dir, old_inode,
  6617. new_dentry->d_name.name,
  6618. new_dentry->d_name.len, 0, index);
  6619. if (ret) {
  6620. btrfs_abort_transaction(trans, root, ret);
  6621. goto out_fail;
  6622. }
  6623. if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
  6624. struct dentry *parent = new_dentry->d_parent;
  6625. btrfs_log_new_name(trans, old_inode, old_dir, parent);
  6626. btrfs_end_log_trans(root);
  6627. }
  6628. out_fail:
  6629. btrfs_end_transaction(trans, root);
  6630. out_notrans:
  6631. if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
  6632. up_read(&root->fs_info->subvol_sem);
  6633. return ret;
  6634. }
  6635. static void btrfs_run_delalloc_work(struct btrfs_work *work)
  6636. {
  6637. struct btrfs_delalloc_work *delalloc_work;
  6638. delalloc_work = container_of(work, struct btrfs_delalloc_work,
  6639. work);
  6640. if (delalloc_work->wait)
  6641. btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
  6642. else
  6643. filemap_flush(delalloc_work->inode->i_mapping);
  6644. if (delalloc_work->delay_iput)
  6645. btrfs_add_delayed_iput(delalloc_work->inode);
  6646. else
  6647. iput(delalloc_work->inode);
  6648. complete(&delalloc_work->completion);
  6649. }
  6650. struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
  6651. int wait, int delay_iput)
  6652. {
  6653. struct btrfs_delalloc_work *work;
  6654. work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
  6655. if (!work)
  6656. return NULL;
  6657. init_completion(&work->completion);
  6658. INIT_LIST_HEAD(&work->list);
  6659. work->inode = inode;
  6660. work->wait = wait;
  6661. work->delay_iput = delay_iput;
  6662. work->work.func = btrfs_run_delalloc_work;
  6663. return work;
  6664. }
  6665. void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
  6666. {
  6667. wait_for_completion(&work->completion);
  6668. kmem_cache_free(btrfs_delalloc_work_cachep, work);
  6669. }
  6670. /*
  6671. * some fairly slow code that needs optimization. This walks the list
  6672. * of all the inodes with pending delalloc and forces them to disk.
  6673. */
  6674. int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
  6675. {
  6676. struct list_head *head = &root->fs_info->delalloc_inodes;
  6677. struct btrfs_inode *binode;
  6678. struct inode *inode;
  6679. struct btrfs_delalloc_work *work, *next;
  6680. struct list_head works;
  6681. int ret = 0;
  6682. if (root->fs_info->sb->s_flags & MS_RDONLY)
  6683. return -EROFS;
  6684. INIT_LIST_HEAD(&works);
  6685. spin_lock(&root->fs_info->delalloc_lock);
  6686. while (!list_empty(head)) {
  6687. binode = list_entry(head->next, struct btrfs_inode,
  6688. delalloc_inodes);
  6689. inode = igrab(&binode->vfs_inode);
  6690. if (!inode)
  6691. list_del_init(&binode->delalloc_inodes);
  6692. spin_unlock(&root->fs_info->delalloc_lock);
  6693. if (inode) {
  6694. work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
  6695. if (!work) {
  6696. ret = -ENOMEM;
  6697. goto out;
  6698. }
  6699. list_add_tail(&work->list, &works);
  6700. btrfs_queue_worker(&root->fs_info->flush_workers,
  6701. &work->work);
  6702. }
  6703. cond_resched();
  6704. spin_lock(&root->fs_info->delalloc_lock);
  6705. }
  6706. spin_unlock(&root->fs_info->delalloc_lock);
  6707. /* the filemap_flush will queue IO into the worker threads, but
  6708. * we have to make sure the IO is actually started and that
  6709. * ordered extents get created before we return
  6710. */
  6711. atomic_inc(&root->fs_info->async_submit_draining);
  6712. while (atomic_read(&root->fs_info->nr_async_submits) ||
  6713. atomic_read(&root->fs_info->async_delalloc_pages)) {
  6714. wait_event(root->fs_info->async_submit_wait,
  6715. (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
  6716. atomic_read(&root->fs_info->async_delalloc_pages) == 0));
  6717. }
  6718. atomic_dec(&root->fs_info->async_submit_draining);
  6719. out:
  6720. list_for_each_entry_safe(work, next, &works, list) {
  6721. list_del_init(&work->list);
  6722. btrfs_wait_and_free_delalloc_work(work);
  6723. }
  6724. return ret;
  6725. }
  6726. static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
  6727. const char *symname)
  6728. {
  6729. struct btrfs_trans_handle *trans;
  6730. struct btrfs_root *root = BTRFS_I(dir)->root;
  6731. struct btrfs_path *path;
  6732. struct btrfs_key key;
  6733. struct inode *inode = NULL;
  6734. int err;
  6735. int drop_inode = 0;
  6736. u64 objectid;
  6737. u64 index = 0 ;
  6738. int name_len;
  6739. int datasize;
  6740. unsigned long ptr;
  6741. struct btrfs_file_extent_item *ei;
  6742. struct extent_buffer *leaf;
  6743. name_len = strlen(symname) + 1;
  6744. if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
  6745. return -ENAMETOOLONG;
  6746. /*
  6747. * 2 items for inode item and ref
  6748. * 2 items for dir items
  6749. * 1 item for xattr if selinux is on
  6750. */
  6751. trans = btrfs_start_transaction(root, 5);
  6752. if (IS_ERR(trans))
  6753. return PTR_ERR(trans);
  6754. err = btrfs_find_free_ino(root, &objectid);
  6755. if (err)
  6756. goto out_unlock;
  6757. inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
  6758. dentry->d_name.len, btrfs_ino(dir), objectid,
  6759. S_IFLNK|S_IRWXUGO, &index);
  6760. if (IS_ERR(inode)) {
  6761. err = PTR_ERR(inode);
  6762. goto out_unlock;
  6763. }
  6764. err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
  6765. if (err) {
  6766. drop_inode = 1;
  6767. goto out_unlock;
  6768. }
  6769. /*
  6770. * If the active LSM wants to access the inode during
  6771. * d_instantiate it needs these. Smack checks to see
  6772. * if the filesystem supports xattrs by looking at the
  6773. * ops vector.
  6774. */
  6775. inode->i_fop = &btrfs_file_operations;
  6776. inode->i_op = &btrfs_file_inode_operations;
  6777. err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
  6778. if (err)
  6779. drop_inode = 1;
  6780. else {
  6781. inode->i_mapping->a_ops = &btrfs_aops;
  6782. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  6783. BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
  6784. }
  6785. if (drop_inode)
  6786. goto out_unlock;
  6787. path = btrfs_alloc_path();
  6788. if (!path) {
  6789. err = -ENOMEM;
  6790. drop_inode = 1;
  6791. goto out_unlock;
  6792. }
  6793. key.objectid = btrfs_ino(inode);
  6794. key.offset = 0;
  6795. btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
  6796. datasize = btrfs_file_extent_calc_inline_size(name_len);
  6797. err = btrfs_insert_empty_item(trans, root, path, &key,
  6798. datasize);
  6799. if (err) {
  6800. drop_inode = 1;
  6801. btrfs_free_path(path);
  6802. goto out_unlock;
  6803. }
  6804. leaf = path->nodes[0];
  6805. ei = btrfs_item_ptr(leaf, path->slots[0],
  6806. struct btrfs_file_extent_item);
  6807. btrfs_set_file_extent_generation(leaf, ei, trans->transid);
  6808. btrfs_set_file_extent_type(leaf, ei,
  6809. BTRFS_FILE_EXTENT_INLINE);
  6810. btrfs_set_file_extent_encryption(leaf, ei, 0);
  6811. btrfs_set_file_extent_compression(leaf, ei, 0);
  6812. btrfs_set_file_extent_other_encoding(leaf, ei, 0);
  6813. btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
  6814. ptr = btrfs_file_extent_inline_start(ei);
  6815. write_extent_buffer(leaf, symname, ptr, name_len);
  6816. btrfs_mark_buffer_dirty(leaf);
  6817. btrfs_free_path(path);
  6818. inode->i_op = &btrfs_symlink_inode_operations;
  6819. inode->i_mapping->a_ops = &btrfs_symlink_aops;
  6820. inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
  6821. inode_set_bytes(inode, name_len);
  6822. btrfs_i_size_write(inode, name_len - 1);
  6823. err = btrfs_update_inode(trans, root, inode);
  6824. if (err)
  6825. drop_inode = 1;
  6826. out_unlock:
  6827. if (!err)
  6828. d_instantiate(dentry, inode);
  6829. btrfs_end_transaction(trans, root);
  6830. if (drop_inode) {
  6831. inode_dec_link_count(inode);
  6832. iput(inode);
  6833. }
  6834. btrfs_btree_balance_dirty(root);
  6835. return err;
  6836. }
  6837. static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
  6838. u64 start, u64 num_bytes, u64 min_size,
  6839. loff_t actual_len, u64 *alloc_hint,
  6840. struct btrfs_trans_handle *trans)
  6841. {
  6842. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  6843. struct extent_map *em;
  6844. struct btrfs_root *root = BTRFS_I(inode)->root;
  6845. struct btrfs_key ins;
  6846. u64 cur_offset = start;
  6847. u64 i_size;
  6848. int ret = 0;
  6849. bool own_trans = true;
  6850. if (trans)
  6851. own_trans = false;
  6852. while (num_bytes > 0) {
  6853. if (own_trans) {
  6854. trans = btrfs_start_transaction(root, 3);
  6855. if (IS_ERR(trans)) {
  6856. ret = PTR_ERR(trans);
  6857. break;
  6858. }
  6859. }
  6860. ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
  6861. 0, *alloc_hint, &ins, 1);
  6862. if (ret) {
  6863. if (own_trans)
  6864. btrfs_end_transaction(trans, root);
  6865. break;
  6866. }
  6867. ret = insert_reserved_file_extent(trans, inode,
  6868. cur_offset, ins.objectid,
  6869. ins.offset, ins.offset,
  6870. ins.offset, 0, 0, 0,
  6871. BTRFS_FILE_EXTENT_PREALLOC);
  6872. if (ret) {
  6873. btrfs_abort_transaction(trans, root, ret);
  6874. if (own_trans)
  6875. btrfs_end_transaction(trans, root);
  6876. break;
  6877. }
  6878. btrfs_drop_extent_cache(inode, cur_offset,
  6879. cur_offset + ins.offset -1, 0);
  6880. em = alloc_extent_map();
  6881. if (!em) {
  6882. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  6883. &BTRFS_I(inode)->runtime_flags);
  6884. goto next;
  6885. }
  6886. em->start = cur_offset;
  6887. em->orig_start = cur_offset;
  6888. em->len = ins.offset;
  6889. em->block_start = ins.objectid;
  6890. em->block_len = ins.offset;
  6891. em->orig_block_len = ins.offset;
  6892. em->bdev = root->fs_info->fs_devices->latest_bdev;
  6893. set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
  6894. em->generation = trans->transid;
  6895. while (1) {
  6896. write_lock(&em_tree->lock);
  6897. ret = add_extent_mapping(em_tree, em);
  6898. if (!ret)
  6899. list_move(&em->list,
  6900. &em_tree->modified_extents);
  6901. write_unlock(&em_tree->lock);
  6902. if (ret != -EEXIST)
  6903. break;
  6904. btrfs_drop_extent_cache(inode, cur_offset,
  6905. cur_offset + ins.offset - 1,
  6906. 0);
  6907. }
  6908. free_extent_map(em);
  6909. next:
  6910. num_bytes -= ins.offset;
  6911. cur_offset += ins.offset;
  6912. *alloc_hint = ins.objectid + ins.offset;
  6913. inode_inc_iversion(inode);
  6914. inode->i_ctime = CURRENT_TIME;
  6915. BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
  6916. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  6917. (actual_len > inode->i_size) &&
  6918. (cur_offset > inode->i_size)) {
  6919. if (cur_offset > actual_len)
  6920. i_size = actual_len;
  6921. else
  6922. i_size = cur_offset;
  6923. i_size_write(inode, i_size);
  6924. btrfs_ordered_update_i_size(inode, i_size, NULL);
  6925. }
  6926. ret = btrfs_update_inode(trans, root, inode);
  6927. if (ret) {
  6928. btrfs_abort_transaction(trans, root, ret);
  6929. if (own_trans)
  6930. btrfs_end_transaction(trans, root);
  6931. break;
  6932. }
  6933. if (own_trans)
  6934. btrfs_end_transaction(trans, root);
  6935. }
  6936. return ret;
  6937. }
  6938. int btrfs_prealloc_file_range(struct inode *inode, int mode,
  6939. u64 start, u64 num_bytes, u64 min_size,
  6940. loff_t actual_len, u64 *alloc_hint)
  6941. {
  6942. return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
  6943. min_size, actual_len, alloc_hint,
  6944. NULL);
  6945. }
  6946. int btrfs_prealloc_file_range_trans(struct inode *inode,
  6947. struct btrfs_trans_handle *trans, int mode,
  6948. u64 start, u64 num_bytes, u64 min_size,
  6949. loff_t actual_len, u64 *alloc_hint)
  6950. {
  6951. return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
  6952. min_size, actual_len, alloc_hint, trans);
  6953. }
  6954. static int btrfs_set_page_dirty(struct page *page)
  6955. {
  6956. return __set_page_dirty_nobuffers(page);
  6957. }
  6958. static int btrfs_permission(struct inode *inode, int mask)
  6959. {
  6960. struct btrfs_root *root = BTRFS_I(inode)->root;
  6961. umode_t mode = inode->i_mode;
  6962. if (mask & MAY_WRITE &&
  6963. (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
  6964. if (btrfs_root_readonly(root))
  6965. return -EROFS;
  6966. if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
  6967. return -EACCES;
  6968. }
  6969. return generic_permission(inode, mask);
  6970. }
  6971. static const struct inode_operations btrfs_dir_inode_operations = {
  6972. .getattr = btrfs_getattr,
  6973. .lookup = btrfs_lookup,
  6974. .create = btrfs_create,
  6975. .unlink = btrfs_unlink,
  6976. .link = btrfs_link,
  6977. .mkdir = btrfs_mkdir,
  6978. .rmdir = btrfs_rmdir,
  6979. .rename = btrfs_rename,
  6980. .symlink = btrfs_symlink,
  6981. .setattr = btrfs_setattr,
  6982. .mknod = btrfs_mknod,
  6983. .setxattr = btrfs_setxattr,
  6984. .getxattr = btrfs_getxattr,
  6985. .listxattr = btrfs_listxattr,
  6986. .removexattr = btrfs_removexattr,
  6987. .permission = btrfs_permission,
  6988. .get_acl = btrfs_get_acl,
  6989. };
  6990. static const struct inode_operations btrfs_dir_ro_inode_operations = {
  6991. .lookup = btrfs_lookup,
  6992. .permission = btrfs_permission,
  6993. .get_acl = btrfs_get_acl,
  6994. };
  6995. static const struct file_operations btrfs_dir_file_operations = {
  6996. .llseek = generic_file_llseek,
  6997. .read = generic_read_dir,
  6998. .readdir = btrfs_real_readdir,
  6999. .unlocked_ioctl = btrfs_ioctl,
  7000. #ifdef CONFIG_COMPAT
  7001. .compat_ioctl = btrfs_ioctl,
  7002. #endif
  7003. .release = btrfs_release_file,
  7004. .fsync = btrfs_sync_file,
  7005. };
  7006. static struct extent_io_ops btrfs_extent_io_ops = {
  7007. .fill_delalloc = run_delalloc_range,
  7008. .submit_bio_hook = btrfs_submit_bio_hook,
  7009. .merge_bio_hook = btrfs_merge_bio_hook,
  7010. .readpage_end_io_hook = btrfs_readpage_end_io_hook,
  7011. .writepage_end_io_hook = btrfs_writepage_end_io_hook,
  7012. .writepage_start_hook = btrfs_writepage_start_hook,
  7013. .set_bit_hook = btrfs_set_bit_hook,
  7014. .clear_bit_hook = btrfs_clear_bit_hook,
  7015. .merge_extent_hook = btrfs_merge_extent_hook,
  7016. .split_extent_hook = btrfs_split_extent_hook,
  7017. };
  7018. /*
  7019. * btrfs doesn't support the bmap operation because swapfiles
  7020. * use bmap to make a mapping of extents in the file. They assume
  7021. * these extents won't change over the life of the file and they
  7022. * use the bmap result to do IO directly to the drive.
  7023. *
  7024. * the btrfs bmap call would return logical addresses that aren't
  7025. * suitable for IO and they also will change frequently as COW
  7026. * operations happen. So, swapfile + btrfs == corruption.
  7027. *
  7028. * For now we're avoiding this by dropping bmap.
  7029. */
  7030. static const struct address_space_operations btrfs_aops = {
  7031. .readpage = btrfs_readpage,
  7032. .writepage = btrfs_writepage,
  7033. .writepages = btrfs_writepages,
  7034. .readpages = btrfs_readpages,
  7035. .direct_IO = btrfs_direct_IO,
  7036. .invalidatepage = btrfs_invalidatepage,
  7037. .releasepage = btrfs_releasepage,
  7038. .set_page_dirty = btrfs_set_page_dirty,
  7039. .error_remove_page = generic_error_remove_page,
  7040. };
  7041. static const struct address_space_operations btrfs_symlink_aops = {
  7042. .readpage = btrfs_readpage,
  7043. .writepage = btrfs_writepage,
  7044. .invalidatepage = btrfs_invalidatepage,
  7045. .releasepage = btrfs_releasepage,
  7046. };
  7047. static const struct inode_operations btrfs_file_inode_operations = {
  7048. .getattr = btrfs_getattr,
  7049. .setattr = btrfs_setattr,
  7050. .setxattr = btrfs_setxattr,
  7051. .getxattr = btrfs_getxattr,
  7052. .listxattr = btrfs_listxattr,
  7053. .removexattr = btrfs_removexattr,
  7054. .permission = btrfs_permission,
  7055. .fiemap = btrfs_fiemap,
  7056. .get_acl = btrfs_get_acl,
  7057. .update_time = btrfs_update_time,
  7058. };
  7059. static const struct inode_operations btrfs_special_inode_operations = {
  7060. .getattr = btrfs_getattr,
  7061. .setattr = btrfs_setattr,
  7062. .permission = btrfs_permission,
  7063. .setxattr = btrfs_setxattr,
  7064. .getxattr = btrfs_getxattr,
  7065. .listxattr = btrfs_listxattr,
  7066. .removexattr = btrfs_removexattr,
  7067. .get_acl = btrfs_get_acl,
  7068. .update_time = btrfs_update_time,
  7069. };
  7070. static const struct inode_operations btrfs_symlink_inode_operations = {
  7071. .readlink = generic_readlink,
  7072. .follow_link = page_follow_link_light,
  7073. .put_link = page_put_link,
  7074. .getattr = btrfs_getattr,
  7075. .setattr = btrfs_setattr,
  7076. .permission = btrfs_permission,
  7077. .setxattr = btrfs_setxattr,
  7078. .getxattr = btrfs_getxattr,
  7079. .listxattr = btrfs_listxattr,
  7080. .removexattr = btrfs_removexattr,
  7081. .get_acl = btrfs_get_acl,
  7082. .update_time = btrfs_update_time,
  7083. };
  7084. const struct dentry_operations btrfs_dentry_operations = {
  7085. .d_delete = btrfs_dentry_delete,
  7086. .d_release = btrfs_dentry_release,
  7087. };