dm-thin-metadata.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526
  1. /*
  2. * Copyright (C) 2011 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 1
  75. #define THIN_METADATA_CACHE_SIZE 64
  76. #define SECTOR_TO_BLOCK_SHIFT 3
  77. /*
  78. * 3 for btree insert +
  79. * 2 for btree lookup used within space map
  80. */
  81. #define THIN_MAX_CONCURRENT_LOCKS 5
  82. /* This should be plenty */
  83. #define SPACE_MAP_ROOT_SIZE 128
  84. /*
  85. * Little endian on-disk superblock and device details.
  86. */
  87. struct thin_disk_superblock {
  88. __le32 csum; /* Checksum of superblock except for this field. */
  89. __le32 flags;
  90. __le64 blocknr; /* This block number, dm_block_t. */
  91. __u8 uuid[16];
  92. __le64 magic;
  93. __le32 version;
  94. __le32 time;
  95. __le64 trans_id;
  96. /*
  97. * Root held by userspace transactions.
  98. */
  99. __le64 held_root;
  100. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  101. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  102. /*
  103. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  104. */
  105. __le64 data_mapping_root;
  106. /*
  107. * Device detail root mapping dev_id -> device_details
  108. */
  109. __le64 device_details_root;
  110. __le32 data_block_size; /* In 512-byte sectors. */
  111. __le32 metadata_block_size; /* In 512-byte sectors. */
  112. __le64 metadata_nr_blocks;
  113. __le32 compat_flags;
  114. __le32 compat_ro_flags;
  115. __le32 incompat_flags;
  116. } __packed;
  117. struct disk_device_details {
  118. __le64 mapped_blocks;
  119. __le64 transaction_id; /* When created. */
  120. __le32 creation_time;
  121. __le32 snapshotted_time;
  122. } __packed;
  123. struct dm_pool_metadata {
  124. struct hlist_node hash;
  125. struct block_device *bdev;
  126. struct dm_block_manager *bm;
  127. struct dm_space_map *metadata_sm;
  128. struct dm_space_map *data_sm;
  129. struct dm_transaction_manager *tm;
  130. struct dm_transaction_manager *nb_tm;
  131. /*
  132. * Two-level btree.
  133. * First level holds thin_dev_t.
  134. * Second level holds mappings.
  135. */
  136. struct dm_btree_info info;
  137. /*
  138. * Non-blocking version of the above.
  139. */
  140. struct dm_btree_info nb_info;
  141. /*
  142. * Just the top level for deleting whole devices.
  143. */
  144. struct dm_btree_info tl_info;
  145. /*
  146. * Just the bottom level for creating new devices.
  147. */
  148. struct dm_btree_info bl_info;
  149. /*
  150. * Describes the device details btree.
  151. */
  152. struct dm_btree_info details_info;
  153. struct rw_semaphore root_lock;
  154. uint32_t time;
  155. dm_block_t root;
  156. dm_block_t details_root;
  157. struct list_head thin_devices;
  158. uint64_t trans_id;
  159. unsigned long flags;
  160. sector_t data_block_size;
  161. };
  162. struct dm_thin_device {
  163. struct list_head list;
  164. struct dm_pool_metadata *pmd;
  165. dm_thin_id id;
  166. int open_count;
  167. int changed;
  168. uint64_t mapped_blocks;
  169. uint64_t transaction_id;
  170. uint32_t creation_time;
  171. uint32_t snapshotted_time;
  172. };
  173. /*----------------------------------------------------------------
  174. * superblock validator
  175. *--------------------------------------------------------------*/
  176. #define SUPERBLOCK_CSUM_XOR 160774
  177. static void sb_prepare_for_write(struct dm_block_validator *v,
  178. struct dm_block *b,
  179. size_t block_size)
  180. {
  181. struct thin_disk_superblock *disk_super = dm_block_data(b);
  182. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  183. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  184. block_size - sizeof(__le32),
  185. SUPERBLOCK_CSUM_XOR));
  186. }
  187. static int sb_check(struct dm_block_validator *v,
  188. struct dm_block *b,
  189. size_t block_size)
  190. {
  191. struct thin_disk_superblock *disk_super = dm_block_data(b);
  192. __le32 csum_le;
  193. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  194. DMERR("sb_check failed: blocknr %llu: "
  195. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  196. (unsigned long long)dm_block_location(b));
  197. return -ENOTBLK;
  198. }
  199. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  200. DMERR("sb_check failed: magic %llu: "
  201. "wanted %llu", le64_to_cpu(disk_super->magic),
  202. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  203. return -EILSEQ;
  204. }
  205. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  206. block_size - sizeof(__le32),
  207. SUPERBLOCK_CSUM_XOR));
  208. if (csum_le != disk_super->csum) {
  209. DMERR("sb_check failed: csum %u: wanted %u",
  210. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  211. return -EILSEQ;
  212. }
  213. return 0;
  214. }
  215. static struct dm_block_validator sb_validator = {
  216. .name = "superblock",
  217. .prepare_for_write = sb_prepare_for_write,
  218. .check = sb_check
  219. };
  220. /*----------------------------------------------------------------
  221. * Methods for the btree value types
  222. *--------------------------------------------------------------*/
  223. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  224. {
  225. return (b << 24) | t;
  226. }
  227. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  228. {
  229. *b = v >> 24;
  230. *t = v & ((1 << 24) - 1);
  231. }
  232. static void data_block_inc(void *context, void *value_le)
  233. {
  234. struct dm_space_map *sm = context;
  235. __le64 v_le;
  236. uint64_t b;
  237. uint32_t t;
  238. memcpy(&v_le, value_le, sizeof(v_le));
  239. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  240. dm_sm_inc_block(sm, b);
  241. }
  242. static void data_block_dec(void *context, void *value_le)
  243. {
  244. struct dm_space_map *sm = context;
  245. __le64 v_le;
  246. uint64_t b;
  247. uint32_t t;
  248. memcpy(&v_le, value_le, sizeof(v_le));
  249. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  250. dm_sm_dec_block(sm, b);
  251. }
  252. static int data_block_equal(void *context, void *value1_le, void *value2_le)
  253. {
  254. __le64 v1_le, v2_le;
  255. uint64_t b1, b2;
  256. uint32_t t;
  257. memcpy(&v1_le, value1_le, sizeof(v1_le));
  258. memcpy(&v2_le, value2_le, sizeof(v2_le));
  259. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  260. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  261. return b1 == b2;
  262. }
  263. static void subtree_inc(void *context, void *value)
  264. {
  265. struct dm_btree_info *info = context;
  266. __le64 root_le;
  267. uint64_t root;
  268. memcpy(&root_le, value, sizeof(root_le));
  269. root = le64_to_cpu(root_le);
  270. dm_tm_inc(info->tm, root);
  271. }
  272. static void subtree_dec(void *context, void *value)
  273. {
  274. struct dm_btree_info *info = context;
  275. __le64 root_le;
  276. uint64_t root;
  277. memcpy(&root_le, value, sizeof(root_le));
  278. root = le64_to_cpu(root_le);
  279. if (dm_btree_del(info, root))
  280. DMERR("btree delete failed\n");
  281. }
  282. static int subtree_equal(void *context, void *value1_le, void *value2_le)
  283. {
  284. __le64 v1_le, v2_le;
  285. memcpy(&v1_le, value1_le, sizeof(v1_le));
  286. memcpy(&v2_le, value2_le, sizeof(v2_le));
  287. return v1_le == v2_le;
  288. }
  289. /*----------------------------------------------------------------*/
  290. static int superblock_lock_zero(struct dm_pool_metadata *pmd,
  291. struct dm_block **sblock)
  292. {
  293. return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  294. &sb_validator, sblock);
  295. }
  296. static int superblock_lock(struct dm_pool_metadata *pmd,
  297. struct dm_block **sblock)
  298. {
  299. return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  300. &sb_validator, sblock);
  301. }
  302. static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  303. {
  304. int r;
  305. unsigned i;
  306. struct dm_block *b;
  307. __le64 *data_le, zero = cpu_to_le64(0);
  308. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  309. /*
  310. * We can't use a validator here - it may be all zeroes.
  311. */
  312. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  313. if (r)
  314. return r;
  315. data_le = dm_block_data(b);
  316. *result = 1;
  317. for (i = 0; i < block_size; i++) {
  318. if (data_le[i] != zero) {
  319. *result = 0;
  320. break;
  321. }
  322. }
  323. return dm_bm_unlock(b);
  324. }
  325. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  326. {
  327. pmd->info.tm = pmd->tm;
  328. pmd->info.levels = 2;
  329. pmd->info.value_type.context = pmd->data_sm;
  330. pmd->info.value_type.size = sizeof(__le64);
  331. pmd->info.value_type.inc = data_block_inc;
  332. pmd->info.value_type.dec = data_block_dec;
  333. pmd->info.value_type.equal = data_block_equal;
  334. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  335. pmd->nb_info.tm = pmd->nb_tm;
  336. pmd->tl_info.tm = pmd->tm;
  337. pmd->tl_info.levels = 1;
  338. pmd->tl_info.value_type.context = &pmd->info;
  339. pmd->tl_info.value_type.size = sizeof(__le64);
  340. pmd->tl_info.value_type.inc = subtree_inc;
  341. pmd->tl_info.value_type.dec = subtree_dec;
  342. pmd->tl_info.value_type.equal = subtree_equal;
  343. pmd->bl_info.tm = pmd->tm;
  344. pmd->bl_info.levels = 1;
  345. pmd->bl_info.value_type.context = pmd->data_sm;
  346. pmd->bl_info.value_type.size = sizeof(__le64);
  347. pmd->bl_info.value_type.inc = data_block_inc;
  348. pmd->bl_info.value_type.dec = data_block_dec;
  349. pmd->bl_info.value_type.equal = data_block_equal;
  350. pmd->details_info.tm = pmd->tm;
  351. pmd->details_info.levels = 1;
  352. pmd->details_info.value_type.context = NULL;
  353. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  354. pmd->details_info.value_type.inc = NULL;
  355. pmd->details_info.value_type.dec = NULL;
  356. pmd->details_info.value_type.equal = NULL;
  357. }
  358. static int __open_or_format_metadata(struct dm_pool_metadata *pmd,
  359. struct dm_block_manager *bm,
  360. dm_block_t nr_blocks, int create)
  361. {
  362. int r;
  363. struct dm_space_map *sm, *data_sm;
  364. struct dm_transaction_manager *tm;
  365. struct dm_block *sblock;
  366. if (create) {
  367. r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION, &tm, &sm);
  368. if (r < 0) {
  369. DMERR("tm_create_with_sm failed");
  370. return r;
  371. }
  372. data_sm = dm_sm_disk_create(tm, nr_blocks);
  373. if (IS_ERR(data_sm)) {
  374. DMERR("sm_disk_create failed");
  375. r = PTR_ERR(data_sm);
  376. goto bad;
  377. }
  378. } else {
  379. struct thin_disk_superblock *disk_super;
  380. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION,
  381. &sb_validator, &sblock);
  382. if (r < 0) {
  383. DMERR("couldn't read superblock");
  384. return r;
  385. }
  386. disk_super = dm_block_data(sblock);
  387. r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
  388. disk_super->metadata_space_map_root,
  389. sizeof(disk_super->metadata_space_map_root),
  390. &tm, &sm);
  391. if (r < 0) {
  392. DMERR("tm_open_with_sm failed");
  393. dm_bm_unlock(sblock);
  394. return r;
  395. }
  396. data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
  397. sizeof(disk_super->data_space_map_root));
  398. if (IS_ERR(data_sm)) {
  399. DMERR("sm_disk_open failed");
  400. dm_bm_unlock(sblock);
  401. r = PTR_ERR(data_sm);
  402. goto bad;
  403. }
  404. dm_bm_unlock(sblock);
  405. }
  406. pmd->bm = bm;
  407. pmd->metadata_sm = sm;
  408. pmd->data_sm = data_sm;
  409. pmd->tm = tm;
  410. pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
  411. if (!pmd->nb_tm) {
  412. DMERR("could not create clone tm");
  413. r = -ENOMEM;
  414. goto bad_data_sm;
  415. }
  416. __setup_btree_details(pmd);
  417. pmd->root = 0;
  418. init_rwsem(&pmd->root_lock);
  419. pmd->time = 0;
  420. pmd->details_root = 0;
  421. pmd->trans_id = 0;
  422. pmd->flags = 0;
  423. INIT_LIST_HEAD(&pmd->thin_devices);
  424. return 0;
  425. bad_data_sm:
  426. dm_sm_destroy(data_sm);
  427. bad:
  428. dm_tm_destroy(tm);
  429. dm_sm_destroy(sm);
  430. return r;
  431. }
  432. static int __create_persistent_data_objects(struct dm_pool_metadata *pmd,
  433. dm_block_t nr_blocks, int *create)
  434. {
  435. int r;
  436. pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE,
  437. THIN_METADATA_CACHE_SIZE,
  438. THIN_MAX_CONCURRENT_LOCKS);
  439. if (IS_ERR(pmd->bm)) {
  440. DMERR("could not create block manager");
  441. return PTR_ERR(pmd->bm);
  442. }
  443. r = __superblock_all_zeroes(pmd->bm, create);
  444. if (r) {
  445. dm_block_manager_destroy(pmd->bm);
  446. return r;
  447. }
  448. r = __open_or_format_metadata(pmd, pmd->bm, nr_blocks, *create);
  449. if (r)
  450. dm_block_manager_destroy(pmd->bm);
  451. return r;
  452. }
  453. static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
  454. {
  455. dm_sm_destroy(pmd->data_sm);
  456. dm_sm_destroy(pmd->metadata_sm);
  457. dm_tm_destroy(pmd->nb_tm);
  458. dm_tm_destroy(pmd->tm);
  459. dm_block_manager_destroy(pmd->bm);
  460. }
  461. static int __begin_transaction(struct dm_pool_metadata *pmd)
  462. {
  463. int r;
  464. u32 features;
  465. struct thin_disk_superblock *disk_super;
  466. struct dm_block *sblock;
  467. /*
  468. * We re-read the superblock every time. Shouldn't need to do this
  469. * really.
  470. */
  471. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  472. &sb_validator, &sblock);
  473. if (r)
  474. return r;
  475. disk_super = dm_block_data(sblock);
  476. pmd->time = le32_to_cpu(disk_super->time);
  477. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  478. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  479. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  480. pmd->flags = le32_to_cpu(disk_super->flags);
  481. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  482. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  483. if (features) {
  484. DMERR("could not access metadata due to "
  485. "unsupported optional features (%lx).",
  486. (unsigned long)features);
  487. r = -EINVAL;
  488. goto out;
  489. }
  490. /*
  491. * Check for read-only metadata to skip the following RDWR checks.
  492. */
  493. if (get_disk_ro(pmd->bdev->bd_disk))
  494. goto out;
  495. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  496. if (features) {
  497. DMERR("could not access metadata RDWR due to "
  498. "unsupported optional features (%lx).",
  499. (unsigned long)features);
  500. r = -EINVAL;
  501. }
  502. out:
  503. dm_bm_unlock(sblock);
  504. return r;
  505. }
  506. static int __write_changed_details(struct dm_pool_metadata *pmd)
  507. {
  508. int r;
  509. struct dm_thin_device *td, *tmp;
  510. struct disk_device_details details;
  511. uint64_t key;
  512. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  513. if (!td->changed)
  514. continue;
  515. key = td->id;
  516. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  517. details.transaction_id = cpu_to_le64(td->transaction_id);
  518. details.creation_time = cpu_to_le32(td->creation_time);
  519. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  520. __dm_bless_for_disk(&details);
  521. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  522. &key, &details, &pmd->details_root);
  523. if (r)
  524. return r;
  525. if (td->open_count)
  526. td->changed = 0;
  527. else {
  528. list_del(&td->list);
  529. kfree(td);
  530. }
  531. }
  532. return 0;
  533. }
  534. static int __commit_transaction(struct dm_pool_metadata *pmd)
  535. {
  536. /*
  537. * FIXME: Associated pool should be made read-only on failure.
  538. */
  539. int r;
  540. size_t metadata_len, data_len;
  541. struct thin_disk_superblock *disk_super;
  542. struct dm_block *sblock;
  543. /*
  544. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  545. */
  546. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  547. r = __write_changed_details(pmd);
  548. if (r < 0)
  549. return r;
  550. r = dm_sm_commit(pmd->data_sm);
  551. if (r < 0)
  552. return r;
  553. r = dm_tm_pre_commit(pmd->tm);
  554. if (r < 0)
  555. return r;
  556. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  557. if (r < 0)
  558. return r;
  559. r = dm_sm_root_size(pmd->data_sm, &data_len);
  560. if (r < 0)
  561. return r;
  562. r = superblock_lock(pmd, &sblock);
  563. if (r)
  564. return r;
  565. disk_super = dm_block_data(sblock);
  566. disk_super->time = cpu_to_le32(pmd->time);
  567. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  568. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  569. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  570. disk_super->flags = cpu_to_le32(pmd->flags);
  571. r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
  572. metadata_len);
  573. if (r < 0)
  574. goto out_locked;
  575. r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
  576. data_len);
  577. if (r < 0)
  578. goto out_locked;
  579. return dm_tm_commit(pmd->tm, sblock);
  580. out_locked:
  581. dm_bm_unlock(sblock);
  582. return r;
  583. }
  584. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  585. sector_t data_block_size)
  586. {
  587. int r;
  588. struct thin_disk_superblock *disk_super;
  589. struct dm_pool_metadata *pmd;
  590. sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  591. int create;
  592. struct dm_block *sblock;
  593. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  594. if (!pmd) {
  595. DMERR("could not allocate metadata struct");
  596. return ERR_PTR(-ENOMEM);
  597. }
  598. pmd->bdev = bdev;
  599. r = __create_persistent_data_objects(pmd, 0, &create);
  600. if (r) {
  601. kfree(pmd);
  602. return ERR_PTR(r);
  603. }
  604. if (!create) {
  605. r = __begin_transaction(pmd);
  606. if (r < 0)
  607. goto bad;
  608. return pmd;
  609. }
  610. /*
  611. * Create.
  612. */
  613. r = superblock_lock_zero(pmd, &sblock);
  614. if (r)
  615. goto bad;
  616. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  617. bdev_size = THIN_METADATA_MAX_SECTORS;
  618. disk_super = dm_block_data(sblock);
  619. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  620. disk_super->version = cpu_to_le32(THIN_VERSION);
  621. disk_super->time = 0;
  622. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
  623. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  624. disk_super->data_block_size = cpu_to_le32(data_block_size);
  625. r = dm_bm_unlock(sblock);
  626. if (r < 0)
  627. goto bad;
  628. r = dm_btree_empty(&pmd->info, &pmd->root);
  629. if (r < 0)
  630. goto bad;
  631. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  632. if (r < 0) {
  633. DMERR("couldn't create devices root");
  634. goto bad;
  635. }
  636. pmd->flags = 0;
  637. r = dm_pool_commit_metadata(pmd);
  638. if (r < 0) {
  639. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  640. __func__, r);
  641. goto bad;
  642. }
  643. return pmd;
  644. bad:
  645. if (dm_pool_metadata_close(pmd) < 0)
  646. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  647. return ERR_PTR(r);
  648. }
  649. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  650. {
  651. int r;
  652. unsigned open_devices = 0;
  653. struct dm_thin_device *td, *tmp;
  654. down_read(&pmd->root_lock);
  655. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  656. if (td->open_count)
  657. open_devices++;
  658. else {
  659. list_del(&td->list);
  660. kfree(td);
  661. }
  662. }
  663. up_read(&pmd->root_lock);
  664. if (open_devices) {
  665. DMERR("attempt to close pmd when %u device(s) are still open",
  666. open_devices);
  667. return -EBUSY;
  668. }
  669. r = __commit_transaction(pmd);
  670. if (r < 0)
  671. DMWARN("%s: __commit_transaction() failed, error = %d",
  672. __func__, r);
  673. __destroy_persistent_data_objects(pmd);
  674. kfree(pmd);
  675. return 0;
  676. }
  677. /*
  678. * __open_device: Returns @td corresponding to device with id @dev,
  679. * creating it if @create is set and incrementing @td->open_count.
  680. * On failure, @td is undefined.
  681. */
  682. static int __open_device(struct dm_pool_metadata *pmd,
  683. dm_thin_id dev, int create,
  684. struct dm_thin_device **td)
  685. {
  686. int r, changed = 0;
  687. struct dm_thin_device *td2;
  688. uint64_t key = dev;
  689. struct disk_device_details details_le;
  690. /*
  691. * If the device is already open, return it.
  692. */
  693. list_for_each_entry(td2, &pmd->thin_devices, list)
  694. if (td2->id == dev) {
  695. /*
  696. * May not create an already-open device.
  697. */
  698. if (create)
  699. return -EEXIST;
  700. td2->open_count++;
  701. *td = td2;
  702. return 0;
  703. }
  704. /*
  705. * Check the device exists.
  706. */
  707. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  708. &key, &details_le);
  709. if (r) {
  710. if (r != -ENODATA || !create)
  711. return r;
  712. /*
  713. * Create new device.
  714. */
  715. changed = 1;
  716. details_le.mapped_blocks = 0;
  717. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  718. details_le.creation_time = cpu_to_le32(pmd->time);
  719. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  720. }
  721. *td = kmalloc(sizeof(**td), GFP_NOIO);
  722. if (!*td)
  723. return -ENOMEM;
  724. (*td)->pmd = pmd;
  725. (*td)->id = dev;
  726. (*td)->open_count = 1;
  727. (*td)->changed = changed;
  728. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  729. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  730. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  731. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  732. list_add(&(*td)->list, &pmd->thin_devices);
  733. return 0;
  734. }
  735. static void __close_device(struct dm_thin_device *td)
  736. {
  737. --td->open_count;
  738. }
  739. static int __create_thin(struct dm_pool_metadata *pmd,
  740. dm_thin_id dev)
  741. {
  742. int r;
  743. dm_block_t dev_root;
  744. uint64_t key = dev;
  745. struct disk_device_details details_le;
  746. struct dm_thin_device *td;
  747. __le64 value;
  748. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  749. &key, &details_le);
  750. if (!r)
  751. return -EEXIST;
  752. /*
  753. * Create an empty btree for the mappings.
  754. */
  755. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  756. if (r)
  757. return r;
  758. /*
  759. * Insert it into the main mapping tree.
  760. */
  761. value = cpu_to_le64(dev_root);
  762. __dm_bless_for_disk(&value);
  763. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  764. if (r) {
  765. dm_btree_del(&pmd->bl_info, dev_root);
  766. return r;
  767. }
  768. r = __open_device(pmd, dev, 1, &td);
  769. if (r) {
  770. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  771. dm_btree_del(&pmd->bl_info, dev_root);
  772. return r;
  773. }
  774. __close_device(td);
  775. return r;
  776. }
  777. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  778. {
  779. int r;
  780. down_write(&pmd->root_lock);
  781. r = __create_thin(pmd, dev);
  782. up_write(&pmd->root_lock);
  783. return r;
  784. }
  785. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  786. struct dm_thin_device *snap,
  787. dm_thin_id origin, uint32_t time)
  788. {
  789. int r;
  790. struct dm_thin_device *td;
  791. r = __open_device(pmd, origin, 0, &td);
  792. if (r)
  793. return r;
  794. td->changed = 1;
  795. td->snapshotted_time = time;
  796. snap->mapped_blocks = td->mapped_blocks;
  797. snap->snapshotted_time = time;
  798. __close_device(td);
  799. return 0;
  800. }
  801. static int __create_snap(struct dm_pool_metadata *pmd,
  802. dm_thin_id dev, dm_thin_id origin)
  803. {
  804. int r;
  805. dm_block_t origin_root;
  806. uint64_t key = origin, dev_key = dev;
  807. struct dm_thin_device *td;
  808. struct disk_device_details details_le;
  809. __le64 value;
  810. /* check this device is unused */
  811. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  812. &dev_key, &details_le);
  813. if (!r)
  814. return -EEXIST;
  815. /* find the mapping tree for the origin */
  816. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  817. if (r)
  818. return r;
  819. origin_root = le64_to_cpu(value);
  820. /* clone the origin, an inc will do */
  821. dm_tm_inc(pmd->tm, origin_root);
  822. /* insert into the main mapping tree */
  823. value = cpu_to_le64(origin_root);
  824. __dm_bless_for_disk(&value);
  825. key = dev;
  826. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  827. if (r) {
  828. dm_tm_dec(pmd->tm, origin_root);
  829. return r;
  830. }
  831. pmd->time++;
  832. r = __open_device(pmd, dev, 1, &td);
  833. if (r)
  834. goto bad;
  835. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  836. __close_device(td);
  837. if (r)
  838. goto bad;
  839. return 0;
  840. bad:
  841. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  842. dm_btree_remove(&pmd->details_info, pmd->details_root,
  843. &key, &pmd->details_root);
  844. return r;
  845. }
  846. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  847. dm_thin_id dev,
  848. dm_thin_id origin)
  849. {
  850. int r;
  851. down_write(&pmd->root_lock);
  852. r = __create_snap(pmd, dev, origin);
  853. up_write(&pmd->root_lock);
  854. return r;
  855. }
  856. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  857. {
  858. int r;
  859. uint64_t key = dev;
  860. struct dm_thin_device *td;
  861. /* TODO: failure should mark the transaction invalid */
  862. r = __open_device(pmd, dev, 0, &td);
  863. if (r)
  864. return r;
  865. if (td->open_count > 1) {
  866. __close_device(td);
  867. return -EBUSY;
  868. }
  869. list_del(&td->list);
  870. kfree(td);
  871. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  872. &key, &pmd->details_root);
  873. if (r)
  874. return r;
  875. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  876. if (r)
  877. return r;
  878. return 0;
  879. }
  880. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  881. dm_thin_id dev)
  882. {
  883. int r;
  884. down_write(&pmd->root_lock);
  885. r = __delete_device(pmd, dev);
  886. up_write(&pmd->root_lock);
  887. return r;
  888. }
  889. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  890. uint64_t current_id,
  891. uint64_t new_id)
  892. {
  893. down_write(&pmd->root_lock);
  894. if (pmd->trans_id != current_id) {
  895. up_write(&pmd->root_lock);
  896. DMERR("mismatched transaction id");
  897. return -EINVAL;
  898. }
  899. pmd->trans_id = new_id;
  900. up_write(&pmd->root_lock);
  901. return 0;
  902. }
  903. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  904. uint64_t *result)
  905. {
  906. down_read(&pmd->root_lock);
  907. *result = pmd->trans_id;
  908. up_read(&pmd->root_lock);
  909. return 0;
  910. }
  911. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  912. {
  913. int r, inc;
  914. struct thin_disk_superblock *disk_super;
  915. struct dm_block *copy, *sblock;
  916. dm_block_t held_root;
  917. /*
  918. * Copy the superblock.
  919. */
  920. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  921. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  922. &sb_validator, &copy, &inc);
  923. if (r)
  924. return r;
  925. BUG_ON(!inc);
  926. held_root = dm_block_location(copy);
  927. disk_super = dm_block_data(copy);
  928. if (le64_to_cpu(disk_super->held_root)) {
  929. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  930. dm_tm_dec(pmd->tm, held_root);
  931. dm_tm_unlock(pmd->tm, copy);
  932. return -EBUSY;
  933. }
  934. /*
  935. * Wipe the spacemap since we're not publishing this.
  936. */
  937. memset(&disk_super->data_space_map_root, 0,
  938. sizeof(disk_super->data_space_map_root));
  939. memset(&disk_super->metadata_space_map_root, 0,
  940. sizeof(disk_super->metadata_space_map_root));
  941. /*
  942. * Increment the data structures that need to be preserved.
  943. */
  944. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  945. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  946. dm_tm_unlock(pmd->tm, copy);
  947. /*
  948. * Write the held root into the superblock.
  949. */
  950. r = superblock_lock(pmd, &sblock);
  951. if (r) {
  952. dm_tm_dec(pmd->tm, held_root);
  953. return r;
  954. }
  955. disk_super = dm_block_data(sblock);
  956. disk_super->held_root = cpu_to_le64(held_root);
  957. dm_bm_unlock(sblock);
  958. return 0;
  959. }
  960. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  961. {
  962. int r;
  963. down_write(&pmd->root_lock);
  964. r = __reserve_metadata_snap(pmd);
  965. up_write(&pmd->root_lock);
  966. return r;
  967. }
  968. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  969. {
  970. int r;
  971. struct thin_disk_superblock *disk_super;
  972. struct dm_block *sblock, *copy;
  973. dm_block_t held_root;
  974. r = superblock_lock(pmd, &sblock);
  975. if (r)
  976. return r;
  977. disk_super = dm_block_data(sblock);
  978. held_root = le64_to_cpu(disk_super->held_root);
  979. disk_super->held_root = cpu_to_le64(0);
  980. dm_bm_unlock(sblock);
  981. if (!held_root) {
  982. DMWARN("No pool metadata snapshot found: nothing to release.");
  983. return -EINVAL;
  984. }
  985. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  986. if (r)
  987. return r;
  988. disk_super = dm_block_data(copy);
  989. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
  990. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
  991. dm_sm_dec_block(pmd->metadata_sm, held_root);
  992. return dm_tm_unlock(pmd->tm, copy);
  993. }
  994. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  995. {
  996. int r;
  997. down_write(&pmd->root_lock);
  998. r = __release_metadata_snap(pmd);
  999. up_write(&pmd->root_lock);
  1000. return r;
  1001. }
  1002. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  1003. dm_block_t *result)
  1004. {
  1005. int r;
  1006. struct thin_disk_superblock *disk_super;
  1007. struct dm_block *sblock;
  1008. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1009. &sb_validator, &sblock);
  1010. if (r)
  1011. return r;
  1012. disk_super = dm_block_data(sblock);
  1013. *result = le64_to_cpu(disk_super->held_root);
  1014. return dm_bm_unlock(sblock);
  1015. }
  1016. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1017. dm_block_t *result)
  1018. {
  1019. int r;
  1020. down_read(&pmd->root_lock);
  1021. r = __get_metadata_snap(pmd, result);
  1022. up_read(&pmd->root_lock);
  1023. return r;
  1024. }
  1025. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1026. struct dm_thin_device **td)
  1027. {
  1028. int r;
  1029. down_write(&pmd->root_lock);
  1030. r = __open_device(pmd, dev, 0, td);
  1031. up_write(&pmd->root_lock);
  1032. return r;
  1033. }
  1034. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1035. {
  1036. down_write(&td->pmd->root_lock);
  1037. __close_device(td);
  1038. up_write(&td->pmd->root_lock);
  1039. return 0;
  1040. }
  1041. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1042. {
  1043. return td->id;
  1044. }
  1045. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1046. {
  1047. return td->snapshotted_time > time;
  1048. }
  1049. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1050. int can_block, struct dm_thin_lookup_result *result)
  1051. {
  1052. int r;
  1053. uint64_t block_time = 0;
  1054. __le64 value;
  1055. struct dm_pool_metadata *pmd = td->pmd;
  1056. dm_block_t keys[2] = { td->id, block };
  1057. if (can_block) {
  1058. down_read(&pmd->root_lock);
  1059. r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
  1060. if (!r)
  1061. block_time = le64_to_cpu(value);
  1062. up_read(&pmd->root_lock);
  1063. } else if (down_read_trylock(&pmd->root_lock)) {
  1064. r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
  1065. if (!r)
  1066. block_time = le64_to_cpu(value);
  1067. up_read(&pmd->root_lock);
  1068. } else
  1069. return -EWOULDBLOCK;
  1070. if (!r) {
  1071. dm_block_t exception_block;
  1072. uint32_t exception_time;
  1073. unpack_block_time(block_time, &exception_block,
  1074. &exception_time);
  1075. result->block = exception_block;
  1076. result->shared = __snapshotted_since(td, exception_time);
  1077. }
  1078. return r;
  1079. }
  1080. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1081. dm_block_t data_block)
  1082. {
  1083. int r, inserted;
  1084. __le64 value;
  1085. struct dm_pool_metadata *pmd = td->pmd;
  1086. dm_block_t keys[2] = { td->id, block };
  1087. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1088. __dm_bless_for_disk(&value);
  1089. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1090. &pmd->root, &inserted);
  1091. if (r)
  1092. return r;
  1093. if (inserted) {
  1094. td->mapped_blocks++;
  1095. td->changed = 1;
  1096. }
  1097. return 0;
  1098. }
  1099. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1100. dm_block_t data_block)
  1101. {
  1102. int r;
  1103. down_write(&td->pmd->root_lock);
  1104. r = __insert(td, block, data_block);
  1105. up_write(&td->pmd->root_lock);
  1106. return r;
  1107. }
  1108. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1109. {
  1110. int r;
  1111. struct dm_pool_metadata *pmd = td->pmd;
  1112. dm_block_t keys[2] = { td->id, block };
  1113. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1114. if (r)
  1115. return r;
  1116. td->mapped_blocks--;
  1117. td->changed = 1;
  1118. return 0;
  1119. }
  1120. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1121. {
  1122. int r;
  1123. down_write(&td->pmd->root_lock);
  1124. r = __remove(td, block);
  1125. up_write(&td->pmd->root_lock);
  1126. return r;
  1127. }
  1128. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1129. {
  1130. int r;
  1131. down_write(&pmd->root_lock);
  1132. r = dm_sm_new_block(pmd->data_sm, result);
  1133. up_write(&pmd->root_lock);
  1134. return r;
  1135. }
  1136. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1137. {
  1138. int r;
  1139. down_write(&pmd->root_lock);
  1140. r = __commit_transaction(pmd);
  1141. if (r <= 0)
  1142. goto out;
  1143. /*
  1144. * Open the next transaction.
  1145. */
  1146. r = __begin_transaction(pmd);
  1147. out:
  1148. up_write(&pmd->root_lock);
  1149. return r;
  1150. }
  1151. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1152. {
  1153. int r;
  1154. down_read(&pmd->root_lock);
  1155. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1156. up_read(&pmd->root_lock);
  1157. return r;
  1158. }
  1159. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1160. dm_block_t *result)
  1161. {
  1162. int r;
  1163. down_read(&pmd->root_lock);
  1164. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1165. up_read(&pmd->root_lock);
  1166. return r;
  1167. }
  1168. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1169. dm_block_t *result)
  1170. {
  1171. int r;
  1172. down_read(&pmd->root_lock);
  1173. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1174. up_read(&pmd->root_lock);
  1175. return r;
  1176. }
  1177. int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
  1178. {
  1179. down_read(&pmd->root_lock);
  1180. *result = pmd->data_block_size;
  1181. up_read(&pmd->root_lock);
  1182. return 0;
  1183. }
  1184. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1185. {
  1186. int r;
  1187. down_read(&pmd->root_lock);
  1188. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1189. up_read(&pmd->root_lock);
  1190. return r;
  1191. }
  1192. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1193. {
  1194. struct dm_pool_metadata *pmd = td->pmd;
  1195. down_read(&pmd->root_lock);
  1196. *result = td->mapped_blocks;
  1197. up_read(&pmd->root_lock);
  1198. return 0;
  1199. }
  1200. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1201. {
  1202. int r;
  1203. __le64 value_le;
  1204. dm_block_t thin_root;
  1205. struct dm_pool_metadata *pmd = td->pmd;
  1206. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1207. if (r)
  1208. return r;
  1209. thin_root = le64_to_cpu(value_le);
  1210. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1211. }
  1212. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1213. dm_block_t *result)
  1214. {
  1215. int r;
  1216. struct dm_pool_metadata *pmd = td->pmd;
  1217. down_read(&pmd->root_lock);
  1218. r = __highest_block(td, result);
  1219. up_read(&pmd->root_lock);
  1220. return r;
  1221. }
  1222. static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1223. {
  1224. int r;
  1225. dm_block_t old_count;
  1226. r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
  1227. if (r)
  1228. return r;
  1229. if (new_count == old_count)
  1230. return 0;
  1231. if (new_count < old_count) {
  1232. DMERR("cannot reduce size of data device");
  1233. return -EINVAL;
  1234. }
  1235. return dm_sm_extend(pmd->data_sm, new_count - old_count);
  1236. }
  1237. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1238. {
  1239. int r;
  1240. down_write(&pmd->root_lock);
  1241. r = __resize_data_dev(pmd, new_count);
  1242. up_write(&pmd->root_lock);
  1243. return r;
  1244. }