kvm_main.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. static struct dentry *debugfs_dir;
  58. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  59. unsigned long arg);
  60. static inline int valid_vcpu(int n)
  61. {
  62. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  63. }
  64. /*
  65. * Switches to specified vcpu, until a matching vcpu_put()
  66. */
  67. void vcpu_load(struct kvm_vcpu *vcpu)
  68. {
  69. int cpu;
  70. mutex_lock(&vcpu->mutex);
  71. cpu = get_cpu();
  72. preempt_notifier_register(&vcpu->preempt_notifier);
  73. kvm_arch_vcpu_load(vcpu, cpu);
  74. put_cpu();
  75. }
  76. void vcpu_put(struct kvm_vcpu *vcpu)
  77. {
  78. preempt_disable();
  79. kvm_arch_vcpu_put(vcpu);
  80. preempt_notifier_unregister(&vcpu->preempt_notifier);
  81. preempt_enable();
  82. mutex_unlock(&vcpu->mutex);
  83. }
  84. static void ack_flush(void *_completed)
  85. {
  86. }
  87. void kvm_flush_remote_tlbs(struct kvm *kvm)
  88. {
  89. int i, cpu;
  90. cpumask_t cpus;
  91. struct kvm_vcpu *vcpu;
  92. cpus_clear(cpus);
  93. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  94. vcpu = kvm->vcpus[i];
  95. if (!vcpu)
  96. continue;
  97. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  98. continue;
  99. cpu = vcpu->cpu;
  100. if (cpu != -1 && cpu != raw_smp_processor_id())
  101. cpu_set(cpu, cpus);
  102. }
  103. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  104. }
  105. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  106. {
  107. struct page *page;
  108. int r;
  109. mutex_init(&vcpu->mutex);
  110. vcpu->cpu = -1;
  111. vcpu->mmu.root_hpa = INVALID_PAGE;
  112. vcpu->kvm = kvm;
  113. vcpu->vcpu_id = id;
  114. if (!irqchip_in_kernel(kvm) || id == 0)
  115. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  116. else
  117. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  118. init_waitqueue_head(&vcpu->wq);
  119. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  120. if (!page) {
  121. r = -ENOMEM;
  122. goto fail;
  123. }
  124. vcpu->run = page_address(page);
  125. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  126. if (!page) {
  127. r = -ENOMEM;
  128. goto fail_free_run;
  129. }
  130. vcpu->pio_data = page_address(page);
  131. r = kvm_mmu_create(vcpu);
  132. if (r < 0)
  133. goto fail_free_pio_data;
  134. if (irqchip_in_kernel(kvm)) {
  135. r = kvm_create_lapic(vcpu);
  136. if (r < 0)
  137. goto fail_mmu_destroy;
  138. }
  139. return 0;
  140. fail_mmu_destroy:
  141. kvm_mmu_destroy(vcpu);
  142. fail_free_pio_data:
  143. free_page((unsigned long)vcpu->pio_data);
  144. fail_free_run:
  145. free_page((unsigned long)vcpu->run);
  146. fail:
  147. return r;
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  150. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  151. {
  152. kvm_free_lapic(vcpu);
  153. kvm_mmu_destroy(vcpu);
  154. free_page((unsigned long)vcpu->pio_data);
  155. free_page((unsigned long)vcpu->run);
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  158. static struct kvm *kvm_create_vm(void)
  159. {
  160. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  161. if (!kvm)
  162. return ERR_PTR(-ENOMEM);
  163. kvm_io_bus_init(&kvm->pio_bus);
  164. mutex_init(&kvm->lock);
  165. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  166. kvm_io_bus_init(&kvm->mmio_bus);
  167. spin_lock(&kvm_lock);
  168. list_add(&kvm->vm_list, &vm_list);
  169. spin_unlock(&kvm_lock);
  170. return kvm;
  171. }
  172. /*
  173. * Free any memory in @free but not in @dont.
  174. */
  175. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  176. struct kvm_memory_slot *dont)
  177. {
  178. if (!dont || free->rmap != dont->rmap)
  179. vfree(free->rmap);
  180. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  181. vfree(free->dirty_bitmap);
  182. free->npages = 0;
  183. free->dirty_bitmap = NULL;
  184. free->rmap = NULL;
  185. }
  186. static void kvm_free_physmem(struct kvm *kvm)
  187. {
  188. int i;
  189. for (i = 0; i < kvm->nmemslots; ++i)
  190. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  191. }
  192. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  193. {
  194. vcpu_load(vcpu);
  195. kvm_mmu_unload(vcpu);
  196. vcpu_put(vcpu);
  197. }
  198. static void kvm_free_vcpus(struct kvm *kvm)
  199. {
  200. unsigned int i;
  201. /*
  202. * Unpin any mmu pages first.
  203. */
  204. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  205. if (kvm->vcpus[i])
  206. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  207. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  208. if (kvm->vcpus[i]) {
  209. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  210. kvm->vcpus[i] = NULL;
  211. }
  212. }
  213. }
  214. static void kvm_destroy_vm(struct kvm *kvm)
  215. {
  216. spin_lock(&kvm_lock);
  217. list_del(&kvm->vm_list);
  218. spin_unlock(&kvm_lock);
  219. kvm_io_bus_destroy(&kvm->pio_bus);
  220. kvm_io_bus_destroy(&kvm->mmio_bus);
  221. kfree(kvm->vpic);
  222. kfree(kvm->vioapic);
  223. kvm_free_vcpus(kvm);
  224. kvm_free_physmem(kvm);
  225. kfree(kvm);
  226. }
  227. static int kvm_vm_release(struct inode *inode, struct file *filp)
  228. {
  229. struct kvm *kvm = filp->private_data;
  230. kvm_destroy_vm(kvm);
  231. return 0;
  232. }
  233. /*
  234. * Allocate some memory and give it an address in the guest physical address
  235. * space.
  236. *
  237. * Discontiguous memory is allowed, mostly for framebuffers.
  238. *
  239. * Must be called holding kvm->lock.
  240. */
  241. int __kvm_set_memory_region(struct kvm *kvm,
  242. struct kvm_userspace_memory_region *mem,
  243. int user_alloc)
  244. {
  245. int r;
  246. gfn_t base_gfn;
  247. unsigned long npages;
  248. unsigned long i;
  249. struct kvm_memory_slot *memslot;
  250. struct kvm_memory_slot old, new;
  251. r = -EINVAL;
  252. /* General sanity checks */
  253. if (mem->memory_size & (PAGE_SIZE - 1))
  254. goto out;
  255. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  256. goto out;
  257. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  258. goto out;
  259. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  260. goto out;
  261. memslot = &kvm->memslots[mem->slot];
  262. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  263. npages = mem->memory_size >> PAGE_SHIFT;
  264. if (!npages)
  265. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  266. new = old = *memslot;
  267. new.base_gfn = base_gfn;
  268. new.npages = npages;
  269. new.flags = mem->flags;
  270. /* Disallow changing a memory slot's size. */
  271. r = -EINVAL;
  272. if (npages && old.npages && npages != old.npages)
  273. goto out_free;
  274. /* Check for overlaps */
  275. r = -EEXIST;
  276. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  277. struct kvm_memory_slot *s = &kvm->memslots[i];
  278. if (s == memslot)
  279. continue;
  280. if (!((base_gfn + npages <= s->base_gfn) ||
  281. (base_gfn >= s->base_gfn + s->npages)))
  282. goto out_free;
  283. }
  284. /* Free page dirty bitmap if unneeded */
  285. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  286. new.dirty_bitmap = NULL;
  287. r = -ENOMEM;
  288. /* Allocate if a slot is being created */
  289. if (npages && !new.rmap) {
  290. new.rmap = vmalloc(npages * sizeof(struct page *));
  291. if (!new.rmap)
  292. goto out_free;
  293. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  294. new.user_alloc = user_alloc;
  295. if (user_alloc)
  296. new.userspace_addr = mem->userspace_addr;
  297. else {
  298. down_write(&current->mm->mmap_sem);
  299. new.userspace_addr = do_mmap(NULL, 0,
  300. npages * PAGE_SIZE,
  301. PROT_READ | PROT_WRITE,
  302. MAP_SHARED | MAP_ANONYMOUS,
  303. 0);
  304. up_write(&current->mm->mmap_sem);
  305. if (IS_ERR((void *)new.userspace_addr))
  306. goto out_free;
  307. }
  308. } else {
  309. if (!old.user_alloc && old.rmap) {
  310. int ret;
  311. down_write(&current->mm->mmap_sem);
  312. ret = do_munmap(current->mm, old.userspace_addr,
  313. old.npages * PAGE_SIZE);
  314. up_write(&current->mm->mmap_sem);
  315. if (ret < 0)
  316. printk(KERN_WARNING
  317. "kvm_vm_ioctl_set_memory_region: "
  318. "failed to munmap memory\n");
  319. }
  320. }
  321. /* Allocate page dirty bitmap if needed */
  322. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  323. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  324. new.dirty_bitmap = vmalloc(dirty_bytes);
  325. if (!new.dirty_bitmap)
  326. goto out_free;
  327. memset(new.dirty_bitmap, 0, dirty_bytes);
  328. }
  329. if (mem->slot >= kvm->nmemslots)
  330. kvm->nmemslots = mem->slot + 1;
  331. if (!kvm->n_requested_mmu_pages) {
  332. unsigned int n_pages;
  333. if (npages) {
  334. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  335. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  336. n_pages);
  337. } else {
  338. unsigned int nr_mmu_pages;
  339. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  340. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  341. nr_mmu_pages = max(nr_mmu_pages,
  342. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  343. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  344. }
  345. }
  346. *memslot = new;
  347. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  348. kvm_flush_remote_tlbs(kvm);
  349. kvm_free_physmem_slot(&old, &new);
  350. return 0;
  351. out_free:
  352. kvm_free_physmem_slot(&new, &old);
  353. out:
  354. return r;
  355. }
  356. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  357. int kvm_set_memory_region(struct kvm *kvm,
  358. struct kvm_userspace_memory_region *mem,
  359. int user_alloc)
  360. {
  361. int r;
  362. mutex_lock(&kvm->lock);
  363. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  364. mutex_unlock(&kvm->lock);
  365. return r;
  366. }
  367. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  368. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  369. struct
  370. kvm_userspace_memory_region *mem,
  371. int user_alloc)
  372. {
  373. if (mem->slot >= KVM_MEMORY_SLOTS)
  374. return -EINVAL;
  375. return kvm_set_memory_region(kvm, mem, user_alloc);
  376. }
  377. /*
  378. * Get (and clear) the dirty memory log for a memory slot.
  379. */
  380. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  381. struct kvm_dirty_log *log)
  382. {
  383. struct kvm_memory_slot *memslot;
  384. int r, i;
  385. int n;
  386. unsigned long any = 0;
  387. mutex_lock(&kvm->lock);
  388. r = -EINVAL;
  389. if (log->slot >= KVM_MEMORY_SLOTS)
  390. goto out;
  391. memslot = &kvm->memslots[log->slot];
  392. r = -ENOENT;
  393. if (!memslot->dirty_bitmap)
  394. goto out;
  395. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  396. for (i = 0; !any && i < n/sizeof(long); ++i)
  397. any = memslot->dirty_bitmap[i];
  398. r = -EFAULT;
  399. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  400. goto out;
  401. /* If nothing is dirty, don't bother messing with page tables. */
  402. if (any) {
  403. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  404. kvm_flush_remote_tlbs(kvm);
  405. memset(memslot->dirty_bitmap, 0, n);
  406. }
  407. r = 0;
  408. out:
  409. mutex_unlock(&kvm->lock);
  410. return r;
  411. }
  412. int is_error_page(struct page *page)
  413. {
  414. return page == bad_page;
  415. }
  416. EXPORT_SYMBOL_GPL(is_error_page);
  417. static inline unsigned long bad_hva(void)
  418. {
  419. return PAGE_OFFSET;
  420. }
  421. int kvm_is_error_hva(unsigned long addr)
  422. {
  423. return addr == bad_hva();
  424. }
  425. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  426. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  427. {
  428. int i;
  429. struct kvm_mem_alias *alias;
  430. for (i = 0; i < kvm->naliases; ++i) {
  431. alias = &kvm->aliases[i];
  432. if (gfn >= alias->base_gfn
  433. && gfn < alias->base_gfn + alias->npages)
  434. return alias->target_gfn + gfn - alias->base_gfn;
  435. }
  436. return gfn;
  437. }
  438. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  439. {
  440. int i;
  441. for (i = 0; i < kvm->nmemslots; ++i) {
  442. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  443. if (gfn >= memslot->base_gfn
  444. && gfn < memslot->base_gfn + memslot->npages)
  445. return memslot;
  446. }
  447. return NULL;
  448. }
  449. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  450. {
  451. gfn = unalias_gfn(kvm, gfn);
  452. return __gfn_to_memslot(kvm, gfn);
  453. }
  454. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  455. {
  456. int i;
  457. gfn = unalias_gfn(kvm, gfn);
  458. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  459. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  460. if (gfn >= memslot->base_gfn
  461. && gfn < memslot->base_gfn + memslot->npages)
  462. return 1;
  463. }
  464. return 0;
  465. }
  466. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  467. /*
  468. * Requires current->mm->mmap_sem to be held
  469. */
  470. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  471. {
  472. struct kvm_memory_slot *slot;
  473. struct page *page[1];
  474. int npages;
  475. might_sleep();
  476. gfn = unalias_gfn(kvm, gfn);
  477. slot = __gfn_to_memslot(kvm, gfn);
  478. if (!slot) {
  479. get_page(bad_page);
  480. return bad_page;
  481. }
  482. npages = get_user_pages(current, current->mm,
  483. slot->userspace_addr
  484. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  485. 1, 1, page, NULL);
  486. if (npages != 1) {
  487. get_page(bad_page);
  488. return bad_page;
  489. }
  490. return page[0];
  491. }
  492. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  493. {
  494. struct page *page;
  495. down_read(&current->mm->mmap_sem);
  496. page = __gfn_to_page(kvm, gfn);
  497. up_read(&current->mm->mmap_sem);
  498. return page;
  499. }
  500. EXPORT_SYMBOL_GPL(gfn_to_page);
  501. void kvm_release_page(struct page *page)
  502. {
  503. if (!PageReserved(page))
  504. SetPageDirty(page);
  505. put_page(page);
  506. }
  507. EXPORT_SYMBOL_GPL(kvm_release_page);
  508. static int next_segment(unsigned long len, int offset)
  509. {
  510. if (len > PAGE_SIZE - offset)
  511. return PAGE_SIZE - offset;
  512. else
  513. return len;
  514. }
  515. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  516. int len)
  517. {
  518. void *page_virt;
  519. struct page *page;
  520. page = gfn_to_page(kvm, gfn);
  521. if (is_error_page(page)) {
  522. kvm_release_page(page);
  523. return -EFAULT;
  524. }
  525. page_virt = kmap_atomic(page, KM_USER0);
  526. memcpy(data, page_virt + offset, len);
  527. kunmap_atomic(page_virt, KM_USER0);
  528. kvm_release_page(page);
  529. return 0;
  530. }
  531. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  532. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  533. {
  534. gfn_t gfn = gpa >> PAGE_SHIFT;
  535. int seg;
  536. int offset = offset_in_page(gpa);
  537. int ret;
  538. while ((seg = next_segment(len, offset)) != 0) {
  539. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  540. if (ret < 0)
  541. return ret;
  542. offset = 0;
  543. len -= seg;
  544. data += seg;
  545. ++gfn;
  546. }
  547. return 0;
  548. }
  549. EXPORT_SYMBOL_GPL(kvm_read_guest);
  550. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  551. int offset, int len)
  552. {
  553. void *page_virt;
  554. struct page *page;
  555. page = gfn_to_page(kvm, gfn);
  556. if (is_error_page(page)) {
  557. kvm_release_page(page);
  558. return -EFAULT;
  559. }
  560. page_virt = kmap_atomic(page, KM_USER0);
  561. memcpy(page_virt + offset, data, len);
  562. kunmap_atomic(page_virt, KM_USER0);
  563. mark_page_dirty(kvm, gfn);
  564. kvm_release_page(page);
  565. return 0;
  566. }
  567. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  568. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  569. unsigned long len)
  570. {
  571. gfn_t gfn = gpa >> PAGE_SHIFT;
  572. int seg;
  573. int offset = offset_in_page(gpa);
  574. int ret;
  575. while ((seg = next_segment(len, offset)) != 0) {
  576. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  577. if (ret < 0)
  578. return ret;
  579. offset = 0;
  580. len -= seg;
  581. data += seg;
  582. ++gfn;
  583. }
  584. return 0;
  585. }
  586. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  587. {
  588. void *page_virt;
  589. struct page *page;
  590. page = gfn_to_page(kvm, gfn);
  591. if (is_error_page(page)) {
  592. kvm_release_page(page);
  593. return -EFAULT;
  594. }
  595. page_virt = kmap_atomic(page, KM_USER0);
  596. memset(page_virt + offset, 0, len);
  597. kunmap_atomic(page_virt, KM_USER0);
  598. kvm_release_page(page);
  599. mark_page_dirty(kvm, gfn);
  600. return 0;
  601. }
  602. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  603. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  604. {
  605. gfn_t gfn = gpa >> PAGE_SHIFT;
  606. int seg;
  607. int offset = offset_in_page(gpa);
  608. int ret;
  609. while ((seg = next_segment(len, offset)) != 0) {
  610. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  611. if (ret < 0)
  612. return ret;
  613. offset = 0;
  614. len -= seg;
  615. ++gfn;
  616. }
  617. return 0;
  618. }
  619. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  620. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  621. {
  622. struct kvm_memory_slot *memslot;
  623. gfn = unalias_gfn(kvm, gfn);
  624. memslot = __gfn_to_memslot(kvm, gfn);
  625. if (memslot && memslot->dirty_bitmap) {
  626. unsigned long rel_gfn = gfn - memslot->base_gfn;
  627. /* avoid RMW */
  628. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  629. set_bit(rel_gfn, memslot->dirty_bitmap);
  630. }
  631. }
  632. /*
  633. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  634. */
  635. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  636. {
  637. DECLARE_WAITQUEUE(wait, current);
  638. add_wait_queue(&vcpu->wq, &wait);
  639. /*
  640. * We will block until either an interrupt or a signal wakes us up
  641. */
  642. while (!kvm_cpu_has_interrupt(vcpu)
  643. && !signal_pending(current)
  644. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  645. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  646. set_current_state(TASK_INTERRUPTIBLE);
  647. vcpu_put(vcpu);
  648. schedule();
  649. vcpu_load(vcpu);
  650. }
  651. __set_current_state(TASK_RUNNING);
  652. remove_wait_queue(&vcpu->wq, &wait);
  653. }
  654. void kvm_resched(struct kvm_vcpu *vcpu)
  655. {
  656. if (!need_resched())
  657. return;
  658. cond_resched();
  659. }
  660. EXPORT_SYMBOL_GPL(kvm_resched);
  661. /*
  662. * Translate a guest virtual address to a guest physical address.
  663. */
  664. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  665. struct kvm_translation *tr)
  666. {
  667. unsigned long vaddr = tr->linear_address;
  668. gpa_t gpa;
  669. vcpu_load(vcpu);
  670. mutex_lock(&vcpu->kvm->lock);
  671. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  672. tr->physical_address = gpa;
  673. tr->valid = gpa != UNMAPPED_GVA;
  674. tr->writeable = 1;
  675. tr->usermode = 0;
  676. mutex_unlock(&vcpu->kvm->lock);
  677. vcpu_put(vcpu);
  678. return 0;
  679. }
  680. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  681. struct kvm_interrupt *irq)
  682. {
  683. if (irq->irq < 0 || irq->irq >= 256)
  684. return -EINVAL;
  685. if (irqchip_in_kernel(vcpu->kvm))
  686. return -ENXIO;
  687. vcpu_load(vcpu);
  688. set_bit(irq->irq, vcpu->irq_pending);
  689. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  690. vcpu_put(vcpu);
  691. return 0;
  692. }
  693. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  694. unsigned long address,
  695. int *type)
  696. {
  697. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  698. unsigned long pgoff;
  699. struct page *page;
  700. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  701. if (pgoff == 0)
  702. page = virt_to_page(vcpu->run);
  703. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  704. page = virt_to_page(vcpu->pio_data);
  705. else
  706. return NOPAGE_SIGBUS;
  707. get_page(page);
  708. if (type != NULL)
  709. *type = VM_FAULT_MINOR;
  710. return page;
  711. }
  712. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  713. .nopage = kvm_vcpu_nopage,
  714. };
  715. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  716. {
  717. vma->vm_ops = &kvm_vcpu_vm_ops;
  718. return 0;
  719. }
  720. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  721. {
  722. struct kvm_vcpu *vcpu = filp->private_data;
  723. fput(vcpu->kvm->filp);
  724. return 0;
  725. }
  726. static struct file_operations kvm_vcpu_fops = {
  727. .release = kvm_vcpu_release,
  728. .unlocked_ioctl = kvm_vcpu_ioctl,
  729. .compat_ioctl = kvm_vcpu_ioctl,
  730. .mmap = kvm_vcpu_mmap,
  731. };
  732. /*
  733. * Allocates an inode for the vcpu.
  734. */
  735. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  736. {
  737. int fd, r;
  738. struct inode *inode;
  739. struct file *file;
  740. r = anon_inode_getfd(&fd, &inode, &file,
  741. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  742. if (r)
  743. return r;
  744. atomic_inc(&vcpu->kvm->filp->f_count);
  745. return fd;
  746. }
  747. /*
  748. * Creates some virtual cpus. Good luck creating more than one.
  749. */
  750. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  751. {
  752. int r;
  753. struct kvm_vcpu *vcpu;
  754. if (!valid_vcpu(n))
  755. return -EINVAL;
  756. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  757. if (IS_ERR(vcpu))
  758. return PTR_ERR(vcpu);
  759. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  760. /* We do fxsave: this must be aligned. */
  761. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  762. vcpu_load(vcpu);
  763. r = kvm_x86_ops->vcpu_reset(vcpu);
  764. if (r == 0)
  765. r = kvm_mmu_setup(vcpu);
  766. vcpu_put(vcpu);
  767. if (r < 0)
  768. goto free_vcpu;
  769. mutex_lock(&kvm->lock);
  770. if (kvm->vcpus[n]) {
  771. r = -EEXIST;
  772. mutex_unlock(&kvm->lock);
  773. goto mmu_unload;
  774. }
  775. kvm->vcpus[n] = vcpu;
  776. mutex_unlock(&kvm->lock);
  777. /* Now it's all set up, let userspace reach it */
  778. r = create_vcpu_fd(vcpu);
  779. if (r < 0)
  780. goto unlink;
  781. return r;
  782. unlink:
  783. mutex_lock(&kvm->lock);
  784. kvm->vcpus[n] = NULL;
  785. mutex_unlock(&kvm->lock);
  786. mmu_unload:
  787. vcpu_load(vcpu);
  788. kvm_mmu_unload(vcpu);
  789. vcpu_put(vcpu);
  790. free_vcpu:
  791. kvm_x86_ops->vcpu_free(vcpu);
  792. return r;
  793. }
  794. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  795. {
  796. if (sigset) {
  797. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  798. vcpu->sigset_active = 1;
  799. vcpu->sigset = *sigset;
  800. } else
  801. vcpu->sigset_active = 0;
  802. return 0;
  803. }
  804. static long kvm_vcpu_ioctl(struct file *filp,
  805. unsigned int ioctl, unsigned long arg)
  806. {
  807. struct kvm_vcpu *vcpu = filp->private_data;
  808. void __user *argp = (void __user *)arg;
  809. int r;
  810. switch (ioctl) {
  811. case KVM_RUN:
  812. r = -EINVAL;
  813. if (arg)
  814. goto out;
  815. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  816. break;
  817. case KVM_GET_REGS: {
  818. struct kvm_regs kvm_regs;
  819. memset(&kvm_regs, 0, sizeof kvm_regs);
  820. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  821. if (r)
  822. goto out;
  823. r = -EFAULT;
  824. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  825. goto out;
  826. r = 0;
  827. break;
  828. }
  829. case KVM_SET_REGS: {
  830. struct kvm_regs kvm_regs;
  831. r = -EFAULT;
  832. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  833. goto out;
  834. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  835. if (r)
  836. goto out;
  837. r = 0;
  838. break;
  839. }
  840. case KVM_GET_SREGS: {
  841. struct kvm_sregs kvm_sregs;
  842. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  843. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  844. if (r)
  845. goto out;
  846. r = -EFAULT;
  847. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  848. goto out;
  849. r = 0;
  850. break;
  851. }
  852. case KVM_SET_SREGS: {
  853. struct kvm_sregs kvm_sregs;
  854. r = -EFAULT;
  855. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  856. goto out;
  857. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  858. if (r)
  859. goto out;
  860. r = 0;
  861. break;
  862. }
  863. case KVM_TRANSLATE: {
  864. struct kvm_translation tr;
  865. r = -EFAULT;
  866. if (copy_from_user(&tr, argp, sizeof tr))
  867. goto out;
  868. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  869. if (r)
  870. goto out;
  871. r = -EFAULT;
  872. if (copy_to_user(argp, &tr, sizeof tr))
  873. goto out;
  874. r = 0;
  875. break;
  876. }
  877. case KVM_INTERRUPT: {
  878. struct kvm_interrupt irq;
  879. r = -EFAULT;
  880. if (copy_from_user(&irq, argp, sizeof irq))
  881. goto out;
  882. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  883. if (r)
  884. goto out;
  885. r = 0;
  886. break;
  887. }
  888. case KVM_DEBUG_GUEST: {
  889. struct kvm_debug_guest dbg;
  890. r = -EFAULT;
  891. if (copy_from_user(&dbg, argp, sizeof dbg))
  892. goto out;
  893. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  894. if (r)
  895. goto out;
  896. r = 0;
  897. break;
  898. }
  899. case KVM_SET_SIGNAL_MASK: {
  900. struct kvm_signal_mask __user *sigmask_arg = argp;
  901. struct kvm_signal_mask kvm_sigmask;
  902. sigset_t sigset, *p;
  903. p = NULL;
  904. if (argp) {
  905. r = -EFAULT;
  906. if (copy_from_user(&kvm_sigmask, argp,
  907. sizeof kvm_sigmask))
  908. goto out;
  909. r = -EINVAL;
  910. if (kvm_sigmask.len != sizeof sigset)
  911. goto out;
  912. r = -EFAULT;
  913. if (copy_from_user(&sigset, sigmask_arg->sigset,
  914. sizeof sigset))
  915. goto out;
  916. p = &sigset;
  917. }
  918. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  919. break;
  920. }
  921. case KVM_GET_FPU: {
  922. struct kvm_fpu fpu;
  923. memset(&fpu, 0, sizeof fpu);
  924. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  925. if (r)
  926. goto out;
  927. r = -EFAULT;
  928. if (copy_to_user(argp, &fpu, sizeof fpu))
  929. goto out;
  930. r = 0;
  931. break;
  932. }
  933. case KVM_SET_FPU: {
  934. struct kvm_fpu fpu;
  935. r = -EFAULT;
  936. if (copy_from_user(&fpu, argp, sizeof fpu))
  937. goto out;
  938. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  939. if (r)
  940. goto out;
  941. r = 0;
  942. break;
  943. }
  944. default:
  945. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  946. }
  947. out:
  948. return r;
  949. }
  950. static long kvm_vm_ioctl(struct file *filp,
  951. unsigned int ioctl, unsigned long arg)
  952. {
  953. struct kvm *kvm = filp->private_data;
  954. void __user *argp = (void __user *)arg;
  955. int r;
  956. switch (ioctl) {
  957. case KVM_CREATE_VCPU:
  958. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  959. if (r < 0)
  960. goto out;
  961. break;
  962. case KVM_SET_USER_MEMORY_REGION: {
  963. struct kvm_userspace_memory_region kvm_userspace_mem;
  964. r = -EFAULT;
  965. if (copy_from_user(&kvm_userspace_mem, argp,
  966. sizeof kvm_userspace_mem))
  967. goto out;
  968. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  969. if (r)
  970. goto out;
  971. break;
  972. }
  973. case KVM_GET_DIRTY_LOG: {
  974. struct kvm_dirty_log log;
  975. r = -EFAULT;
  976. if (copy_from_user(&log, argp, sizeof log))
  977. goto out;
  978. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  979. if (r)
  980. goto out;
  981. break;
  982. }
  983. default:
  984. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  985. }
  986. out:
  987. return r;
  988. }
  989. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  990. unsigned long address,
  991. int *type)
  992. {
  993. struct kvm *kvm = vma->vm_file->private_data;
  994. unsigned long pgoff;
  995. struct page *page;
  996. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  997. if (!kvm_is_visible_gfn(kvm, pgoff))
  998. return NOPAGE_SIGBUS;
  999. /* current->mm->mmap_sem is already held so call lockless version */
  1000. page = __gfn_to_page(kvm, pgoff);
  1001. if (is_error_page(page)) {
  1002. kvm_release_page(page);
  1003. return NOPAGE_SIGBUS;
  1004. }
  1005. if (type != NULL)
  1006. *type = VM_FAULT_MINOR;
  1007. return page;
  1008. }
  1009. static struct vm_operations_struct kvm_vm_vm_ops = {
  1010. .nopage = kvm_vm_nopage,
  1011. };
  1012. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1013. {
  1014. vma->vm_ops = &kvm_vm_vm_ops;
  1015. return 0;
  1016. }
  1017. static struct file_operations kvm_vm_fops = {
  1018. .release = kvm_vm_release,
  1019. .unlocked_ioctl = kvm_vm_ioctl,
  1020. .compat_ioctl = kvm_vm_ioctl,
  1021. .mmap = kvm_vm_mmap,
  1022. };
  1023. static int kvm_dev_ioctl_create_vm(void)
  1024. {
  1025. int fd, r;
  1026. struct inode *inode;
  1027. struct file *file;
  1028. struct kvm *kvm;
  1029. kvm = kvm_create_vm();
  1030. if (IS_ERR(kvm))
  1031. return PTR_ERR(kvm);
  1032. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  1033. if (r) {
  1034. kvm_destroy_vm(kvm);
  1035. return r;
  1036. }
  1037. kvm->filp = file;
  1038. return fd;
  1039. }
  1040. static long kvm_dev_ioctl(struct file *filp,
  1041. unsigned int ioctl, unsigned long arg)
  1042. {
  1043. void __user *argp = (void __user *)arg;
  1044. long r = -EINVAL;
  1045. switch (ioctl) {
  1046. case KVM_GET_API_VERSION:
  1047. r = -EINVAL;
  1048. if (arg)
  1049. goto out;
  1050. r = KVM_API_VERSION;
  1051. break;
  1052. case KVM_CREATE_VM:
  1053. r = -EINVAL;
  1054. if (arg)
  1055. goto out;
  1056. r = kvm_dev_ioctl_create_vm();
  1057. break;
  1058. case KVM_CHECK_EXTENSION: {
  1059. int ext = (long)argp;
  1060. switch (ext) {
  1061. case KVM_CAP_IRQCHIP:
  1062. case KVM_CAP_HLT:
  1063. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1064. case KVM_CAP_USER_MEMORY:
  1065. case KVM_CAP_SET_TSS_ADDR:
  1066. r = 1;
  1067. break;
  1068. default:
  1069. r = 0;
  1070. break;
  1071. }
  1072. break;
  1073. }
  1074. case KVM_GET_VCPU_MMAP_SIZE:
  1075. r = -EINVAL;
  1076. if (arg)
  1077. goto out;
  1078. r = 2 * PAGE_SIZE;
  1079. break;
  1080. default:
  1081. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1082. }
  1083. out:
  1084. return r;
  1085. }
  1086. static struct file_operations kvm_chardev_ops = {
  1087. .unlocked_ioctl = kvm_dev_ioctl,
  1088. .compat_ioctl = kvm_dev_ioctl,
  1089. };
  1090. static struct miscdevice kvm_dev = {
  1091. KVM_MINOR,
  1092. "kvm",
  1093. &kvm_chardev_ops,
  1094. };
  1095. /*
  1096. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  1097. * cached on it.
  1098. */
  1099. static void decache_vcpus_on_cpu(int cpu)
  1100. {
  1101. struct kvm *vm;
  1102. struct kvm_vcpu *vcpu;
  1103. int i;
  1104. spin_lock(&kvm_lock);
  1105. list_for_each_entry(vm, &vm_list, vm_list)
  1106. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1107. vcpu = vm->vcpus[i];
  1108. if (!vcpu)
  1109. continue;
  1110. /*
  1111. * If the vcpu is locked, then it is running on some
  1112. * other cpu and therefore it is not cached on the
  1113. * cpu in question.
  1114. *
  1115. * If it's not locked, check the last cpu it executed
  1116. * on.
  1117. */
  1118. if (mutex_trylock(&vcpu->mutex)) {
  1119. if (vcpu->cpu == cpu) {
  1120. kvm_x86_ops->vcpu_decache(vcpu);
  1121. vcpu->cpu = -1;
  1122. }
  1123. mutex_unlock(&vcpu->mutex);
  1124. }
  1125. }
  1126. spin_unlock(&kvm_lock);
  1127. }
  1128. static void hardware_enable(void *junk)
  1129. {
  1130. int cpu = raw_smp_processor_id();
  1131. if (cpu_isset(cpu, cpus_hardware_enabled))
  1132. return;
  1133. cpu_set(cpu, cpus_hardware_enabled);
  1134. kvm_x86_ops->hardware_enable(NULL);
  1135. }
  1136. static void hardware_disable(void *junk)
  1137. {
  1138. int cpu = raw_smp_processor_id();
  1139. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1140. return;
  1141. cpu_clear(cpu, cpus_hardware_enabled);
  1142. decache_vcpus_on_cpu(cpu);
  1143. kvm_x86_ops->hardware_disable(NULL);
  1144. }
  1145. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1146. void *v)
  1147. {
  1148. int cpu = (long)v;
  1149. val &= ~CPU_TASKS_FROZEN;
  1150. switch (val) {
  1151. case CPU_DYING:
  1152. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1153. cpu);
  1154. hardware_disable(NULL);
  1155. break;
  1156. case CPU_UP_CANCELED:
  1157. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1158. cpu);
  1159. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1160. break;
  1161. case CPU_ONLINE:
  1162. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1163. cpu);
  1164. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1165. break;
  1166. }
  1167. return NOTIFY_OK;
  1168. }
  1169. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1170. void *v)
  1171. {
  1172. if (val == SYS_RESTART) {
  1173. /*
  1174. * Some (well, at least mine) BIOSes hang on reboot if
  1175. * in vmx root mode.
  1176. */
  1177. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1178. on_each_cpu(hardware_disable, NULL, 0, 1);
  1179. }
  1180. return NOTIFY_OK;
  1181. }
  1182. static struct notifier_block kvm_reboot_notifier = {
  1183. .notifier_call = kvm_reboot,
  1184. .priority = 0,
  1185. };
  1186. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1187. {
  1188. memset(bus, 0, sizeof(*bus));
  1189. }
  1190. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1191. {
  1192. int i;
  1193. for (i = 0; i < bus->dev_count; i++) {
  1194. struct kvm_io_device *pos = bus->devs[i];
  1195. kvm_iodevice_destructor(pos);
  1196. }
  1197. }
  1198. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1199. {
  1200. int i;
  1201. for (i = 0; i < bus->dev_count; i++) {
  1202. struct kvm_io_device *pos = bus->devs[i];
  1203. if (pos->in_range(pos, addr))
  1204. return pos;
  1205. }
  1206. return NULL;
  1207. }
  1208. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1209. {
  1210. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1211. bus->devs[bus->dev_count++] = dev;
  1212. }
  1213. static struct notifier_block kvm_cpu_notifier = {
  1214. .notifier_call = kvm_cpu_hotplug,
  1215. .priority = 20, /* must be > scheduler priority */
  1216. };
  1217. static u64 stat_get(void *_offset)
  1218. {
  1219. unsigned offset = (long)_offset;
  1220. u64 total = 0;
  1221. struct kvm *kvm;
  1222. struct kvm_vcpu *vcpu;
  1223. int i;
  1224. spin_lock(&kvm_lock);
  1225. list_for_each_entry(kvm, &vm_list, vm_list)
  1226. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1227. vcpu = kvm->vcpus[i];
  1228. if (vcpu)
  1229. total += *(u32 *)((void *)vcpu + offset);
  1230. }
  1231. spin_unlock(&kvm_lock);
  1232. return total;
  1233. }
  1234. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  1235. static __init void kvm_init_debug(void)
  1236. {
  1237. struct kvm_stats_debugfs_item *p;
  1238. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1239. for (p = debugfs_entries; p->name; ++p)
  1240. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1241. (void *)(long)p->offset,
  1242. &stat_fops);
  1243. }
  1244. static void kvm_exit_debug(void)
  1245. {
  1246. struct kvm_stats_debugfs_item *p;
  1247. for (p = debugfs_entries; p->name; ++p)
  1248. debugfs_remove(p->dentry);
  1249. debugfs_remove(debugfs_dir);
  1250. }
  1251. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1252. {
  1253. hardware_disable(NULL);
  1254. return 0;
  1255. }
  1256. static int kvm_resume(struct sys_device *dev)
  1257. {
  1258. hardware_enable(NULL);
  1259. return 0;
  1260. }
  1261. static struct sysdev_class kvm_sysdev_class = {
  1262. .name = "kvm",
  1263. .suspend = kvm_suspend,
  1264. .resume = kvm_resume,
  1265. };
  1266. static struct sys_device kvm_sysdev = {
  1267. .id = 0,
  1268. .cls = &kvm_sysdev_class,
  1269. };
  1270. struct page *bad_page;
  1271. static inline
  1272. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1273. {
  1274. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1275. }
  1276. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1277. {
  1278. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1279. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1280. }
  1281. static void kvm_sched_out(struct preempt_notifier *pn,
  1282. struct task_struct *next)
  1283. {
  1284. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1285. kvm_x86_ops->vcpu_put(vcpu);
  1286. }
  1287. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  1288. struct module *module)
  1289. {
  1290. int r;
  1291. int cpu;
  1292. if (kvm_x86_ops) {
  1293. printk(KERN_ERR "kvm: already loaded the other module\n");
  1294. return -EEXIST;
  1295. }
  1296. if (!ops->cpu_has_kvm_support()) {
  1297. printk(KERN_ERR "kvm: no hardware support\n");
  1298. return -EOPNOTSUPP;
  1299. }
  1300. if (ops->disabled_by_bios()) {
  1301. printk(KERN_ERR "kvm: disabled by bios\n");
  1302. return -EOPNOTSUPP;
  1303. }
  1304. kvm_x86_ops = ops;
  1305. r = kvm_x86_ops->hardware_setup();
  1306. if (r < 0)
  1307. goto out;
  1308. for_each_online_cpu(cpu) {
  1309. smp_call_function_single(cpu,
  1310. kvm_x86_ops->check_processor_compatibility,
  1311. &r, 0, 1);
  1312. if (r < 0)
  1313. goto out_free_0;
  1314. }
  1315. on_each_cpu(hardware_enable, NULL, 0, 1);
  1316. r = register_cpu_notifier(&kvm_cpu_notifier);
  1317. if (r)
  1318. goto out_free_1;
  1319. register_reboot_notifier(&kvm_reboot_notifier);
  1320. r = sysdev_class_register(&kvm_sysdev_class);
  1321. if (r)
  1322. goto out_free_2;
  1323. r = sysdev_register(&kvm_sysdev);
  1324. if (r)
  1325. goto out_free_3;
  1326. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1327. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1328. __alignof__(struct kvm_vcpu), 0, 0);
  1329. if (!kvm_vcpu_cache) {
  1330. r = -ENOMEM;
  1331. goto out_free_4;
  1332. }
  1333. kvm_chardev_ops.owner = module;
  1334. r = misc_register(&kvm_dev);
  1335. if (r) {
  1336. printk(KERN_ERR "kvm: misc device register failed\n");
  1337. goto out_free;
  1338. }
  1339. kvm_preempt_ops.sched_in = kvm_sched_in;
  1340. kvm_preempt_ops.sched_out = kvm_sched_out;
  1341. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1342. return 0;
  1343. out_free:
  1344. kmem_cache_destroy(kvm_vcpu_cache);
  1345. out_free_4:
  1346. sysdev_unregister(&kvm_sysdev);
  1347. out_free_3:
  1348. sysdev_class_unregister(&kvm_sysdev_class);
  1349. out_free_2:
  1350. unregister_reboot_notifier(&kvm_reboot_notifier);
  1351. unregister_cpu_notifier(&kvm_cpu_notifier);
  1352. out_free_1:
  1353. on_each_cpu(hardware_disable, NULL, 0, 1);
  1354. out_free_0:
  1355. kvm_x86_ops->hardware_unsetup();
  1356. out:
  1357. kvm_x86_ops = NULL;
  1358. return r;
  1359. }
  1360. EXPORT_SYMBOL_GPL(kvm_init_x86);
  1361. void kvm_exit_x86(void)
  1362. {
  1363. misc_deregister(&kvm_dev);
  1364. kmem_cache_destroy(kvm_vcpu_cache);
  1365. sysdev_unregister(&kvm_sysdev);
  1366. sysdev_class_unregister(&kvm_sysdev_class);
  1367. unregister_reboot_notifier(&kvm_reboot_notifier);
  1368. unregister_cpu_notifier(&kvm_cpu_notifier);
  1369. on_each_cpu(hardware_disable, NULL, 0, 1);
  1370. kvm_x86_ops->hardware_unsetup();
  1371. kvm_x86_ops = NULL;
  1372. }
  1373. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  1374. static __init int kvm_init(void)
  1375. {
  1376. int r;
  1377. r = kvm_mmu_module_init();
  1378. if (r)
  1379. goto out4;
  1380. kvm_init_debug();
  1381. kvm_arch_init();
  1382. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1383. if (bad_page == NULL) {
  1384. r = -ENOMEM;
  1385. goto out;
  1386. }
  1387. return 0;
  1388. out:
  1389. kvm_exit_debug();
  1390. kvm_mmu_module_exit();
  1391. out4:
  1392. return r;
  1393. }
  1394. static __exit void kvm_exit(void)
  1395. {
  1396. kvm_exit_debug();
  1397. __free_page(bad_page);
  1398. kvm_mmu_module_exit();
  1399. }
  1400. module_init(kvm_init)
  1401. module_exit(kvm_exit)