korina.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. /*
  2. * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
  3. *
  4. * Copyright 2004 IDT Inc. (rischelp@idt.com)
  5. * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
  6. * Copyright 2008 Florian Fainelli <florian@openwrt.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  14. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  16. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  17. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  18. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  19. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  20. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  21. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  22. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * Writing to a DMA status register:
  29. *
  30. * When writing to the status register, you should mask the bit you have
  31. * been testing the status register with. Both Tx and Rx DMA registers
  32. * should stick to this procedure.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/moduleparam.h>
  37. #include <linux/sched.h>
  38. #include <linux/ctype.h>
  39. #include <linux/types.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/init.h>
  42. #include <linux/ioport.h>
  43. #include <linux/in.h>
  44. #include <linux/slab.h>
  45. #include <linux/string.h>
  46. #include <linux/delay.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/errno.h>
  51. #include <linux/platform_device.h>
  52. #include <linux/mii.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/crc32.h>
  55. #include <asm/bootinfo.h>
  56. #include <asm/bitops.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/io.h>
  59. #include <asm/dma.h>
  60. #include <asm/mach-rc32434/rb.h>
  61. #include <asm/mach-rc32434/rc32434.h>
  62. #include <asm/mach-rc32434/eth.h>
  63. #include <asm/mach-rc32434/dma_v.h>
  64. #define DRV_NAME "korina"
  65. #define DRV_VERSION "0.10"
  66. #define DRV_RELDATE "04Mar2008"
  67. #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
  68. ((dev)->dev_addr[1]))
  69. #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
  70. ((dev)->dev_addr[3] << 16) | \
  71. ((dev)->dev_addr[4] << 8) | \
  72. ((dev)->dev_addr[5]))
  73. #define MII_CLOCK 1250000 /* no more than 2.5MHz */
  74. /* the following must be powers of two */
  75. #define KORINA_NUM_RDS 64 /* number of receive descriptors */
  76. #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
  77. /* KORINA_RBSIZE is the hardware's default maximum receive
  78. * frame size in bytes. Having this hardcoded means that there
  79. * is no support for MTU sizes greater than 1500. */
  80. #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
  81. #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
  82. #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
  83. #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
  84. #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
  85. #define TX_TIMEOUT (6000 * HZ / 1000)
  86. enum chain_status { desc_filled, desc_empty };
  87. #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
  88. #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
  89. #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
  90. /* Information that need to be kept for each board. */
  91. struct korina_private {
  92. struct eth_regs *eth_regs;
  93. struct dma_reg *rx_dma_regs;
  94. struct dma_reg *tx_dma_regs;
  95. struct dma_desc *td_ring; /* transmit descriptor ring */
  96. struct dma_desc *rd_ring; /* receive descriptor ring */
  97. struct sk_buff *tx_skb[KORINA_NUM_TDS];
  98. struct sk_buff *rx_skb[KORINA_NUM_RDS];
  99. int rx_next_done;
  100. int rx_chain_head;
  101. int rx_chain_tail;
  102. enum chain_status rx_chain_status;
  103. int tx_next_done;
  104. int tx_chain_head;
  105. int tx_chain_tail;
  106. enum chain_status tx_chain_status;
  107. int tx_count;
  108. int tx_full;
  109. int rx_irq;
  110. int tx_irq;
  111. int ovr_irq;
  112. int und_irq;
  113. spinlock_t lock; /* NIC xmit lock */
  114. int dma_halt_cnt;
  115. int dma_run_cnt;
  116. struct napi_struct napi;
  117. struct timer_list media_check_timer;
  118. struct mii_if_info mii_if;
  119. struct work_struct restart_task;
  120. struct net_device *dev;
  121. int phy_addr;
  122. };
  123. extern unsigned int idt_cpu_freq;
  124. static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
  125. {
  126. writel(0, &ch->dmandptr);
  127. writel(dma_addr, &ch->dmadptr);
  128. }
  129. static inline void korina_abort_dma(struct net_device *dev,
  130. struct dma_reg *ch)
  131. {
  132. if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
  133. writel(0x10, &ch->dmac);
  134. while (!(readl(&ch->dmas) & DMA_STAT_HALT))
  135. dev->trans_start = jiffies;
  136. writel(0, &ch->dmas);
  137. }
  138. writel(0, &ch->dmadptr);
  139. writel(0, &ch->dmandptr);
  140. }
  141. static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
  142. {
  143. writel(dma_addr, &ch->dmandptr);
  144. }
  145. static void korina_abort_tx(struct net_device *dev)
  146. {
  147. struct korina_private *lp = netdev_priv(dev);
  148. korina_abort_dma(dev, lp->tx_dma_regs);
  149. }
  150. static void korina_abort_rx(struct net_device *dev)
  151. {
  152. struct korina_private *lp = netdev_priv(dev);
  153. korina_abort_dma(dev, lp->rx_dma_regs);
  154. }
  155. static void korina_start_rx(struct korina_private *lp,
  156. struct dma_desc *rd)
  157. {
  158. korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  159. }
  160. static void korina_chain_rx(struct korina_private *lp,
  161. struct dma_desc *rd)
  162. {
  163. korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  164. }
  165. /* transmit packet */
  166. static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
  167. {
  168. struct korina_private *lp = netdev_priv(dev);
  169. unsigned long flags;
  170. u32 length;
  171. u32 chain_prev, chain_next;
  172. struct dma_desc *td;
  173. spin_lock_irqsave(&lp->lock, flags);
  174. td = &lp->td_ring[lp->tx_chain_tail];
  175. /* stop queue when full, drop pkts if queue already full */
  176. if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
  177. lp->tx_full = 1;
  178. if (lp->tx_count == (KORINA_NUM_TDS - 2))
  179. netif_stop_queue(dev);
  180. else {
  181. dev->stats.tx_dropped++;
  182. dev_kfree_skb_any(skb);
  183. spin_unlock_irqrestore(&lp->lock, flags);
  184. return NETDEV_TX_BUSY;
  185. }
  186. }
  187. lp->tx_count++;
  188. lp->tx_skb[lp->tx_chain_tail] = skb;
  189. length = skb->len;
  190. dma_cache_wback((u32)skb->data, skb->len);
  191. /* Setup the transmit descriptor. */
  192. dma_cache_inv((u32) td, sizeof(*td));
  193. td->ca = CPHYSADDR(skb->data);
  194. chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
  195. chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
  196. if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
  197. if (lp->tx_chain_status == desc_empty) {
  198. /* Update tail */
  199. td->control = DMA_COUNT(length) |
  200. DMA_DESC_COF | DMA_DESC_IOF;
  201. /* Move tail */
  202. lp->tx_chain_tail = chain_next;
  203. /* Write to NDPTR */
  204. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  205. &lp->tx_dma_regs->dmandptr);
  206. /* Move head to tail */
  207. lp->tx_chain_head = lp->tx_chain_tail;
  208. } else {
  209. /* Update tail */
  210. td->control = DMA_COUNT(length) |
  211. DMA_DESC_COF | DMA_DESC_IOF;
  212. /* Link to prev */
  213. lp->td_ring[chain_prev].control &=
  214. ~DMA_DESC_COF;
  215. /* Link to prev */
  216. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  217. /* Move tail */
  218. lp->tx_chain_tail = chain_next;
  219. /* Write to NDPTR */
  220. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  221. &(lp->tx_dma_regs->dmandptr));
  222. /* Move head to tail */
  223. lp->tx_chain_head = lp->tx_chain_tail;
  224. lp->tx_chain_status = desc_empty;
  225. }
  226. } else {
  227. if (lp->tx_chain_status == desc_empty) {
  228. /* Update tail */
  229. td->control = DMA_COUNT(length) |
  230. DMA_DESC_COF | DMA_DESC_IOF;
  231. /* Move tail */
  232. lp->tx_chain_tail = chain_next;
  233. lp->tx_chain_status = desc_filled;
  234. } else {
  235. /* Update tail */
  236. td->control = DMA_COUNT(length) |
  237. DMA_DESC_COF | DMA_DESC_IOF;
  238. lp->td_ring[chain_prev].control &=
  239. ~DMA_DESC_COF;
  240. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  241. lp->tx_chain_tail = chain_next;
  242. }
  243. }
  244. dma_cache_wback((u32) td, sizeof(*td));
  245. dev->trans_start = jiffies;
  246. spin_unlock_irqrestore(&lp->lock, flags);
  247. return NETDEV_TX_OK;
  248. }
  249. static int mdio_read(struct net_device *dev, int mii_id, int reg)
  250. {
  251. struct korina_private *lp = netdev_priv(dev);
  252. int ret;
  253. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  254. writel(0, &lp->eth_regs->miimcfg);
  255. writel(0, &lp->eth_regs->miimcmd);
  256. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  257. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  258. ret = (int)(readl(&lp->eth_regs->miimrdd));
  259. return ret;
  260. }
  261. static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
  262. {
  263. struct korina_private *lp = netdev_priv(dev);
  264. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  265. writel(0, &lp->eth_regs->miimcfg);
  266. writel(1, &lp->eth_regs->miimcmd);
  267. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  268. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  269. writel(val, &lp->eth_regs->miimwtd);
  270. }
  271. /* Ethernet Rx DMA interrupt */
  272. static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
  273. {
  274. struct net_device *dev = dev_id;
  275. struct korina_private *lp = netdev_priv(dev);
  276. u32 dmas, dmasm;
  277. irqreturn_t retval;
  278. dmas = readl(&lp->rx_dma_regs->dmas);
  279. if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
  280. dmasm = readl(&lp->rx_dma_regs->dmasm);
  281. writel(dmasm | (DMA_STAT_DONE |
  282. DMA_STAT_HALT | DMA_STAT_ERR),
  283. &lp->rx_dma_regs->dmasm);
  284. napi_schedule(&lp->napi);
  285. if (dmas & DMA_STAT_ERR)
  286. printk(KERN_ERR "%s: DMA error\n", dev->name);
  287. retval = IRQ_HANDLED;
  288. } else
  289. retval = IRQ_NONE;
  290. return retval;
  291. }
  292. static int korina_rx(struct net_device *dev, int limit)
  293. {
  294. struct korina_private *lp = netdev_priv(dev);
  295. struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
  296. struct sk_buff *skb, *skb_new;
  297. u8 *pkt_buf;
  298. u32 devcs, pkt_len, dmas;
  299. int count;
  300. dma_cache_inv((u32)rd, sizeof(*rd));
  301. for (count = 0; count < limit; count++) {
  302. skb = lp->rx_skb[lp->rx_next_done];
  303. skb_new = NULL;
  304. devcs = rd->devcs;
  305. if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
  306. break;
  307. /* Update statistics counters */
  308. if (devcs & ETH_RX_CRC)
  309. dev->stats.rx_crc_errors++;
  310. if (devcs & ETH_RX_LOR)
  311. dev->stats.rx_length_errors++;
  312. if (devcs & ETH_RX_LE)
  313. dev->stats.rx_length_errors++;
  314. if (devcs & ETH_RX_OVR)
  315. dev->stats.rx_fifo_errors++;
  316. if (devcs & ETH_RX_CV)
  317. dev->stats.rx_frame_errors++;
  318. if (devcs & ETH_RX_CES)
  319. dev->stats.rx_length_errors++;
  320. if (devcs & ETH_RX_MP)
  321. dev->stats.multicast++;
  322. if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
  323. /* check that this is a whole packet
  324. * WARNING: DMA_FD bit incorrectly set
  325. * in Rc32434 (errata ref #077) */
  326. dev->stats.rx_errors++;
  327. dev->stats.rx_dropped++;
  328. } else if ((devcs & ETH_RX_ROK)) {
  329. pkt_len = RCVPKT_LENGTH(devcs);
  330. /* must be the (first and) last
  331. * descriptor then */
  332. pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
  333. /* invalidate the cache */
  334. dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
  335. /* Malloc up new buffer. */
  336. skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
  337. if (!skb_new)
  338. break;
  339. /* Do not count the CRC */
  340. skb_put(skb, pkt_len - 4);
  341. skb->protocol = eth_type_trans(skb, dev);
  342. /* Pass the packet to upper layers */
  343. netif_receive_skb(skb);
  344. dev->stats.rx_packets++;
  345. dev->stats.rx_bytes += pkt_len;
  346. /* Update the mcast stats */
  347. if (devcs & ETH_RX_MP)
  348. dev->stats.multicast++;
  349. lp->rx_skb[lp->rx_next_done] = skb_new;
  350. }
  351. rd->devcs = 0;
  352. /* Restore descriptor's curr_addr */
  353. if (skb_new)
  354. rd->ca = CPHYSADDR(skb_new->data);
  355. else
  356. rd->ca = CPHYSADDR(skb->data);
  357. rd->control = DMA_COUNT(KORINA_RBSIZE) |
  358. DMA_DESC_COD | DMA_DESC_IOD;
  359. lp->rd_ring[(lp->rx_next_done - 1) &
  360. KORINA_RDS_MASK].control &=
  361. ~DMA_DESC_COD;
  362. lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
  363. dma_cache_wback((u32)rd, sizeof(*rd));
  364. rd = &lp->rd_ring[lp->rx_next_done];
  365. writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
  366. }
  367. dmas = readl(&lp->rx_dma_regs->dmas);
  368. if (dmas & DMA_STAT_HALT) {
  369. writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
  370. &lp->rx_dma_regs->dmas);
  371. lp->dma_halt_cnt++;
  372. rd->devcs = 0;
  373. skb = lp->rx_skb[lp->rx_next_done];
  374. rd->ca = CPHYSADDR(skb->data);
  375. dma_cache_wback((u32)rd, sizeof(*rd));
  376. korina_chain_rx(lp, rd);
  377. }
  378. return count;
  379. }
  380. static int korina_poll(struct napi_struct *napi, int budget)
  381. {
  382. struct korina_private *lp =
  383. container_of(napi, struct korina_private, napi);
  384. struct net_device *dev = lp->dev;
  385. int work_done;
  386. work_done = korina_rx(dev, budget);
  387. if (work_done < budget) {
  388. napi_complete(napi);
  389. writel(readl(&lp->rx_dma_regs->dmasm) &
  390. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  391. &lp->rx_dma_regs->dmasm);
  392. }
  393. return work_done;
  394. }
  395. /*
  396. * Set or clear the multicast filter for this adaptor.
  397. */
  398. static void korina_multicast_list(struct net_device *dev)
  399. {
  400. struct korina_private *lp = netdev_priv(dev);
  401. unsigned long flags;
  402. struct netdev_hw_addr *ha;
  403. u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
  404. int i;
  405. /* Set promiscuous mode */
  406. if (dev->flags & IFF_PROMISC)
  407. recognise |= ETH_ARC_PRO;
  408. else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
  409. /* All multicast and broadcast */
  410. recognise |= ETH_ARC_AM;
  411. /* Build the hash table */
  412. if (netdev_mc_count(dev) > 4) {
  413. u16 hash_table[4] = { 0 };
  414. u32 crc;
  415. netdev_for_each_mc_addr(ha, dev) {
  416. crc = ether_crc_le(6, ha->addr);
  417. crc >>= 26;
  418. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  419. }
  420. /* Accept filtered multicast */
  421. recognise |= ETH_ARC_AFM;
  422. /* Fill the MAC hash tables with their values */
  423. writel((u32)(hash_table[1] << 16 | hash_table[0]),
  424. &lp->eth_regs->ethhash0);
  425. writel((u32)(hash_table[3] << 16 | hash_table[2]),
  426. &lp->eth_regs->ethhash1);
  427. }
  428. spin_lock_irqsave(&lp->lock, flags);
  429. writel(recognise, &lp->eth_regs->etharc);
  430. spin_unlock_irqrestore(&lp->lock, flags);
  431. }
  432. static void korina_tx(struct net_device *dev)
  433. {
  434. struct korina_private *lp = netdev_priv(dev);
  435. struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
  436. u32 devcs;
  437. u32 dmas;
  438. spin_lock(&lp->lock);
  439. /* Process all desc that are done */
  440. while (IS_DMA_FINISHED(td->control)) {
  441. if (lp->tx_full == 1) {
  442. netif_wake_queue(dev);
  443. lp->tx_full = 0;
  444. }
  445. devcs = lp->td_ring[lp->tx_next_done].devcs;
  446. if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
  447. (ETH_TX_FD | ETH_TX_LD)) {
  448. dev->stats.tx_errors++;
  449. dev->stats.tx_dropped++;
  450. /* Should never happen */
  451. printk(KERN_ERR "%s: split tx ignored\n",
  452. dev->name);
  453. } else if (devcs & ETH_TX_TOK) {
  454. dev->stats.tx_packets++;
  455. dev->stats.tx_bytes +=
  456. lp->tx_skb[lp->tx_next_done]->len;
  457. } else {
  458. dev->stats.tx_errors++;
  459. dev->stats.tx_dropped++;
  460. /* Underflow */
  461. if (devcs & ETH_TX_UND)
  462. dev->stats.tx_fifo_errors++;
  463. /* Oversized frame */
  464. if (devcs & ETH_TX_OF)
  465. dev->stats.tx_aborted_errors++;
  466. /* Excessive deferrals */
  467. if (devcs & ETH_TX_ED)
  468. dev->stats.tx_carrier_errors++;
  469. /* Collisions: medium busy */
  470. if (devcs & ETH_TX_EC)
  471. dev->stats.collisions++;
  472. /* Late collision */
  473. if (devcs & ETH_TX_LC)
  474. dev->stats.tx_window_errors++;
  475. }
  476. /* We must always free the original skb */
  477. if (lp->tx_skb[lp->tx_next_done]) {
  478. dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
  479. lp->tx_skb[lp->tx_next_done] = NULL;
  480. }
  481. lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
  482. lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
  483. lp->td_ring[lp->tx_next_done].link = 0;
  484. lp->td_ring[lp->tx_next_done].ca = 0;
  485. lp->tx_count--;
  486. /* Go on to next transmission */
  487. lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
  488. td = &lp->td_ring[lp->tx_next_done];
  489. }
  490. /* Clear the DMA status register */
  491. dmas = readl(&lp->tx_dma_regs->dmas);
  492. writel(~dmas, &lp->tx_dma_regs->dmas);
  493. writel(readl(&lp->tx_dma_regs->dmasm) &
  494. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  495. &lp->tx_dma_regs->dmasm);
  496. spin_unlock(&lp->lock);
  497. }
  498. static irqreturn_t
  499. korina_tx_dma_interrupt(int irq, void *dev_id)
  500. {
  501. struct net_device *dev = dev_id;
  502. struct korina_private *lp = netdev_priv(dev);
  503. u32 dmas, dmasm;
  504. irqreturn_t retval;
  505. dmas = readl(&lp->tx_dma_regs->dmas);
  506. if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
  507. dmasm = readl(&lp->tx_dma_regs->dmasm);
  508. writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
  509. &lp->tx_dma_regs->dmasm);
  510. korina_tx(dev);
  511. if (lp->tx_chain_status == desc_filled &&
  512. (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
  513. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  514. &(lp->tx_dma_regs->dmandptr));
  515. lp->tx_chain_status = desc_empty;
  516. lp->tx_chain_head = lp->tx_chain_tail;
  517. dev->trans_start = jiffies;
  518. }
  519. if (dmas & DMA_STAT_ERR)
  520. printk(KERN_ERR "%s: DMA error\n", dev->name);
  521. retval = IRQ_HANDLED;
  522. } else
  523. retval = IRQ_NONE;
  524. return retval;
  525. }
  526. static void korina_check_media(struct net_device *dev, unsigned int init_media)
  527. {
  528. struct korina_private *lp = netdev_priv(dev);
  529. mii_check_media(&lp->mii_if, 0, init_media);
  530. if (lp->mii_if.full_duplex)
  531. writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
  532. &lp->eth_regs->ethmac2);
  533. else
  534. writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
  535. &lp->eth_regs->ethmac2);
  536. }
  537. static void korina_poll_media(unsigned long data)
  538. {
  539. struct net_device *dev = (struct net_device *) data;
  540. struct korina_private *lp = netdev_priv(dev);
  541. korina_check_media(dev, 0);
  542. mod_timer(&lp->media_check_timer, jiffies + HZ);
  543. }
  544. static void korina_set_carrier(struct mii_if_info *mii)
  545. {
  546. if (mii->force_media) {
  547. /* autoneg is off: Link is always assumed to be up */
  548. if (!netif_carrier_ok(mii->dev))
  549. netif_carrier_on(mii->dev);
  550. } else /* Let MMI library update carrier status */
  551. korina_check_media(mii->dev, 0);
  552. }
  553. static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  554. {
  555. struct korina_private *lp = netdev_priv(dev);
  556. struct mii_ioctl_data *data = if_mii(rq);
  557. int rc;
  558. if (!netif_running(dev))
  559. return -EINVAL;
  560. spin_lock_irq(&lp->lock);
  561. rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
  562. spin_unlock_irq(&lp->lock);
  563. korina_set_carrier(&lp->mii_if);
  564. return rc;
  565. }
  566. /* ethtool helpers */
  567. static void netdev_get_drvinfo(struct net_device *dev,
  568. struct ethtool_drvinfo *info)
  569. {
  570. struct korina_private *lp = netdev_priv(dev);
  571. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  572. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  573. strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
  574. }
  575. static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  576. {
  577. struct korina_private *lp = netdev_priv(dev);
  578. int rc;
  579. spin_lock_irq(&lp->lock);
  580. rc = mii_ethtool_gset(&lp->mii_if, cmd);
  581. spin_unlock_irq(&lp->lock);
  582. return rc;
  583. }
  584. static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  585. {
  586. struct korina_private *lp = netdev_priv(dev);
  587. int rc;
  588. spin_lock_irq(&lp->lock);
  589. rc = mii_ethtool_sset(&lp->mii_if, cmd);
  590. spin_unlock_irq(&lp->lock);
  591. korina_set_carrier(&lp->mii_if);
  592. return rc;
  593. }
  594. static u32 netdev_get_link(struct net_device *dev)
  595. {
  596. struct korina_private *lp = netdev_priv(dev);
  597. return mii_link_ok(&lp->mii_if);
  598. }
  599. static const struct ethtool_ops netdev_ethtool_ops = {
  600. .get_drvinfo = netdev_get_drvinfo,
  601. .get_settings = netdev_get_settings,
  602. .set_settings = netdev_set_settings,
  603. .get_link = netdev_get_link,
  604. };
  605. static int korina_alloc_ring(struct net_device *dev)
  606. {
  607. struct korina_private *lp = netdev_priv(dev);
  608. struct sk_buff *skb;
  609. int i;
  610. /* Initialize the transmit descriptors */
  611. for (i = 0; i < KORINA_NUM_TDS; i++) {
  612. lp->td_ring[i].control = DMA_DESC_IOF;
  613. lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
  614. lp->td_ring[i].ca = 0;
  615. lp->td_ring[i].link = 0;
  616. }
  617. lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
  618. lp->tx_full = lp->tx_count = 0;
  619. lp->tx_chain_status = desc_empty;
  620. /* Initialize the receive descriptors */
  621. for (i = 0; i < KORINA_NUM_RDS; i++) {
  622. skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
  623. if (!skb)
  624. return -ENOMEM;
  625. lp->rx_skb[i] = skb;
  626. lp->rd_ring[i].control = DMA_DESC_IOD |
  627. DMA_COUNT(KORINA_RBSIZE);
  628. lp->rd_ring[i].devcs = 0;
  629. lp->rd_ring[i].ca = CPHYSADDR(skb->data);
  630. lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
  631. }
  632. /* loop back receive descriptors, so the last
  633. * descriptor points to the first one */
  634. lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
  635. lp->rd_ring[i - 1].control |= DMA_DESC_COD;
  636. lp->rx_next_done = 0;
  637. lp->rx_chain_head = 0;
  638. lp->rx_chain_tail = 0;
  639. lp->rx_chain_status = desc_empty;
  640. return 0;
  641. }
  642. static void korina_free_ring(struct net_device *dev)
  643. {
  644. struct korina_private *lp = netdev_priv(dev);
  645. int i;
  646. for (i = 0; i < KORINA_NUM_RDS; i++) {
  647. lp->rd_ring[i].control = 0;
  648. if (lp->rx_skb[i])
  649. dev_kfree_skb_any(lp->rx_skb[i]);
  650. lp->rx_skb[i] = NULL;
  651. }
  652. for (i = 0; i < KORINA_NUM_TDS; i++) {
  653. lp->td_ring[i].control = 0;
  654. if (lp->tx_skb[i])
  655. dev_kfree_skb_any(lp->tx_skb[i]);
  656. lp->tx_skb[i] = NULL;
  657. }
  658. }
  659. /*
  660. * Initialize the RC32434 ethernet controller.
  661. */
  662. static int korina_init(struct net_device *dev)
  663. {
  664. struct korina_private *lp = netdev_priv(dev);
  665. /* Disable DMA */
  666. korina_abort_tx(dev);
  667. korina_abort_rx(dev);
  668. /* reset ethernet logic */
  669. writel(0, &lp->eth_regs->ethintfc);
  670. while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
  671. dev->trans_start = jiffies;
  672. /* Enable Ethernet Interface */
  673. writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
  674. /* Allocate rings */
  675. if (korina_alloc_ring(dev)) {
  676. printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
  677. korina_free_ring(dev);
  678. return -ENOMEM;
  679. }
  680. writel(0, &lp->rx_dma_regs->dmas);
  681. /* Start Rx DMA */
  682. korina_start_rx(lp, &lp->rd_ring[0]);
  683. writel(readl(&lp->tx_dma_regs->dmasm) &
  684. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  685. &lp->tx_dma_regs->dmasm);
  686. writel(readl(&lp->rx_dma_regs->dmasm) &
  687. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  688. &lp->rx_dma_regs->dmasm);
  689. /* Accept only packets destined for this Ethernet device address */
  690. writel(ETH_ARC_AB, &lp->eth_regs->etharc);
  691. /* Set all Ether station address registers to their initial values */
  692. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
  693. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
  694. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
  695. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
  696. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
  697. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
  698. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
  699. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
  700. /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
  701. writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
  702. &lp->eth_regs->ethmac2);
  703. /* Back to back inter-packet-gap */
  704. writel(0x15, &lp->eth_regs->ethipgt);
  705. /* Non - Back to back inter-packet-gap */
  706. writel(0x12, &lp->eth_regs->ethipgr);
  707. /* Management Clock Prescaler Divisor
  708. * Clock independent setting */
  709. writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
  710. &lp->eth_regs->ethmcp);
  711. /* don't transmit until fifo contains 48b */
  712. writel(48, &lp->eth_regs->ethfifott);
  713. writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
  714. napi_enable(&lp->napi);
  715. netif_start_queue(dev);
  716. return 0;
  717. }
  718. /*
  719. * Restart the RC32434 ethernet controller.
  720. */
  721. static void korina_restart_task(struct work_struct *work)
  722. {
  723. struct korina_private *lp = container_of(work,
  724. struct korina_private, restart_task);
  725. struct net_device *dev = lp->dev;
  726. /*
  727. * Disable interrupts
  728. */
  729. disable_irq(lp->rx_irq);
  730. disable_irq(lp->tx_irq);
  731. disable_irq(lp->ovr_irq);
  732. disable_irq(lp->und_irq);
  733. writel(readl(&lp->tx_dma_regs->dmasm) |
  734. DMA_STAT_FINI | DMA_STAT_ERR,
  735. &lp->tx_dma_regs->dmasm);
  736. writel(readl(&lp->rx_dma_regs->dmasm) |
  737. DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
  738. &lp->rx_dma_regs->dmasm);
  739. korina_free_ring(dev);
  740. napi_disable(&lp->napi);
  741. if (korina_init(dev) < 0) {
  742. printk(KERN_ERR "%s: cannot restart device\n", dev->name);
  743. return;
  744. }
  745. korina_multicast_list(dev);
  746. enable_irq(lp->und_irq);
  747. enable_irq(lp->ovr_irq);
  748. enable_irq(lp->tx_irq);
  749. enable_irq(lp->rx_irq);
  750. }
  751. static void korina_clear_and_restart(struct net_device *dev, u32 value)
  752. {
  753. struct korina_private *lp = netdev_priv(dev);
  754. netif_stop_queue(dev);
  755. writel(value, &lp->eth_regs->ethintfc);
  756. schedule_work(&lp->restart_task);
  757. }
  758. /* Ethernet Tx Underflow interrupt */
  759. static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
  760. {
  761. struct net_device *dev = dev_id;
  762. struct korina_private *lp = netdev_priv(dev);
  763. unsigned int und;
  764. spin_lock(&lp->lock);
  765. und = readl(&lp->eth_regs->ethintfc);
  766. if (und & ETH_INT_FC_UND)
  767. korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
  768. spin_unlock(&lp->lock);
  769. return IRQ_HANDLED;
  770. }
  771. static void korina_tx_timeout(struct net_device *dev)
  772. {
  773. struct korina_private *lp = netdev_priv(dev);
  774. schedule_work(&lp->restart_task);
  775. }
  776. /* Ethernet Rx Overflow interrupt */
  777. static irqreturn_t
  778. korina_ovr_interrupt(int irq, void *dev_id)
  779. {
  780. struct net_device *dev = dev_id;
  781. struct korina_private *lp = netdev_priv(dev);
  782. unsigned int ovr;
  783. spin_lock(&lp->lock);
  784. ovr = readl(&lp->eth_regs->ethintfc);
  785. if (ovr & ETH_INT_FC_OVR)
  786. korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
  787. spin_unlock(&lp->lock);
  788. return IRQ_HANDLED;
  789. }
  790. #ifdef CONFIG_NET_POLL_CONTROLLER
  791. static void korina_poll_controller(struct net_device *dev)
  792. {
  793. disable_irq(dev->irq);
  794. korina_tx_dma_interrupt(dev->irq, dev);
  795. enable_irq(dev->irq);
  796. }
  797. #endif
  798. static int korina_open(struct net_device *dev)
  799. {
  800. struct korina_private *lp = netdev_priv(dev);
  801. int ret;
  802. /* Initialize */
  803. ret = korina_init(dev);
  804. if (ret < 0) {
  805. printk(KERN_ERR "%s: cannot open device\n", dev->name);
  806. goto out;
  807. }
  808. /* Install the interrupt handler
  809. * that handles the Done Finished
  810. * Ovr and Und Events */
  811. ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
  812. IRQF_DISABLED, "Korina ethernet Rx", dev);
  813. if (ret < 0) {
  814. printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
  815. dev->name, lp->rx_irq);
  816. goto err_release;
  817. }
  818. ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
  819. IRQF_DISABLED, "Korina ethernet Tx", dev);
  820. if (ret < 0) {
  821. printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
  822. dev->name, lp->tx_irq);
  823. goto err_free_rx_irq;
  824. }
  825. /* Install handler for overrun error. */
  826. ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
  827. IRQF_DISABLED, "Ethernet Overflow", dev);
  828. if (ret < 0) {
  829. printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
  830. dev->name, lp->ovr_irq);
  831. goto err_free_tx_irq;
  832. }
  833. /* Install handler for underflow error. */
  834. ret = request_irq(lp->und_irq, korina_und_interrupt,
  835. IRQF_DISABLED, "Ethernet Underflow", dev);
  836. if (ret < 0) {
  837. printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
  838. dev->name, lp->und_irq);
  839. goto err_free_ovr_irq;
  840. }
  841. mod_timer(&lp->media_check_timer, jiffies + 1);
  842. out:
  843. return ret;
  844. err_free_ovr_irq:
  845. free_irq(lp->ovr_irq, dev);
  846. err_free_tx_irq:
  847. free_irq(lp->tx_irq, dev);
  848. err_free_rx_irq:
  849. free_irq(lp->rx_irq, dev);
  850. err_release:
  851. korina_free_ring(dev);
  852. goto out;
  853. }
  854. static int korina_close(struct net_device *dev)
  855. {
  856. struct korina_private *lp = netdev_priv(dev);
  857. u32 tmp;
  858. del_timer(&lp->media_check_timer);
  859. /* Disable interrupts */
  860. disable_irq(lp->rx_irq);
  861. disable_irq(lp->tx_irq);
  862. disable_irq(lp->ovr_irq);
  863. disable_irq(lp->und_irq);
  864. korina_abort_tx(dev);
  865. tmp = readl(&lp->tx_dma_regs->dmasm);
  866. tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
  867. writel(tmp, &lp->tx_dma_regs->dmasm);
  868. korina_abort_rx(dev);
  869. tmp = readl(&lp->rx_dma_regs->dmasm);
  870. tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
  871. writel(tmp, &lp->rx_dma_regs->dmasm);
  872. korina_free_ring(dev);
  873. napi_disable(&lp->napi);
  874. cancel_work_sync(&lp->restart_task);
  875. free_irq(lp->rx_irq, dev);
  876. free_irq(lp->tx_irq, dev);
  877. free_irq(lp->ovr_irq, dev);
  878. free_irq(lp->und_irq, dev);
  879. return 0;
  880. }
  881. static const struct net_device_ops korina_netdev_ops = {
  882. .ndo_open = korina_open,
  883. .ndo_stop = korina_close,
  884. .ndo_start_xmit = korina_send_packet,
  885. .ndo_set_rx_mode = korina_multicast_list,
  886. .ndo_tx_timeout = korina_tx_timeout,
  887. .ndo_do_ioctl = korina_ioctl,
  888. .ndo_change_mtu = eth_change_mtu,
  889. .ndo_validate_addr = eth_validate_addr,
  890. .ndo_set_mac_address = eth_mac_addr,
  891. #ifdef CONFIG_NET_POLL_CONTROLLER
  892. .ndo_poll_controller = korina_poll_controller,
  893. #endif
  894. };
  895. static int korina_probe(struct platform_device *pdev)
  896. {
  897. struct korina_device *bif = platform_get_drvdata(pdev);
  898. struct korina_private *lp;
  899. struct net_device *dev;
  900. struct resource *r;
  901. int rc;
  902. dev = alloc_etherdev(sizeof(struct korina_private));
  903. if (!dev)
  904. return -ENOMEM;
  905. SET_NETDEV_DEV(dev, &pdev->dev);
  906. lp = netdev_priv(dev);
  907. bif->dev = dev;
  908. memcpy(dev->dev_addr, bif->mac, 6);
  909. lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
  910. lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
  911. lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
  912. lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
  913. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
  914. dev->base_addr = r->start;
  915. lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
  916. if (!lp->eth_regs) {
  917. printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
  918. rc = -ENXIO;
  919. goto probe_err_out;
  920. }
  921. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
  922. lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
  923. if (!lp->rx_dma_regs) {
  924. printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
  925. rc = -ENXIO;
  926. goto probe_err_dma_rx;
  927. }
  928. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
  929. lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
  930. if (!lp->tx_dma_regs) {
  931. printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
  932. rc = -ENXIO;
  933. goto probe_err_dma_tx;
  934. }
  935. lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
  936. if (!lp->td_ring) {
  937. rc = -ENXIO;
  938. goto probe_err_td_ring;
  939. }
  940. dma_cache_inv((unsigned long)(lp->td_ring),
  941. TD_RING_SIZE + RD_RING_SIZE);
  942. /* now convert TD_RING pointer to KSEG1 */
  943. lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
  944. lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
  945. spin_lock_init(&lp->lock);
  946. /* just use the rx dma irq */
  947. dev->irq = lp->rx_irq;
  948. lp->dev = dev;
  949. dev->netdev_ops = &korina_netdev_ops;
  950. dev->ethtool_ops = &netdev_ethtool_ops;
  951. dev->watchdog_timeo = TX_TIMEOUT;
  952. netif_napi_add(dev, &lp->napi, korina_poll, 64);
  953. lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
  954. lp->mii_if.dev = dev;
  955. lp->mii_if.mdio_read = mdio_read;
  956. lp->mii_if.mdio_write = mdio_write;
  957. lp->mii_if.phy_id = lp->phy_addr;
  958. lp->mii_if.phy_id_mask = 0x1f;
  959. lp->mii_if.reg_num_mask = 0x1f;
  960. rc = register_netdev(dev);
  961. if (rc < 0) {
  962. printk(KERN_ERR DRV_NAME
  963. ": cannot register net device: %d\n", rc);
  964. goto probe_err_register;
  965. }
  966. setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
  967. INIT_WORK(&lp->restart_task, korina_restart_task);
  968. printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
  969. dev->name);
  970. out:
  971. return rc;
  972. probe_err_register:
  973. kfree(lp->td_ring);
  974. probe_err_td_ring:
  975. iounmap(lp->tx_dma_regs);
  976. probe_err_dma_tx:
  977. iounmap(lp->rx_dma_regs);
  978. probe_err_dma_rx:
  979. iounmap(lp->eth_regs);
  980. probe_err_out:
  981. free_netdev(dev);
  982. goto out;
  983. }
  984. static int korina_remove(struct platform_device *pdev)
  985. {
  986. struct korina_device *bif = platform_get_drvdata(pdev);
  987. struct korina_private *lp = netdev_priv(bif->dev);
  988. iounmap(lp->eth_regs);
  989. iounmap(lp->rx_dma_regs);
  990. iounmap(lp->tx_dma_regs);
  991. unregister_netdev(bif->dev);
  992. free_netdev(bif->dev);
  993. return 0;
  994. }
  995. static struct platform_driver korina_driver = {
  996. .driver.name = "korina",
  997. .probe = korina_probe,
  998. .remove = korina_remove,
  999. };
  1000. module_platform_driver(korina_driver);
  1001. MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
  1002. MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
  1003. MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
  1004. MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
  1005. MODULE_LICENSE("GPL");