amd5536udc.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. /*
  13. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  14. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  15. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  16. *
  17. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  18. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  19. * by BIOS init).
  20. *
  21. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  22. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  23. * can be used with gadget ether.
  24. */
  25. /* debug control */
  26. /* #define UDC_VERBOSE */
  27. /* Driver strings */
  28. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  29. #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
  30. /* system */
  31. #include <linux/module.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/delay.h>
  35. #include <linux/ioport.h>
  36. #include <linux/sched.h>
  37. #include <linux/slab.h>
  38. #include <linux/errno.h>
  39. #include <linux/init.h>
  40. #include <linux/timer.h>
  41. #include <linux/list.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/ioctl.h>
  44. #include <linux/fs.h>
  45. #include <linux/dmapool.h>
  46. #include <linux/moduleparam.h>
  47. #include <linux/device.h>
  48. #include <linux/io.h>
  49. #include <linux/irq.h>
  50. #include <linux/prefetch.h>
  51. #include <asm/byteorder.h>
  52. #include <asm/system.h>
  53. #include <asm/unaligned.h>
  54. /* gadget stack */
  55. #include <linux/usb/ch9.h>
  56. #include <linux/usb/gadget.h>
  57. /* udc specific */
  58. #include "amd5536udc.h"
  59. static void udc_tasklet_disconnect(unsigned long);
  60. static void empty_req_queue(struct udc_ep *);
  61. static int udc_probe(struct udc *dev);
  62. static void udc_basic_init(struct udc *dev);
  63. static void udc_setup_endpoints(struct udc *dev);
  64. static void udc_soft_reset(struct udc *dev);
  65. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  66. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  67. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  68. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  69. unsigned long buf_len, gfp_t gfp_flags);
  70. static int udc_remote_wakeup(struct udc *dev);
  71. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  72. static void udc_pci_remove(struct pci_dev *pdev);
  73. /* description */
  74. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  75. static const char name[] = "amd5536udc";
  76. /* structure to hold endpoint function pointers */
  77. static const struct usb_ep_ops udc_ep_ops;
  78. /* received setup data */
  79. static union udc_setup_data setup_data;
  80. /* pointer to device object */
  81. static struct udc *udc;
  82. /* irq spin lock for soft reset */
  83. static DEFINE_SPINLOCK(udc_irq_spinlock);
  84. /* stall spin lock */
  85. static DEFINE_SPINLOCK(udc_stall_spinlock);
  86. /*
  87. * slave mode: pending bytes in rx fifo after nyet,
  88. * used if EPIN irq came but no req was available
  89. */
  90. static unsigned int udc_rxfifo_pending;
  91. /* count soft resets after suspend to avoid loop */
  92. static int soft_reset_occured;
  93. static int soft_reset_after_usbreset_occured;
  94. /* timer */
  95. static struct timer_list udc_timer;
  96. static int stop_timer;
  97. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  98. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  99. * all OUT endpoints. So we have to handle race conditions like
  100. * when OUT data reaches the fifo but no request was queued yet.
  101. * This cannot be solved by letting the RX DMA disabled until a
  102. * request gets queued because there may be other OUT packets
  103. * in the FIFO (important for not blocking control traffic).
  104. * The value of set_rde controls the correspondig timer.
  105. *
  106. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  107. * set_rde 0 == do not touch RDE, do no start the RDE timer
  108. * set_rde 1 == timer function will look whether FIFO has data
  109. * set_rde 2 == set by timer function to enable RX DMA on next call
  110. */
  111. static int set_rde = -1;
  112. static DECLARE_COMPLETION(on_exit);
  113. static struct timer_list udc_pollstall_timer;
  114. static int stop_pollstall_timer;
  115. static DECLARE_COMPLETION(on_pollstall_exit);
  116. /* tasklet for usb disconnect */
  117. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  118. (unsigned long) &udc);
  119. /* endpoint names used for print */
  120. static const char ep0_string[] = "ep0in";
  121. static const char *ep_string[] = {
  122. ep0_string,
  123. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  124. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  125. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  126. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  127. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  128. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  129. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  130. };
  131. /* DMA usage flag */
  132. static bool use_dma = 1;
  133. /* packet per buffer dma */
  134. static bool use_dma_ppb = 1;
  135. /* with per descr. update */
  136. static bool use_dma_ppb_du;
  137. /* buffer fill mode */
  138. static int use_dma_bufferfill_mode;
  139. /* full speed only mode */
  140. static bool use_fullspeed;
  141. /* tx buffer size for high speed */
  142. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  143. /* module parameters */
  144. module_param(use_dma, bool, S_IRUGO);
  145. MODULE_PARM_DESC(use_dma, "true for DMA");
  146. module_param(use_dma_ppb, bool, S_IRUGO);
  147. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  148. module_param(use_dma_ppb_du, bool, S_IRUGO);
  149. MODULE_PARM_DESC(use_dma_ppb_du,
  150. "true for DMA in packet per buffer mode with descriptor update");
  151. module_param(use_fullspeed, bool, S_IRUGO);
  152. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  153. /*---------------------------------------------------------------------------*/
  154. /* Prints UDC device registers and endpoint irq registers */
  155. static void print_regs(struct udc *dev)
  156. {
  157. DBG(dev, "------- Device registers -------\n");
  158. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  159. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  160. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  161. DBG(dev, "\n");
  162. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  163. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  164. DBG(dev, "\n");
  165. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  166. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  167. DBG(dev, "\n");
  168. DBG(dev, "USE DMA = %d\n", use_dma);
  169. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  170. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  171. "WITHOUT desc. update)\n");
  172. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  173. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  174. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  175. "WITH desc. update)\n");
  176. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  177. }
  178. if (use_dma && use_dma_bufferfill_mode) {
  179. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  180. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  181. }
  182. if (!use_dma) {
  183. dev_info(&dev->pdev->dev, "FIFO mode\n");
  184. }
  185. DBG(dev, "-------------------------------------------------------\n");
  186. }
  187. /* Masks unused interrupts */
  188. static int udc_mask_unused_interrupts(struct udc *dev)
  189. {
  190. u32 tmp;
  191. /* mask all dev interrupts */
  192. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  193. AMD_BIT(UDC_DEVINT_ENUM) |
  194. AMD_BIT(UDC_DEVINT_US) |
  195. AMD_BIT(UDC_DEVINT_UR) |
  196. AMD_BIT(UDC_DEVINT_ES) |
  197. AMD_BIT(UDC_DEVINT_SI) |
  198. AMD_BIT(UDC_DEVINT_SOF)|
  199. AMD_BIT(UDC_DEVINT_SC);
  200. writel(tmp, &dev->regs->irqmsk);
  201. /* mask all ep interrupts */
  202. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  203. return 0;
  204. }
  205. /* Enables endpoint 0 interrupts */
  206. static int udc_enable_ep0_interrupts(struct udc *dev)
  207. {
  208. u32 tmp;
  209. DBG(dev, "udc_enable_ep0_interrupts()\n");
  210. /* read irq mask */
  211. tmp = readl(&dev->regs->ep_irqmsk);
  212. /* enable ep0 irq's */
  213. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  214. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  215. writel(tmp, &dev->regs->ep_irqmsk);
  216. return 0;
  217. }
  218. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  219. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  220. {
  221. u32 tmp;
  222. DBG(dev, "enable device interrupts for setup data\n");
  223. /* read irq mask */
  224. tmp = readl(&dev->regs->irqmsk);
  225. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  226. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  227. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  228. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  229. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  230. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  231. writel(tmp, &dev->regs->irqmsk);
  232. return 0;
  233. }
  234. /* Calculates fifo start of endpoint based on preceding endpoints */
  235. static int udc_set_txfifo_addr(struct udc_ep *ep)
  236. {
  237. struct udc *dev;
  238. u32 tmp;
  239. int i;
  240. if (!ep || !(ep->in))
  241. return -EINVAL;
  242. dev = ep->dev;
  243. ep->txfifo = dev->txfifo;
  244. /* traverse ep's */
  245. for (i = 0; i < ep->num; i++) {
  246. if (dev->ep[i].regs) {
  247. /* read fifo size */
  248. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  249. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  250. ep->txfifo += tmp;
  251. }
  252. }
  253. return 0;
  254. }
  255. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  256. static u32 cnak_pending;
  257. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  258. {
  259. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  260. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  261. cnak_pending |= 1 << (num);
  262. ep->naking = 1;
  263. } else
  264. cnak_pending = cnak_pending & (~(1 << (num)));
  265. }
  266. /* Enables endpoint, is called by gadget driver */
  267. static int
  268. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  269. {
  270. struct udc_ep *ep;
  271. struct udc *dev;
  272. u32 tmp;
  273. unsigned long iflags;
  274. u8 udc_csr_epix;
  275. unsigned maxpacket;
  276. if (!usbep
  277. || usbep->name == ep0_string
  278. || !desc
  279. || desc->bDescriptorType != USB_DT_ENDPOINT)
  280. return -EINVAL;
  281. ep = container_of(usbep, struct udc_ep, ep);
  282. dev = ep->dev;
  283. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  284. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  285. return -ESHUTDOWN;
  286. spin_lock_irqsave(&dev->lock, iflags);
  287. ep->desc = desc;
  288. ep->halted = 0;
  289. /* set traffic type */
  290. tmp = readl(&dev->ep[ep->num].regs->ctl);
  291. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  292. writel(tmp, &dev->ep[ep->num].regs->ctl);
  293. /* set max packet size */
  294. maxpacket = usb_endpoint_maxp(desc);
  295. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  296. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  297. ep->ep.maxpacket = maxpacket;
  298. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  299. /* IN ep */
  300. if (ep->in) {
  301. /* ep ix in UDC CSR register space */
  302. udc_csr_epix = ep->num;
  303. /* set buffer size (tx fifo entries) */
  304. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  305. /* double buffering: fifo size = 2 x max packet size */
  306. tmp = AMD_ADDBITS(
  307. tmp,
  308. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  309. / UDC_DWORD_BYTES,
  310. UDC_EPIN_BUFF_SIZE);
  311. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  312. /* calc. tx fifo base addr */
  313. udc_set_txfifo_addr(ep);
  314. /* flush fifo */
  315. tmp = readl(&ep->regs->ctl);
  316. tmp |= AMD_BIT(UDC_EPCTL_F);
  317. writel(tmp, &ep->regs->ctl);
  318. /* OUT ep */
  319. } else {
  320. /* ep ix in UDC CSR register space */
  321. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  322. /* set max packet size UDC CSR */
  323. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  324. tmp = AMD_ADDBITS(tmp, maxpacket,
  325. UDC_CSR_NE_MAX_PKT);
  326. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  327. if (use_dma && !ep->in) {
  328. /* alloc and init BNA dummy request */
  329. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  330. ep->bna_occurred = 0;
  331. }
  332. if (ep->num != UDC_EP0OUT_IX)
  333. dev->data_ep_enabled = 1;
  334. }
  335. /* set ep values */
  336. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  337. /* max packet */
  338. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  339. /* ep number */
  340. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  341. /* ep direction */
  342. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  343. /* ep type */
  344. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  345. /* ep config */
  346. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  347. /* ep interface */
  348. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  349. /* ep alt */
  350. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  351. /* write reg */
  352. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  353. /* enable ep irq */
  354. tmp = readl(&dev->regs->ep_irqmsk);
  355. tmp &= AMD_UNMASK_BIT(ep->num);
  356. writel(tmp, &dev->regs->ep_irqmsk);
  357. /*
  358. * clear NAK by writing CNAK
  359. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  360. */
  361. if (!use_dma || ep->in) {
  362. tmp = readl(&ep->regs->ctl);
  363. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  364. writel(tmp, &ep->regs->ctl);
  365. ep->naking = 0;
  366. UDC_QUEUE_CNAK(ep, ep->num);
  367. }
  368. tmp = desc->bEndpointAddress;
  369. DBG(dev, "%s enabled\n", usbep->name);
  370. spin_unlock_irqrestore(&dev->lock, iflags);
  371. return 0;
  372. }
  373. /* Resets endpoint */
  374. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  375. {
  376. u32 tmp;
  377. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  378. ep->desc = NULL;
  379. ep->ep.desc = NULL;
  380. ep->ep.ops = &udc_ep_ops;
  381. INIT_LIST_HEAD(&ep->queue);
  382. ep->ep.maxpacket = (u16) ~0;
  383. /* set NAK */
  384. tmp = readl(&ep->regs->ctl);
  385. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  386. writel(tmp, &ep->regs->ctl);
  387. ep->naking = 1;
  388. /* disable interrupt */
  389. tmp = readl(&regs->ep_irqmsk);
  390. tmp |= AMD_BIT(ep->num);
  391. writel(tmp, &regs->ep_irqmsk);
  392. if (ep->in) {
  393. /* unset P and IN bit of potential former DMA */
  394. tmp = readl(&ep->regs->ctl);
  395. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  396. writel(tmp, &ep->regs->ctl);
  397. tmp = readl(&ep->regs->sts);
  398. tmp |= AMD_BIT(UDC_EPSTS_IN);
  399. writel(tmp, &ep->regs->sts);
  400. /* flush the fifo */
  401. tmp = readl(&ep->regs->ctl);
  402. tmp |= AMD_BIT(UDC_EPCTL_F);
  403. writel(tmp, &ep->regs->ctl);
  404. }
  405. /* reset desc pointer */
  406. writel(0, &ep->regs->desptr);
  407. }
  408. /* Disables endpoint, is called by gadget driver */
  409. static int udc_ep_disable(struct usb_ep *usbep)
  410. {
  411. struct udc_ep *ep = NULL;
  412. unsigned long iflags;
  413. if (!usbep)
  414. return -EINVAL;
  415. ep = container_of(usbep, struct udc_ep, ep);
  416. if (usbep->name == ep0_string || !ep->desc)
  417. return -EINVAL;
  418. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  419. spin_lock_irqsave(&ep->dev->lock, iflags);
  420. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  421. empty_req_queue(ep);
  422. ep_init(ep->dev->regs, ep);
  423. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  424. return 0;
  425. }
  426. /* Allocates request packet, called by gadget driver */
  427. static struct usb_request *
  428. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  429. {
  430. struct udc_request *req;
  431. struct udc_data_dma *dma_desc;
  432. struct udc_ep *ep;
  433. if (!usbep)
  434. return NULL;
  435. ep = container_of(usbep, struct udc_ep, ep);
  436. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  437. req = kzalloc(sizeof(struct udc_request), gfp);
  438. if (!req)
  439. return NULL;
  440. req->req.dma = DMA_DONT_USE;
  441. INIT_LIST_HEAD(&req->queue);
  442. if (ep->dma) {
  443. /* ep0 in requests are allocated from data pool here */
  444. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  445. &req->td_phys);
  446. if (!dma_desc) {
  447. kfree(req);
  448. return NULL;
  449. }
  450. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  451. "td_phys = %lx\n",
  452. req, dma_desc,
  453. (unsigned long)req->td_phys);
  454. /* prevent from using desc. - set HOST BUSY */
  455. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  456. UDC_DMA_STP_STS_BS_HOST_BUSY,
  457. UDC_DMA_STP_STS_BS);
  458. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  459. req->td_data = dma_desc;
  460. req->td_data_last = NULL;
  461. req->chain_len = 1;
  462. }
  463. return &req->req;
  464. }
  465. /* Frees request packet, called by gadget driver */
  466. static void
  467. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  468. {
  469. struct udc_ep *ep;
  470. struct udc_request *req;
  471. if (!usbep || !usbreq)
  472. return;
  473. ep = container_of(usbep, struct udc_ep, ep);
  474. req = container_of(usbreq, struct udc_request, req);
  475. VDBG(ep->dev, "free_req req=%p\n", req);
  476. BUG_ON(!list_empty(&req->queue));
  477. if (req->td_data) {
  478. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  479. /* free dma chain if created */
  480. if (req->chain_len > 1) {
  481. udc_free_dma_chain(ep->dev, req);
  482. }
  483. pci_pool_free(ep->dev->data_requests, req->td_data,
  484. req->td_phys);
  485. }
  486. kfree(req);
  487. }
  488. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  489. static void udc_init_bna_dummy(struct udc_request *req)
  490. {
  491. if (req) {
  492. /* set last bit */
  493. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  494. /* set next pointer to itself */
  495. req->td_data->next = req->td_phys;
  496. /* set HOST BUSY */
  497. req->td_data->status
  498. = AMD_ADDBITS(req->td_data->status,
  499. UDC_DMA_STP_STS_BS_DMA_DONE,
  500. UDC_DMA_STP_STS_BS);
  501. #ifdef UDC_VERBOSE
  502. pr_debug("bna desc = %p, sts = %08x\n",
  503. req->td_data, req->td_data->status);
  504. #endif
  505. }
  506. }
  507. /* Allocate BNA dummy descriptor */
  508. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  509. {
  510. struct udc_request *req = NULL;
  511. struct usb_request *_req = NULL;
  512. /* alloc the dummy request */
  513. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  514. if (_req) {
  515. req = container_of(_req, struct udc_request, req);
  516. ep->bna_dummy_req = req;
  517. udc_init_bna_dummy(req);
  518. }
  519. return req;
  520. }
  521. /* Write data to TX fifo for IN packets */
  522. static void
  523. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  524. {
  525. u8 *req_buf;
  526. u32 *buf;
  527. int i, j;
  528. unsigned bytes = 0;
  529. unsigned remaining = 0;
  530. if (!req || !ep)
  531. return;
  532. req_buf = req->buf + req->actual;
  533. prefetch(req_buf);
  534. remaining = req->length - req->actual;
  535. buf = (u32 *) req_buf;
  536. bytes = ep->ep.maxpacket;
  537. if (bytes > remaining)
  538. bytes = remaining;
  539. /* dwords first */
  540. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  541. writel(*(buf + i), ep->txfifo);
  542. }
  543. /* remaining bytes must be written by byte access */
  544. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  545. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  546. ep->txfifo);
  547. }
  548. /* dummy write confirm */
  549. writel(0, &ep->regs->confirm);
  550. }
  551. /* Read dwords from RX fifo for OUT transfers */
  552. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  553. {
  554. int i;
  555. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  556. for (i = 0; i < dwords; i++) {
  557. *(buf + i) = readl(dev->rxfifo);
  558. }
  559. return 0;
  560. }
  561. /* Read bytes from RX fifo for OUT transfers */
  562. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  563. {
  564. int i, j;
  565. u32 tmp;
  566. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  567. /* dwords first */
  568. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  569. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  570. }
  571. /* remaining bytes must be read by byte access */
  572. if (bytes % UDC_DWORD_BYTES) {
  573. tmp = readl(dev->rxfifo);
  574. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  575. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  576. tmp = tmp >> UDC_BITS_PER_BYTE;
  577. }
  578. }
  579. return 0;
  580. }
  581. /* Read data from RX fifo for OUT transfers */
  582. static int
  583. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  584. {
  585. u8 *buf;
  586. unsigned buf_space;
  587. unsigned bytes = 0;
  588. unsigned finished = 0;
  589. /* received number bytes */
  590. bytes = readl(&ep->regs->sts);
  591. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  592. buf_space = req->req.length - req->req.actual;
  593. buf = req->req.buf + req->req.actual;
  594. if (bytes > buf_space) {
  595. if ((buf_space % ep->ep.maxpacket) != 0) {
  596. DBG(ep->dev,
  597. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  598. ep->ep.name, bytes, buf_space);
  599. req->req.status = -EOVERFLOW;
  600. }
  601. bytes = buf_space;
  602. }
  603. req->req.actual += bytes;
  604. /* last packet ? */
  605. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  606. || ((req->req.actual == req->req.length) && !req->req.zero))
  607. finished = 1;
  608. /* read rx fifo bytes */
  609. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  610. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  611. return finished;
  612. }
  613. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  614. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  615. {
  616. int retval = 0;
  617. u32 tmp;
  618. VDBG(ep->dev, "prep_dma\n");
  619. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  620. ep->num, req->td_data);
  621. /* set buffer pointer */
  622. req->td_data->bufptr = req->req.dma;
  623. /* set last bit */
  624. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  625. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  626. if (use_dma_ppb) {
  627. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  628. if (retval != 0) {
  629. if (retval == -ENOMEM)
  630. DBG(ep->dev, "Out of DMA memory\n");
  631. return retval;
  632. }
  633. if (ep->in) {
  634. if (req->req.length == ep->ep.maxpacket) {
  635. /* write tx bytes */
  636. req->td_data->status =
  637. AMD_ADDBITS(req->td_data->status,
  638. ep->ep.maxpacket,
  639. UDC_DMA_IN_STS_TXBYTES);
  640. }
  641. }
  642. }
  643. if (ep->in) {
  644. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  645. "maxpacket=%d ep%d\n",
  646. use_dma_ppb, req->req.length,
  647. ep->ep.maxpacket, ep->num);
  648. /*
  649. * if bytes < max packet then tx bytes must
  650. * be written in packet per buffer mode
  651. */
  652. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  653. || ep->num == UDC_EP0OUT_IX
  654. || ep->num == UDC_EP0IN_IX) {
  655. /* write tx bytes */
  656. req->td_data->status =
  657. AMD_ADDBITS(req->td_data->status,
  658. req->req.length,
  659. UDC_DMA_IN_STS_TXBYTES);
  660. /* reset frame num */
  661. req->td_data->status =
  662. AMD_ADDBITS(req->td_data->status,
  663. 0,
  664. UDC_DMA_IN_STS_FRAMENUM);
  665. }
  666. /* set HOST BUSY */
  667. req->td_data->status =
  668. AMD_ADDBITS(req->td_data->status,
  669. UDC_DMA_STP_STS_BS_HOST_BUSY,
  670. UDC_DMA_STP_STS_BS);
  671. } else {
  672. VDBG(ep->dev, "OUT set host ready\n");
  673. /* set HOST READY */
  674. req->td_data->status =
  675. AMD_ADDBITS(req->td_data->status,
  676. UDC_DMA_STP_STS_BS_HOST_READY,
  677. UDC_DMA_STP_STS_BS);
  678. /* clear NAK by writing CNAK */
  679. if (ep->naking) {
  680. tmp = readl(&ep->regs->ctl);
  681. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  682. writel(tmp, &ep->regs->ctl);
  683. ep->naking = 0;
  684. UDC_QUEUE_CNAK(ep, ep->num);
  685. }
  686. }
  687. return retval;
  688. }
  689. /* Completes request packet ... caller MUST hold lock */
  690. static void
  691. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  692. __releases(ep->dev->lock)
  693. __acquires(ep->dev->lock)
  694. {
  695. struct udc *dev;
  696. unsigned halted;
  697. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  698. dev = ep->dev;
  699. /* unmap DMA */
  700. if (req->dma_mapping) {
  701. if (ep->in)
  702. pci_unmap_single(dev->pdev,
  703. req->req.dma,
  704. req->req.length,
  705. PCI_DMA_TODEVICE);
  706. else
  707. pci_unmap_single(dev->pdev,
  708. req->req.dma,
  709. req->req.length,
  710. PCI_DMA_FROMDEVICE);
  711. req->dma_mapping = 0;
  712. req->req.dma = DMA_DONT_USE;
  713. }
  714. halted = ep->halted;
  715. ep->halted = 1;
  716. /* set new status if pending */
  717. if (req->req.status == -EINPROGRESS)
  718. req->req.status = sts;
  719. /* remove from ep queue */
  720. list_del_init(&req->queue);
  721. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  722. &req->req, req->req.length, ep->ep.name, sts);
  723. spin_unlock(&dev->lock);
  724. req->req.complete(&ep->ep, &req->req);
  725. spin_lock(&dev->lock);
  726. ep->halted = halted;
  727. }
  728. /* frees pci pool descriptors of a DMA chain */
  729. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  730. {
  731. int ret_val = 0;
  732. struct udc_data_dma *td;
  733. struct udc_data_dma *td_last = NULL;
  734. unsigned int i;
  735. DBG(dev, "free chain req = %p\n", req);
  736. /* do not free first desc., will be done by free for request */
  737. td_last = req->td_data;
  738. td = phys_to_virt(td_last->next);
  739. for (i = 1; i < req->chain_len; i++) {
  740. pci_pool_free(dev->data_requests, td,
  741. (dma_addr_t) td_last->next);
  742. td_last = td;
  743. td = phys_to_virt(td_last->next);
  744. }
  745. return ret_val;
  746. }
  747. /* Iterates to the end of a DMA chain and returns last descriptor */
  748. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  749. {
  750. struct udc_data_dma *td;
  751. td = req->td_data;
  752. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  753. td = phys_to_virt(td->next);
  754. }
  755. return td;
  756. }
  757. /* Iterates to the end of a DMA chain and counts bytes received */
  758. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  759. {
  760. struct udc_data_dma *td;
  761. u32 count;
  762. td = req->td_data;
  763. /* received number bytes */
  764. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  765. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  766. td = phys_to_virt(td->next);
  767. /* received number bytes */
  768. if (td) {
  769. count += AMD_GETBITS(td->status,
  770. UDC_DMA_OUT_STS_RXBYTES);
  771. }
  772. }
  773. return count;
  774. }
  775. /* Creates or re-inits a DMA chain */
  776. static int udc_create_dma_chain(
  777. struct udc_ep *ep,
  778. struct udc_request *req,
  779. unsigned long buf_len, gfp_t gfp_flags
  780. )
  781. {
  782. unsigned long bytes = req->req.length;
  783. unsigned int i;
  784. dma_addr_t dma_addr;
  785. struct udc_data_dma *td = NULL;
  786. struct udc_data_dma *last = NULL;
  787. unsigned long txbytes;
  788. unsigned create_new_chain = 0;
  789. unsigned len;
  790. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  791. bytes, buf_len);
  792. dma_addr = DMA_DONT_USE;
  793. /* unset L bit in first desc for OUT */
  794. if (!ep->in) {
  795. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  796. }
  797. /* alloc only new desc's if not already available */
  798. len = req->req.length / ep->ep.maxpacket;
  799. if (req->req.length % ep->ep.maxpacket) {
  800. len++;
  801. }
  802. if (len > req->chain_len) {
  803. /* shorter chain already allocated before */
  804. if (req->chain_len > 1) {
  805. udc_free_dma_chain(ep->dev, req);
  806. }
  807. req->chain_len = len;
  808. create_new_chain = 1;
  809. }
  810. td = req->td_data;
  811. /* gen. required number of descriptors and buffers */
  812. for (i = buf_len; i < bytes; i += buf_len) {
  813. /* create or determine next desc. */
  814. if (create_new_chain) {
  815. td = pci_pool_alloc(ep->dev->data_requests,
  816. gfp_flags, &dma_addr);
  817. if (!td)
  818. return -ENOMEM;
  819. td->status = 0;
  820. } else if (i == buf_len) {
  821. /* first td */
  822. td = (struct udc_data_dma *) phys_to_virt(
  823. req->td_data->next);
  824. td->status = 0;
  825. } else {
  826. td = (struct udc_data_dma *) phys_to_virt(last->next);
  827. td->status = 0;
  828. }
  829. if (td)
  830. td->bufptr = req->req.dma + i; /* assign buffer */
  831. else
  832. break;
  833. /* short packet ? */
  834. if ((bytes - i) >= buf_len) {
  835. txbytes = buf_len;
  836. } else {
  837. /* short packet */
  838. txbytes = bytes - i;
  839. }
  840. /* link td and assign tx bytes */
  841. if (i == buf_len) {
  842. if (create_new_chain) {
  843. req->td_data->next = dma_addr;
  844. } else {
  845. /* req->td_data->next = virt_to_phys(td); */
  846. }
  847. /* write tx bytes */
  848. if (ep->in) {
  849. /* first desc */
  850. req->td_data->status =
  851. AMD_ADDBITS(req->td_data->status,
  852. ep->ep.maxpacket,
  853. UDC_DMA_IN_STS_TXBYTES);
  854. /* second desc */
  855. td->status = AMD_ADDBITS(td->status,
  856. txbytes,
  857. UDC_DMA_IN_STS_TXBYTES);
  858. }
  859. } else {
  860. if (create_new_chain) {
  861. last->next = dma_addr;
  862. } else {
  863. /* last->next = virt_to_phys(td); */
  864. }
  865. if (ep->in) {
  866. /* write tx bytes */
  867. td->status = AMD_ADDBITS(td->status,
  868. txbytes,
  869. UDC_DMA_IN_STS_TXBYTES);
  870. }
  871. }
  872. last = td;
  873. }
  874. /* set last bit */
  875. if (td) {
  876. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  877. /* last desc. points to itself */
  878. req->td_data_last = td;
  879. }
  880. return 0;
  881. }
  882. /* Enabling RX DMA */
  883. static void udc_set_rde(struct udc *dev)
  884. {
  885. u32 tmp;
  886. VDBG(dev, "udc_set_rde()\n");
  887. /* stop RDE timer */
  888. if (timer_pending(&udc_timer)) {
  889. set_rde = 0;
  890. mod_timer(&udc_timer, jiffies - 1);
  891. }
  892. /* set RDE */
  893. tmp = readl(&dev->regs->ctl);
  894. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  895. writel(tmp, &dev->regs->ctl);
  896. }
  897. /* Queues a request packet, called by gadget driver */
  898. static int
  899. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  900. {
  901. int retval = 0;
  902. u8 open_rxfifo = 0;
  903. unsigned long iflags;
  904. struct udc_ep *ep;
  905. struct udc_request *req;
  906. struct udc *dev;
  907. u32 tmp;
  908. /* check the inputs */
  909. req = container_of(usbreq, struct udc_request, req);
  910. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  911. || !list_empty(&req->queue))
  912. return -EINVAL;
  913. ep = container_of(usbep, struct udc_ep, ep);
  914. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  915. return -EINVAL;
  916. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  917. dev = ep->dev;
  918. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  919. return -ESHUTDOWN;
  920. /* map dma (usually done before) */
  921. if (ep->dma && usbreq->length != 0
  922. && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
  923. VDBG(dev, "DMA map req %p\n", req);
  924. if (ep->in)
  925. usbreq->dma = pci_map_single(dev->pdev,
  926. usbreq->buf,
  927. usbreq->length,
  928. PCI_DMA_TODEVICE);
  929. else
  930. usbreq->dma = pci_map_single(dev->pdev,
  931. usbreq->buf,
  932. usbreq->length,
  933. PCI_DMA_FROMDEVICE);
  934. req->dma_mapping = 1;
  935. }
  936. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  937. usbep->name, usbreq, usbreq->length,
  938. req->td_data, usbreq->buf);
  939. spin_lock_irqsave(&dev->lock, iflags);
  940. usbreq->actual = 0;
  941. usbreq->status = -EINPROGRESS;
  942. req->dma_done = 0;
  943. /* on empty queue just do first transfer */
  944. if (list_empty(&ep->queue)) {
  945. /* zlp */
  946. if (usbreq->length == 0) {
  947. /* IN zlp's are handled by hardware */
  948. complete_req(ep, req, 0);
  949. VDBG(dev, "%s: zlp\n", ep->ep.name);
  950. /*
  951. * if set_config or set_intf is waiting for ack by zlp
  952. * then set CSR_DONE
  953. */
  954. if (dev->set_cfg_not_acked) {
  955. tmp = readl(&dev->regs->ctl);
  956. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  957. writel(tmp, &dev->regs->ctl);
  958. dev->set_cfg_not_acked = 0;
  959. }
  960. /* setup command is ACK'ed now by zlp */
  961. if (dev->waiting_zlp_ack_ep0in) {
  962. /* clear NAK by writing CNAK in EP0_IN */
  963. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  964. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  965. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  966. dev->ep[UDC_EP0IN_IX].naking = 0;
  967. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  968. UDC_EP0IN_IX);
  969. dev->waiting_zlp_ack_ep0in = 0;
  970. }
  971. goto finished;
  972. }
  973. if (ep->dma) {
  974. retval = prep_dma(ep, req, gfp);
  975. if (retval != 0)
  976. goto finished;
  977. /* write desc pointer to enable DMA */
  978. if (ep->in) {
  979. /* set HOST READY */
  980. req->td_data->status =
  981. AMD_ADDBITS(req->td_data->status,
  982. UDC_DMA_IN_STS_BS_HOST_READY,
  983. UDC_DMA_IN_STS_BS);
  984. }
  985. /* disabled rx dma while descriptor update */
  986. if (!ep->in) {
  987. /* stop RDE timer */
  988. if (timer_pending(&udc_timer)) {
  989. set_rde = 0;
  990. mod_timer(&udc_timer, jiffies - 1);
  991. }
  992. /* clear RDE */
  993. tmp = readl(&dev->regs->ctl);
  994. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  995. writel(tmp, &dev->regs->ctl);
  996. open_rxfifo = 1;
  997. /*
  998. * if BNA occurred then let BNA dummy desc.
  999. * point to current desc.
  1000. */
  1001. if (ep->bna_occurred) {
  1002. VDBG(dev, "copy to BNA dummy desc.\n");
  1003. memcpy(ep->bna_dummy_req->td_data,
  1004. req->td_data,
  1005. sizeof(struct udc_data_dma));
  1006. }
  1007. }
  1008. /* write desc pointer */
  1009. writel(req->td_phys, &ep->regs->desptr);
  1010. /* clear NAK by writing CNAK */
  1011. if (ep->naking) {
  1012. tmp = readl(&ep->regs->ctl);
  1013. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1014. writel(tmp, &ep->regs->ctl);
  1015. ep->naking = 0;
  1016. UDC_QUEUE_CNAK(ep, ep->num);
  1017. }
  1018. if (ep->in) {
  1019. /* enable ep irq */
  1020. tmp = readl(&dev->regs->ep_irqmsk);
  1021. tmp &= AMD_UNMASK_BIT(ep->num);
  1022. writel(tmp, &dev->regs->ep_irqmsk);
  1023. }
  1024. } else if (ep->in) {
  1025. /* enable ep irq */
  1026. tmp = readl(&dev->regs->ep_irqmsk);
  1027. tmp &= AMD_UNMASK_BIT(ep->num);
  1028. writel(tmp, &dev->regs->ep_irqmsk);
  1029. }
  1030. } else if (ep->dma) {
  1031. /*
  1032. * prep_dma not used for OUT ep's, this is not possible
  1033. * for PPB modes, because of chain creation reasons
  1034. */
  1035. if (ep->in) {
  1036. retval = prep_dma(ep, req, gfp);
  1037. if (retval != 0)
  1038. goto finished;
  1039. }
  1040. }
  1041. VDBG(dev, "list_add\n");
  1042. /* add request to ep queue */
  1043. if (req) {
  1044. list_add_tail(&req->queue, &ep->queue);
  1045. /* open rxfifo if out data queued */
  1046. if (open_rxfifo) {
  1047. /* enable DMA */
  1048. req->dma_going = 1;
  1049. udc_set_rde(dev);
  1050. if (ep->num != UDC_EP0OUT_IX)
  1051. dev->data_ep_queued = 1;
  1052. }
  1053. /* stop OUT naking */
  1054. if (!ep->in) {
  1055. if (!use_dma && udc_rxfifo_pending) {
  1056. DBG(dev, "udc_queue(): pending bytes in "
  1057. "rxfifo after nyet\n");
  1058. /*
  1059. * read pending bytes afer nyet:
  1060. * referring to isr
  1061. */
  1062. if (udc_rxfifo_read(ep, req)) {
  1063. /* finish */
  1064. complete_req(ep, req, 0);
  1065. }
  1066. udc_rxfifo_pending = 0;
  1067. }
  1068. }
  1069. }
  1070. finished:
  1071. spin_unlock_irqrestore(&dev->lock, iflags);
  1072. return retval;
  1073. }
  1074. /* Empty request queue of an endpoint; caller holds spinlock */
  1075. static void empty_req_queue(struct udc_ep *ep)
  1076. {
  1077. struct udc_request *req;
  1078. ep->halted = 1;
  1079. while (!list_empty(&ep->queue)) {
  1080. req = list_entry(ep->queue.next,
  1081. struct udc_request,
  1082. queue);
  1083. complete_req(ep, req, -ESHUTDOWN);
  1084. }
  1085. }
  1086. /* Dequeues a request packet, called by gadget driver */
  1087. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1088. {
  1089. struct udc_ep *ep;
  1090. struct udc_request *req;
  1091. unsigned halted;
  1092. unsigned long iflags;
  1093. ep = container_of(usbep, struct udc_ep, ep);
  1094. if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
  1095. && ep->num != UDC_EP0OUT_IX)))
  1096. return -EINVAL;
  1097. req = container_of(usbreq, struct udc_request, req);
  1098. spin_lock_irqsave(&ep->dev->lock, iflags);
  1099. halted = ep->halted;
  1100. ep->halted = 1;
  1101. /* request in processing or next one */
  1102. if (ep->queue.next == &req->queue) {
  1103. if (ep->dma && req->dma_going) {
  1104. if (ep->in)
  1105. ep->cancel_transfer = 1;
  1106. else {
  1107. u32 tmp;
  1108. u32 dma_sts;
  1109. /* stop potential receive DMA */
  1110. tmp = readl(&udc->regs->ctl);
  1111. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1112. &udc->regs->ctl);
  1113. /*
  1114. * Cancel transfer later in ISR
  1115. * if descriptor was touched.
  1116. */
  1117. dma_sts = AMD_GETBITS(req->td_data->status,
  1118. UDC_DMA_OUT_STS_BS);
  1119. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1120. ep->cancel_transfer = 1;
  1121. else {
  1122. udc_init_bna_dummy(ep->req);
  1123. writel(ep->bna_dummy_req->td_phys,
  1124. &ep->regs->desptr);
  1125. }
  1126. writel(tmp, &udc->regs->ctl);
  1127. }
  1128. }
  1129. }
  1130. complete_req(ep, req, -ECONNRESET);
  1131. ep->halted = halted;
  1132. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1133. return 0;
  1134. }
  1135. /* Halt or clear halt of endpoint */
  1136. static int
  1137. udc_set_halt(struct usb_ep *usbep, int halt)
  1138. {
  1139. struct udc_ep *ep;
  1140. u32 tmp;
  1141. unsigned long iflags;
  1142. int retval = 0;
  1143. if (!usbep)
  1144. return -EINVAL;
  1145. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1146. ep = container_of(usbep, struct udc_ep, ep);
  1147. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1148. return -EINVAL;
  1149. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1150. return -ESHUTDOWN;
  1151. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1152. /* halt or clear halt */
  1153. if (halt) {
  1154. if (ep->num == 0)
  1155. ep->dev->stall_ep0in = 1;
  1156. else {
  1157. /*
  1158. * set STALL
  1159. * rxfifo empty not taken into acount
  1160. */
  1161. tmp = readl(&ep->regs->ctl);
  1162. tmp |= AMD_BIT(UDC_EPCTL_S);
  1163. writel(tmp, &ep->regs->ctl);
  1164. ep->halted = 1;
  1165. /* setup poll timer */
  1166. if (!timer_pending(&udc_pollstall_timer)) {
  1167. udc_pollstall_timer.expires = jiffies +
  1168. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1169. / (1000 * 1000);
  1170. if (!stop_pollstall_timer) {
  1171. DBG(ep->dev, "start polltimer\n");
  1172. add_timer(&udc_pollstall_timer);
  1173. }
  1174. }
  1175. }
  1176. } else {
  1177. /* ep is halted by set_halt() before */
  1178. if (ep->halted) {
  1179. tmp = readl(&ep->regs->ctl);
  1180. /* clear stall bit */
  1181. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1182. /* clear NAK by writing CNAK */
  1183. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1184. writel(tmp, &ep->regs->ctl);
  1185. ep->halted = 0;
  1186. UDC_QUEUE_CNAK(ep, ep->num);
  1187. }
  1188. }
  1189. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1190. return retval;
  1191. }
  1192. /* gadget interface */
  1193. static const struct usb_ep_ops udc_ep_ops = {
  1194. .enable = udc_ep_enable,
  1195. .disable = udc_ep_disable,
  1196. .alloc_request = udc_alloc_request,
  1197. .free_request = udc_free_request,
  1198. .queue = udc_queue,
  1199. .dequeue = udc_dequeue,
  1200. .set_halt = udc_set_halt,
  1201. /* fifo ops not implemented */
  1202. };
  1203. /*-------------------------------------------------------------------------*/
  1204. /* Get frame counter (not implemented) */
  1205. static int udc_get_frame(struct usb_gadget *gadget)
  1206. {
  1207. return -EOPNOTSUPP;
  1208. }
  1209. /* Remote wakeup gadget interface */
  1210. static int udc_wakeup(struct usb_gadget *gadget)
  1211. {
  1212. struct udc *dev;
  1213. if (!gadget)
  1214. return -EINVAL;
  1215. dev = container_of(gadget, struct udc, gadget);
  1216. udc_remote_wakeup(dev);
  1217. return 0;
  1218. }
  1219. static int amd5536_start(struct usb_gadget_driver *driver,
  1220. int (*bind)(struct usb_gadget *));
  1221. static int amd5536_stop(struct usb_gadget_driver *driver);
  1222. /* gadget operations */
  1223. static const struct usb_gadget_ops udc_ops = {
  1224. .wakeup = udc_wakeup,
  1225. .get_frame = udc_get_frame,
  1226. .start = amd5536_start,
  1227. .stop = amd5536_stop,
  1228. };
  1229. /* Setups endpoint parameters, adds endpoints to linked list */
  1230. static void make_ep_lists(struct udc *dev)
  1231. {
  1232. /* make gadget ep lists */
  1233. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1234. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1235. &dev->gadget.ep_list);
  1236. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1237. &dev->gadget.ep_list);
  1238. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1239. &dev->gadget.ep_list);
  1240. /* fifo config */
  1241. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1242. if (dev->gadget.speed == USB_SPEED_FULL)
  1243. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1244. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1245. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1246. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1247. }
  1248. /* init registers at driver load time */
  1249. static int startup_registers(struct udc *dev)
  1250. {
  1251. u32 tmp;
  1252. /* init controller by soft reset */
  1253. udc_soft_reset(dev);
  1254. /* mask not needed interrupts */
  1255. udc_mask_unused_interrupts(dev);
  1256. /* put into initial config */
  1257. udc_basic_init(dev);
  1258. /* link up all endpoints */
  1259. udc_setup_endpoints(dev);
  1260. /* program speed */
  1261. tmp = readl(&dev->regs->cfg);
  1262. if (use_fullspeed) {
  1263. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1264. } else {
  1265. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1266. }
  1267. writel(tmp, &dev->regs->cfg);
  1268. return 0;
  1269. }
  1270. /* Inits UDC context */
  1271. static void udc_basic_init(struct udc *dev)
  1272. {
  1273. u32 tmp;
  1274. DBG(dev, "udc_basic_init()\n");
  1275. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1276. /* stop RDE timer */
  1277. if (timer_pending(&udc_timer)) {
  1278. set_rde = 0;
  1279. mod_timer(&udc_timer, jiffies - 1);
  1280. }
  1281. /* stop poll stall timer */
  1282. if (timer_pending(&udc_pollstall_timer)) {
  1283. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1284. }
  1285. /* disable DMA */
  1286. tmp = readl(&dev->regs->ctl);
  1287. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1288. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1289. writel(tmp, &dev->regs->ctl);
  1290. /* enable dynamic CSR programming */
  1291. tmp = readl(&dev->regs->cfg);
  1292. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1293. /* set self powered */
  1294. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1295. /* set remote wakeupable */
  1296. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1297. writel(tmp, &dev->regs->cfg);
  1298. make_ep_lists(dev);
  1299. dev->data_ep_enabled = 0;
  1300. dev->data_ep_queued = 0;
  1301. }
  1302. /* Sets initial endpoint parameters */
  1303. static void udc_setup_endpoints(struct udc *dev)
  1304. {
  1305. struct udc_ep *ep;
  1306. u32 tmp;
  1307. u32 reg;
  1308. DBG(dev, "udc_setup_endpoints()\n");
  1309. /* read enum speed */
  1310. tmp = readl(&dev->regs->sts);
  1311. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1312. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
  1313. dev->gadget.speed = USB_SPEED_HIGH;
  1314. } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
  1315. dev->gadget.speed = USB_SPEED_FULL;
  1316. }
  1317. /* set basic ep parameters */
  1318. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1319. ep = &dev->ep[tmp];
  1320. ep->dev = dev;
  1321. ep->ep.name = ep_string[tmp];
  1322. ep->num = tmp;
  1323. /* txfifo size is calculated at enable time */
  1324. ep->txfifo = dev->txfifo;
  1325. /* fifo size */
  1326. if (tmp < UDC_EPIN_NUM) {
  1327. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1328. ep->in = 1;
  1329. } else {
  1330. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1331. ep->in = 0;
  1332. }
  1333. ep->regs = &dev->ep_regs[tmp];
  1334. /*
  1335. * ep will be reset only if ep was not enabled before to avoid
  1336. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1337. * not enabled by gadget driver
  1338. */
  1339. if (!ep->desc) {
  1340. ep_init(dev->regs, ep);
  1341. }
  1342. if (use_dma) {
  1343. /*
  1344. * ep->dma is not really used, just to indicate that
  1345. * DMA is active: remove this
  1346. * dma regs = dev control regs
  1347. */
  1348. ep->dma = &dev->regs->ctl;
  1349. /* nak OUT endpoints until enable - not for ep0 */
  1350. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1351. && tmp > UDC_EPIN_NUM) {
  1352. /* set NAK */
  1353. reg = readl(&dev->ep[tmp].regs->ctl);
  1354. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1355. writel(reg, &dev->ep[tmp].regs->ctl);
  1356. dev->ep[tmp].naking = 1;
  1357. }
  1358. }
  1359. }
  1360. /* EP0 max packet */
  1361. if (dev->gadget.speed == USB_SPEED_FULL) {
  1362. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1363. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1364. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1365. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1366. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1367. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1368. }
  1369. /*
  1370. * with suspend bug workaround, ep0 params for gadget driver
  1371. * are set at gadget driver bind() call
  1372. */
  1373. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1374. dev->ep[UDC_EP0IN_IX].halted = 0;
  1375. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1376. /* init cfg/alt/int */
  1377. dev->cur_config = 0;
  1378. dev->cur_intf = 0;
  1379. dev->cur_alt = 0;
  1380. }
  1381. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1382. static void usb_connect(struct udc *dev)
  1383. {
  1384. dev_info(&dev->pdev->dev, "USB Connect\n");
  1385. dev->connected = 1;
  1386. /* put into initial config */
  1387. udc_basic_init(dev);
  1388. /* enable device setup interrupts */
  1389. udc_enable_dev_setup_interrupts(dev);
  1390. }
  1391. /*
  1392. * Calls gadget with disconnect event and resets the UDC and makes
  1393. * initial bringup to be ready for ep0 events
  1394. */
  1395. static void usb_disconnect(struct udc *dev)
  1396. {
  1397. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1398. dev->connected = 0;
  1399. /* mask interrupts */
  1400. udc_mask_unused_interrupts(dev);
  1401. /* REVISIT there doesn't seem to be a point to having this
  1402. * talk to a tasklet ... do it directly, we already hold
  1403. * the spinlock needed to process the disconnect.
  1404. */
  1405. tasklet_schedule(&disconnect_tasklet);
  1406. }
  1407. /* Tasklet for disconnect to be outside of interrupt context */
  1408. static void udc_tasklet_disconnect(unsigned long par)
  1409. {
  1410. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1411. u32 tmp;
  1412. DBG(dev, "Tasklet disconnect\n");
  1413. spin_lock_irq(&dev->lock);
  1414. if (dev->driver) {
  1415. spin_unlock(&dev->lock);
  1416. dev->driver->disconnect(&dev->gadget);
  1417. spin_lock(&dev->lock);
  1418. /* empty queues */
  1419. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1420. empty_req_queue(&dev->ep[tmp]);
  1421. }
  1422. }
  1423. /* disable ep0 */
  1424. ep_init(dev->regs,
  1425. &dev->ep[UDC_EP0IN_IX]);
  1426. if (!soft_reset_occured) {
  1427. /* init controller by soft reset */
  1428. udc_soft_reset(dev);
  1429. soft_reset_occured++;
  1430. }
  1431. /* re-enable dev interrupts */
  1432. udc_enable_dev_setup_interrupts(dev);
  1433. /* back to full speed ? */
  1434. if (use_fullspeed) {
  1435. tmp = readl(&dev->regs->cfg);
  1436. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1437. writel(tmp, &dev->regs->cfg);
  1438. }
  1439. spin_unlock_irq(&dev->lock);
  1440. }
  1441. /* Reset the UDC core */
  1442. static void udc_soft_reset(struct udc *dev)
  1443. {
  1444. unsigned long flags;
  1445. DBG(dev, "Soft reset\n");
  1446. /*
  1447. * reset possible waiting interrupts, because int.
  1448. * status is lost after soft reset,
  1449. * ep int. status reset
  1450. */
  1451. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1452. /* device int. status reset */
  1453. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1454. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1455. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1456. readl(&dev->regs->cfg);
  1457. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1458. }
  1459. /* RDE timer callback to set RDE bit */
  1460. static void udc_timer_function(unsigned long v)
  1461. {
  1462. u32 tmp;
  1463. spin_lock_irq(&udc_irq_spinlock);
  1464. if (set_rde > 0) {
  1465. /*
  1466. * open the fifo if fifo was filled on last timer call
  1467. * conditionally
  1468. */
  1469. if (set_rde > 1) {
  1470. /* set RDE to receive setup data */
  1471. tmp = readl(&udc->regs->ctl);
  1472. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1473. writel(tmp, &udc->regs->ctl);
  1474. set_rde = -1;
  1475. } else if (readl(&udc->regs->sts)
  1476. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1477. /*
  1478. * if fifo empty setup polling, do not just
  1479. * open the fifo
  1480. */
  1481. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1482. if (!stop_timer) {
  1483. add_timer(&udc_timer);
  1484. }
  1485. } else {
  1486. /*
  1487. * fifo contains data now, setup timer for opening
  1488. * the fifo when timer expires to be able to receive
  1489. * setup packets, when data packets gets queued by
  1490. * gadget layer then timer will forced to expire with
  1491. * set_rde=0 (RDE is set in udc_queue())
  1492. */
  1493. set_rde++;
  1494. /* debug: lhadmot_timer_start = 221070 */
  1495. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1496. if (!stop_timer) {
  1497. add_timer(&udc_timer);
  1498. }
  1499. }
  1500. } else
  1501. set_rde = -1; /* RDE was set by udc_queue() */
  1502. spin_unlock_irq(&udc_irq_spinlock);
  1503. if (stop_timer)
  1504. complete(&on_exit);
  1505. }
  1506. /* Handle halt state, used in stall poll timer */
  1507. static void udc_handle_halt_state(struct udc_ep *ep)
  1508. {
  1509. u32 tmp;
  1510. /* set stall as long not halted */
  1511. if (ep->halted == 1) {
  1512. tmp = readl(&ep->regs->ctl);
  1513. /* STALL cleared ? */
  1514. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1515. /*
  1516. * FIXME: MSC spec requires that stall remains
  1517. * even on receivng of CLEAR_FEATURE HALT. So
  1518. * we would set STALL again here to be compliant.
  1519. * But with current mass storage drivers this does
  1520. * not work (would produce endless host retries).
  1521. * So we clear halt on CLEAR_FEATURE.
  1522. *
  1523. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1524. tmp |= AMD_BIT(UDC_EPCTL_S);
  1525. writel(tmp, &ep->regs->ctl);*/
  1526. /* clear NAK by writing CNAK */
  1527. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1528. writel(tmp, &ep->regs->ctl);
  1529. ep->halted = 0;
  1530. UDC_QUEUE_CNAK(ep, ep->num);
  1531. }
  1532. }
  1533. }
  1534. /* Stall timer callback to poll S bit and set it again after */
  1535. static void udc_pollstall_timer_function(unsigned long v)
  1536. {
  1537. struct udc_ep *ep;
  1538. int halted = 0;
  1539. spin_lock_irq(&udc_stall_spinlock);
  1540. /*
  1541. * only one IN and OUT endpoints are handled
  1542. * IN poll stall
  1543. */
  1544. ep = &udc->ep[UDC_EPIN_IX];
  1545. udc_handle_halt_state(ep);
  1546. if (ep->halted)
  1547. halted = 1;
  1548. /* OUT poll stall */
  1549. ep = &udc->ep[UDC_EPOUT_IX];
  1550. udc_handle_halt_state(ep);
  1551. if (ep->halted)
  1552. halted = 1;
  1553. /* setup timer again when still halted */
  1554. if (!stop_pollstall_timer && halted) {
  1555. udc_pollstall_timer.expires = jiffies +
  1556. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1557. / (1000 * 1000);
  1558. add_timer(&udc_pollstall_timer);
  1559. }
  1560. spin_unlock_irq(&udc_stall_spinlock);
  1561. if (stop_pollstall_timer)
  1562. complete(&on_pollstall_exit);
  1563. }
  1564. /* Inits endpoint 0 so that SETUP packets are processed */
  1565. static void activate_control_endpoints(struct udc *dev)
  1566. {
  1567. u32 tmp;
  1568. DBG(dev, "activate_control_endpoints\n");
  1569. /* flush fifo */
  1570. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1571. tmp |= AMD_BIT(UDC_EPCTL_F);
  1572. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1573. /* set ep0 directions */
  1574. dev->ep[UDC_EP0IN_IX].in = 1;
  1575. dev->ep[UDC_EP0OUT_IX].in = 0;
  1576. /* set buffer size (tx fifo entries) of EP0_IN */
  1577. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1578. if (dev->gadget.speed == USB_SPEED_FULL)
  1579. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1580. UDC_EPIN_BUFF_SIZE);
  1581. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1582. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1583. UDC_EPIN_BUFF_SIZE);
  1584. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1585. /* set max packet size of EP0_IN */
  1586. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1587. if (dev->gadget.speed == USB_SPEED_FULL)
  1588. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1589. UDC_EP_MAX_PKT_SIZE);
  1590. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1591. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1592. UDC_EP_MAX_PKT_SIZE);
  1593. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1594. /* set max packet size of EP0_OUT */
  1595. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1596. if (dev->gadget.speed == USB_SPEED_FULL)
  1597. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1598. UDC_EP_MAX_PKT_SIZE);
  1599. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1600. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1601. UDC_EP_MAX_PKT_SIZE);
  1602. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1603. /* set max packet size of EP0 in UDC CSR */
  1604. tmp = readl(&dev->csr->ne[0]);
  1605. if (dev->gadget.speed == USB_SPEED_FULL)
  1606. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1607. UDC_CSR_NE_MAX_PKT);
  1608. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1609. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1610. UDC_CSR_NE_MAX_PKT);
  1611. writel(tmp, &dev->csr->ne[0]);
  1612. if (use_dma) {
  1613. dev->ep[UDC_EP0OUT_IX].td->status |=
  1614. AMD_BIT(UDC_DMA_OUT_STS_L);
  1615. /* write dma desc address */
  1616. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1617. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1618. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1619. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1620. /* stop RDE timer */
  1621. if (timer_pending(&udc_timer)) {
  1622. set_rde = 0;
  1623. mod_timer(&udc_timer, jiffies - 1);
  1624. }
  1625. /* stop pollstall timer */
  1626. if (timer_pending(&udc_pollstall_timer)) {
  1627. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1628. }
  1629. /* enable DMA */
  1630. tmp = readl(&dev->regs->ctl);
  1631. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1632. | AMD_BIT(UDC_DEVCTL_RDE)
  1633. | AMD_BIT(UDC_DEVCTL_TDE);
  1634. if (use_dma_bufferfill_mode) {
  1635. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1636. } else if (use_dma_ppb_du) {
  1637. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1638. }
  1639. writel(tmp, &dev->regs->ctl);
  1640. }
  1641. /* clear NAK by writing CNAK for EP0IN */
  1642. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1643. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1644. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1645. dev->ep[UDC_EP0IN_IX].naking = 0;
  1646. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1647. /* clear NAK by writing CNAK for EP0OUT */
  1648. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1649. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1650. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1651. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1652. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1653. }
  1654. /* Make endpoint 0 ready for control traffic */
  1655. static int setup_ep0(struct udc *dev)
  1656. {
  1657. activate_control_endpoints(dev);
  1658. /* enable ep0 interrupts */
  1659. udc_enable_ep0_interrupts(dev);
  1660. /* enable device setup interrupts */
  1661. udc_enable_dev_setup_interrupts(dev);
  1662. return 0;
  1663. }
  1664. /* Called by gadget driver to register itself */
  1665. static int amd5536_start(struct usb_gadget_driver *driver,
  1666. int (*bind)(struct usb_gadget *))
  1667. {
  1668. struct udc *dev = udc;
  1669. int retval;
  1670. u32 tmp;
  1671. if (!driver || !bind || !driver->setup
  1672. || driver->max_speed < USB_SPEED_HIGH)
  1673. return -EINVAL;
  1674. if (!dev)
  1675. return -ENODEV;
  1676. if (dev->driver)
  1677. return -EBUSY;
  1678. driver->driver.bus = NULL;
  1679. dev->driver = driver;
  1680. dev->gadget.dev.driver = &driver->driver;
  1681. retval = bind(&dev->gadget);
  1682. /* Some gadget drivers use both ep0 directions.
  1683. * NOTE: to gadget driver, ep0 is just one endpoint...
  1684. */
  1685. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1686. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1687. if (retval) {
  1688. DBG(dev, "binding to %s returning %d\n",
  1689. driver->driver.name, retval);
  1690. dev->driver = NULL;
  1691. dev->gadget.dev.driver = NULL;
  1692. return retval;
  1693. }
  1694. /* get ready for ep0 traffic */
  1695. setup_ep0(dev);
  1696. /* clear SD */
  1697. tmp = readl(&dev->regs->ctl);
  1698. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1699. writel(tmp, &dev->regs->ctl);
  1700. usb_connect(dev);
  1701. return 0;
  1702. }
  1703. /* shutdown requests and disconnect from gadget */
  1704. static void
  1705. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1706. __releases(dev->lock)
  1707. __acquires(dev->lock)
  1708. {
  1709. int tmp;
  1710. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1711. spin_unlock(&dev->lock);
  1712. driver->disconnect(&dev->gadget);
  1713. spin_lock(&dev->lock);
  1714. }
  1715. /* empty queues and init hardware */
  1716. udc_basic_init(dev);
  1717. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1718. empty_req_queue(&dev->ep[tmp]);
  1719. udc_setup_endpoints(dev);
  1720. }
  1721. /* Called by gadget driver to unregister itself */
  1722. static int amd5536_stop(struct usb_gadget_driver *driver)
  1723. {
  1724. struct udc *dev = udc;
  1725. unsigned long flags;
  1726. u32 tmp;
  1727. if (!dev)
  1728. return -ENODEV;
  1729. if (!driver || driver != dev->driver || !driver->unbind)
  1730. return -EINVAL;
  1731. spin_lock_irqsave(&dev->lock, flags);
  1732. udc_mask_unused_interrupts(dev);
  1733. shutdown(dev, driver);
  1734. spin_unlock_irqrestore(&dev->lock, flags);
  1735. driver->unbind(&dev->gadget);
  1736. dev->gadget.dev.driver = NULL;
  1737. dev->driver = NULL;
  1738. /* set SD */
  1739. tmp = readl(&dev->regs->ctl);
  1740. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1741. writel(tmp, &dev->regs->ctl);
  1742. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1743. return 0;
  1744. }
  1745. /* Clear pending NAK bits */
  1746. static void udc_process_cnak_queue(struct udc *dev)
  1747. {
  1748. u32 tmp;
  1749. u32 reg;
  1750. /* check epin's */
  1751. DBG(dev, "CNAK pending queue processing\n");
  1752. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1753. if (cnak_pending & (1 << tmp)) {
  1754. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1755. /* clear NAK by writing CNAK */
  1756. reg = readl(&dev->ep[tmp].regs->ctl);
  1757. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1758. writel(reg, &dev->ep[tmp].regs->ctl);
  1759. dev->ep[tmp].naking = 0;
  1760. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1761. }
  1762. }
  1763. /* ... and ep0out */
  1764. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1765. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1766. /* clear NAK by writing CNAK */
  1767. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1768. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1769. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1770. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1771. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1772. dev->ep[UDC_EP0OUT_IX].num);
  1773. }
  1774. }
  1775. /* Enabling RX DMA after setup packet */
  1776. static void udc_ep0_set_rde(struct udc *dev)
  1777. {
  1778. if (use_dma) {
  1779. /*
  1780. * only enable RXDMA when no data endpoint enabled
  1781. * or data is queued
  1782. */
  1783. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1784. udc_set_rde(dev);
  1785. } else {
  1786. /*
  1787. * setup timer for enabling RDE (to not enable
  1788. * RXFIFO DMA for data endpoints to early)
  1789. */
  1790. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1791. udc_timer.expires =
  1792. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1793. set_rde = 1;
  1794. if (!stop_timer) {
  1795. add_timer(&udc_timer);
  1796. }
  1797. }
  1798. }
  1799. }
  1800. }
  1801. /* Interrupt handler for data OUT traffic */
  1802. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1803. {
  1804. irqreturn_t ret_val = IRQ_NONE;
  1805. u32 tmp;
  1806. struct udc_ep *ep;
  1807. struct udc_request *req;
  1808. unsigned int count;
  1809. struct udc_data_dma *td = NULL;
  1810. unsigned dma_done;
  1811. VDBG(dev, "ep%d irq\n", ep_ix);
  1812. ep = &dev->ep[ep_ix];
  1813. tmp = readl(&ep->regs->sts);
  1814. if (use_dma) {
  1815. /* BNA event ? */
  1816. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1817. DBG(dev, "BNA ep%dout occurred - DESPTR = %x \n",
  1818. ep->num, readl(&ep->regs->desptr));
  1819. /* clear BNA */
  1820. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1821. if (!ep->cancel_transfer)
  1822. ep->bna_occurred = 1;
  1823. else
  1824. ep->cancel_transfer = 0;
  1825. ret_val = IRQ_HANDLED;
  1826. goto finished;
  1827. }
  1828. }
  1829. /* HE event ? */
  1830. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1831. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1832. /* clear HE */
  1833. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1834. ret_val = IRQ_HANDLED;
  1835. goto finished;
  1836. }
  1837. if (!list_empty(&ep->queue)) {
  1838. /* next request */
  1839. req = list_entry(ep->queue.next,
  1840. struct udc_request, queue);
  1841. } else {
  1842. req = NULL;
  1843. udc_rxfifo_pending = 1;
  1844. }
  1845. VDBG(dev, "req = %p\n", req);
  1846. /* fifo mode */
  1847. if (!use_dma) {
  1848. /* read fifo */
  1849. if (req && udc_rxfifo_read(ep, req)) {
  1850. ret_val = IRQ_HANDLED;
  1851. /* finish */
  1852. complete_req(ep, req, 0);
  1853. /* next request */
  1854. if (!list_empty(&ep->queue) && !ep->halted) {
  1855. req = list_entry(ep->queue.next,
  1856. struct udc_request, queue);
  1857. } else
  1858. req = NULL;
  1859. }
  1860. /* DMA */
  1861. } else if (!ep->cancel_transfer && req != NULL) {
  1862. ret_val = IRQ_HANDLED;
  1863. /* check for DMA done */
  1864. if (!use_dma_ppb) {
  1865. dma_done = AMD_GETBITS(req->td_data->status,
  1866. UDC_DMA_OUT_STS_BS);
  1867. /* packet per buffer mode - rx bytes */
  1868. } else {
  1869. /*
  1870. * if BNA occurred then recover desc. from
  1871. * BNA dummy desc.
  1872. */
  1873. if (ep->bna_occurred) {
  1874. VDBG(dev, "Recover desc. from BNA dummy\n");
  1875. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1876. sizeof(struct udc_data_dma));
  1877. ep->bna_occurred = 0;
  1878. udc_init_bna_dummy(ep->req);
  1879. }
  1880. td = udc_get_last_dma_desc(req);
  1881. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1882. }
  1883. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1884. /* buffer fill mode - rx bytes */
  1885. if (!use_dma_ppb) {
  1886. /* received number bytes */
  1887. count = AMD_GETBITS(req->td_data->status,
  1888. UDC_DMA_OUT_STS_RXBYTES);
  1889. VDBG(dev, "rx bytes=%u\n", count);
  1890. /* packet per buffer mode - rx bytes */
  1891. } else {
  1892. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1893. VDBG(dev, "last desc = %p\n", td);
  1894. /* received number bytes */
  1895. if (use_dma_ppb_du) {
  1896. /* every desc. counts bytes */
  1897. count = udc_get_ppbdu_rxbytes(req);
  1898. } else {
  1899. /* last desc. counts bytes */
  1900. count = AMD_GETBITS(td->status,
  1901. UDC_DMA_OUT_STS_RXBYTES);
  1902. if (!count && req->req.length
  1903. == UDC_DMA_MAXPACKET) {
  1904. /*
  1905. * on 64k packets the RXBYTES
  1906. * field is zero
  1907. */
  1908. count = UDC_DMA_MAXPACKET;
  1909. }
  1910. }
  1911. VDBG(dev, "last desc rx bytes=%u\n", count);
  1912. }
  1913. tmp = req->req.length - req->req.actual;
  1914. if (count > tmp) {
  1915. if ((tmp % ep->ep.maxpacket) != 0) {
  1916. DBG(dev, "%s: rx %db, space=%db\n",
  1917. ep->ep.name, count, tmp);
  1918. req->req.status = -EOVERFLOW;
  1919. }
  1920. count = tmp;
  1921. }
  1922. req->req.actual += count;
  1923. req->dma_going = 0;
  1924. /* complete request */
  1925. complete_req(ep, req, 0);
  1926. /* next request */
  1927. if (!list_empty(&ep->queue) && !ep->halted) {
  1928. req = list_entry(ep->queue.next,
  1929. struct udc_request,
  1930. queue);
  1931. /*
  1932. * DMA may be already started by udc_queue()
  1933. * called by gadget drivers completion
  1934. * routine. This happens when queue
  1935. * holds one request only.
  1936. */
  1937. if (req->dma_going == 0) {
  1938. /* next dma */
  1939. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1940. goto finished;
  1941. /* write desc pointer */
  1942. writel(req->td_phys,
  1943. &ep->regs->desptr);
  1944. req->dma_going = 1;
  1945. /* enable DMA */
  1946. udc_set_rde(dev);
  1947. }
  1948. } else {
  1949. /*
  1950. * implant BNA dummy descriptor to allow
  1951. * RXFIFO opening by RDE
  1952. */
  1953. if (ep->bna_dummy_req) {
  1954. /* write desc pointer */
  1955. writel(ep->bna_dummy_req->td_phys,
  1956. &ep->regs->desptr);
  1957. ep->bna_occurred = 0;
  1958. }
  1959. /*
  1960. * schedule timer for setting RDE if queue
  1961. * remains empty to allow ep0 packets pass
  1962. * through
  1963. */
  1964. if (set_rde != 0
  1965. && !timer_pending(&udc_timer)) {
  1966. udc_timer.expires =
  1967. jiffies
  1968. + HZ*UDC_RDE_TIMER_SECONDS;
  1969. set_rde = 1;
  1970. if (!stop_timer) {
  1971. add_timer(&udc_timer);
  1972. }
  1973. }
  1974. if (ep->num != UDC_EP0OUT_IX)
  1975. dev->data_ep_queued = 0;
  1976. }
  1977. } else {
  1978. /*
  1979. * RX DMA must be reenabled for each desc in PPBDU mode
  1980. * and must be enabled for PPBNDU mode in case of BNA
  1981. */
  1982. udc_set_rde(dev);
  1983. }
  1984. } else if (ep->cancel_transfer) {
  1985. ret_val = IRQ_HANDLED;
  1986. ep->cancel_transfer = 0;
  1987. }
  1988. /* check pending CNAKS */
  1989. if (cnak_pending) {
  1990. /* CNAk processing when rxfifo empty only */
  1991. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1992. udc_process_cnak_queue(dev);
  1993. }
  1994. }
  1995. /* clear OUT bits in ep status */
  1996. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1997. finished:
  1998. return ret_val;
  1999. }
  2000. /* Interrupt handler for data IN traffic */
  2001. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  2002. {
  2003. irqreturn_t ret_val = IRQ_NONE;
  2004. u32 tmp;
  2005. u32 epsts;
  2006. struct udc_ep *ep;
  2007. struct udc_request *req;
  2008. struct udc_data_dma *td;
  2009. unsigned dma_done;
  2010. unsigned len;
  2011. ep = &dev->ep[ep_ix];
  2012. epsts = readl(&ep->regs->sts);
  2013. if (use_dma) {
  2014. /* BNA ? */
  2015. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  2016. dev_err(&dev->pdev->dev,
  2017. "BNA ep%din occurred - DESPTR = %08lx \n",
  2018. ep->num,
  2019. (unsigned long) readl(&ep->regs->desptr));
  2020. /* clear BNA */
  2021. writel(epsts, &ep->regs->sts);
  2022. ret_val = IRQ_HANDLED;
  2023. goto finished;
  2024. }
  2025. }
  2026. /* HE event ? */
  2027. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  2028. dev_err(&dev->pdev->dev,
  2029. "HE ep%dn occurred - DESPTR = %08lx \n",
  2030. ep->num, (unsigned long) readl(&ep->regs->desptr));
  2031. /* clear HE */
  2032. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  2033. ret_val = IRQ_HANDLED;
  2034. goto finished;
  2035. }
  2036. /* DMA completion */
  2037. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2038. VDBG(dev, "TDC set- completion\n");
  2039. ret_val = IRQ_HANDLED;
  2040. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2041. req = list_entry(ep->queue.next,
  2042. struct udc_request, queue);
  2043. /*
  2044. * length bytes transferred
  2045. * check dma done of last desc. in PPBDU mode
  2046. */
  2047. if (use_dma_ppb_du) {
  2048. td = udc_get_last_dma_desc(req);
  2049. if (td) {
  2050. dma_done =
  2051. AMD_GETBITS(td->status,
  2052. UDC_DMA_IN_STS_BS);
  2053. /* don't care DMA done */
  2054. req->req.actual = req->req.length;
  2055. }
  2056. } else {
  2057. /* assume all bytes transferred */
  2058. req->req.actual = req->req.length;
  2059. }
  2060. if (req->req.actual == req->req.length) {
  2061. /* complete req */
  2062. complete_req(ep, req, 0);
  2063. req->dma_going = 0;
  2064. /* further request available ? */
  2065. if (list_empty(&ep->queue)) {
  2066. /* disable interrupt */
  2067. tmp = readl(&dev->regs->ep_irqmsk);
  2068. tmp |= AMD_BIT(ep->num);
  2069. writel(tmp, &dev->regs->ep_irqmsk);
  2070. }
  2071. }
  2072. }
  2073. ep->cancel_transfer = 0;
  2074. }
  2075. /*
  2076. * status reg has IN bit set and TDC not set (if TDC was handled,
  2077. * IN must not be handled (UDC defect) ?
  2078. */
  2079. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2080. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2081. ret_val = IRQ_HANDLED;
  2082. if (!list_empty(&ep->queue)) {
  2083. /* next request */
  2084. req = list_entry(ep->queue.next,
  2085. struct udc_request, queue);
  2086. /* FIFO mode */
  2087. if (!use_dma) {
  2088. /* write fifo */
  2089. udc_txfifo_write(ep, &req->req);
  2090. len = req->req.length - req->req.actual;
  2091. if (len > ep->ep.maxpacket)
  2092. len = ep->ep.maxpacket;
  2093. req->req.actual += len;
  2094. if (req->req.actual == req->req.length
  2095. || (len != ep->ep.maxpacket)) {
  2096. /* complete req */
  2097. complete_req(ep, req, 0);
  2098. }
  2099. /* DMA */
  2100. } else if (req && !req->dma_going) {
  2101. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2102. req, req->td_data);
  2103. if (req->td_data) {
  2104. req->dma_going = 1;
  2105. /*
  2106. * unset L bit of first desc.
  2107. * for chain
  2108. */
  2109. if (use_dma_ppb && req->req.length >
  2110. ep->ep.maxpacket) {
  2111. req->td_data->status &=
  2112. AMD_CLEAR_BIT(
  2113. UDC_DMA_IN_STS_L);
  2114. }
  2115. /* write desc pointer */
  2116. writel(req->td_phys, &ep->regs->desptr);
  2117. /* set HOST READY */
  2118. req->td_data->status =
  2119. AMD_ADDBITS(
  2120. req->td_data->status,
  2121. UDC_DMA_IN_STS_BS_HOST_READY,
  2122. UDC_DMA_IN_STS_BS);
  2123. /* set poll demand bit */
  2124. tmp = readl(&ep->regs->ctl);
  2125. tmp |= AMD_BIT(UDC_EPCTL_P);
  2126. writel(tmp, &ep->regs->ctl);
  2127. }
  2128. }
  2129. } else if (!use_dma && ep->in) {
  2130. /* disable interrupt */
  2131. tmp = readl(
  2132. &dev->regs->ep_irqmsk);
  2133. tmp |= AMD_BIT(ep->num);
  2134. writel(tmp,
  2135. &dev->regs->ep_irqmsk);
  2136. }
  2137. }
  2138. /* clear status bits */
  2139. writel(epsts, &ep->regs->sts);
  2140. finished:
  2141. return ret_val;
  2142. }
  2143. /* Interrupt handler for Control OUT traffic */
  2144. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2145. __releases(dev->lock)
  2146. __acquires(dev->lock)
  2147. {
  2148. irqreturn_t ret_val = IRQ_NONE;
  2149. u32 tmp;
  2150. int setup_supported;
  2151. u32 count;
  2152. int set = 0;
  2153. struct udc_ep *ep;
  2154. struct udc_ep *ep_tmp;
  2155. ep = &dev->ep[UDC_EP0OUT_IX];
  2156. /* clear irq */
  2157. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2158. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2159. /* check BNA and clear if set */
  2160. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2161. VDBG(dev, "ep0: BNA set\n");
  2162. writel(AMD_BIT(UDC_EPSTS_BNA),
  2163. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2164. ep->bna_occurred = 1;
  2165. ret_val = IRQ_HANDLED;
  2166. goto finished;
  2167. }
  2168. /* type of data: SETUP or DATA 0 bytes */
  2169. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2170. VDBG(dev, "data_typ = %x\n", tmp);
  2171. /* setup data */
  2172. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2173. ret_val = IRQ_HANDLED;
  2174. ep->dev->stall_ep0in = 0;
  2175. dev->waiting_zlp_ack_ep0in = 0;
  2176. /* set NAK for EP0_IN */
  2177. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2178. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2179. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2180. dev->ep[UDC_EP0IN_IX].naking = 1;
  2181. /* get setup data */
  2182. if (use_dma) {
  2183. /* clear OUT bits in ep status */
  2184. writel(UDC_EPSTS_OUT_CLEAR,
  2185. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2186. setup_data.data[0] =
  2187. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2188. setup_data.data[1] =
  2189. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2190. /* set HOST READY */
  2191. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2192. UDC_DMA_STP_STS_BS_HOST_READY;
  2193. } else {
  2194. /* read fifo */
  2195. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2196. }
  2197. /* determine direction of control data */
  2198. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2199. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2200. /* enable RDE */
  2201. udc_ep0_set_rde(dev);
  2202. set = 0;
  2203. } else {
  2204. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2205. /*
  2206. * implant BNA dummy descriptor to allow RXFIFO opening
  2207. * by RDE
  2208. */
  2209. if (ep->bna_dummy_req) {
  2210. /* write desc pointer */
  2211. writel(ep->bna_dummy_req->td_phys,
  2212. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2213. ep->bna_occurred = 0;
  2214. }
  2215. set = 1;
  2216. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2217. /*
  2218. * setup timer for enabling RDE (to not enable
  2219. * RXFIFO DMA for data to early)
  2220. */
  2221. set_rde = 1;
  2222. if (!timer_pending(&udc_timer)) {
  2223. udc_timer.expires = jiffies +
  2224. HZ/UDC_RDE_TIMER_DIV;
  2225. if (!stop_timer) {
  2226. add_timer(&udc_timer);
  2227. }
  2228. }
  2229. }
  2230. /*
  2231. * mass storage reset must be processed here because
  2232. * next packet may be a CLEAR_FEATURE HALT which would not
  2233. * clear the stall bit when no STALL handshake was received
  2234. * before (autostall can cause this)
  2235. */
  2236. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2237. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2238. DBG(dev, "MSC Reset\n");
  2239. /*
  2240. * clear stall bits
  2241. * only one IN and OUT endpoints are handled
  2242. */
  2243. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2244. udc_set_halt(&ep_tmp->ep, 0);
  2245. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2246. udc_set_halt(&ep_tmp->ep, 0);
  2247. }
  2248. /* call gadget with setup data received */
  2249. spin_unlock(&dev->lock);
  2250. setup_supported = dev->driver->setup(&dev->gadget,
  2251. &setup_data.request);
  2252. spin_lock(&dev->lock);
  2253. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2254. /* ep0 in returns data (not zlp) on IN phase */
  2255. if (setup_supported >= 0 && setup_supported <
  2256. UDC_EP0IN_MAXPACKET) {
  2257. /* clear NAK by writing CNAK in EP0_IN */
  2258. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2259. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2260. dev->ep[UDC_EP0IN_IX].naking = 0;
  2261. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2262. /* if unsupported request then stall */
  2263. } else if (setup_supported < 0) {
  2264. tmp |= AMD_BIT(UDC_EPCTL_S);
  2265. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2266. } else
  2267. dev->waiting_zlp_ack_ep0in = 1;
  2268. /* clear NAK by writing CNAK in EP0_OUT */
  2269. if (!set) {
  2270. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2271. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2272. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2273. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2274. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2275. }
  2276. if (!use_dma) {
  2277. /* clear OUT bits in ep status */
  2278. writel(UDC_EPSTS_OUT_CLEAR,
  2279. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2280. }
  2281. /* data packet 0 bytes */
  2282. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2283. /* clear OUT bits in ep status */
  2284. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2285. /* get setup data: only 0 packet */
  2286. if (use_dma) {
  2287. /* no req if 0 packet, just reactivate */
  2288. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2289. VDBG(dev, "ZLP\n");
  2290. /* set HOST READY */
  2291. dev->ep[UDC_EP0OUT_IX].td->status =
  2292. AMD_ADDBITS(
  2293. dev->ep[UDC_EP0OUT_IX].td->status,
  2294. UDC_DMA_OUT_STS_BS_HOST_READY,
  2295. UDC_DMA_OUT_STS_BS);
  2296. /* enable RDE */
  2297. udc_ep0_set_rde(dev);
  2298. ret_val = IRQ_HANDLED;
  2299. } else {
  2300. /* control write */
  2301. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2302. /* re-program desc. pointer for possible ZLPs */
  2303. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2304. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2305. /* enable RDE */
  2306. udc_ep0_set_rde(dev);
  2307. }
  2308. } else {
  2309. /* received number bytes */
  2310. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2311. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2312. /* out data for fifo mode not working */
  2313. count = 0;
  2314. /* 0 packet or real data ? */
  2315. if (count != 0) {
  2316. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2317. } else {
  2318. /* dummy read confirm */
  2319. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2320. ret_val = IRQ_HANDLED;
  2321. }
  2322. }
  2323. }
  2324. /* check pending CNAKS */
  2325. if (cnak_pending) {
  2326. /* CNAk processing when rxfifo empty only */
  2327. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  2328. udc_process_cnak_queue(dev);
  2329. }
  2330. }
  2331. finished:
  2332. return ret_val;
  2333. }
  2334. /* Interrupt handler for Control IN traffic */
  2335. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2336. {
  2337. irqreturn_t ret_val = IRQ_NONE;
  2338. u32 tmp;
  2339. struct udc_ep *ep;
  2340. struct udc_request *req;
  2341. unsigned len;
  2342. ep = &dev->ep[UDC_EP0IN_IX];
  2343. /* clear irq */
  2344. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2345. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2346. /* DMA completion */
  2347. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2348. VDBG(dev, "isr: TDC clear \n");
  2349. ret_val = IRQ_HANDLED;
  2350. /* clear TDC bit */
  2351. writel(AMD_BIT(UDC_EPSTS_TDC),
  2352. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2353. /* status reg has IN bit set ? */
  2354. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2355. ret_val = IRQ_HANDLED;
  2356. if (ep->dma) {
  2357. /* clear IN bit */
  2358. writel(AMD_BIT(UDC_EPSTS_IN),
  2359. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2360. }
  2361. if (dev->stall_ep0in) {
  2362. DBG(dev, "stall ep0in\n");
  2363. /* halt ep0in */
  2364. tmp = readl(&ep->regs->ctl);
  2365. tmp |= AMD_BIT(UDC_EPCTL_S);
  2366. writel(tmp, &ep->regs->ctl);
  2367. } else {
  2368. if (!list_empty(&ep->queue)) {
  2369. /* next request */
  2370. req = list_entry(ep->queue.next,
  2371. struct udc_request, queue);
  2372. if (ep->dma) {
  2373. /* write desc pointer */
  2374. writel(req->td_phys, &ep->regs->desptr);
  2375. /* set HOST READY */
  2376. req->td_data->status =
  2377. AMD_ADDBITS(
  2378. req->td_data->status,
  2379. UDC_DMA_STP_STS_BS_HOST_READY,
  2380. UDC_DMA_STP_STS_BS);
  2381. /* set poll demand bit */
  2382. tmp =
  2383. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2384. tmp |= AMD_BIT(UDC_EPCTL_P);
  2385. writel(tmp,
  2386. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2387. /* all bytes will be transferred */
  2388. req->req.actual = req->req.length;
  2389. /* complete req */
  2390. complete_req(ep, req, 0);
  2391. } else {
  2392. /* write fifo */
  2393. udc_txfifo_write(ep, &req->req);
  2394. /* lengh bytes transferred */
  2395. len = req->req.length - req->req.actual;
  2396. if (len > ep->ep.maxpacket)
  2397. len = ep->ep.maxpacket;
  2398. req->req.actual += len;
  2399. if (req->req.actual == req->req.length
  2400. || (len != ep->ep.maxpacket)) {
  2401. /* complete req */
  2402. complete_req(ep, req, 0);
  2403. }
  2404. }
  2405. }
  2406. }
  2407. ep->halted = 0;
  2408. dev->stall_ep0in = 0;
  2409. if (!ep->dma) {
  2410. /* clear IN bit */
  2411. writel(AMD_BIT(UDC_EPSTS_IN),
  2412. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2413. }
  2414. }
  2415. return ret_val;
  2416. }
  2417. /* Interrupt handler for global device events */
  2418. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2419. __releases(dev->lock)
  2420. __acquires(dev->lock)
  2421. {
  2422. irqreturn_t ret_val = IRQ_NONE;
  2423. u32 tmp;
  2424. u32 cfg;
  2425. struct udc_ep *ep;
  2426. u16 i;
  2427. u8 udc_csr_epix;
  2428. /* SET_CONFIG irq ? */
  2429. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2430. ret_val = IRQ_HANDLED;
  2431. /* read config value */
  2432. tmp = readl(&dev->regs->sts);
  2433. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2434. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2435. dev->cur_config = cfg;
  2436. dev->set_cfg_not_acked = 1;
  2437. /* make usb request for gadget driver */
  2438. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2439. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2440. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2441. /* programm the NE registers */
  2442. for (i = 0; i < UDC_EP_NUM; i++) {
  2443. ep = &dev->ep[i];
  2444. if (ep->in) {
  2445. /* ep ix in UDC CSR register space */
  2446. udc_csr_epix = ep->num;
  2447. /* OUT ep */
  2448. } else {
  2449. /* ep ix in UDC CSR register space */
  2450. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2451. }
  2452. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2453. /* ep cfg */
  2454. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2455. UDC_CSR_NE_CFG);
  2456. /* write reg */
  2457. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2458. /* clear stall bits */
  2459. ep->halted = 0;
  2460. tmp = readl(&ep->regs->ctl);
  2461. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2462. writel(tmp, &ep->regs->ctl);
  2463. }
  2464. /* call gadget zero with setup data received */
  2465. spin_unlock(&dev->lock);
  2466. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2467. spin_lock(&dev->lock);
  2468. } /* SET_INTERFACE ? */
  2469. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2470. ret_val = IRQ_HANDLED;
  2471. dev->set_cfg_not_acked = 1;
  2472. /* read interface and alt setting values */
  2473. tmp = readl(&dev->regs->sts);
  2474. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2475. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2476. /* make usb request for gadget driver */
  2477. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2478. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2479. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2480. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2481. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2482. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2483. dev->cur_alt, dev->cur_intf);
  2484. /* programm the NE registers */
  2485. for (i = 0; i < UDC_EP_NUM; i++) {
  2486. ep = &dev->ep[i];
  2487. if (ep->in) {
  2488. /* ep ix in UDC CSR register space */
  2489. udc_csr_epix = ep->num;
  2490. /* OUT ep */
  2491. } else {
  2492. /* ep ix in UDC CSR register space */
  2493. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2494. }
  2495. /* UDC CSR reg */
  2496. /* set ep values */
  2497. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2498. /* ep interface */
  2499. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2500. UDC_CSR_NE_INTF);
  2501. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2502. /* ep alt */
  2503. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2504. UDC_CSR_NE_ALT);
  2505. /* write reg */
  2506. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2507. /* clear stall bits */
  2508. ep->halted = 0;
  2509. tmp = readl(&ep->regs->ctl);
  2510. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2511. writel(tmp, &ep->regs->ctl);
  2512. }
  2513. /* call gadget zero with setup data received */
  2514. spin_unlock(&dev->lock);
  2515. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2516. spin_lock(&dev->lock);
  2517. } /* USB reset */
  2518. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2519. DBG(dev, "USB Reset interrupt\n");
  2520. ret_val = IRQ_HANDLED;
  2521. /* allow soft reset when suspend occurs */
  2522. soft_reset_occured = 0;
  2523. dev->waiting_zlp_ack_ep0in = 0;
  2524. dev->set_cfg_not_acked = 0;
  2525. /* mask not needed interrupts */
  2526. udc_mask_unused_interrupts(dev);
  2527. /* call gadget to resume and reset configs etc. */
  2528. spin_unlock(&dev->lock);
  2529. if (dev->sys_suspended && dev->driver->resume) {
  2530. dev->driver->resume(&dev->gadget);
  2531. dev->sys_suspended = 0;
  2532. }
  2533. dev->driver->disconnect(&dev->gadget);
  2534. spin_lock(&dev->lock);
  2535. /* disable ep0 to empty req queue */
  2536. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2537. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2538. /* soft reset when rxfifo not empty */
  2539. tmp = readl(&dev->regs->sts);
  2540. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2541. && !soft_reset_after_usbreset_occured) {
  2542. udc_soft_reset(dev);
  2543. soft_reset_after_usbreset_occured++;
  2544. }
  2545. /*
  2546. * DMA reset to kill potential old DMA hw hang,
  2547. * POLL bit is already reset by ep_init() through
  2548. * disconnect()
  2549. */
  2550. DBG(dev, "DMA machine reset\n");
  2551. tmp = readl(&dev->regs->cfg);
  2552. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2553. writel(tmp, &dev->regs->cfg);
  2554. /* put into initial config */
  2555. udc_basic_init(dev);
  2556. /* enable device setup interrupts */
  2557. udc_enable_dev_setup_interrupts(dev);
  2558. /* enable suspend interrupt */
  2559. tmp = readl(&dev->regs->irqmsk);
  2560. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2561. writel(tmp, &dev->regs->irqmsk);
  2562. } /* USB suspend */
  2563. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2564. DBG(dev, "USB Suspend interrupt\n");
  2565. ret_val = IRQ_HANDLED;
  2566. if (dev->driver->suspend) {
  2567. spin_unlock(&dev->lock);
  2568. dev->sys_suspended = 1;
  2569. dev->driver->suspend(&dev->gadget);
  2570. spin_lock(&dev->lock);
  2571. }
  2572. } /* new speed ? */
  2573. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2574. DBG(dev, "ENUM interrupt\n");
  2575. ret_val = IRQ_HANDLED;
  2576. soft_reset_after_usbreset_occured = 0;
  2577. /* disable ep0 to empty req queue */
  2578. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2579. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2580. /* link up all endpoints */
  2581. udc_setup_endpoints(dev);
  2582. dev_info(&dev->pdev->dev, "Connect: %s\n",
  2583. usb_speed_string(dev->gadget.speed));
  2584. /* init ep 0 */
  2585. activate_control_endpoints(dev);
  2586. /* enable ep0 interrupts */
  2587. udc_enable_ep0_interrupts(dev);
  2588. }
  2589. /* session valid change interrupt */
  2590. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2591. DBG(dev, "USB SVC interrupt\n");
  2592. ret_val = IRQ_HANDLED;
  2593. /* check that session is not valid to detect disconnect */
  2594. tmp = readl(&dev->regs->sts);
  2595. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2596. /* disable suspend interrupt */
  2597. tmp = readl(&dev->regs->irqmsk);
  2598. tmp |= AMD_BIT(UDC_DEVINT_US);
  2599. writel(tmp, &dev->regs->irqmsk);
  2600. DBG(dev, "USB Disconnect (session valid low)\n");
  2601. /* cleanup on disconnect */
  2602. usb_disconnect(udc);
  2603. }
  2604. }
  2605. return ret_val;
  2606. }
  2607. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2608. static irqreturn_t udc_irq(int irq, void *pdev)
  2609. {
  2610. struct udc *dev = pdev;
  2611. u32 reg;
  2612. u16 i;
  2613. u32 ep_irq;
  2614. irqreturn_t ret_val = IRQ_NONE;
  2615. spin_lock(&dev->lock);
  2616. /* check for ep irq */
  2617. reg = readl(&dev->regs->ep_irqsts);
  2618. if (reg) {
  2619. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2620. ret_val |= udc_control_out_isr(dev);
  2621. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2622. ret_val |= udc_control_in_isr(dev);
  2623. /*
  2624. * data endpoint
  2625. * iterate ep's
  2626. */
  2627. for (i = 1; i < UDC_EP_NUM; i++) {
  2628. ep_irq = 1 << i;
  2629. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2630. continue;
  2631. /* clear irq status */
  2632. writel(ep_irq, &dev->regs->ep_irqsts);
  2633. /* irq for out ep ? */
  2634. if (i > UDC_EPIN_NUM)
  2635. ret_val |= udc_data_out_isr(dev, i);
  2636. else
  2637. ret_val |= udc_data_in_isr(dev, i);
  2638. }
  2639. }
  2640. /* check for dev irq */
  2641. reg = readl(&dev->regs->irqsts);
  2642. if (reg) {
  2643. /* clear irq */
  2644. writel(reg, &dev->regs->irqsts);
  2645. ret_val |= udc_dev_isr(dev, reg);
  2646. }
  2647. spin_unlock(&dev->lock);
  2648. return ret_val;
  2649. }
  2650. /* Tears down device */
  2651. static void gadget_release(struct device *pdev)
  2652. {
  2653. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2654. kfree(dev);
  2655. }
  2656. /* Cleanup on device remove */
  2657. static void udc_remove(struct udc *dev)
  2658. {
  2659. /* remove timer */
  2660. stop_timer++;
  2661. if (timer_pending(&udc_timer))
  2662. wait_for_completion(&on_exit);
  2663. if (udc_timer.data)
  2664. del_timer_sync(&udc_timer);
  2665. /* remove pollstall timer */
  2666. stop_pollstall_timer++;
  2667. if (timer_pending(&udc_pollstall_timer))
  2668. wait_for_completion(&on_pollstall_exit);
  2669. if (udc_pollstall_timer.data)
  2670. del_timer_sync(&udc_pollstall_timer);
  2671. udc = NULL;
  2672. }
  2673. /* Reset all pci context */
  2674. static void udc_pci_remove(struct pci_dev *pdev)
  2675. {
  2676. struct udc *dev;
  2677. dev = pci_get_drvdata(pdev);
  2678. usb_del_gadget_udc(&udc->gadget);
  2679. /* gadget driver must not be registered */
  2680. BUG_ON(dev->driver != NULL);
  2681. /* dma pool cleanup */
  2682. if (dev->data_requests)
  2683. pci_pool_destroy(dev->data_requests);
  2684. if (dev->stp_requests) {
  2685. /* cleanup DMA desc's for ep0in */
  2686. pci_pool_free(dev->stp_requests,
  2687. dev->ep[UDC_EP0OUT_IX].td_stp,
  2688. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2689. pci_pool_free(dev->stp_requests,
  2690. dev->ep[UDC_EP0OUT_IX].td,
  2691. dev->ep[UDC_EP0OUT_IX].td_phys);
  2692. pci_pool_destroy(dev->stp_requests);
  2693. }
  2694. /* reset controller */
  2695. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2696. if (dev->irq_registered)
  2697. free_irq(pdev->irq, dev);
  2698. if (dev->regs)
  2699. iounmap(dev->regs);
  2700. if (dev->mem_region)
  2701. release_mem_region(pci_resource_start(pdev, 0),
  2702. pci_resource_len(pdev, 0));
  2703. if (dev->active)
  2704. pci_disable_device(pdev);
  2705. device_unregister(&dev->gadget.dev);
  2706. pci_set_drvdata(pdev, NULL);
  2707. udc_remove(dev);
  2708. }
  2709. /* create dma pools on init */
  2710. static int init_dma_pools(struct udc *dev)
  2711. {
  2712. struct udc_stp_dma *td_stp;
  2713. struct udc_data_dma *td_data;
  2714. int retval;
  2715. /* consistent DMA mode setting ? */
  2716. if (use_dma_ppb) {
  2717. use_dma_bufferfill_mode = 0;
  2718. } else {
  2719. use_dma_ppb_du = 0;
  2720. use_dma_bufferfill_mode = 1;
  2721. }
  2722. /* DMA setup */
  2723. dev->data_requests = dma_pool_create("data_requests", NULL,
  2724. sizeof(struct udc_data_dma), 0, 0);
  2725. if (!dev->data_requests) {
  2726. DBG(dev, "can't get request data pool\n");
  2727. retval = -ENOMEM;
  2728. goto finished;
  2729. }
  2730. /* EP0 in dma regs = dev control regs */
  2731. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2732. /* dma desc for setup data */
  2733. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2734. sizeof(struct udc_stp_dma), 0, 0);
  2735. if (!dev->stp_requests) {
  2736. DBG(dev, "can't get stp request pool\n");
  2737. retval = -ENOMEM;
  2738. goto finished;
  2739. }
  2740. /* setup */
  2741. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2742. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2743. if (td_stp == NULL) {
  2744. retval = -ENOMEM;
  2745. goto finished;
  2746. }
  2747. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2748. /* data: 0 packets !? */
  2749. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2750. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2751. if (td_data == NULL) {
  2752. retval = -ENOMEM;
  2753. goto finished;
  2754. }
  2755. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2756. return 0;
  2757. finished:
  2758. return retval;
  2759. }
  2760. /* Called by pci bus driver to init pci context */
  2761. static int udc_pci_probe(
  2762. struct pci_dev *pdev,
  2763. const struct pci_device_id *id
  2764. )
  2765. {
  2766. struct udc *dev;
  2767. unsigned long resource;
  2768. unsigned long len;
  2769. int retval = 0;
  2770. /* one udc only */
  2771. if (udc) {
  2772. dev_dbg(&pdev->dev, "already probed\n");
  2773. return -EBUSY;
  2774. }
  2775. /* init */
  2776. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2777. if (!dev) {
  2778. retval = -ENOMEM;
  2779. goto finished;
  2780. }
  2781. /* pci setup */
  2782. if (pci_enable_device(pdev) < 0) {
  2783. kfree(dev);
  2784. dev = NULL;
  2785. retval = -ENODEV;
  2786. goto finished;
  2787. }
  2788. dev->active = 1;
  2789. /* PCI resource allocation */
  2790. resource = pci_resource_start(pdev, 0);
  2791. len = pci_resource_len(pdev, 0);
  2792. if (!request_mem_region(resource, len, name)) {
  2793. dev_dbg(&pdev->dev, "pci device used already\n");
  2794. kfree(dev);
  2795. dev = NULL;
  2796. retval = -EBUSY;
  2797. goto finished;
  2798. }
  2799. dev->mem_region = 1;
  2800. dev->virt_addr = ioremap_nocache(resource, len);
  2801. if (dev->virt_addr == NULL) {
  2802. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2803. kfree(dev);
  2804. dev = NULL;
  2805. retval = -EFAULT;
  2806. goto finished;
  2807. }
  2808. if (!pdev->irq) {
  2809. dev_err(&dev->pdev->dev, "irq not set\n");
  2810. kfree(dev);
  2811. dev = NULL;
  2812. retval = -ENODEV;
  2813. goto finished;
  2814. }
  2815. spin_lock_init(&dev->lock);
  2816. /* udc csr registers base */
  2817. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2818. /* dev registers base */
  2819. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2820. /* ep registers base */
  2821. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2822. /* fifo's base */
  2823. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2824. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2825. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2826. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2827. kfree(dev);
  2828. dev = NULL;
  2829. retval = -EBUSY;
  2830. goto finished;
  2831. }
  2832. dev->irq_registered = 1;
  2833. pci_set_drvdata(pdev, dev);
  2834. /* chip revision for Hs AMD5536 */
  2835. dev->chiprev = pdev->revision;
  2836. pci_set_master(pdev);
  2837. pci_try_set_mwi(pdev);
  2838. /* init dma pools */
  2839. if (use_dma) {
  2840. retval = init_dma_pools(dev);
  2841. if (retval != 0)
  2842. goto finished;
  2843. }
  2844. dev->phys_addr = resource;
  2845. dev->irq = pdev->irq;
  2846. dev->pdev = pdev;
  2847. dev->gadget.dev.parent = &pdev->dev;
  2848. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2849. /* general probing */
  2850. if (udc_probe(dev) == 0)
  2851. return 0;
  2852. finished:
  2853. if (dev)
  2854. udc_pci_remove(pdev);
  2855. return retval;
  2856. }
  2857. /* general probe */
  2858. static int udc_probe(struct udc *dev)
  2859. {
  2860. char tmp[128];
  2861. u32 reg;
  2862. int retval;
  2863. /* mark timer as not initialized */
  2864. udc_timer.data = 0;
  2865. udc_pollstall_timer.data = 0;
  2866. /* device struct setup */
  2867. dev->gadget.ops = &udc_ops;
  2868. dev_set_name(&dev->gadget.dev, "gadget");
  2869. dev->gadget.dev.release = gadget_release;
  2870. dev->gadget.name = name;
  2871. dev->gadget.max_speed = USB_SPEED_HIGH;
  2872. /* init registers, interrupts, ... */
  2873. startup_registers(dev);
  2874. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2875. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2876. dev_info(&dev->pdev->dev,
  2877. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2878. tmp, dev->phys_addr, dev->chiprev,
  2879. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2880. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2881. if (dev->chiprev == UDC_HSA0_REV) {
  2882. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2883. retval = -ENODEV;
  2884. goto finished;
  2885. }
  2886. dev_info(&dev->pdev->dev,
  2887. "driver version: %s(for Geode5536 B1)\n", tmp);
  2888. udc = dev;
  2889. retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
  2890. if (retval)
  2891. goto finished;
  2892. retval = device_register(&dev->gadget.dev);
  2893. if (retval) {
  2894. usb_del_gadget_udc(&dev->gadget);
  2895. put_device(&dev->gadget.dev);
  2896. goto finished;
  2897. }
  2898. /* timer init */
  2899. init_timer(&udc_timer);
  2900. udc_timer.function = udc_timer_function;
  2901. udc_timer.data = 1;
  2902. /* timer pollstall init */
  2903. init_timer(&udc_pollstall_timer);
  2904. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2905. udc_pollstall_timer.data = 1;
  2906. /* set SD */
  2907. reg = readl(&dev->regs->ctl);
  2908. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2909. writel(reg, &dev->regs->ctl);
  2910. /* print dev register info */
  2911. print_regs(dev);
  2912. return 0;
  2913. finished:
  2914. return retval;
  2915. }
  2916. /* Initiates a remote wakeup */
  2917. static int udc_remote_wakeup(struct udc *dev)
  2918. {
  2919. unsigned long flags;
  2920. u32 tmp;
  2921. DBG(dev, "UDC initiates remote wakeup\n");
  2922. spin_lock_irqsave(&dev->lock, flags);
  2923. tmp = readl(&dev->regs->ctl);
  2924. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2925. writel(tmp, &dev->regs->ctl);
  2926. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2927. writel(tmp, &dev->regs->ctl);
  2928. spin_unlock_irqrestore(&dev->lock, flags);
  2929. return 0;
  2930. }
  2931. /* PCI device parameters */
  2932. static const struct pci_device_id pci_id[] = {
  2933. {
  2934. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2935. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2936. .class_mask = 0xffffffff,
  2937. },
  2938. {},
  2939. };
  2940. MODULE_DEVICE_TABLE(pci, pci_id);
  2941. /* PCI functions */
  2942. static struct pci_driver udc_pci_driver = {
  2943. .name = (char *) name,
  2944. .id_table = pci_id,
  2945. .probe = udc_pci_probe,
  2946. .remove = udc_pci_remove,
  2947. };
  2948. /* Inits driver */
  2949. static int __init init(void)
  2950. {
  2951. return pci_register_driver(&udc_pci_driver);
  2952. }
  2953. module_init(init);
  2954. /* Cleans driver */
  2955. static void __exit cleanup(void)
  2956. {
  2957. pci_unregister_driver(&udc_pci_driver);
  2958. }
  2959. module_exit(cleanup);
  2960. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2961. MODULE_AUTHOR("Thomas Dahlmann");
  2962. MODULE_LICENSE("GPL");